
Web-Log Mining for Predictive Web Caching

Qiang Yang and Haining Henry Zhang

Abstract—Caching is a well-known strategy for improving the performance of

Web-based systems. The heart of a caching system is its page replacement

policy, which selects the pages to be replaced in a cache when a request arrives.

In this paper, we present a Web-log mining method for caching Web objects and

use this algorithm to enhance the performance of Web caching systems. In our

approach, we develop an n-gram-based prediction algorithm that can predict

future Web requests. The prediction model is then used to extend the well-known

GDSF caching policy. We empirically show that the system performance is

improved using the predictive-caching approach.

Index Terms—Web log mining, Web caching, prediction models, classification.

æ

1 INTRODUCTION

WEB caching aims to improve the performance of Web-based
systems by keeping and reusing Web objects that are likely to be
used often in the near future. It has proven to be an effective
technique in reducing network traffic, decreasing the access
latency and lowering the server load [9], [10], [6], [16], [13].
Previous research on Web caching has focused on the use of
historic information about Web objects to aid the cache replace-
ment policies. These policies take into account not only informa-
tion about the Web-document access frequency, but also document
sizes and access costs. This past information is used to generate
estimates on how often and how expensive it is for the objects
saved in the cache to be accessed again in the near future.

As pointed out early in caching research [7], the power of

caching is in accurately predicting the usage of objects in the near

future. In previous work, estimates for future accesses were mostly

built on statistical measures such as access frequency and object

size and cost. Such measures cannot be used to accurately predict

for objects that are likely to be popular but have not yet been

popular at any given instant in time. For example, as Web users

traverse Web space, there are documents that will become popular

soon due to Web document topology, although these documents

are not yet accessed often in the current time instant. This gap can

be filled with data mining by looking at the association relation-

ship between objects that in Web logs.
In this paper, we present a novel approach to integrating data

mining with traditional Web caching to provide more powerful

caching policies. In our approach, Web logs are used to train

sequential association rules to predict Web users’ browsing

behavior. These rules are integrated into a cache-replacement

policy to obtain a more forward-looking ranking for the cached

Web documents and objects. We empirically demonstrate the

utility of the method through increased hit rates and byte-hit rates.
To apply data mining, a segment of Web log data is used to

train a predictive model. This model is then integrated with an

existing caching algorithm for predictive caching. In this work, our

technique is primarily aimed at dealing with stationary data,

where the Web objects correspond to static Web pages. For

nonstationary data such as database-driven Web sites, query-level

prediction algorithms can be applied [14].
Our research is novel from both data mining and network

systems aspects. Although several approaches have been proposed

in the past for Web-log mining [17], [24], few researchers in data

mining have integrated prediction models with state-of-the-art

caching algorithms. Most previous work on integrating caching

and Web-log mining, including our own work [23], has focused on

intelligently prefetching Web documents. It remains to show how

Web-log mining can be used to extend the best Web caching

algorithms.

2 PREDICTIVE CACHING

2.1 Cache Replacement Policies

A cache stores a finite number of objects that are likely to be reused

in the near future. When the cache is full, it is an issue to select an

object to remove in order to make space for the new object. The

algorithm in selecting the object to be removed is called the cache

replacement algorithm. Essentially, the cache replacement algo-

rithm is a way to use past information to predict the future. The

more accurate the prediction into the future, the better perfor-

mance the caching system will have.
We will focus on the GDSF caching policy in this paper [10].

This policy is an improvement on the well-known GD-Size [9]

algorithm by incorporating a frequency information about Web

objects. The basic idea is to rank objects in the cache based on their

likelihood of being reused in the near future by means of a key

value. The ranking function for object p is computed as:

KðpÞ ¼ Lþ F ðpÞ � CðpÞ=SðpÞ; ð1Þ

where F ðpÞ is the access count of document p, CðpÞ is the estimated

cost of accessing the object p, and SðpÞ is the document size. The

factor L is an aging factor. The frequency count is incremented by

one whenever the object is accessed again from the cache. When

replacing an object in a cache, the object with the lowest key KðÞ
value is removed.

