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Abstract— Classification based on decision trees is one
of the important problems in data mining and has appli-
cations in many fields. In recent years, database systems
have become highly distributed, and distributed system
paradigms such as federated and peer-to-peer databases
are being adopted. In this paper, we consider the problem
of inducing decision trees in a large distributed network
of genomic databases. Our work is motivated by the
existence of distributed databases in healthcare and in
bioinformatics, and by the vision that these database are
soon to contain large amounts of genomic data, charac-
terized by its high dimensionality. Current decision tree
algorithms would require high communication bandwidth
when executed on such data, which is not likely to exist in
large-scale distributed systems. We present an algorithm
that sharply reduces the communication overhead by
sending just a fraction of the statistical data. A fraction
which is nevertheless sufficient to derive the exact same
decision tree learned by a sequential learner on all the
data in the network. Extensive experiments using standard
synthetic SNP data show that the algorithm utilizes the
high dependency among attributes, typical to genomic
data, to reduce communication overhead by up to 99%.
Scalability tests show that the algorithm scales well with
both the size of the dataset, number of SNPs, and the size
of the distributed system.

I. INTRODUCTION

The analysis of large databases requires automation.
Data mining tools have been shown to be useful for this
task, in a variety of domains and architectures. It has
recently been shown that data mining tools are extremely
useful for the analysis of genomic data as well [24].
Since the number of genomic databases and the amount
of data in them increases rapidly, there is a dire need for
data mining tools designed specifically to target genomic
data specifically.

Classification, the separation of data records into dis-
tinct classes, is apparently the most common data mining

task, and decision tree classifiers are perhaps the most
popular classification technique. Some recent works have
shown that classification can be used to analyze the effect
of genomic, clinical, environmental, and demographic
factors on diseases, response to treatment, and the risk
of side effects [21]. Providing efficient decision tree in-
duction algorithms suitable for genomic data is therefore
an important goal.

One interesting aspect of genomic databases is that
they are often distributed over many locations. The main
reason for this is that they are produced by a variety of
independent institutions. While these institutions often
allow a second party to browse their databases, they will
rarely allow this party to copy them. There could be a
number of reasons for this: the need to retain the privacy
of personal data recorded in the database, through ques-
tions regarding its ownership, or even because the sheer
size of the data makes copying non-permissively costly
in CPU, disk I/O or network bandwidth.

Our lead example in this paper is the task of min-
ing genomically enriched electronic medical records
(EMRs). Within a few years it is expected that each
patient’s medical record will contain a genomic finger-
print. This fingerprint will be used mainly to optimize
treatment and predict side effects. It is probable that
this genomic data would be a set of single nucleotide
polymorphisms (SNPs) – those locations in the genome
where the patient’s allele differs from the usual one.
Using microarray technology it is already easy and
relatively cheap to identify thousands of SNPs (out of
an assumed number of hundreds of thousands) from a
blood sample. Because the common perception is that
SNPs are highly correlated, even a sample group of them
may serve to predict a patient’s response to treatment and
risk factors, especially if the illness or the response are
caused by single SNPs (even those that are not in the
sample).



Data mining of genomically enriched EMRs would
be needed for the identification of unknown correlations
and for the development of new drugs. It would best
be performed on a national scale, using EMRs gath-
ered by many different health maintenance organizations
(HMOs). This is made possible by the adherence of
HMOs to standard information retrieval interfaces such
as the HL7 protocol [10]. Nevertheless, it is unlikely
that an HMO would allow anyone to download its entire
database. Hence, the need for distributed algorithms.

A distributed decision tree induction algorithm is
one that executes on several computers, each with its
own database partition. The outcome of the distributed
algorithm is a decision tree which is the same as, or at
least comparable with, a tree that would be induced were
the different partitions collected to a central place and
processed using a sequential decision tree induction algo-
rithm. Since decision tree induction poses modest CPU
requirements, the performance of the algorithm would
usually be dictated by its communication requirements.

Previous work on distributed decision tree induction
usually focused on tight clusters of computers, or even on
shared memory machines [1], [13], [14], [16], [22], [23].
When a wide area distributed scenario was considered,
all these algorithms become impractical because they
use too much communication and synchronization. A
kind of decision tree induction algorithm which is more
efficient in a wide area system employs meta-learning
[6], [9], [15], [17]. In meta-learning, each computer
induces a decision tree based on its local data; then the
different models are combined to form the final tree.
This final tree is an approximation of the one which
would be induced from the entire database. Studies have
shown that the quality of the approximation decreases
significantly when the number of computers increase,
and when the data become sparse. Because genomic
databases contain many (thousands) attributes for each
data instance and can be expected to be distributed over
many distant locations, current distributed decision tree
induction algorithms are ill-fit for them.

