1274

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

Using Object Deputy Model
to Prepare Data for Data Warehousing

Zhiyong Peng, Member, IEEE, Qing Li, Senior Member, IEEE, Ling Feng, Member, IEEE,
Xuhui Li, and Jungiang Liu

Abstract—Providing integrated access to multiple, distributed, heterogeneous databases and other information sources has become
one of the leading issues in database research and the industry. One of the most effective approaches is to extract and integrate
information of interest from each source in advance and store them in a centralized repository (known as a data warehouse). When a
query is posed, it is evaluated directly at the warehouse without accessing the original information sources. One of the techniques that
this approach uses to improve the efficiency of query processing is materialized view(s). Essentially, materialized views are used for
data warehouses, and various methods for relational databases have been developed. In this paper, we will first discuss an object
deputy approach to realize materialized object views for data warehouses which can also incorporate object-oriented databases. A
framework has been developed using Smalltalk to prepare data for data warehousing, in which an object deputy model and database
connecting tools have been implemented. The object deputy model can provide an easy-to-use way to resolve inconsistency and
conflicts while preparing data for data warehousing, as evidenced by our empirical study.

Index Terms—Data preparation, data warehousing, data fusion/integration, object deputy model, conflict resolution, duplicate

handling.

1 INTRODUCTION

THE ability to act quickly and decisively in today’s
increasingly competitive marketplace is critical to the
success of many organizations. The volume of information
that is available to corporations is rapidly increasing and
frequently overwhelming. Those organizations that effec-
tively and efficiently manage this vast amount of data and
use this information to make business decisions realize a
significant competitive advantage in the marketplace. Data
analysis, reporting, and query tools help business workers
sift through tomes of data to extract valuable information
from it. Software and hardware systems that support such
“Business Intelligence” (BI) applications are often known as
Decision Support Systems (DSS).

Research surveys predict an explosion in implementa-
tion and sales for the business intelligence/data ware-
housing (BI/DW) industry. According to IDC'’s study [16],
the market for packaged data marts/warehouses was
$112.6 million in 1999, while it is expected to grow at a
compound annual growth rate (CAGR) of 43.1 percent to
reach $674.5 million by the end of 2004. In a white paper by
Knightsbridge [20], it quotes META Group as saying that
“all enterprises are anticipating exponential data warehouse
growth, with average raw data exceeding one terabyte in

e Z. Peng, X. Li, and ]. Liu are with the State Key Laboratory of Software
Engineering, Computer School, Wuhan University, Luofia Mountain,
Wuhan, Hubei, China, 430072.

E-mail: {peng, lixuhuil@whu.edu.cn, liujungiang@msn.com.

e Q. Li is with the Department of Computer Science, City University of
Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong, China.

E-mail: itqli@cityu.edu.hk.

o L. Feng is with the Department of Computer Science, University of Twente,
PO Box 217, 7500 AE, Enschede, Netherlands.

E-mail: ling@ewi.utwente.nl.

Manuscript received 24 Nov. 2004; revised 29 Mar. 2005; accepted 7 Apr.
2005; published online 19 July 2005.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDESI-0488-1104.

1041-4347/05/$20.00 © 2005 IEEE

2003/04 and three terabytes in 2005/06.” Another report by
Survey.com [28], based on surveying hundreds of organiza-
tions, concludes that the overall worldwide investment in
data warehousing and business intelligence will exceed
$150 billion by 2005. Over the years, BI/DW has evolved in
industries like retail (customer profiling, inventory manage-
ment, trend forecasting), financial services (risk analysis,
fraud detection), and manufacturing (order shipment,
customer support) to new areas in clinical analysis,
governmental surveys, and others. Decision Support Sys-
tems in these domains clearly exhaust traditional manual
methods of data analysis such as spreadsheets and ad hoc
queries. This motivates the need for a new breed of
DSS—Data Warehousing and Online Analytic Processing,
recent initiatives which have resulted in many successful,
high-return applications of information technology.

1.1 Problem Overview

The issues to be dealt with while designing any data
warehouse solution can, in a way, be thought of as an
extension of database design issues (distributed database or
multidatabase systems). While the output specifications of a
DW are similar, as far as integrating schema and maintain-
ing semantic heterogeneity are concerned and, in some
cases, as far as developing views go, there are certain key
issues unique to each environment.

The work presented in this paper highlights some issues
related to data preparation for data integration in a
distributed data warehouse environment. The framework
of our research, as illustrated in Fig. 1, is called FOODMAW
(standing for “Framework of Object Oriented Data Mining
And Warehousing”) which is a modified version of [17].
Here, the wrappers convert data from each source into a
common model and also provide a common query
language [7], [10]. The knowledge base is used to store
information such as correspondence between local database
schemas and conflict resolution for any mismatched

Published by the IEEE Computer Society



PENG ET AL.: USING OBJECT DEPUTY MODEL TO PREPARE DATA FOR DATA WAREHOUSING

1275

global applications, decision support systems

multiple integrated virtual views by object deputy model

shared materialized object views of local databases ( member databases )

local
application

local
application

Local
application

wrapper

wrapper

wrapper

local database 1

local database m

local database n

Fig. 1. FOODMAW—Framework of object-oriented data mining and warehousing.

structures of local database schemas. These components are
common in many integration projects [22], [7], [3], [21], [19].
However, the focus of our project is on the following two
components:

o  Shared materialized view set (member databases): These
are derived databases through what we call “mirror-
ing process” [17], the purpose of which is to convert
the local heterogeneous databases into a set of
homogeneous databases which can be efficiently
managed by a single robust database management
system.

e  Multiple integrated (virtual) views: Based on the
shared materialized view set, integrated (virtual)
views are defined for efficient support of different
global and decision support applications on a data
warehouse.

Essentially, materialized views are used for data ware-
houses and various methods for relational databases have
been developed. In this paper, we will first discuss a
method to realize materialized views for object-oriented
databases (OODB) using deputy objects [24]. Since materi-
alized views require the generation of duplicate data, we
will address the issue of duplication handling by utilizing
inheritance property of object-oriented databases.

While it is arguable whether the object-oriented (OO)
approach is more practical (at least not proven by the
current market yet) in handling traditional data warehouse
applications which involve tera or petabytes of data, we do
see emerging applications whose more complex data and
(new) query types can benefit from adopting the
OO paradigm [1], [29]. Particularly, in addition to being
an interesting academic exercise, a data warehouse adopting

the OO model can be more expressive and efficient than the
relational or multidimensional models in accommodating
“multifact” and “ad hoc” cube queries and such semantic
cubes’ derivation and mining [12], [13]. In this paper, we
describe our work of developing such an OO data ware-
housing system by focusing on the data preparation phase
and investigate some of the basic issues including object
identification and fusion (for data objects coming from
relational as well as nonrelational databases such as OODB
or object-relational ones), as well as inconsistency and
conflict resolution; other issues involved in maintaining and
handling such an OO data warehousing system as well as
efficient (cube) query processing, etc., are outside the scope
of this special issue, hence, they are not included in this
paper.

1.2 Paper Contributions and Organization

The main contributions of our paper include the following:

1. We provide an object framework for data ware-
housing including complex information not only
from relational databases but also from object-
oriented or object relational databases.

2. We give a methodology to resolve inconsistency and
conflicts based on an object deputy model which is
flexible enough for data fusion/integration com-
pared with traditional relational or object-oriented
data models.

3. Wedevelop the framework by using Smalltalk as the
data integration environment in which the object
deputy model has been implemented and various
database connecting tools are provided.



1276

4. An application case is provided to illustrate the
effectiveness of our framework for data integration
and, furthermore, data analysis.

The remainder of the paper is organized as follows:
Section 2 reviews the background of our research, including
works on object-based data preparation in distributed
databases, object-oriented data warehousing, and object
deputy model. In Section 3 and Section 4, we study the issues
of data fusion/integration in FOODMAW, particularly the
issues of data extraction, conflict resolution, and duplication
handling. Section 5 describes an experimental prototype of
FOODMAW, in terms of its implementation in Smalltalk and
associated facilities such as the database connecting tools and
data analysis functionalities. Finally, we conclude the
presentation of our work by summarizing the results and
suggesting some ideas for future work in Section 6.

