
Efficient Approximation of Correlated Sums

on Data Streams

Rohit Ananthakrishna
Cornell University

rohit@cs.cornell.edu

Abhinandan Das
Cornell University

asdas@cs.cornell.edu

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Flip Korn

AT&T Labs–Research

flip@research.att.com

S. Muthukrishnan

AT&T Labs–Research

muthu@research.att.com

Divesh Srivastava

AT&T Labs–Research

divesh@research.att.com

Abstract

In many applications such as IP network management, data arrives in streams,
and queries over those streams need to be processed online using limited storage.
Correlated-sum (CS) aggregates are a natural class of queries formed by composing
basic aggregates on (x, y) pairs, and are of the form SUM{g(y) : x ≤ f(AGG(x))},
where AGG(x) can be any basic aggregate and f(), g() are user-specified functions. CS-
aggregates cannot be computed exactly in one pass through a data stream using limited
storage; hence, we study the problem of computing approximate CS-aggregates.

We guarantee a priori error bounds when AGG(x) can be computed in limited space
(e.g., MIN, MAX, AVG), using two variants of Greenwald and Khanna’s summary structure
for the approximate computation of quantiles. Using real data sets, we experimentally
demonstrate that an adaptation of the quantile summary structure uses much lesser
space, and is significantly faster, than a more direct use of the quantile summary
structure, for the same a posteriori error bounds. Finally, we prove that, when AGG(x)
is a quantile (which cannot be computed over a data stream in limited space), the error
of a CS-aggregate can be arbitrarily large.

Index: Correlated aggregates, data streams, approximation, summary structures, a priori
error bounds, IP network management.

1 Introduction

In many applications from IP network management to telephone fraud detection, data arrives
in streams, and queries over those streams need to be processed in an online fashion to
enable real-time responses. For example, IP router interfaces are periodically polled by
network operators using Simple Network Management Protocol (SNMP) to get a variety of
performance measurements such as incoming and outgoing traffic volumes. This stream of
polled SNMP data is then queried to monitor network traffic behavior.

1

The large volume of stream data, and the online nature of the various applications that op-
erate on such data, make it imperative for the applications to compute a variety of summary
information in an online fashion using a bounded amount of space (see, e.g., [1, 2, 4, 5, 6, 7, 8],
and the references therein). Correlated aggregates (see, e.g., [3, 6]), which provide a natural
mechanism for the flexible composition of basic aggregates, are desirable since they are more
descriptive than the basic aggregates for understanding relationships between variables in
the stream data.

An example correlated aggregate from a network management application is AVG{pmit :
pmot ≤ AVG(pmot)}, which operates on a multiset of (pmot, pmit) pairs, and correlates them
by computing the average of pmit (per-minute incoming traffic) values over pairs whose pmot
(per-minute outgoing traffic) value does not exceed the average pmot value in the multiset.
Queries of this form have been reported in [9] for the Tribeca network monitoring system.
Yet another example of a correlated aggregate is the robust trimmed mean statistic, which is
computed after eliminating low and high quantile values from the input; it is less sensitive to
outliers than AVG. Numerous applications of correlated aggregates abound for other domains
(e.g., see http://www.traderbot.com for examples in a real-time financial trading system).

Correlated-sum (CS) aggregates are a natural class of correlated aggregates on (x, y) pairs,
and are of the form SUM{g(y) : x ≤ f(AGG(x))}, where the independent aggregate AGG(x)
can be any basic aggregate. The above examples are simple variations of CS-aggregates. In
general, CS-aggregates cannot be computed exactly over data streams with limited storage;
the AGG(x) value needs to be known exactly before one can identify the relevant input tuples
for the computation of SUM(g(y)). Recently, Gehrke et al. [6] proposed practical online
techniques for the approximate computation of a variety of correlated aggregates, using
adaptive histograms. While they experimentally showed the utility of their approach, no a
priori quality guarantees are provided by their techniques.