In this paper we describe a new distributed decision
tree algorithm, Distributed Hierarchical Decision Tree
(DHDT), which is especially suited for mining genomic
data in a distributed environment. DHDT is executed by
a collection of agents which correlate with the natural
hierarchy of a national virtual organization. The leaf level
agents correspond to different HMOs (or clinics within
an HMO) while upper levels correspond to regional, state
and national levels of the organization. Moreover, DHDT
uses the correlations in the genomic data to reduce the

volume of data sent from each level to the next while
preserving perfect accuracy (i.e., the resulting decision
tree is not an approximation). In our experiments we
have shown that out of one thousand SNPs contained
in each data record, DHDT usually collects only about
a dozen – a 99% decrease in bandwidth requirements.
Both the hierarchic organization and the communication
efficiency of DHDT give it excellent scalability at no
decrease in accuracy.

The rest of the paper is structured as follows. We
describe sequential decision tree induction in Section
II and related work in Section III. In Section IV, we
provide bounds for the Gini index and the information
gain functions. The DHDT algorithm is described in
Section V, and our experimental evaluation is given in
Section VI. We conclude in Section VII.

II. SEQUENTIAL DECISION TREE INDUCTION

The decision tree model was first introduced by Hunt
et al. [12], and the first sequential algorithm was pre-
sented by Quinlan [18]. This basic algorithm used by
most of the existing decision tree algorithms is given
here.

Given a training set of examples, each tagged with
a class label, the goal of an induction algorithm is to
build a decision tree model that can predict with high
accuracy the class label of future unlabeled examples. A
decision tree is composed of nodes, where each node
contains a test on an attribute, each branch from a
node corresponds to a possible outcome of the test,
and each leaf contains a class prediction. Attributes can
be either numerical or categorical. In this paper, we
deal only with categorical attributes. Numerical attributes
can be discretisized and treated as categorical attributes;
however, the discretization process is outside the scope
of this paper.

A decision tree is usually built in two phases: A
growth phase and a pruning phase. The tree is grown by
recursively replacing the leaves by test nodes, starting at
the root. The attribute to be tested at a node is chosen
by comparing all the available attributes and greedily
selecting the attribute that maximizes some heuristic
measure, denoted as the gain function. The minimal
and sufficient information for computing most of the
gain functions is usually contained in a two-dimensional
matrix called the crosstable of attribute i. The [v, c] entry
of the crosstable contains the number of examples for
which the value of the attribute is v and the value of the
class attribute is c.



The decision tree built in the growth phase can
”overfit” the learning data. As the goal of classification
is to accurately predict new cases, the pruning phase
generalizes the tree by removing sub-trees corresponding
to statistical noise or variation that may be particular
only to the training data. This phase requires much
less statistical information than the growth phase; thus
it is by far less expensive. Our algorithm integrates a
tree generalization technique suggested in PUBLIC [20],
which combines the growing and pruning stages while
providing the same accuracy as the post-pruning phase.
In this paper, we focus on the costly growth phase.

A. Gain Functions

The most popular gain functions are information gain
[18], which is used by Quinlan’s ID3 algorithm, and
the Gini Index [2], which is used by Brieman’s Cart
algorithm, among others.

Consider a set of examples S that is partitioned into M
disjoint subsets (classes) C1, C2, ..., CM such that S =
⋃M

i=1 Ci and Ci

⋂

Cj = ∅ for every i 6= j. The estimated
probability that a randomly chosen instance s ∈ S

belongs to class Cj is pj = |Cj |
|S| , where |X| denotes the

cardinality of the set X . With this estimated probability,
two measures of impurity are defined: entropy(S) =
−

∑

j pjlogpj , and Gini(S) =
∑

j p2
j .

Given one of the impurity measures defined above,
the gain function measures the reduction in the impurity
of the set S when it is partitioned by an attribute A

as follows: GainA(S) =
∑

v∈V alues(A)
|Sv |
|S| Imp(Sv),

where V alues(A) is the set of all possible values for
attribute A, Sv is the subset of S for which attribute
A has the value v, and Imp(S) can be entropy(S) or
Gini(S).