2 BACKGROUND OF RESEARCH

In this section, we review some works that are closely
relevant to this study.

2.1 Object-Based Data Preparation

A lot of research efforts have been made to integrate
heterogenous information sources in a distributed environ-
ment. The object-oriented approach is thought of as a good
solution to the problem of the heterogeneous system
interoperability because the object-oriented model is se-
mantically rich and can define complex mapping even for
information sources without database schema [5], [6], [9],
[18], [19], where methods can be used to resolve various
syntactic and semantic conflicts. However, the traditional
object-oriented data model has two serious problems. First,
it can only provide subclass constructor and support
inheritance from superclass to subclass. Data integration
needs not only specialization but also aggregation and
generalization. Aggregation can be used to integrate
component objects distributed in different databases [11].
The attributes and methods of the component objects are
inherited by the complex object in the global schema. The
generalization can be used to integrate specific objects into
general ones. Thus, the object-oriented model should be
extended with superclass constructor and can define
inheritance from a subclass to a superclass and from the
component objects to the complex object. Second, the view
mechanism is very difficult to be implemented. In order to
integrate databases, their schemas should be dynamically
defined and modified. The view mechanism plays an
important role in restructuring the schema resulting from
the merging of component schemas. Although many view
mechanisms [2], [4], [14], [18], [26] were published, to our
knowledge, almost no commercial object-oriented data-
bases provide true view supports. We know that the
flexibility of relational databases is due to their data
independence that enables data to be divided and com-
bined very easily. Similarly, a flexible object-oriented
database should also allow objects to be restructured.
Without this feature, view mechanisms are difficult to
incorporate into object-oriented databases.

2.2 Object-Oriented Data Warehousing

Data warehouse systems equip users with effective decision
support tools by integrating enterprise-wide corporate data
into a single repository from which business end-users can
run reports and perform ad hoc data analysis [8]. In recent

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

years, there has been considerable interest in tapping object
systems for handling multidimensionality in OnLine
Analytical Processing (OLAP) data. While relational OLAP
(ROLAP) and multidimensional OLAP (MOLAP) systems
are used successfully in data warehouses and can be
tailored for specific applications, each system has its
inherent pros and cons [30]. Current forage into object
systems has partly been motivated by modeling issues
(ROLAP) and scalability, sparse data (MOLAP) [31], and
partly by the natural modeling ability of object systems to
handle complex structures and relationships present in real-
world applications. In [13], object cubes are proposed by
utilizing semantic links between concept hierarchies in
object cubes, so as to study generalization-based data
mining in object-oriented databases. Abello et al. [1] also
motivate object-oriented treatment of complex dimensions
due to issues in aggregation levels, reference fan-outs, and
interdimensional relationships. Trujillo et al. [29] utilize
relationship semantics and constraints to conceptually
model data warehouses in object and object-relational
systems. Extensions to UML are used to model structural
and dynamic (user queries, OLAP operations) levels. A
logical federated model is advocated by [23], letting object
systems handle complex relationships, while the OLAP
system handles aggregate queries. They also provide an
integrated OLAP query mechanism to access and return
combinations of object and OLAP data, keeping the
physical implementation separate. In the context of an
object-relational data warehouse (ORDW) environment,
[12] proposes an iterative logical and physical ORDW
design mechanism. They also optimize the view/cube
selection process by using horizontal partitioning techni-
ques based on query and structural semantics.

As in the traditional data warehouses, the mechanism of
materialized views is also applicable to object-oriented data
warehouses. In [15], [32], the authors point out that the hybrid
integrated views, i.e., the combination of fully materialized
and virtual views, are beneficial, and [15] presents a frame-
work for data integration using the materialized and virtual
view approaches, while [32] provides an algorithm for
selecting (sub)views to be materialized. In this paper, we
will advocate an object deputy approach, which can actually
facilitate such a hybrid approach. The basic idea is to 1) select
the objects of interest from information sources, 2) create their
materialized deputy objects to avoid communication delays,
and 3) form an integrated and application-specific view by
properly selecting a combination of computed and materi-
alized deputy objects, considering the trade-off problems
between view maintenance cost and computation overhead.

2.3 Object Deputy Mechanism

The concept of deputy objects was at first introduced by the
authors for the unified realization of object views, roles, and
migration [24]. In order to illustrate that it is also useful for
database integration, we will review its definition.

The object-oriented data model represents real-world
entities in term of objects. Objects are identified by
system-defined identifiers which are independent of ob-
jects” states. An object has attributes which represent
properties of a corresponding real-world entity. The state
of an object is represented by its attribute values, which are
read and written by basic methods. In addition, there are



PENG ET AL.: USING OBJECT DEPUTY MODEL TO PREPARE DATA FOR DATA WAREHOUSING

general methods that represent the behavior of objects.
Objects having the same attributes and methods are
clustered into classes, which make it possible to avoid
specification and storage of redundant information. A
formal definition of objects and classes is given as follows:

Definition 1. Each object has an identifier, some attributes, and
methods. The schema of objects with the same attributes and
methods is defined by a class which consists of a name, an
extent, and a type. The extent of a class is a set of objects
belonging to it, called its instances. The type of a class is
definitions of its attributes and methods. A class named as C'is
represented as

C = {o}{Tu s a}, {m : {T, : p}}).

o {o} is the extent of C, where o is one of the
instances of C.

o {1, : a} is the set of attribute definitions of C, where a
and T, represent the name and type of an attribute,
respectively. The value of attribute a of object o is
expressed by o.a. For each attribute Ty : a, there are
two basic methods: read(o,a) for reading o.a and
write(o, a,v) for writing o.a with the new value v,
expressed as follows:

read(o,a) = 1 o.a, write(o,a,v) = o0.a :=v.

Here, =, 1, and := stand for operation invoking,
result returning, and assignment, respectively.

o {m:{T,:p}} is the set of method definitions of C,
where m and {T), : p} are method name and a set of
parameters and p and T, represent parameter name
and type, respectively. Applying method m to object o
with parameters {p} is expressed as follows:

apply(o, m, {p}).

Deputy objects are defined as an extension and custo-
mization of objects. An object can have many deputy objects
that are used to customize the object for different applica-
tions or represent its many faceted nature. The schemas of
deputy objects are defined by deputy classes that are
derived by creating deputy objects as their instances,
generating switching operations for inheritance of attributes
and methods and adding definitions for their additional
attributes and methods. A formal definition of deputy
objects and deputy classes is given as follows:

Definition 2. A deputy object is generated from object(s) or other
deputy object(s). The latter is called source object(s) of the
former. A deputy object can inherit some attributes/methods
from its source object(s). The schema of deputy objects with the
same properties is defined by a deputy class, which includes a
name, extent, and type. Deputy classes are derived from classes
of source objects, called source classes. In general, let C* =
{0’} {T : @}, {m® : {T} : p°}}) be a source class. Its
deputy class C? is defined as

Cl={o] (07 = 0*) V(0! = ... x0° x...) V(0! = {0°}),
sp(0®) V ep(...x 0" x...) V gp({0°}) == true},
{T,: ad’} U{T. : ai}7 {md AT :pd}}U
{m? :A{T, : pi1),

1277

where

L.

{0 (0" = 0*) V(0! — ... x 0° x...) V(o7 — {0°}),

sp(0®) V ep(...x 0" x...) Vgp({o°}) == true}

is the extent of C?, where (o — 0*) V (o —
c.oxX 0" %x...) V (o = {0°}) denotes that o is
the deputy object of a certain source object o°, or
some combined source objects represented using
...x 0% x ..., or a set of source objects represented
using {0°}; and, sp, cp, and gp represent selection,
combination, and grouping predicate, respectively.

2. {Tu:a’yU{T, al} is the set of attribute defini-
tions of C, where

o {T,i :a'} is the set of the attributes inherited
from {T, :a°} of C*®, of which switching
operations are defined as

read(o?, a®) =1 frm1, (read(o®, a%)),
write(o?, a?, v?) = write(o®, a’, fr .1, (v%)).
Here, function fr..p converts the value of one
type T to the value of another type T".

o {T, :al} is the set of the additional attributes of
C4, of which basic methods are defined as

read(o?, ai) =1 od.afr7

oo d d o d d d ._ d
write(o”, af,v}) = o%.af = .