The above Web caching-replacement policies can be considered

as making zero-order prediction for future-access frequencies

because they simply use the total access count as an estimate for

the future. Sequential association-rules allow for further first-order

predictions by considering what these past accessed documents

may entail. For example, suppose that a document A has been

accessed 100 times in the past five minutes. From the zeroth order

prediction, we know that A might be accessed often in the next five

minutes as well. Suppose that a strong sequential association rule

exists: A! B. Then, we can conclude that, according to this rule, B

will also be accessed frequently in the near future, even though B

might not have been accessed frequently enough in the past. Thus,

by looking into the future through sequential association rules, we

may anticipate what will come as a result of what has happened. In

this section, we will enhance the GDSF caching policy by

considering both the zeroth and first order predictions.
We now consider how to anticipate future Web-object accesses

from the access history. Let Oj be a Web object under considera-

tion; Oj is not in the cache. Let Si be a user session for accessing a

Web object on a Web server. Let Pi;j be the probability predicted by

a session Si for object Oj. If Pi;j ¼ 0, it indicates that object Oj is not

predicted by session Si. Then, Wj ¼
P

i Pi;j is the estimated access

frequencies from the current sessions executed on the Web server.
With this estimate, we can now extend (1) to incorporate the

predicted accesses for object Op:

KðpÞ ¼ Lþ ðWðpÞ þ F ðpÞÞ � CðpÞ=SðpÞ: ð2Þ

1050 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

. Q. Yang is with the Department of Computing Science, Hong Kong
University of Science and Technology, Clearwater Bay, Kowloon Hong
Kong. E-mail: qyang@cs.ust.hk.

. H.H. Zhang is with IBM E-Business Innovation Center, Vancouver,
Burnaby BC Canada V5G 4X3. E-mail: haizhang@ca.ibm.com.

Manuscript received 15 Oct. 2001; revised 3 July 2002; accepted 4 Oct. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 115198.

1041-4347/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

In (2), we add WðpÞ and F ðpÞ together, which implies that the
key value of a page p is determined not only by its past occurrence
frequency, but also affected by its future frequency. The rationale
behind our extension is explained in the beginning of this section:
By considering both the absolute count of Web pages and the
predicted accesses in the future according to association-rules, we
can enhance the priority of those cached objects that may not have
been accessed frequently enough, but will be in the near future
according to the association rules. The addition of WðpÞ and F ðpÞ
in (2) reflects an expansion of the access frequencies by both the
zeroth and the first-order estimates. By adding these two measures
together, we integrate two information sources for frequency
estimates by adding an optional WðpÞ weight to a base count for
each cached object. This will promote objects that are potentially
popular objects in the near future even though they are not yet
popular in the past.

Our extension can be seen as an attempt to obtain more accurate
estimates on future accesses [7]. Our work is related to many past
efforts in building predictive models for Web prefetching [15], [17].
In the Web caching area, the work of Bonchi et al. [8] extended the
LRU policy of Web and proxy servers using frequent patterns and
decision trees obtained from Web log data. This idea is similar to
ours presented here, a difference being that the Web caching model
in [8] was designed to extend the LRU policy rather than the more
powerful GDSF policy.

2.2 Estimating Future Frequencies
through Association-Rule Mining

How do we obtain the conditional probability information Pij for
an object Oj? We can obtain this by discovering a set of sequential
association rules from a previously obtained Web log. In this
section, we discuss how to obtain WðpÞ for a page p.

In many data mining works in the past, Web access logs are
mined to infer the association relationship between Web document
and object requests in order to build a prediction model [21], [24].
Related to this effort is the general area of Web log mining and
Web caching, which has seen increased activity in recent years [1],
[12], [19], [18], [20], [22], [21]. In a Web log, we define a user session
to be a sequence of Web requests from a user. In a Web log,
requests emanating from the same IP address are grouped into a
session. If the time interval between two consecutive requests
exceeds a threshold T , we consider them to belong to two different
sessions. For example, for the NASA Web log, we set T to be at two
hours. By experimenting with different values of T , we did not
notice much difference in the prediction system’s performance.