III. RELATED WORK

The distributed decision tree algorithm described
in [3] perhaps most resembles ours, in both motiva-
tion and the assumed distributed database environment
(i.e., homogeneous databases with categorical attributes).
Caragea et al. decompose the induction algorithm into
two components: The first component collects sufficient
local statistics and sends them to a centralized site, while
the second component aggregates the statistics, computes
the gain function, and chooses the best splitting attribute.
Obviously, this algorithm has high communication com-
plexity because it sends statistical data for each and every
attribute in the database. The size of the crosstable of
a single attribute depends on the size of the attribute
domain, i.e., the number of distinct values that this

attribute can receive, and on the number of distinct
classes. For example, assume a genomic dataset with
L = 10, 000 SNPs in each entry, each encoded in a single
bit (usual or unusual allele). If a central network node in
a network with N = 1, 000 sites learns a decision tree for
a binary class attribute with just D = 100 decision tree
nodes (the maximal number of nodes would be O

(

2L
)

),
the number of bytes it would receive from the entire
network is O (LND), or, in our example, 10000 ∗ 2 ∗
2 ∗ 1000 ∗ 100 ∗ 4 = 16TB (assuming a crosstable entry
is encoded in 4 bytes). In addition, it is often the case
that the process should be repeated many times with
different arguments (e.g., different classification goals).
Therefore, the above algorithm requires high communi-
cation bandwidth between the participating nodes, which
clearly does not exist in large-scale distributed systems.

The common approach to reducing the communication
overhead would be to sample the distributed dataset and
collect a small subset of the learning examples for central
processing. In addition to this sample, the different sites
may also deduce decision trees based on their local
datasets and transfer these decision trees to the central
site. This has been the theme of an approach called meta-
learning [6], [25]. Beside the fact that by transferring
learning examples this approach may violate privacy re-
quirements, it suffers from severe scalability limitations.
In order to significantly reduce communication overhead
one would have to collect small samples and possibly
not cover all sites. This would cause the quality of the
resulting decision tree to deteriorate rapidly whenever
the datasets of the different sites vary from one another
[5]. In contrast, our approach, which is equivalent to
collecting all the data retains the quality of the result
and reduces the communication overhead.

A different meta-learning induction algorithm was
suggested in [9]. The algorithm turns each decision tree
classifier into a set of rules and then merges the rules
into a single superset of rules while resolving conflicts
as suggested in [17]. Kargupta et al. [15] describe a
meta-learning algorithm where the local decision tree
classifiers are approximated by a set of Fourier coef-
ficients, which are then collected to a central site where
they are combined into a single model. Although the
meta-learning approach is very scalable in terms of
performance, the accuracy and the comprehensibility of
the meta-classifier drops sharply as the number of remote
sites increases. Thus, these methods are not well-suited
for large distributed networks.

Much attention was given to the parallelization of
induction algorithms. The parallel algorithms described



below were intended for a data warehouse environment,
where a control environment and high communication
bandwidth are assumed, as opposed to a large distributed
network where there is no control over the distribution
of the data and a normal Internet bandwidth is assumed.

Three parallel algorithms for decision tree induction
were described in [23]. In the first algorithm, called
synchronous tree construction, all computing nodes con-
struct a decision tree synchronously in depth-first order
by exchanging the class distribution information of the
local data. Then they simultaneously compute the gain
function, select the best attribute, and split the decision
tree node according to this attribute. In the second algo-
rithm, called partitioned tree construction, one (or more)
of the computing nodes is responsible for a portion of
the decision tree and data is relocated to the responsible
computing node after a split. As a result, the responsible
computing node can develop this portion of the decision
tree independently. The third algorithm uses a hybrid
approach: it starts with synchronous tree construction
and switches to partitioned tree construction when the
number of active leaves in the tree exceeds a given
threshold. Thus, at the top of the decision tree, where
there are only a few decision tree leaves and data move-
ment is expensive, synchronous tree construction is used.
Then, when the number of developed leaves increases,
incurring a high communication cost, partitioned tree
construction is used. The hybrid algorithm thus aims
to minimize the communication overhead between the
computing nodes. However, these straightforward algo-
rithms cannot be used in large-scale distributed systems
because data movement is often impractical in distributed
networks, for the reasons explained above, and because
the communication complexity of synchronous tree con-
struction is similar to that of the algorithm described
above [3].