In this paper, we formally study the problem of space-efficient approximation of CS-
aggregates of very large data sets in a single pass, and make the following contributions:

• We obtain an ε-approximation of CS-aggregates using O(1
ε
log(εYsum)) space where

Ysum is the sum of the g(y) values in the input stream, when AGG(x) can be computed
exactly using limited space (e.g., MIN, MAX, AVG, STDEV).

Our construction uses two variants of the summary structure of [8] for the approximate
computation of quantiles. Using real data sets, we experimentally demonstrate the
space and time superiority of an adaptation of the quantile summary structure over its
more direct use, for the same a posteriori error bounds.

• We prove that, when the independent aggregate AGG(x) is a quantile (which cannot
be computed exactly over a data stream in limited space), the error of a CS-aggregate
may be arbitrarily large. This establishes a formal separation result.

2 Preliminaries

We are interested in computing correlated-sum (CS) aggregates over data streams of (x, y)
pairs; useful complex aggregates are expressible by combining CS-aggregates. Formally,

2

CS-aggregates are of the form SUM{g(y) : x ≤ f(AGG(x))} where the independent aggregate
AGG(x) can be any basic aggregate such as MIN(x), MAX(x), AVG(x), STDEV(x), or QTLφ(x), f()
and g() are user-specified functions, and both x and g(y) are positive integers. Permitting f()
and g() allows users to conduct exploratory analysis. For example, SUM{pmot : pmit ≤ 0.5 ∗
AVG(pmit)} and SUM{pmot : pmit ≤ 1.5∗AVG(pmit)} differ only in f(). As we shall see later in
the paper, both of these can be answered quite precisely using the same summary structure.
In contrast, the work of [6] would need a separate summary structure for each of these two
queries. By setting g() = 1, for example, we can compute COUNT{y : x ≤ f(AGG(x))}. For
the remainder of this paper, we do not mention g(), since it is straightforward how to extend
our results to deal with g().

The error metric we use is the margin L1-error |S−Ŝ|
S∞

, where S and Ŝ are the exact and
approximate answers, respectively, and S∞ is the maximum value of the aggregate (over
all possible inputs). Recent work on computing approximate quantiles has employed an
analogous error metric where φ-quantiles are determined to within a rank precision of εn,
rather than a “relative” rank precision of εφn (see, e.g., [8]).1 For the remainder of this
paper, we shall consider the worst-case error, which provides a deterministic guarantee of
the degree of imprecision for any arbitrary query, and show that CS-aggregates can often be
ε-approximated under this error metric.

3 Computing CS-Aggregates Over Exact Aggregates

We present two online algorithms for computing ε-approximations of CS-aggregates over data
streams, using variants of the summary structure of [8] for the approximate computation
of quantiles, when the independent aggregate AGG(x) is any basic aggregate that can be
computed exactly over a data stream in limited space, such as MIN, MAX, and AVG. Finally,
we experimentally compare their space and time requirements using real data sets.

3.1 A Direct Use of Quantile Summaries

Greenwald and Khanna [8] recently proposed the quantile summary data structure, that
effectively maintains the minimum and maximum possible rank (rmin(v), rmax(v)) for each
input sample v it stores. At any point in time n, the data structure S(n) consists of an
ordered sequence of tuples t0, t1, . . . , ts−1, where each tuple ti = (vi, gi, ∆i) consists of three
components: (i) vi, a value from the first n elements of the data stream, (ii) gi = rmin(vi) −
rmin(vi−1), and (iii) ∆i = rmax(vi) − rmin(vi). t0 and ts−1 correspond to the minimum and
maximum elements seen so far. Note that rmin(vi) =

∑
j≤i gj, and rmax(vi) = rmin(vi) + ∆i.

By ensuring that S(n) satisfies the property that maxi(gi + ∆i) ≤ 2εn, S(n) can be used
to answer any prefix range count (PRC) query of the form COUNT{x : x ≤ x′}, to within an
εn precision. Intuitively, this property can be satisfied in an online fashion, for the (n+1)-th
observation v (which lies between vi−1 and vi) as follows: (i) the tuple (v, 1, gi + ∆i − 1)
is inserted into S, (ii) the tuple tj in the (modified) S that has the smallest value of ej =
gj + gj+1 + ∆j+1 is identified, and (iii) if ej ≤ 2ε(n + 1), tuple tj is dropped from S and gj is

1n denotes both the time step and the number of observations seen so far in the data stream.