Our data mining algorithm is a special case of an association-
rule mining algorithm. It constructs an n-gram model by counting
the occurrence frequency in order to build the conditional
probability estimates Pij. Within each user session, every substring
of length n is regarded as an n-gram, which serves as a left-hand-
side (LHS) of an association rule. The right-hand-side (RHS) of a
rule predicts what documents or objects are most likely to occur
after observing the LHS of the rule. We call these rules n-gram
rules. In Web logs, we have found that the n-gram rules are more
accurate than general sequential association rules. This is because
the most recently accessed Web objects are more important
indicators for what is to come.

Our n-gram rule-mining algorithm scans through all substrings
of a length up to n in every user session, accumulating the
occurrence counts of distinct substrings. The substrings with
counts lower than a lower bound support value are pruned. The
resulting count table is then used to build our prediction model.
We call these association rules the n-gram rules since the LHS of
the rules are strings instead of arbitrary item sets.

The general association-rule mining literature studied efficient
ways to obtain general association rules through variants of a priori

and other methods [3], [4], [2], [5], [11]. Our n-grams are a special
class of association rules in which the LHSs are strings rather than
subsets or subsequences; here, a string is an adjacent sequence of
items accessed just before the prediction. This restriction that the
LHS be the latest substrings enforces the domain knowledge in
Web access prediction that the most important predictors come
from the most recent events in accessing history. An important side
effect of considering only n-grams as LHS is that the time
complexity of the n-gram-mining algorithm becomes linear in the
size of the Web logs. This reduction in complexity is important for
predictive Web caching because Web logs are typically very large
in size.

For every n-gram rule LHSl ! Oj, we can obtain a confidence
measure for the rule as

conflj ¼
jLHSl þ fOjgj
jLHSlj

:

Then, for each user session Si, the weighted sum of all conflj,
where LHSl is contained in Si, gives the conditional probability
estimate Pij.

3 EXPERIMENTS

3.1 Data and Evaluation Criteria

Three Web logs are used in our study. One is from a US

Environmental Protection Agency (EPA)s Web server located at

Research Triangle Park, North Carolina. This Web log contains all

the HTTP requests for a full day, from 23:53:25 on Tuesday, 29

August 1995, to 23:53:07 on Wednesday, 30 August 1995. In total,

there are 43,202 requests. The second one is from a NASA Kennedy

Space Centers Web server in Florida. This Web log contains all the

HTTP requests collected from 00:00:00, 1 July 1995, to 23:59:59, 17

July 1995. In this period, there were 1,140,284 requests. The third

log is from the School of Computing Science at Simon Fraser

University. It was collected during the period from 00:00:00, 1

February 2001, to 23:59:59, 9 February 2001. It contained a total of

468,732 requests. The timestamps of these logs have a 1-second

precision. In our experiments, we use half of each Web log to train

our model and use the other half to do testing.
In this work, we assume that documents requested by users

must either be retrieved entirely from the original Web servers or
from a Web cache before in order to be sent to the users. In a
caching system, the requests issued by users can be viewed as a
sequence of references to Web documents. Web documents often
have different sizes, while a cache only has a finite size. If a
requested document is in the cache, the request can be satisfied
immediately, which is called a hit; otherwise, the document has to
be fetched from the original server, which is termed a miss. The hit
rate is the ratio between the number of requests that hit in the
proxy cache and the total number of requests. The byte-hit rate is
an even more realistic measure of performance for Web caching; it
is the ratio between the number of bytes that hit in the proxy cache
and the total number of bytes requested.

Experiments are conducted with different cache sizes. The size
of the cache is expressed in terms of the percentage of the total
number of bytes of all objects in a Web log. In the NASA data, the
cache size ranges from 0.0001 to 0.01 percent, between 24 KB to
2.4 MB. In the EPA data, the cache size ranges from 0.01 to 1.0
percent, between 31 KB to 3.1 MB. In SFU’s log, the cache size
varies from 0.01 to 1.0 percent, which is approximately 580 KB to
58 MB.