The parallel version of SPRINT, also described in
[22], enhances the performance of the algorithm by using
a vertical partitioning scheme, where every computing
node is responsible for a distinct subset of the data
attributes. Thus, by dividing the attribute lists evenly
among the computing nodes and finding in parallel the
best binary conditions of the attributes, the algorithm
boosts the performance of the sequential SPRINT algo-
rithm. However, in order to split the attribute lists, the
hash table must be available on all computing nodes. In
order to construct the hash table, all-to-all broadcast must
be performed, making this algorithm highly unscalable.
ScalParC [14] improves upon SPRINT with a distributed
hash table that efficiently splits the attribute lists, and is

communication-efficient when updating the hash table.
The same communication pattern is common to all state-
of-the-art parallel decision tree induction algorithms [1],
[7], [13].

IV. BOUNDS ON THE GAIN FUNCTIONS

The bounds given in this section bound the gain
function of a population that is the union of several
disjoint subpopulations on which only partial informa-
tion is available. By using them we can avoid collecting
the crosstables of many of the attributes whose gain,
as indicated by the bounds, cannot be large enough to
change the result.

A. Notations

The bounds given below are defined for a single
attribute of a single decision tree leaf node. Therefore,
we simplify the notations by removing references to
the attribute and the decision tree node. Let P be a
population of size n and let {P1, P2} be a partition of
P into two subpopulations of sizes n1, n2 respectively.
Let the crosstables of populations P1, P2, P be defined
as:

−→
P1(value, class) =

(

a11 a12

a21 a22

)

,

−→
P2(value, class) =

(

b11 b12

b21 b22

)

,

−→
P (value, class) =

(

a11 + b11 a12 + b12

a21 + b21 a22 + b22

)

respectively.
Here, ai,j and bi,j denote the number of learning
examples with value i and class j in

−→
P1 and

−→
P2,

respectively.
In the algorithm described here we rely on the fol-

lowing two bounds, the proof of which is omitted due
to space considerations:

Theorem 1: Let P be a population of size n, and
{P1, P2, ..., Pk} a partition of P into k subpopulations
of sizes n1, n2, ..., nk respectively. Let G() denote the
gain function (information gain or Gini index). Then an
upper bound on G(P ) is given by:

G(P ) ≤

P

k

i=1
niG(Pi)

P

k

i=1
ni

.

Theorem 2: Let P be a population of size n, and
{P1, P2} a partition of P into two subpopulations of
sizes n1, n2 respectively. Assume that the candidate split
divides P1 into two subsets, P left

1 and P right
1 , with sizes

nleft
1 and nright

1 respectively. Let G() denote the gain
function (information gain or Gini index). Then Then,



lower bounds on G(P ) is given by:

G(P ) ≥
G(P1)

[

1 + n2

n1

] [

1 + n2

min{nleft
1

,n
right
1

}

]

V. DISTRIBUTED HIERARCHICAL DECISION TREE

Initialization
newLeavesList = decision tree root
Algorithm
1. For each leafi in newLeavesList do
2. Remove leafi from newLeavesList
3. If leafi is not stopped and not pruned
4. Attributek = run DESAR for leafi

5. Split leafi by Attributek

6. Insert new leaves to newLeavesList
7. Endif
8. End
Algorithm 1: The DHDT algorithm for the root agent

The distributed hierarchical decision tree (DHDT)
algorithm works on a group of computers, connected
through a wide-area network such as the Internet. Each
computer has its own local database, while the goal of
the DHDT is to derive the exact same decision tree
learned by a sequential decision tree learner on the
collection of all data in the network. We assume a
homogeneous database schema for all databases, which
can be provided transparently, if required, by ordinary
federated system services. The algorithm relies on a
(possibly overlay) communication tree that spans all
computers in the group. The communication tree can be
maintained by a spanning tree algorithm such as Scribe
[4] or can utilize the natural hierarchy of the network.
For reasons of locality, communication between nodes in
the lower levels of the spanning tree is often cheaper than
communication between nodes in the upper levels. Thus,
a ”good” algorithm will use more communication at the
bottom than at the top of the tree. We further assume
that during the growth phase of the decision tree, the
databases and the communication tree remain static.

Every computer in the group employs an entity called
Agent that is in charge of computing the required
statistics from the local database and participating in
the distributed algorithm. Agents collect statistical data
from their children agents and from the local database
and send it to their parent agent at its request. All
communication is by message exchange.