3

Algorithm PRC(x′)

let j be the largest index s.t. x′ ≥ vj

if (j == s − 1)

return (rmin(vs−1) + rmax(vs−1))/2

else

return (rmin(vj) + rmax(vj+1) − 1)/2

Algorithm PRS(x′)

let j be the largest index s.t. x′ ≥ xj

if (j == s − 1)

return (ysmin(vs−1) + ysmax(vs−1))/2

else

return (ysmin(vj) + ysmax(vj+1) − yj+1)/2

Figure 1: Algorithms PRC and PRS

added to gj+1. The resulting summary structure is S(n+1). Algorithm PRC(x′), in Figure 1,
gives the pseudocode for answering the prefix range count query.

When AGG(x) is any basic aggregate that can be computed exactly over a data stream
in limited space (such as MIN, MAX, and AVG), one can use the quantile summary struc-
ture in a straightforward manner for computing an ε-approximation of the CS-aggregate
SUM{y : x ≤ f(AGG(x))} over data streams of (x, y) pairs. Essentially, we maintain a quantile
summary over the data stream of x-values obtained from the original stream of (x, y) pairs,
by (dynamically) replacing each data item (xi, yi) by yi copies of xi, and inserting them
sequentially. The CS-aggregate can be estimated by invoking Algorithm PRC(x′), where
x′ = f(AGG(x)) (which is known exactly), on this quantile summary structure.

If the original data stream was of length n, the transformed data stream is of length
Ysum(n), where Ysum(n) =

∑n
i=1 yi. From the results of [8], it follows that maxi(gi + ∆i) ≤

2εYsum(n), and the space used is O(1
ε
log(εYsum(n))). This establishes the following result:

Proposition 3.1 For arbitrary ε, and an AGG(x) that can be computed exactly over a data
stream of (x, y) pairs in limited space, the summary structure S(n) can be used to compute
the CS-aggregate SUM{y : x ≤ f(AGG(x))} to within a precision of εYsum(n), using at most
O(1

ε
log(εYsum(n))) samples.

3.2 PRS(n): Using an Adaptation of Quantile Summaries

When individual y-values in the data stream of (x, y) pairs are large, creating yi copies of
xi to input to the quantile summary S(n) has two adverse consequences. First, it results
in a large number of updates (i.e., tuple insertions and merges) to the summary structure.
In a high speed data stream, as arises in many IP network management applications, the
amount of time spent updating the summary structure may render this approach infeasible.
Second, creating yi copies of xi may also result in multiple samples being retained in S(n)
for the same x-value, resulting in a larger summary structure than needed for answering CS-
aggregates. In this section, we present an adaptation of the quantile summary data structure
that addresses these concerns, and computes an ε-approximation of the CS-aggregate SUM{y :
x ≤ f(AGG(x))} using bounded space.

Our summary structure, PRS(n), effectively maintains the minimum and maximum pos-
sible y-sum (ysmin(v′), ysmax(v

′)) for each input sample v′ = (x′, y′) it stores. That is,

4

ysmin(v′) ≤ SUM{y : x ≤ x′} ≤ ysmax(v
′). At any point in time n, the data structure PRS(n)

consists of an ordered sequence of tuples t0, t1, . . . , ts−1, where each tuple ti = (vi, hi, Γi)
consists of three components: (i) vi = (xi, yi), an element from the first n elements of the
data stream; (ii) hi = ysmin(vi) − ysmin(vi−1), for i ≥ 1, and h0 = ysmin(x0); (iii) Γi =
ysmax(vi) − ysmin(vi). t0 and ts−1 correspond to the minimum and maximum x values seen
so far. Note that ysmin(vi) =

∑
j≤i hj, and ysmax(vi) = ysmin(vi) + Γi.