For comparison purposes, we also run simulations using some
other major cache replacement algorithms. These algorithms
include GDSize [9], GDSF [10], LFUDA [6], and LRU. The first
three are Greedy-Dual-based algorithms and have been proven

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003 1051

among the best page replacement strategies. LRU is the most basic

algorithm in the caching domain and it is involved as a baseline of

performance measurement. Two series of experiments have been

conducted to evaluate the hit rates and byte hit rates.

To achieve higher hit rates, we set CðpÞ ¼ 1 in N-gram, GDSF,

and GDSize. The caching algorithm is hereafter referred to as

N-gram(1). When CðpÞ ¼ 1, the costs to retrieve all pages are the

same, i.e., the connection time dominates the network latency.

1052 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Fig. 1. Hit rate and byte hit rate comparison across data sets.

Figs. 1a, 1b, 1c, 1d, 1e, and 1f show the hit rate and byte-hit rate on
three data sets. Overall, in terms of hit rate, the N-gram(1)
algorithm outperforms the other algorithms using all of the
selected cache sizes. GDSF(1) is the second best and GDSize(1) is
the third. LRU has the lowest hit rates, which suggests this widely
used algorithm is not optimal in terms of hit rates.

In terms of byte hit rate, N-gram(1) does not outperform
LFUDA in all data sets. Fig. 1d shows that N-gram(1) obtains a
lower byte-hit rate than LFUDA. This is natural because N-gram(1)
considers the benefit of a cache hit as one, regardless of the size of a
page. It achieves higher byte-hit rate at the cost of lower hit rates.

To achieve better byte-hit rate, let CðpÞ, the cost value, be the
size of the page. This is the situation of a network where data
transmission time contributes most to the network latency. We
denote a caching algorithm in this situation as N-gram(Size). The
LFUDA actually becomes the GDSF(Size) algorithm. Figs. 1g and
1h plot the byte-hit rates on the two data sets. They show that, if we
set CðpÞ to the size of the document, N-gram(Size) achieves a
higher byte hit rate than LFUDA.

To sum up, we empirically showed that the system perfor-
mance is improved by our predictive caching algorithm.
N-gram(1) achieves a better hit rate, while N-gram(Size) achieves
a higher byte-hit rate. Our results also suggest that training on
larger Web logs results in significant performance improvement
for Web caching.

4 DISCUSSIONS AND CONCLUSIONS

In this paper, we integrated a Web caching algorithm with a Web
log mining algorithm. A novelty in our work is to combine a
prediction model learned from Web log data with the state-of-the-
art GDSF cache-replacement algorithm. Our experiments demon-
strated that the association-rule based predictive algorithm
improves both the hit rate and the byte-hit rate in several
experiments.

In the future, we plan to study how to deal with nonstationary
data, such as caching, for dynamically changing database-driven
Web sites. For such Web sites, query-level prediction algorithms
need to be studied.

ACKNOWLEDGMENTS

The authors thank Tianyi Li and Zhen Zhang for their helpful
discussions in this work.

REFERENCES

[1] C. Aggarwal, J.L. Wolf, and P.S. Yu, “Caching on the World Wide Web,”
IEEE Trans. Knowledge and Data Eng., vol. 11, pp. 94-107, 1999.

[2] C.C. Aggarwal and P.S. Yu, “A New Approach to Online Generation of
Association Rules,” IEEE Trans. Knowledge and Data Eng., vol. 13, pp. 527-
540, 2001.

[3] R. Agrawal, T. Imielinski, and R. Srikant, “Mining Association Rules
between Sets of Items in Large Databases,” Proc. ACM SIGMOD Conf.
Management of Data, pp. 207-216, May 1993.

[4] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. Very Large Data Base Conf., pp. 487-499, Sept. 1994.

[5] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 11th Int’l
Conf. Data Eng., P.S. Yu and A.S.P. Chen, eds., pp. 3-14, 1995.

[6] M. Arlitt, R. Friedrich, L. Cherkasova, J. Dilley, and T. Jin, “Evaluating
Content Management Techniques for Web Proxy Caches,” HP Technical
Report, Apr. 1999.