The root agent is responsible for developing the de-
cision tree and making the split decisions for the new
decision tree leaves. First, the root agent decides whether

a decision tree leaf has to be split according to one or
more stopping conditions (e.g., if the dominance of the
majority class has already reached a certain threshold)
or according to the PUBLIC method [20], which avoids
splitting a leaf once it knows it may be pruned eventually.
The class distribution vector, which holds the number of
examples that belong to each distinct class in the popula-
tion, is sufficient for computing these functions, and thus
it is aggregated by the agents over the communication
tree to the root agent.

Recall that if a decision tree leaf has to be split,
the split must be done by the attribute with the highest
gain in the combined database of the entire network. All
that is required to decide on the splitting attribute is an
agreement as to which attribute has the maximal gain;
the actual gain of each attribute does not need to be
computed. To reach an agreement, the agents participate
in a distributed algorithm called DESAR (Distributed
Efficient Splitting Attribute Resolver). For each new
leaf that has to be developed, DHDT starts a new
instance of DESAR to find the best splitting attribute.
The pseudocode for DHDT is given in Algorithm 1. We
now proceed to describe the DESAR algorithm.

A. Distributed Efficient Splitting Attribute Resolver

To find the best splitting attribute while minimizing
communication complexity, DESAR aggregates only a
subset of the attribute crosstables over the communica-
tion tree to the root agent. The algorithm starts when the
agents receive a message from the root that a new leaf
has to be developed. Then, each agent waits for messages
from its children. When messages are received from all
of them, it combines the received crosstables with its
own local crosstables, picks the most promising splitting
attributes on the basis of its aggregated data, and sends to
its parent agent only the crosstables for these attributes.

Since different subtrees may choose to send informa-
tion on different subsets of the attributes to their root,
the information eventually collected by the root does not
always suffice to decide which attribute maximizes the
gain function. An attribute may have high gain in the part
of the tree which sent it to the root, but the gain may drop
sharply when data is collected from other parts of the
tree. lower bounds discussed in the previous section and
compute for each attribute an attribute interval, rather
than a single, possibly erroneous value. The interval
between the lower bound and the upper bound for the
gain of an attribute, based on the known data is denoted
the attribute interval.

The details of computing the bounds can be found
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Fig. 1. Example for clear separation. In the above figure, the intervals
of five attributes are displayed and a threshold with a value of 0.82
defines a clear separation between the intervals.

in the next section. The bounds are computed using the
information received from all of the agent’s children.
Thus, these bounds bound the gain function over the
data in the network subtree. In particular, the bounds
computed by the root agent bound the gain function over
all the data in the network.

Using the notion of attribute intervals, we say that a
given threshold defines a clear separation of intervals if
it separates the attribute intervals into two non-empty
disjoint sets of intervals and neither of the intervals
crosses the threshold (see figure 1).

When the bounds are computed, the agent sets a
threshold, denoted border, with minimal number of at-
tributes having their lower bounds larger than the border.
If the border obtained defines a clear separation, the
attributes whose intervals lay above the border are called
promising, and their crosstables are sent to the agent’s
parent. If a clear separation is not achieved, or if the
number of attributes whose interval is above the border
is too high, the agent collects more information from
its descendants using request methods which we explain
below. Notice that the root agent is special in that it
requires, in addition to clear separation, that only a single
interval remains above the border. Only if this additional
requirement is met can the root agent safely decide to
split the leaf according to the attribute whose interval is
above the border.

The simplest way an agent can request more informa-
tion from its children is to name the attributes for which
more information is needed. We call this request method
the naming method. When a child receives a request for
a specific attribute, and if the crosstable of this attribute
was not yet sent to its parent, the child immediately
replies by sending its crosstable. If the crosstable was
not yet received from the subtree, it first requests that its
children send more information regarding this attribute,

and forwards the information once it arrives. Note that
the less information an agent collects from its subtree on
an attribute, the larger the interval will be. Therefore, if
the naming method is repeated, all information for the
attributes whose intervals cross the border will eventually
be collected to the requesting parent agent, the lower and
upper bounds will be equal to the accurate gain in the
agent’s combined database, and a clear separation will
be defined.

In section V-C we describe an additional request
method. We also describe a strategy, aimed at reducing
communication complexity, for determining whether this
method or the naming method should be used.

Algorithm 2 describes DESAR pseudocode, uniformly
executed by all agents.