By ensuring that PRS(n) satisfies the property that maxi(hi+Γi−yi) ≤ 2εYsum(n), PRS(n)
can be used to answer any prefix range sum (PRS) query of the form SUM{y : x ≤ x′},
to within an εYsum(n) precision. Intuitively, this property can be satisfied in an online
fashion, for the (n + 1)-th observation v = (x, y) as follows: (i) given an index i such that
xi−1 < x ≤ xi, the tuple (v, y, hi + Γi − yi) is inserted into PRS, (ii) the tuple tj in the
(modified) PRS that has the smallest value of ej = hj + hj+1 + Γj+1 − yj+1 is identified,
and (iii) if ej ≤ 2εYsum(n + 1), tuple tj is dropped from PRS and hj is added to hj+1. The
resulting summary structure is PRS(n+1). The computation of the prefix range sum is based
on Algorithm PRS, in Figure 1.

When AGG(x) is any basic aggregate that can be computed exactly over a data stream
in limited space (such as MIN, MAX, and AVG), one can use our summary structure PRS(n)
for computing an ε-approximation of the CS-aggregate SUM{y : x ≤ f(AGG(x))} over data
streams of (x, y) pairs. Essentially, we maintain PRS(n) over the data stream of (x, y) pairs,
and the CS-aggregate is estimated by invoking Algorithm PRS(x′), where x′ = f(AGG(x)).
Using an argument similar in spirit to that in [8], we have the following non-trivial result.

Theorem 3.1 For arbitrary ε, and an AGG(x) that can be computed exactly over a data
stream of (x, y) pairs in limited space, the summary structure PRS(n) can be used to compute
the CS-aggregate SUM{y : x ≤ f(AGG(x))} to within a precision of εYsum(n), using at most
O(1

ε
log(εYsum(n))) samples.

3.3 Experimental Evaluation

The analytical results above (Proposition 3.1 and Theorem 3.1) indicate that the worst-
case space (in terms of number of samples) used by S(n) and PRS(n), for computing CS-
aggregates, are the same. Here, we seek to better understand their relative space-usage in
terms of number of samples, and relative performance in terms of the number of merges
required at runtime, on real data sets.

Figure 2(a) plots the space usage of PRS(n) and S(n), for computing CS-aggregates,
against different values of ε, after 100K tuples of a real AT&T network data stream have
been processed. As shown, PRS(n) uses roughly a factor of 10 less space than S(n) (the
y-axis is drawn in logscale). We also considered the time required for both methods and
found that PRS(n) requires roughly a factor of 50 fewer merges across all ε and timesteps.
Similar results were obtained for another real AT&T data set, but are omitted for brevity.

Figure 2(b) plots the space usage of S(n), for computing quantiles, and PRS(n), for
computing CS-aggregates, against different values of ε, using the same data as above. That
is, we compared the number of samples required to guarantee at most εYsum(n) error for CS-
aggregates on (x, y) tuples using PRS(n) (where the worst-case space is O(1

ε
log(εYsum(n))))

with that of guaranteeing at most εn error for quantiles on just the x-values (where the

5

10

100

1000

10000

0.02 0.04 0.06 0.08 0.1

sp
ac

e

epsilon

S
PRS

1

10

100

1000

10000

100000

0 0.02 0.04 0.06 0.08 0.1

sp
ac

e

epsilon

quantiles
CS-aggregates

(a) for CS-aggregates (b) quantiles vs CS-aggregates

Figure 2: Space usage of S(n) and PRS(n) on real AT&T data

worst-case space is O(1
ε
log(εn))). Despite the difference in their a priori space bounds, their

space requirements in practice were comparable.

4 Inapproximability of CS-Aggregates Over Quantiles

In this section, we prove that if AGG(x) is the quantile aggregate then the CS-aggregate
SUM{y : x ≤ AGG(x)} cannot be approximated to any desired fraction ε by algorithms of the
type we have studied in this paper.