3.0 {m! AT p Y u{m{  {T,0 : pl}} is the set of
method definitions of C, where

o {m':{T,:p'}} is the set of the methods
inherited from {m?®:{T, :p*}} of C°, which
are applied through switching operations as

apply(o”, m", {p"}) =1
apply(os, m’, {prd'—*T,ﬁ (pd)})

o {mi:{T, :pl}} is the set of the additional
methods of C4, which are applied as

apply(o®, m?, {pL}).

According to the above definition, deputy objects have
persistent identifiers but their attribute values inherited
from source objects are still computed through switching
operations that need to communicate with the underlying
information sources. In order to improve performance,
queries are required to be evaluated locally since informa-
tion sources may be remote or unavailable for some time.
For this reason, we extend deputy mechanisms to allow
deputy objects to materialize their inherited attribute
values. The definitions of basic methods for the inherited
attribute of which value is materialized are changed as
follows:



1278

read(o?, a®) =1 ot.a?,
write(o?, a?, v?) = o%.a? == vIA
write(osv as7 fTﬂw—'Tu‘s (Ud))a

update(o’,a’) = o'.a .= froem, (read(0”, a®)).

That is, the inherited attribute values are precomputed
and can be directly read from the deputy object. Thus,
queries on the integrated views need not interfere with
objects at remote sources. The update of the inherited
attribute value of a deputy object needs to be reflected in its
source object(s). Therefore, the writing method is first to
update the precomputed value and then propagate the
change into the original one through the switching
operation. On the other hand, the update of the original
attribute value requires recomputing the inherited attribute
value of the deputy object. This operation is realized by
introducing another basic method for each inherited
attribute. The basic update method updates the inherited
attribute value according to its dependence relationship
defined by the switching operation. It is triggered when the
original attribute value is updated.

3 DATA EXTRACTION IN FOODMAW

In FOODMAW, we first build object-oriented interfaces
(viz., wrappers) on top of nonobject-oriented information
sources (see Fig. 1). Such an interface consists of a set of
classes, each of which defines the properties and messages
for a set of objects. Each definitional property has a name
followed by its domain. The domain of a definitional
property can be a basic type (for example, integer, Boolean,
string, etc.) or a class. The basic operations for messages are
implemented in terms of primitives provided by the local
information sources. That means each local information
source is converted into an object-oriented view. It mainly
solves conflicts due to syntactical heterogeneity.

In object-oriented databases, objects are classified into
classes, which are organized into a hierarchy. The upper
classes are called superclasses of the lower ones that are
conversely called subclasses of the upper ones. The super
class includes instances of its subclasses and a subclass
inherits attributes and methods of its superclass. Suppose
there are two classes, Rectangle and Right_Rectangle, where
the former is a superclass of the latter. As shown in Fig. 2a,
if both of them are extracted into data warehouses without
considering their inheritance relationship, right rectangles
will be duplicated since right rectangles also indirectly
belong to the class Rectangle.

In order to avoid the duplication of instances of the
subclass, we extract the superclass by first creating its
deputy class that only includes deputy objects of its direct
instances. The deputy class is then merged with the deputy
class of the subclass by the union operation to derive a
deputy class that can be used at data warehouses as if it
would be the superclass. Since the deputy class derived by
the union operation is not materialized, right rectangles will
not be duplicated as shown in Fig. 2b. Let S = {C},...,C,}
be the classes selected from an object-oriented database. We
assume that T is a set of the classes that have been
extracted, D; is a deputy class of C; and D) is a deputy class
of C; with the extent only including deputy objects of direct
instances of C;. In general, we can give the following
algorithm that can derive deputy classes without unneces-
sary instance duplication from the selected classes accord-
ing to their inheritance relationships:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

While (S # () do
{
For each C; € S that has not any subclass in S,
if C; has subclasses {C;,,...,C; } in T,
then
{
if ( C; has direct instances) then
1) To create a materialized deputy class D,
2) To create a computed deputy class D;
as the union of D;,...,D; and D;

else
To create a computed deputy class D;
as the union of D;,,...,D;,
}
else
To create a materialized deputy class D;
To delete C; from S and add C; into T

)

In order to illustrate the above algorithm, we give an
example as shown in Fig. 3. According to the algorithm, the
class hierarchy of an OODB system is extracted into the data
warehouse in the following way:

1. S= {01,02703,04} ande@,‘

2. Cyand C, areselected since they have nosubclassin S;
The materialized deputy classes D, and D, are
created since Cy and C; have no subclass in T

4. S:=5—-{Cy,Ci} and T :=T+ {C»,Cy};

5 S = {01,03} and T = {Cg, 04};

6. (s is selected since it has no subclass in S;

7. A materialized deputy class D} is created since Cj
has a subclass C; in T and has a direct instance;

8. A computed deputy class D; is derived as the union
of Dy and Dj;

9. §:=S-{Cs}and T:=T+{Cs};

10. S = {Cl} and T = {CQ, Cg, 04};

11. C) is selected since it has no subclass in S;

12. A computed deputy class D, is created as the union
of Dy and Djs since C has subclasses Cs, C3 in T and
has no direct instance;

13. §:=5—-{Ci}and T :=T + {C,};

14. S= @ and T = {CI,CQ,G3,04};

15. Stop since S = 0.

4 DATA INTEGRATION IN FOODMAW

After the objects of interest are extracted from multiple
heterogeneous information sources by creating their
materialized deputy objects, their integration will be
realized by an object deputy algebra [25], which consists
of six algebraic operations: Select, Project, Extend, Union,
Join, and Grouping.

In order to offer an integrated view, the schema mismatch
of objects must be overcome at first. Since the inheritance by
switching operations allows the names and types of attributes
between objects and their deputy objects to be different, the
synonym, homonym, and type mismatch problems can be
solved by defining appropriate switching operations. After
the schema mismatch of objects has been solved, object
integration can be realized by applying the object deputy
algebra, of which the selection operation is mainly used to



PENG ET AL.: USING OBJECT DEPUTY MODEL TO PREPARE DATA FOR DATA WAREHOUSING

L]
a0

3

e

OODB

(@)

Materalized
Deputy Objects

Data Warehouses

Communication Lines

1279

OODB

(b)

Fig. 2. Comparison of two object extraction approaches. (a) An approach not considering inheritance. (b) An approach considering inheritance.

C1

c2 A
———
A A -

« |

OODB

Fig. 3. An example for illustrating class extraction.

select objects of interest for integration. The same kind of real-
world entities may be defined in multiple sources with
attributes and methods more or less than what need be
included in the integrated view. The project operation can be
used to hide unnecessary ones, and the extend operation to
add necessary ones (with default values). The objects with the
same attributes and methods from different sources can be
integrated into a single class by the union operation. If
attributes and methods of a real-world entity are distributed
in different sources, the conceptually related components can
be combined by the join operation. In addition, the same
replicated objects defined in different sources canbe grouped
by the grouping operation.

Data Warehouse

To illustrate data integration by object deputy model, let
us consider the following application scenario. XYZ is a
global electronic corporate with divisions located in
different parts of the world. Each of the divisions makes
certain kinds of products, like home appliances, medical
systems, lighting, etc. Assume each division has its own
human resource management department, R and D depart-
ment, sales department, etc., and maintains information of
its employees, products, etc., in its local database. The local
database in the headquarters maintains the performance
appraisal results for all its employees within the corpora-
tion. Fig. 4 shows a sample set of local database examples,
described in the tabular format for simplicity.