B. Computing Lower and Upper Bounds on the Gain of
Attributes

As we did in section IV, we simplify the notations here
by removing indices to the attribute and the decision tree
node.

Let agent1, ..., agentq be the descendants of agent0.
Additionally, let childi denote the ith immediate child of
agent0. Let Pd be the population of agentd derived from
its local database. The combined population for accurate
computation of the gain function for the network tree
rooted in agent0 is defined by P =

⋃

d Pd.
Without loss of generality, let PU =

⋃

d=k+1..q Pd be
the combined population of the descendant agents which
did not yet send the attribute’s crosstable to agent0, and
let PK = P/PU . Furthermore, let P i

K be the combined
population of the descendant agents who did submit the
attribute’s crosstable and are also descendants of childi

(including childi itself), and let P i
U be the combined

population of the descendant agents who did not submit
the attribute’s crosstable and are also descendants of
childi. Finally, let G() denote the gain function used
by the algorithm and let |X| denote the size of the set
X .

1) Upper bound: First, the agent computes an upper
bound GU on G(PU ). This bound is computed recur-
sively, where each child agent computes and sends to its
parent an upper bound, denoted Gi

U , on its contribution
to population PU . Gi

U is computed by the following
recursive rule: If the attribute’s crosstable is not sent to
the parent, Gi

U is equal to the attribute’s upper bound.
Otherwise, Gi

U is equal to GU of the child itself. Note
that for the leaf agents PU = ∅, and thus GU is set to 0.



Definitions
D1. border= maximal lower bound of all attributes which were
not sent to the parent
D2. borderAttribute= the attribute whose lower bound de-
fines the border
D3. If agent is root then
D4. ExtraCondition = There is only a single attribute Ai

where UpperBound(Ai) ≥ border or
. maxi(UpperBound(Ai)) = border
D5. Else
D6. ExtraCondition = Gi

u
< border for all children

Algorithm
Phase 1: Starts when a new leaf is born
01. Receive information from all children
02. While (not (border defines a clear separation and Extra-
Condition)) do
03. If (Gi

u > border) then
04. request childi to lower its border and send new
information
05. Else if (border does not define a clear separation and
. crosstable of borderAttribute has only partial
information)
06. request information for borderAttribute from
children who did not send complete information
07. Else
08. request information for all attributes that cross the
border
09. End if
10. Receive information from all children
11. End while
12. Return attributes Ai where LowerBound(Ai) ≥ border
Phase 2: Starts when an agent receives a request for more
information from its parent
01. If (parent requires more information for attribute attri)
then
02. If (crosstable of attri was not sent to parent) then
03. Send parent the crosstable of attri

04. Else
05. request information for attri from children who
sent partial information regarding attri

06. Else (the case where parent requests that the border be
lowered)
07. Update border and borderAttribute and start phase
1.
08. Endif

Algorithm 2: DESAR Algorithm

Then, by applying Theorem 1, GU is:

GU ≥ G(PU ), where GU =

∑

i

∣

∣P i
U

∣

∣Gi
U

∑

i

∣

∣P i
U

∣

∣

(1)

Now, by applying Theorem 1 again, the agent com-
putes the upper bound as follows:

G(P ) ≤
|PK |G(PK) + |PU |GU

|P |
(2)

Note that the size of the combined database, |P |,
can be computed from the aggregated class distribution
vector, and thus |PK | ,

∣

∣P i
U

∣

∣ can easily be computed.
Finally, in order to further reduce communication

complexity and make it independent of the number of
candidate attributes, a child agent sends the maximal Gi

U

of all attributes as a single upper bound (denoted G
i

U
)

for all of them.
2) Lower bound: The lower bound is trivially com-

puted by Theorem 2, where P1 = PK and P2 = PU .

C. Efficient Request Methods

The disadvantage of the naming method is in the way
the bounds are computed: Recall that the parent receives
from its childi a single upper bound, Gi

U
, which bounds,

for all attributes, the possible contribution to the gain
function of all the data beneath childi, which was not
sent up. Following equations 1 and 2, the upper bound of
every attribute is partially based on G

i

U
. If G

i

U
is high,

the weighted upper bounds of many attributes (which are
computed using G

i

U
and Theorem 1) will be higher than

the border, and since their lower bounds remain low, their
attribute intervals will cross the border. Consequently, a
request that names many crossing attributes causes high
communication overhead.