Theorem 4.1 There does not exist an algorithm that maintains a sample on x values over
an input data stream of (x, y) pairs, along with bounds on ranks and y-sums for each sample
xi, that uses sublinear space and outputs a c-approximation (c < 2) to the query SUM{y : x ≤
QTLφ(x)} for any fraction φ.

Proof: Consider the stream of length n given by (x1, 1), (x2, 1), . . . , (xn, 1) with arbitrary,
distinct xi’s, well separated from each other. So, Ysum = n so far. Say the algorithm
maintains X0, . . . , Xs−1 in order as its samples, for some s = o(n). We give this algorithm
the flexibility to choose samples, choose the method for estimating the query answers, etc. By
the pigeonhole principle, then there exists Xi and Xi+1 that contain at least one of the original
values xj between them, i.e., Xi < xj < Xi+1. This implies rmin(Xi+1) − rmin(Xi) > 1.

Now we choose α between Xi and Xi+1, i.e., Xi < α < Xi+1, and let the next tuple
in the data stream be (α, β). The algorithm would set rmin(α) = rmin(Xi+1) and ∆(α) =
rmax(α)− rmin(α) > 1. We also have Ysum = β + n. The details of what samples, if any, are
evicted is not relevant to our discussion of the lower bound.

Say our query is now SUM{y : x ≤ QTLφ(x)} for fraction φ = rmin(α)
n+1

. Let us give the
algorithm the prescience to get SUM{y : x ≤ Xi} precisely correct since it cannot make
our lower bound argument any easier. Now, there are at most ∆(α) + 1 potential answers
to the query for the algorithm of which at least two are given by the data (the others
are due to inaccurate estimates of the rank of α by the algorithm). One of the two is

6

SUM{y : x ≤ Xi}+ yj, and the other is SUM{y : x ≤ Xi}+ β, depending on the relative order
of xj and α. The algorithm cannot distinguish between these two potential answers because
there is no additional information to make this distinction. By choosing α to be slightly less
than xj and to be slightly larger than xj gives two choices for α that induces either of the
two answers above. Hence, the algorithm will make at least β−1

2
error on average in absolute

terms. This error is at least fraction β−1

2(SUM{y:x≤Xi}+β)
which is at least β−1

2(n+β)
. By choosing β

to be sufficiently large (say n2 or larger), we can make this ratio arbitrarily close to 1/2 (or
2 from over estimate). That completes the proof.

5 Conclusions

Data streams have been of much recent interest, especially in applications like IP network
management, financial trading, etc. CS-aggregates are an important class of queries for
understanding relationships between variables in the stream data. Since they cannot be
computed exactly on data streams with sublinear storage, we have studied the problem
of identifying which CS-aggregates can be approximated on data streams and which ones
cannot. Our work is the first to address this question.

Further study of this issue is clearly of great importance. Promising directions include
studying aggregates other than SUM, extending our algorithms to sliding windows (where we
are interested in queries over the last N records), and space-efficient sharing of summary
structures for workloads of correlated aggregates over a data stream.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. JCSS: Journal of Computer and System Sciences, 58, 1999.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data
stream systems. In Proceedings of PODS, 2002.

[3] D. Chatziantoniou and K. A. Ross. Querying multiple features of groups in relational
databases. In Proceedings of VLDB, 1996.

[4] A. Dobra, J. Gehrke, M. Garofalakis, and R. Rastogi. Processing complex aggregate
queries over data streams. In Proceedings of SIGMOD, 2002.

[5] J. Feigenbaum, S. Kannan, M. Strauss, and Mahesh Viswanathan. An approximate
L1-difference algorithm for massive data streams. In Proceedings of FOCS, 1999.

[6] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over con-
tinual data streams. In Proceedings of SIGMOD, 2001.

[7] P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets. In
Proceedings of SODA, 1999.

7

[8] M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries.
In Proceedings of SIGMOD, 2001.

[9] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases of network
traffic. In Proceedings of USENIX, 1998.

8