1280

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

name age dept salary (S$) | CPF (S$) name age dept payment (US $)
Jack Louis 32 | Personnel 2K 100 Kavin Ho 27 R&D IK
Martin Smith | 36 R&D 4K 200 Steven Lous | 28 R&D 2K
Alice Leong 40 Sales 5K 250 Jone Klein 30 | Personnel 1K
(a) (b)
name category model name category model
TV home-appliance | TH42PX25 ultrasound | medical-systems | SSD-210DX
TV home-appliance | TH42PHD7 X-ray medical-systems 3630
DVD | home-appliance | DVD9002 medi-Scan | medical-systems 8400
(©) (d)
name region | evaluation
Martin Smith | region-A A
Kavin Ho region-B A
Stin Louwes | region-B B+
Alice Leong | region-A B-

(e)

Fig. 4. A sample set of local database examples. (a) Class Employee at region A. (b) Class Employeep at region B. (c) Class Product 4 at region A.
(d) Class Productp at region B. (e) Class EmpFEuvaluation at the headquarters.

4.1 Resolving Conflicts by Object Deputy Model

Referring to Fig. 1, an important step is to integrate
semantically heterogeneous schemas in an integrated view
(viz., a member of the shared materialized view set of Fig. 1).
There may be various conflicts during integration, which
can be resolved through homogenizing, specialization,
generalization, and aggregation.

4.1.1 Homogenizing Objects

When integrating several heterogeneous information
sources, there are problems of having different names for
equivalent entities or attributes, or having the same name
for different entities or attributes. In addition, different
expressions, units, or levels of precision may be used to
denote similar information. These conflicts can be resolved
by defining deputy objects with switching operations which
can rename attributes/methods and change their expres-
sions, units, or levels of precision. For example, as shown in
Fig. 4, an employee’s salary in one database, Employee 4, is
expressed as payment in another database, Employeep.
Suppose that they have different units, Singapore dollars
(S$) for the salary and US dollar (US$) for the payment. If
they need be homogenized into payment with US dollar, as
the unit, we can define the deputy object with the following
switching operations:

Read(d, payment) = Read(o, salary) = su_rate,
Write(d, payment,v) = Write(o, salary, v/ su_rate),

where su_rate represents the exchange rate from Singapore
dollars to US dollars.

Conflicts involving “missing attributes” arise when the
numbers of attributes are different in semantically equivalent
entities across several information sources. For instance, the
attribute CPF (Central Provident Fund) is only applicable to
the employees positioned in Singapore, but not in the USA.
There are two ways to resolve this type of conflict: One way is
to hide the extra attributes from the entities which have more

attributes than other entities. This can be realized by deriving

a deputy class using the algebraic operation: Project. The

Project operation is used to derive a deputy class which only

inherits part of attributes and methods of a source class. Its

formal definition is as follows:

Definition 3. Let C° = ({0°}, {T}s : a®},{m® : {T}» : p°}}) bea
source class, {T,s : a®} and {m® : {T,x : p*}} be subsets of
attributes and methods of C* which are allowed to be inherited.
A deputy class derived by the Project operation is represented
as C? = Project(C*, {T,s : a*},{m* : {T)y :p*}}).

1. The extent of C? is the set of deputy objects of instances
of C*, which is expressed as

{o%]o? — 0°}.

2. The set of attributes of C is defined as {T,. : a},
which are inherited from the attributes {T,: : a®} of
C®. The switching operations for inheriting Tos : a® in
the form of T, : a® are realized in the following way:

7"ead(od7 a‘f) =1 fTa«zHTug (read(o’,a’)),

d ,d

write(o?, a? ,v) = write(o®, a® frie1, ().

3. The set of methods of C is defined as

{m® AT - p" ),
which are inherited from the methods {m?® : {T, :
p> }} of C°. The switching operation for inheriting
m® : {T, :p*} in the form of m® :{T, :p'} is
realized in the following way:
apply(o®, m? {p’}) =1
apply(OS, miv {prd =T (p(i)})



PENG ET AL.: USING OBJECT DEPUTY MODEL TO PREPARE DATA FOR DATA WAREHOUSING

The other way is to add the extra attributes to the entities
which have less attributes than other entities. This can be
realized by deriving a deputy class using the algebraic
operation: Extend. The Extend operation is used to derive a
deputy class of which instances are extended with addi-
tional attributes and methods that cannot be derived from a
source class. Its formal definition is as follows:

Definition 4. Let C° = ({0°}, {Ts : a®}, {m® : {T)» : p°}}) be
a source class, {T,e :al} and {m{ :{T, :p}}} be sets
of additional attributes and methods.
derived by the Extend operation is represented as
C¢ = Extend (C*, {To - a®}, {m? : {T, :pt1}).

1. The extent of C is the set of deputy objects of instances
of C*, which is expressed as

A deputy class

{00 — 0°}.

2. The set of attributes of C? is defined as the union
of attributes {T,. : a?} inherited from the attributes
{Te :a®} of C° and its additional attributes
{Tos +al}, expressed as {T:a’} U{T, :al}.

a. The switching operations for inheriting T,s : a
in the form of T, :a® are realized in the
following way:

read(o?, a?) =1 froe1, (read(0”, a%)),

write(o?, a?, v?) = write(o®, a* T s (U ).

b. For each additional attribute Tai : ai, the follow-
ing two basic methods are realized, which are
operated independently of the source object:

read(o?, a+) =10%al

d dd ._ . d
write(o?, a?,vl) = o.at == v,

3. The set of methods of C? is defined as the union of
methods {m? : {T,. : p}} inherited from the meth-
ods {m*®:{T, :p°}} of C*® and its additional
methods {m¢ : {T,s : p1}}, expressed as

{m® AT p"H U {md  {Ty 94}

a. The switching operation for inheriting m® : {T)s :
p*} in the form of m?® : {T, : p*} is realized in the
following way:

apply(od, m’d’ {pd}) =1
apply(o*,m*, fr .1, {p"})-

b. For each additional method m< : {T,s : p{}, the
following switching operation is realized, which is
applied independently of the source object:

apply(o®, mL, {pL}).

1281

4.1.2 Specialization

Each application may have its own integrated views which
select their needed objects from local information sources.
The specialization abstract mechanism can be used to
achieve such an objective. For example, suppose an applica-
tion wants to have an overview of all the employees working
in the R & D department. To bring this information together,
we can define a deputy class, which is a specialization of the
local ones, so that the deputy class only contains deputy
objects of employees in the R & D department.

The Select operation is used to derive a deputy class of
which instances are the deputy objects of the instances of a
source class selected according to a selection predicate. Its
formal definition is as follows:

Definition 5. Let C° = ({0°}, {T}s : a®},{m® : {T)s : p°}}) bea
source class. A deputy class derived by the Select operation is
represented as C? = Select(C*, sp), where sp is a selection
predicate:

1. Theextent of Cis the set of deputy objects of instances of
C® which satisfy the selection predicate sp, expressed as

{o%0? — 0*, sp(0°) == true}.

2. The set of attributes of C is defined as {T, : a’},
which are inherited from the attributes {T,: : o’} of
C®. The switching opemtions for inheriting T : a® in
the form of T, : a® are realized in the following way:

read(o?,a?) =1 fr,.. ', (read(o®, a*)),

write(o?, a?, v?) = write(o®, a* ST 1 ( o).

3. The set of methods of C is defined as

{m? {T : p"}},

which are inherited from the methods {m® : {T,
p°}} of C%. The switching opemtion for inheriting m® :
{T, : p*} in the form of m* : {T,. : p} is realized in
the following way:

apply(o”,m?, {p*}) =1
apply(o®,m*, { fr .1, (0)}).

4.1.3 Generalization

Data with the same attributes and methods may be
distributed in different databases. For instance, based on
the places where products are made, product information is
maintained within the respective private local database.
Suppose the headquarter wants to have a regular check
application over all the company products made by
different divisions, the scattered data items then need to
be included in a single class so as to offer an integrated
view. We can define their deputy objects by a single deputy
class which can be automatically derived by using the
Union operation on the existing data classes. The deputy
class can be treated as the union of the existing data classes.