To overcome this, a different request method, called
the independent method, is used. The new request
method asks the child to lower its border independently
of its parent. When a child receives this request, it sets
its border as the maximal lower bound of all attributes
that were not sent up. Then it tries again to find a clear
separation, if necessary, by requesting more information
from its children. Consequently, new information is sent
to the requesting parent, and the upper bound G

i

U
of the

child is reduced.
Finally, to minimize the overall communication com-

plexity, DESAR employs the following strategy when
using the request methods: If G

i

U
of childi is above the

border, the independent method is used. Otherwise, if a
clear separation does not exist and the highest attribute
(i.e., the attribute with the highest lower bound) has



partial information, the child uses the naming method
to request information, for the highest attribute only,
from all children who sent partial information regarding
this attribute. This is done in the hope that the new
information will raise the border and a clear separation
will be achieved. If the highest attribute already has
full information, i.e., the lower and upper bound of the
attribute are equal, then the agent will use the naming
method to request more information for the attributes
that cross the border.

VI. EXPERIMENTAL EVALUATION

The DHDT algorithm is designed to run on datasets
with a large number of attributes, such as the genomi-
cally enriched EMR. However, such data is not yet avail-
able for large-scale data mining. Therefore, we adopted
an approach common in bioinformatics studies on the as-
sociation of phenotype with SNP data. In this approach,
synthetic SNP data is generated by a theoretical model,
and then one SNP serves as the phenotype we wish to
classify. Since some diseases are correlated strongly with
a single SNP variation, learning a model which predicts
an SNP’s allele is equivalent to learning a model which
predicts one of these diseases. We synthesized the SNP
data using two data generators ( [8], [11]) with typical
parameters to generate two datasets, where each of the
generators uses a different theoretical model.

Each dataset contains 250,000 examples describing a
single population. A single SNP is described by a binary
attribute where ’0’ denotes the most common allele.
An example is composed of 1000 SNPs. An arbitrary
SNP is designated the class attribute. The experiments
were performed on a simulation of a communication tree
that spans all agents in the system. At the beginning of
each experiment, each agent builds its local database by
sampling a small fraction of the simulated dataset, thus
emulating a specific subpopulation.

The goal of the DHDT algorithm is to minimize
communication overhead. The communication overhead
is compared with the overhead of the previously sug-
gested decision tree algorithms [3], [23], which collect
all the crosstables for all the available attributes to a
single agent. Henceforth, we denote these algorithms as
Algorithm Prev. Algorithm Prev sends O (LN) bytes and
O(L) messages per decision tree node, where L is the
number of agents and N is the number of attributes in
the dataset.

A. Synthesized Genomic Data

We have synthesized two SNP datasets, using two
simulations that follow different theoretical models. The
first simulation is based on coalescent theory and was
conducted with the Hudson simulation engine [11]. The
simulation assumes intragenic recombination. Whenever
a recombination event occurs, the two separated strands
of a DNA sequence become statistically independent,
consequently lowering the association between the SNPs
of the separated strands. The parameters for this simu-
lation are the number of examples, the number of sites
(SNPs), and the probability that recombination will take
place. In this simulation we used a typical recombination
probability of 10−8 per generation for every 2500 base
pairs.

The second simulation follows a recently developed
theory that assumes the existence of DNA blocks. The
theory proposes that recombination events occur in nar-
row hot-spots, resulting in the creation of DNA blocks in
the region between two hot-spots. Therefore, SNPs that
are contained in a single DNA block are more strongly
associated. The simulation was conducted using the
simulation tool suggested in [8] with default parameters.

The results of the experiments showed that the com-
munication overhead of the algorithm is the same for
both databases. Thus we present below just one set of
results.

B. Experiments

Our first experiment measures the average communi-
cation overhead of a single split decision (i.e., a single
run of the DESAR algorithm) in terms of the number
of messages and the number of sent crosstables. These
results are compared with previous distributed decision
tree algorithms which collect and aggregate the crossta-
bles of all attributes.