[7] L.A. Belady, “A Study of Replacement Algorithms for Virtual Storage
Computers,” IBM Systems J., vol. 5, no. 2, pp. 78-101, 1966.

[8] F. Bonchi, F. Giannotti, C. Gozzi, G. Manco, M. Nanni, D. Pedreschi, C.
Renso, and S. Ruggieri, “Web Log Data Warehousing and Mining for
Intelligent Web Caching,” Data & Knowledge Eng., vol. 39, no. 2, pp. 165-189,
2001.

[9] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algorithms,” Proc.
USENIX Symp. Internet Technology and Systems, pp. 193-206, Dec. 1997.

[10] L. Cherkasova, “Improving WWW Proxies Performance with Greedy-Dual-
Size-Frequency Caching Policy,” HP Technical Report, Nov. 1998.

[11] J. Han, J. Pei, and Y. Yin, “ Mining Frequent Patterns without Candidate
Generation,” Proc. 2000 ACM SIGMOD Int’l Conf. Management of Data,
W. Chen, J. Naughton, and P.A. Bernstein, eds., pp. 1-12, 2000.

[12] T. Joachims, T Freitag, and D. Mitchell, “Webwatcher: A Tour Guide for the
World Wide Web,” Proc. 15th Int’l Conf. Artificial Intelligence (IJCAI ’97),
pp. 770-777, 1997.

[13] P. Krishnan and J.S. Vitter, “Optimal Prediction for Prefetching in the
Worst Case,” Proc. SODA: ACM-SIAM Symp. Discrete Algorithms (A Conf.
Theoretical and Experimental Analysis of Discrete Algorithms), 1994.

[14] Q. Luo and J.F. Naughton, “Form-Based Proxy Caching for Database-
Backed Web Sites,” The VLDB J., pp. 191-200, 2001.

[15] E.P. Markatos and C.E. Chronaki, “A Top 10 Approach for Prefetching the
Web,” Proc. INET ’98: Internet Global Summit, July 1998.

[16] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V. Jacobson,
Adaptive Web Caching: Towards a New Caching Architecture, Nov. 1998.

[17] V. Padmanabhan and J. Mogul, “Using Predictive Prefetching to Improve
World Wide Web Latency,” Proc. ACM SIGComm, pp. 22-36, 1996.

[18] M.J. Pazzani, J. Muramatsu, and D. Billsus, “Syskill & Webert: Identifying
Interesting Web Sites,” Proc. Am. Assoc. Artificial Intelligence, pp. 54-61, 1996.

[19] M. Perkowitz and O. Etzioni, “Adaptive Web Sites: Concept and Case
Study,” Artificial Intelligence, vol. 118, nos. 1-2, pp. 245-275, 2001.

[20] J. Pitkow and P. Pirolli, “Mining Longest Repeating Subsequences to
Predict World Wide Web Surfing,” Proc. Second USENIX Symp. Internet
Technologies and Systems, pp. 139-150, 1999.

[21] S. Schechter, M. Krishnan, and M.D. Smith, “Using Path Profiles to Predict
http Requests,” Proc. Seventh Int’l World Wide Web Conf., pp. 457-467, Apr.
1998.

[22] J. Srivastava, R. Cooley, M. Deshpande, and P. Tan, “Web Usage Mining:
Discovery and Applications of Usage Patterns from Web Data,” ACM
SIGKDD Explorations, vol. 1, no. 2, pp. 12-13, 2000.

[23] Q. Yang, H.H. Zhang, and I.T.Y. Li, “Mining Web Logs for Prediction
Models in WWW Caching and Prefetching,” Proc. Seventh ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining, pp. 473-478, Aug. 2001.

[24] I. Zukerman, D.W. Albrecht, and A.E. Nicholson, “Predicting Users’
Request on the WWW,” Proc. (UM ’99) Seventh Int’l Conf. User Modeling,
pp. 275-284, June 1999.

. For more information on this or any computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003 1053

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