The Union operation is used to derive a deputy class of
which the extent consists of deputy objects of instances of
more than one source class. Its formal definition is as
follows:



1282

Definition 6. Let

= {ol} ATy s ai} {mi ATy s piHs -
m - <{0m} {T(lf,, a‘m} {mm . {T . pm}}>
be source classes {Ty::a’} ={T :ai}N...N{Ty :a;,
and
{m* ATy :p"}y ={m] :{T :pi}} 0.0

{mfn : {Tpf}, :pfn}}

be common sets of attributes and methods of C5,...,Cs. A
deputy class derived by the Union operation is represented as

C% = Union(Cj§,...,C5):

1. The extent of C? is the union of sets of deputy objects of
instances of C5, ..., C%,, which is expressed as

m/

U {0 |O77L - O’ITI

{00 = oi}U... o

2. The set of attributes of C? is defined as {T, : a'},
which are inherited from the common attributes {T,s :
a’} of Cf, ,‘;‘l The switching operations for
inheriting Tas a® in the form of T, : a® are realized
in the following way:

read(of, a®) =1 froe1,(read(of, a%)),

write(of, a® vl) = write(oy, a*, fr 1, (v?)),

read( Oy @ ) =1 fT@n—»T a (Tead(Ofn, as))7

write(o?,, a®, v?) = write(o?,, @, fr -1, (v?)).

7717

3. The set of methods of C? is defined as

{m": {Tu : p}},
which are inherited from the common methods {m® :
{Ts : p°}} of Cf,...,Cs,. The switching operations
for inheriting m® : {T,s : p*} in the form of m® : {T,
p?} are realized in the following way:

apply(of,m”, {p"}) =1
apply(of, m®, { fr o1, (0)});

apply(oy,,m”, {p"}) =1
apply(0},, m*, { fr, 1, (0)}).

4.1.4 Aggregation

Attributes of a complex entity of real world may be
distributed in different databases. For example, a correlation
analysis between the performance evaluation result regard-
ing one employee and his/her other personal information
will call for the data scattered in two separate classes, i.e.,
employee and empFEvaluation. These two conceptually
related components need be combined. A complex deputy
object, namely, a deputy object having several source
component objects, is useful for such a purpose. The

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

algebraic operation Join provided by a object deputy model

can be used to derive automatically a complex deputy class.
The Join operation is used to derive a deputy class of

which instances are deputy objects for aggregating in-
stances of source classes according to a combination
predicate. Its formal definition is as follows:

Definition 7. Let

O = {0t} ATy s ai} Amy ATy 1)

Cn = {on AT = @i} {my ATy ol )
be source classes. A deputy class derived by the Join operation
Join(C%,...,C%, ¢

n

is represented as C? = cp), where cp is a

combination predicate:

1. The extent of C? is the set of deputy objects of
aggregations of instances of Cy, ..., Cs, satisfying the
combination predicate cp, which is expressed as

{00 — 05 x ... x 0%, ep(0f x ... x 0}) == true}.

2. The set of attributes of C? is defined as the union
of attribute sets {Tq:af},...,{T, :ay}, respec-
tively, inherited from Cf,...,CfL, expressed as
{Tw:a YU U{T :al}. The switching opera-
tions for attributes {T . caf}, ... AT, : al}, respec-

tively, inherited from ‘the uttrzbutes {T caj} of

Ciy.o o AT s ay} of C: are realized in the follow-

ing way:

read(o?, al) =1 le —,(read(of, ay)),
1

write(o?, af, v) = write(o}, a, fj—lld’_’T(l? (v1),
1

read(o?,a’) =1 fT,HT(, (read(o;,, ay,)),

write(o ,afwvn) = wmte(on,an,fT T ( d))

3. The set of methods of C? is defined as the union of
method sets {m¢{ : {Td pi . {md {1 :pi}),
respectively, inherited from cy,...C, expressed as

{md Ty p}} U U (T < pi}}
The switching operations for methods
{m{ AT ()} mf (T : 003 ),

respectively, inherited from the methods {mj : {Tp: :

Pty of O,
the following way:

oAmy ATy} ) of C;, are realized in

apply(o”,m{, {p{}) =
apply(017 ml: {fT;,inY},; (pil)})a

apply(o”, miy, {p;}) =1
apply (0}, i, { fr 1, (P)})-



PENG ET AL.: USING OBJECT DEPUTY MODEL TO PREPARE DATA FOR DATA WAREHOUSING

4.2 Handling Duplication via Object Deputy Model
When integrating several databases, there may exist data
duplication. Duplication means that the same entities or
attributes may appear at different databases. In the integrated
views, the duplications need to be eliminated. The integrated
system is usually used both to access the data and to update
the stored information. When an object is modified in the
integrated view, all of the duplications at the local informa-
tion sources should be updated at the same time. In addition,
any modification on one of the duplications should be
propagated into the others. Therefore, we need a mechanism
to handle duplications in the integrated views.

The attribute duplication may arise when several objects
are combined into a complex deputy object. In this case, all
of the duplicated attributes are inherited as a single
attribute by the complex deputy object. For example, an
employee may be recorded in two different databases. One
record has attributes including name and age in Region A’s
database while the other has attributes including name and
evaluation in the headquarters’ database. When the
two records are integrated, the name attribute will be
duplicated. The attributes of the employee are inherited by
the deputy object in the following way:

d— 1 XT9,
read(d,name) = read(r1,name) V read(rqy, name),
write(d, name, v) = write(ry, name, v)A
write(ry, name, v),
read(d, age) = read(r1, age),
write(d, age,v) = write(ry, age,v),
read(d, evaluation) = read(rs, evaluation),

write(d, evaluation, v) = write(rq, evaluation, v).

Here, r| and r; represent two records of the employee and
dis a deputy object used to integrate r; and 7. That means any
one of the duplicated attributes can be read but all of them
should be written with the new value at the same time.

The entity duplication may arise when a deputy class is
defined as the union of several classes. For example, when
some products are manufactured by more than one division,
the entity duplication problem will exist across different
local databases. The duplication can be handled by deriving
a deputy class through the algebraic operation Grouping.

The Grouping operation is used to derive a deputy class
of which instances are deputy objects for grouping
instances of a source class according to a grouping
predicate. That is, the duplicated objects are grouped by a
single deputy object. Its formal definition is as follows:

Definition 8. Let C° = ({0°}, {T¢s : a®},{m® : {T}» : p°}}) bea
source class. A deputy class derived by the Grouping
operation is represented as C* = Grouping (C*, gp), where
gp is a grouping predicate:

1. The extent of C? is the set of deputy objects for
grouping instances of C* according to the grouping
predicate gp, which is expressed as

{olo" = {0°}, gp({0°}) == true}.

2. The set of attributes of C? is defined as {T, : a’}
which are inherited from the attributes {Tjs : a°} of

1283

C*. The switching operations for inheriting T, : o’ in
the form of T, : a® are realized in the following way:

7"eacl(0d7 ad) =1 fim }oT ({read(0®,a”)}),

write(o?, a?, v?) = {write(o®, a’, I 01,0 (v")}.

3. The set of methods of C? is defined as {m®: {T, :
p?}} which are inherited from the methods {m?* : {T,: :
p°}} of C*. The switching operation for inheriting m® :
{T, : p*} in the form of m® : {T, : p*} is realized in
the following way:

apply(o®,m®, {p"}) =
{T apply(os, m’, {f]—;)d’_}’z—‘]r‘ (pd)})}

Suppose o1, 02, and o3 with attributes a; and a, are the
duplicated objects which are grouped by the deputy object
d. d inherits attributes a; and as of 01, 09, and o3 in the
following way:

d — {o1, 02,03},

read(d,a;) = read(o1,a1) V read(o2,a1) V read(os, ay),

write(d, ai,v) = write(oy, ay, v1) A write(og, ay, v1)A
write(os, a,vy),

read(d, ay) = read(o1, az) V read(oz2,as) V read(os, az),

write(d, az, v2) = write(oy, az, v2) A write(os, az, v2)A

write(0s, az, v2).

The above way can guarantee that any modification on
the integrated view can be reflected in all of the duplicated
attributes and entities. Because the integrated view can be
used as the bridge among the autonomous information
sources, any update on an object in an information source
can be propagated onto another information source.

For example, if object o, is modified with a new name,
the deputy object d will be notified with the update because
there exists a pointer from o; to d. d can read the new name
and then write the new name to o0,. Thus, 0, is also updated
with the new name.