Our algorithm demonstrates an average reduction of
more than 99% in the number of transmitted bytes,
with only a small increase in the average number of
sent messages (1.2 per Agent per decision tree node).
These results are summarized in figure 2(a). Figure
2(b) provides a detailed view of the communication
overhead over the levels of the network spanning tree
when using the Gini index function. Similar results are
achieved for the information gain function. Note that
most of the communication takes place in the lower
levels of the tree and decreases in the higher levels.
Because more data is used to compute the gain function
in the higher levels, there is less chance that the best
attribute in a child agent will not be the best attribute



(a) Average communication overhead

(b) Hierarchical view of the communication overhead
(Gini index)

Network spanning tree degree 3
Levels of hierarchy 6
Network size

P

6

i=1
3i = 1093

Subpopulation size 5000
Total number of attributes 1000
Average number of decision tree nodes (Gini index) 25
Average misclassification rate 3%

(c) Experiment parameters

Fig. 2. Average communication overhead for a single split decision

in its parent agent as well. Recall that, for locality
reasons, the communication in higher levels is more
expensive, and thus the DHDT algorithm is able to
amortize the cost of communication over the network.
In addition, the benefits of the algorithm are emphasized
because the maximal communication overhead (out of 20
tests) declines similarly to the average communication
overhead, and is sharply reduced in the higher and more
costly levels of the network tree.

The above experiment also compares the communica-

tion overhead when using the information gain and the
Gini index functions. The results show that the infor-
mation gain function is more efficient communication-
wise than the Gini index function. In [19], the authors
compared the split decisions made by the Gini index
function with those made by the information gain func-
tion. Their results showed disagreement only on 2% of
the decisions. However, if different splitting attributes are
chosen for a node that resides at the top of the decision
tree, then obviously the subtrees below this node will
be completely different. Consequently, the effect of the
different decision is increased.

Our next experiments examine the scalability of the
algorithm with respect to the size of the network, the
number of total attributes, and the size of the local
databases.

• Scalability in the size of the network. We exam-
ined the communication overhead with an increas-
ing network size (40; 121; 364 and 1093 agents),
where in each step, a new level is added to the
network spanning tree and the other parameters
remain as in figure 2. The results, summarized in
figure 3, show that the reduction in communication
overhead is hardly affected by the network size.
Therefore, the algorithm can be deployed on large-
scale networks containing even thousands of net-
work nodes and can sharply reduce communication
overhead.

• Scalability in dataset dimensionality. The algo-
rithm is intended for highly dimensional datasets.
Therefore, we tested the reduction in communica-
tion overhead when the number of attributes in the
datasets increases. We conducted tests with 125,
250, 500, and 1000 attributes (SNPs), with a longer
segment of the chromosome used each time in order
to increase the number of SNPs in our dataset. Our
results, summarized in figure 4, show that when the
number of attributes is doubled, only a few addi-
tional crosstables are sent up, and the percentage of
the sent attributes declines sharply. This behavior is
expected due to both the following properties of the
SNP data and the DESAR algorithm: SNPs that are
near each other on a chromosome are more strongly
associated than SNPs that are far away from one
another. Thus, as the number of SNPs increases,
only few of the additional SNPs are good predictors
of the target SNP (the class attribute). Because the
DESAR algorithm sends only attributes that provide
good prediction of the target attribute, only a few
additional crosstables are sent up the hierarchy, and



the communication overhead remains low.
• Scalability in the size of local databases. In this

experiment, we examined the effect of larger local
datasets on communication overhead. As expected,
the results in figure 5 show that when the size of the
local datasets increases, communication overhead
decreases because the sampling noise decreases.

Fig. 3. Scalability in network size. The above figures show the
distribution of the average communication overhead over the network
tree levels for different network sizes (Gini index). Other experiment
parameters remained as described in figure 2.

Fig. 4. Scalability in dataset dimensionality. The above figure shows
the communication overhead for a network of 364 agents, where the
number of attributes increases. Other experiment parameters remained
as described in figure 2.

Fig. 5. Scalability in size of local databases. The above figure
shows the communication overhead for a network of 364 agents,
where the number of examples in the local databases increases. Other
experiment parameters remained as described in figure 2.

VII. CONCLUSIONS

Whereas prior decision tree algorithms have had to
send statistics for every attribute in the dataset in order
to make a correct decision, our algorithm sends statistics
for only a fraction of the attributes, while eliminating
most of the communication overhead. Thus it does
not require the high network bandwidth required by
the earlier algorithms—bandwidth that clearly does not
exist in wide-area networks. Furthermore, it continues to
perform well as the size of the network or the number
of attributes increases. Therefore, our algorithm is well-
suited for mining large-scale distributed systems with
highly dimensional datasets, and especially beneficial
for the medical information domain, where clinical and
genomic data are distributed across hospital databases
and other medical facilities.
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