In the similar way, to illustrate how to deal with updates
occurring in the local information sources, consider that
attribute a; of the object o0, is modified with a new value v;.
The deputy object d will be notified with the update.
Because the update is from the object 0,, the new value can
be read from o,. Using the writing operation, the new value
can be written into all of the duplicated objects oy, 02, and o0s.
Because the attribute a; of the object 0 has been modified
before the update broadcasting, it does not need to be
updated once again. It can be detected by comparing the
new value with the current attribute value of the object 0s.
This method can avoid a lot of unnecessary modification.

5 IMPLEMENTATION OF FOODMAW

In order to demonstrate the feasibilty of FOODMAW, we
have implemented a prototype using Smalltalk which can
integrate data from heterogeneous databases including
Oracle, Sybase, PostgreSQL, and so on. To do this, first, a
class hierarchy is defined to facilitate the implementation of
the object deputy model in Smalltalk. Next, a database
connecting tool is developed for PostgreSQL (an open



1284

source object-relational database system), which is similar
to the database connecting tools for Oracle and Sybase in
Smalltalk. These tools can help connect various databases
and map data into objects that are defined by classes in
Smalltalk. In order to allow users to derive deputy classes
based on object deputy algebra for data integration, we
further design an object deputy language and implement its
compiler in Smalltalk. Finally, an object deputy browser is
developed for users to utilize various data modelling
functionalities provided by the object deputy model. We
have implemented an application case to show the effec-
tiveness of our approach.

5.1 Class Hierarchy of Object Deputy Model
Smalltalk is an object-oriented programming environment
which can support software reuse through “is-a” hierarchy.
That is, common attributes and methods are defined by the
superclass, which are inherited by all of its subclasses. In the
object deputy model, classes and deputy classes have some
common attributes and methods which will be defined by
the class “Deputy.” Classes and various deputy classes have
some different properties which will be defined by the
classes: “BaseClass,” “SelectionDeputyClass,” “UnionDeputy-
Class,” “JoinDeputyClass,” and “GroupingDeputyClass.” These
classes have some common attributes and methods inherited
from the class “Deputy” and therefore are defined as its
subclasses. Since they can be predefined, we call them
primitive classes in Smalltalk. Any classes or deputy classes
created by users are defined as subclasses of these primitive
classes. So, they are called nonprimitive classes. In sum-
mary, all classes and deputy classes of the object deputy
model in Smalltalk are organized as shown in Fig. 5.

5.2 Database Connecting Tools

Alarge amount of data is stored in commercial databases like
Oracle, Sybase, or open-source databases like PostgreSQL
and Mysql. To integrate data from these heterogeneous
databases, our framework needs database connecting tools.
Smalltalk can provide tools to connect Oracle database and
Sybase database, but cannot support connection with open
source databases like PostgreSQL. In order to connect
PostgreSQL, we develop a database connecting tool in
Smalltalk which has the same connecting functionalities as
tools for Oracle and Sybase.

The database connecting tool allows users to choose
tables in PostgreSQL database. When a table is chosen, a
class will be created as a subclass of the primitive class
“BaseClass” in Smalltalk. All tuples of that table are mapped
to instances of that class, constituting the materialized
object views of the relational table. The tool also helps to
maintain the consistency of relational data and objects.
When data in databases is updated, the change will be
propagated onto Smalltalk, where the update will be
propagated onto all of the related deputy objects and
deputy classes.

5.3 Object Deputy Language Compiler
In order to allow users to define various deputy classes for
data integration, we have designed an object deputy
language in the style of Smalltalk language. The language
compiler has been implemented for an automatic genera-
tion of deputy classes from statements defined by the
language.

For instance, a deputy class for specialization can be
defined by the object deputy language as follows:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

Non-Primitive Classes Defined by Users

Fig. 5. Class hierarchy of object deputy model in Smalltalk.

SelectionDeputyClass define : #A
select : '+ |#([ A.a := fr,1,(B.b) "]’
[ Bb:= fr. 1 (Aa)]['Aa:= Bb'|'['Bb'])
from: B
where : sp(...,B.b,...)
extend ! [T : attName]"'

The statement means that A will be created as the
selection deputy class of the source class B with additional
attributes ’‘[attName|"’. The selection predicate is
sp(...,B.b,...). The switching operations for attributes
inherited from the source class B are defined by '+'|#(['A.a :
= fr1,(BD)T'[Bb == fr,1,(A.q)][Aa = BY]" [BY]).
The option * means that all of attributes of B are inherited
by A without changing their types and names. For each
attribute b of B, the options A.a := fr,.7,(B.b) and B.b:=
fr,—1,(A.a) mean that the attribute T}, : b of B is inherited by
A in the form of T}, : a. The option A.a :=: B.b means that the
attribute b of B is inherited by A with the different name a
while the type remains the same; The option B.b means that
the attribute b of B is inherited by A in its original form.

The language compiler can generate a deputy class
from the statement. The deputy class is created as a
subclass of the primitive class SelectionDeputyClass. The
generation method is implemented as a class method of
SelectionDeputyClass.

5.4 Object Deputy Browser

Given an object deputy language, we need a tool to browse
classes as well as deputy classes in Smalltalk, create new
deputy classes from them, and manipulate objects as well as
deputy objects. The tool is called object deputy browser. It is
implemented by the class DeputyBrowser that is defined as
a subclass of the system class Browser. It can provide
four panes for displaying and manipulating classes,
instances, attributes, and texts, respectively. Since methods
can be displayed and manipulated by the system browser of
Smalltalk, the deputy browser does not provide a pane for
methods in order to simplify our implementation.

5.4.1 Pane for Classes

The pane for classes is used to list all of base/deputy
classes. Once a base/deputy class is selected, its definition,
instances, and attributes will be displayed in the text,
instance, and attribute panes, respectively. When the
operating menu button is pressed, a menu of commands
is to be displayed. It allows users to select the following
command items:



PENG ET AL.: USING OBJECT DEPUTY MODEL TO PREPARE DATA FOR DATA WAREHOUSING

e createClass: create a deputy class,

o deleteClass: delete a deputy class, and

e classDefinition: show definition of a base/deputy

class.

Since database connecting tools are responsible for the
creation and deletion of base classes which are materialized
object views of databases, the object deputy browser does
not allow users to create or delete a base class. When the
command item createClass is selected, a submenu of
commands is to be displayed. It allows users to create
different types of deputy classes as follows:

selection: create a deputy class for specialization,
union: create a deputy class for generalization,
Join: create a deputy class for aggregation, and
grouping: create a deputy class for grouping.

When one of the above command items is selected, a
template of the statement for the corresponding deputy
class definition is displayed in the text pane, users can edit
the template for defining their needed deputy class. Once
the definition is accepted, the object deputy language
compiler will be invoked to generate the corresponding
deputy class from the definition.

The current selected deputy class can be deleted by
executing the menu command deleteClass. When a deputy
class is deleted, all of its deputy classes may be deleted
automatically. If users want to know the definition of an
existing base/deputy class, he/she can first select the
base/deputy class and then execute the menu command
classDefinition, the command picks up the definition from
the selected base/deputy class and shows it in the pane
for text.

5.4.2 Pane for Instances

The pane for instances is used to list all of instances of the
current selected class. Instances of deputy classes are not
allowed to be directly added/deleted by users. They are
added /deleted indirectly through data update propagations.

The addition and deletion of instances of base classes are
done by database connecting tools. An instance is added to
the base class by invoking the procedure add(C,o0) which
may cause an addition of deputy objects of the new
instance. When some data is deleted from the database, its
corresponding object o will be deleted from the base class C
by invoking the procedure delete(C,0). The deputy objects
of 0o may be deleted by the procedure delete(C,0) since it
can cause data update propagation.

5.4.3 Pane for Attributes

The pane for attributes is used to list all of the attributes of
the current selected class. When both an attribute and an
instance are selected, the attribute value of the instance will
be displayed in the text pane, where the attribute value can
be edited so that it can be updated.

Displaying the value of an attribute of an instance is
done by invoking the reading method defined for that
attribute. The value is first translated into the text format
and then displayed in the text pane.

Since data is usually not allowed to be updated in data
warehouses, the text pane only allows users to edit the
additional attribute value of deputy objects. The updated
attribute value is first translated from the text format into
the acceptable one and then stored into the attribute of the
current selected instance by invoking the writing method
defined for that attribute.

1285

Updating the attribute value is requested to adjust the
deputy classes of the selected class and the deputy objects of
the selected instance by invoking the subroutines
adjust DeputyClasses(o) and adjust DeputyObjects(o), which
may cause addition and deletion of deputy objects of the
selected instance.

5.4.4 Pane for Texts

The pane for texts is used to display and edit deputy
class definitions and attribute values as described
above. The associated menu provides commands for
editing and accepting the displayed text. The editing
commands are implemented by the system classes of
Smalltak. The accepting command is implemented by
the class DeputyBrowser for creating deputy classes and
updating additional attribute values.

5.5 An Application Case

The FOODMAW implementation system has been success-
fully used to integrate some simple biological information
like cells and microbes, which are distributed in several
heterogeneous databases and an XML document repository.
The information resources consist of several remote
databases managed by Oracle and Sybase, respectively, a
local database managed by PostgreSQL, and an XML
document repository. The databases use tables to store
information about classification and characteristics of cells
and microbes and the XML document repository uses XML
files to contain some simply preprocessed data of microbes.
They are integrated in the Smalltalk environment for
biological feature analysis.

First, the data objects are extracted from the information
sources with FOODMAW?’s data extraction routines and
wrappers. For the data in the tables and the XML
documents with certain data schemas defined by DTD
and XML Schema, FOODMAW just deploys the data
extraction routines to fetch the data schema from the data
sources and invoke the routine, createBaseClass, to create a
class for each table or class as the subclass of BaseClass.
Then, the corresponding base classes have instances which
are created by the wrappers using the records received from
those data sources. However, many original XML docu-
ments may have no formal schemas but exhibit similar
structures. A flexible semiautomatic approach is adopted to
process these documents. At first, the samples of the
elements are chosen in each document. The information of
the nested tags in the samples are extracted and then
processed by a data mining tool to find the common
structures of each subset of samples. After the manual
confirmation of the structures, all of the elements in XML
documents are transformed into roughly defined deputy
objects, which consist of a set of attributes with the types
representing the confirmed structures and a set of attributes
with the type indicating a common XML content. For
example, an XML element

<Repository>

<Company> Beijing Medicine Development Company
</Company>

<CompanyNo>20331344</CompanyNo>
<Address>Unknown</Address>

<Condition>under normal temperature, dry environment
</Condition>

</Repository>



1286

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

Ez =l
! bl mevemer cial i) hutsted o v |t svs oo = =lai
BN Green sk Chunses Dawe [ Mo b =
-El 2|5 SIS = S =lofx]
Toale s |BaeClaz= cylogkeletont =] [ResE ) 2|
U ES AR S Sroun By Deputy Claas ¢ plnaialetn? CLAMETER
ZainDepuyCass (GEMIZHRAME
Altpnatng ¥ m e ptonkeletnnd (RS
' e ylnsksatnng FUOUNT
I Adtdlnadng cyloskelefonk
Autolandng b cylosksleion’
| Atoinatng b s kelptond
z 3 - cyloskeletond
'S,‘?’s‘s“: cyioskeistin 0
chonary 1s v
:| Coevgiler &5 U - o _l oy =T . ,J =l <
3 DWAMVETER: 11 CENUSMANE wuscle call KOWES RAME desmin’ SUBLUNT:Tna alsuman =]
Filerame 5 L2 X
GiemCampile 2 g ———— alolxd
Chject = Und
B =0 roahrie Carvn' MR £ ~DIAMETER
; 100 l,l“ == ladecolaWeghiKEA]
|
I /I
A pa d Slllas s
i 3
H i
1 i
o i i
d v el \
B b ® / 3
o
B Wrazaw - 1 T
d i e
d Wi g Sy
e
+f Chare FEEl [ il<\1=P’I€[G a0 _—
Char dassxwindowSpac definsiChar<aspac) [ ——
| Eher classwin reSpac ARSI E ; /
= | Char chassewmdowSgac dfngs o
G-acte  EEin grekeralindaamin lanod GEAR neng Taw  MAPE MTCC
_luiﬂf'i I_Jél' J:’ _i-" ﬂﬁﬂh ﬂjﬁmmw

Fig. 6. An application case.

can be extracted into a class Repository whose attributes
including Company, CompanyNo, Address, and Condition if
the corresponding tags are confirmed. However, the
Repository class may also only hold the attributes Company,
CompanyNo, and Condition if the Address tag is not
confirmed. In that case, the Address tag with its content is
stored in an attribute others with a predefined type
XMLTags, waiting for further processing. After data
extraction, the objects would be integrated according to
certain standards. Since the data sources are established by
different colleges and companies, the naming convention
and the structure of the data might be various for different
data sources. FOODMAW utilizes the mechanism given in
Section 4 to resolve the conflicts and build the data
warehouse for data analysis. For example, two deputy
classes, MFIF standing for microtubulins (MF) and middle
fibrins (IF) and MT standing for microfilament albumen, are
derived from data sources and defined in the Smalltalk
environment. The definitions of the two classes are shown
as follows:

MFIF{name: String, diameter: Int, subunit: String, weight:
Int, price: Int},

MT{name:String, diameter: Int, subunit:String,
Molecularweight:Int, price: Int}.

For the convenience of data analysis, a new class called
Cytoskeleton is created to merge all of the instances of the
two classes and the data from MFIF are required to be
divided into two classes Microtubulins and Middle Fibrins
before they are merged. Meanwhile, according to the
standard naming conventions, the weight attribute should
be renamed as Molecularweight in the new classes, and the
prices should be represented in RMB uniformly although
they are represented in original classes using other
currencies (e.g., US dollars).

The diameter of middle fibrins is less than 15. We use the
condition to differentiate between microtubulins and mid-
dle fibrins. Therefore, two new classes IF and MF are
defined according to the range of diameters as follows:

SelectionDeputyClass define: #IF

select: #("MFIF.name’, ‘MFIF.diameter’, “"MFIF.subunit’,
‘IF. Molecularweight:=MFIF.weight’,
‘IE.price:=MFIF.price/rate”)

from: MFIF

where: ‘MFIF.diameter < 15

SelectionDeputyClass define: #MF

select: #("MFIF.name’, ‘MFIF.diameter’, “MFIF.subunit’,
‘IF.Molecularweight:=MFIF.weight’,
‘IF.price:=MFIF.price/rate’)

from: MFIF

where: “‘MFIF.diameter > 15’

Thus, the class Cytoskeleton can be defined as the union of
MEF, IF, and MT in the following way:

UnionDeputyClass define: #Cytoskeleton
select: #('Cytoskeleton.name:={MF.name, IF.name,
MT.name}’

‘Cytoskeleton.price:={MFE.price, IF.price, MT.price/rate}’)
union:#(MF, IF, MT)

Further data analysis can be performed upon the
integrated data. To illustrate, we show here how to analyze

and discover sizes and weights of different molecular.
For example, we can employ the Nearest Neighbor

clustering method to calculate the sizes of different
molecular, where the adopted distance for clustering is no



PENG ET AL.: USING OBJECT DEPUTY MODEL TO PREPARE DATA FOR DATA WAREHOUSING

more than 2nm. Three clusters of data (i.e., MF, IF, and MT)
are obtained, together with the sum of data within each
cluster. From them, we can find out that the size of MF is
approximately 7nm, the size of IF is approximately 12nm,
and the size of MT is approximately 22nm. According to the
sum of every kind of data, we can also easily visualize the
percentage of different kinds of data.

To obtain the weights of different molecular, we further
apply the decision tree ID3 algorithm to the three obtained
clusters and generalize that if molecular weight is less than
45kDa, these molecular are called small albumen; if
molecular weight is between 45 kDa and 50kDa, these
molecular are called normal albumen and the remainder are
called big albumen. Since the weight of MF is about 43kDa,
MF thus belongs to small albumen. Since the weight of MT
is about 50kDa, MT belongs to normal albumen. Among the
three kinds of data in IF, prekeratin has a small weight,
approximately 40kDa, thus belonging to small albumen;
GFAP has weight 50kDa, thus belonging to normal albu-
men, and the rest has a heavier weight, thus belonging to
big albumen.

Fig. 6 shows the above analysis results: the average
diameters are 7 (MT), 12 (IF), and 22 (MF), respectively. The
average molecular weights of MT and MF are 43 and 50,
respectively, and the molecular weight of IF varies
apparently according to the types of the concrete albumens.

As the above application case illustrates, a deputy object
in FOODMAW usually stores the references to the
attributes of its source object. Such a deputy object can be
regarded as an index to a materialized view over related
data objects. Therefore, the deputy objects built from the
data integration stage are effectively “skimmed” materi-
alized views over the original deputy objects in the data
extraction stage. As most of the attributes’ values of such
“skimmed” views are references to the source object
attributes, their sizes are much smaller in comparison with
conventional data warehouses’ materialized views whose
construction would involve the expensive processes of
copying the values from the data sources to the views.

6 CONCLUSION

An important yet often undermined step toward building a
data warehouse is data preparation, the result of which is
critical for any online analytical processing and decision
support applications. In this paper, we have presented an
object-oriented framework (viz., FOODMAW) that we have
developed as an elegant support of data warehousing (and
mining) through an object deputy approach. In particular,
the traditional object-oriented data model extended with
deputy objects facilitates better data fusion/integration of
the heterogeneous underlying data sources, by enabling
various object views to be easily realized in a flexible
manner. This is significant for the task of data integration
(as part of the data preparation) particularly, since the
object deputy approach is superior in resolving data
inconsistency and reducing data duplication, thereby
increasing the data quality. (In addition, this approach also
facilitates efficient object view maintenance incrementally.)
Our experimental prototype system of FOODMAW, im-
plemented in Smalltalk, is able to effectively integrate data
from different underlying data sources including both
commercial databases and open-source ones.

As part of our ongoing research, we are applying several
data mining algorithms upon the experimental prototype,
along with an empirical study of incremental object view
maintenance based on the deputy approach; the effective-
ness and efficiency resulted from the FOODMAW frame-

1287

work in these aspects are validated and evaluated. Due to
the space and the scope of this special issue, however, our
results from those aspects are not included in this paper,
which will be reported in our subsequent papers. Moreover,
we plan to investigate in our future research such further
issues as scalability and its impact on maintaining and
handling semantic cubes and multifact cube computation
based on the object deputy model, as well as online mining
of association rules across transactions upon the FOOD-
MAW data warehousing environment.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (60273072,60473076), the Hubei Natural
Science Foundation for Distinguished Youth (2002AC003),
and the Program for New Century Excellent Talents at the
University of China (NCET-04-0675) and State Key Lab of
Software Engineering (Wuhan University, China) under
grant: SKLSE03-01.

REFERENCES

[1] A. Abello, J. Samos, and F. Saltor, “Understanding Analysis
Dimensions in a Multidimensional Object-Oriented Model,” Proc.
Third Int’l Workshop Design and Management of Data Warehouses
(DMDW ’01), June 2001.

[2] S. Abiteboul and A. Bonner, “Objects and Views,” Proc. Int’l Conf.
Management of Data, pp. 238-247, 1991.

[3] R. Ahmed et al, “The Pegasus Heterogeneous Multidatabase
System,” Computer, vol. 24, no. 12, pp. 19-27, Dec. 1991.

[4] E. Bertino, “A View Mechanism for Object-Oriented Databases,”
Proc. Third Int’l Conf. Extending Database Technology, pp. 136-151,
1992.

[5] E. Bertino, “Application of Object-Oriented Technology to the
Integration of Heterogeneous Database Systems,” J. Distributed and
Parallel Databases, vol. 2, no. 4, pp. 343-370, 1994.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R.
Rosati, “Information Integration: Conceptual Modeling and
Reasoning Support,” Proc. Sixth Int’l Conf. Cooperative Information
Systems, pp. 280-291, 1998.

[71 M.J. Carey et al., “Towards Heterogeneous Multimedia Informa-
tion Systems: The Garlic Approach,” Proc. Fifth Int’l Workshop
Research Issues in Data Eng.: Distributed Object Management, pp. 124-
131, 1995.

[8] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing
and OLAP Technology,” ACM SIGMOD Record, vol. 26 no. 1,
pp. 65-74, 1997.

[9] B. Czejdo and M.C. Taylor, “Integration of Database Systems
Using an Object-Oriented Approach,” Proc. IEEE First Workshop
Research Issues in Data Eng.—Interoperability among Multidatabase
Systems, pp. 30-37, 1991.

[10] J.C. Franchitti and R. King, “Amalgame: A Tool for Creating
Interoperating Persistent, Heterogeneous Components,” Advanced
Database Systems, pp. 313-36, 1993.

[11] G. Yu, K. Kaneko, G. Bai, and A. Makinouchi, “Transaction
Management for a Distributed Object Storage System WAKA-
SHI—Design, Implementation and Performance,” Proc. IEEE 12th
Int’l Conf. Data Eng., pp. 460-468, 1996.

[12] V. Gopalkrishnan, Q. Li, and K. Karlapalem, “Semantic Query
Optimization Based on Class Partitioning Techniques in an Object
Relational Data Warehousing Environment,” Int’l ]. Information
Technology, vol. 7, no. 2, 2001.

[13] J.Han,S. Nishio, H. Kawano, and W. Wang, “Generalization-Based
Data Mining in Object-Oriented Databases Using an Object Cube
Model,” Data and Knowledge Eng., vol. 25, no. 1-2, pp. 55-97, 1998.

[14] S. Heiler and S. Zdonick, “Object Views: Extending the Vision,”
Proc. IEEE Sixth Int’l Conf. Data Eng., pp. 86-93, 1990.

[15] R. Hull and G. Zhou, “A Framework for Supporting Data
Integration Using the Materialized and Virtual Approaches,”
SIGMOD Record, vol. 25, no. 2, pp. 481-92, 1996.

[16] IDC, “Data Warehousing Tools: Market Forecast and Analysis:
2000-2004,” IDC report no. 23712, 2004.



1288

[17] K. Karlapalem, Q. Li, and C. Shum, “An Architectural Framework
for Homogenizing Heterogeneous Legacy Databases,” SIGMOD
Record, vol. 24, no. 1, pp. 15-20, 1995.

[18] M. Kaul, K. Drosten, and E.J]. Neuhold, “ViewSystem: Integrating
Heterogeneous Information Bases by Object-Oriented Views,”
Proc. IEEE Sixth Int’l Conf. Data Eng., pp. 2-10, 1990.

[19] W. Kim, I. Choi, S. Gala, and M. Scheevel, “On Resolving
Schematic Heterogeneity in Multidatabase Systems,” Distributed
and Parallel Databases, vol. 1, no. 3, pp. 251-279, 1993.

[20] Knightsbridge Solutions LLC, “Top 10 Trends in Data Ware-
housing (White Paper),” http://www .knightsbridge.com, 2005.

[21] W. Litwin, L. Mark, and N. Roussopoulos, “Interoperability of
Multiple Autonomous Databases,” ACM Computing Surveys,
vol. 22, no. 3, pp. 267-293, 1990.

[22] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object
Exchange across Heterogeneous Information Sources,” Proc. Int’l
Conf. Data Eng., pp. 251-60, 1995.

[23] T.B. Pedersen, A. Shoshani, J. Gu, and C.S. Jensen, “Extending
OLAP Querying to External Object Databases,” Proc. Conf.
Information and Knowledge Management, pp. 405-413, 2000.

[24] Z. Peng and Y. Kambayashi, “Deputy Mechanisms for Object-
Oriented Databases,” Proc. IEEE 11th Int’l Conf. Data Eng., pp. 333-
340, 1995.

[25] Z.Peng and Y. Kambayashi, “Handling Conflicts and Replication
During Integration of Multiple Databases by Object Deputy
Model,” Proc. 20th Int’l Conf. Conceptual Modeling (ER '01),
pp- 285- 298, 2001.

[26] E.A. Rundensteiner, “MultiView: A Methodology for Supporting
Multiple Views in Object-Oriented Databases,” Proc. 18th Very
Large Data Bases Conf., pp. 187-198, 1992.

[27] C.S. dos Santos, “Design and Implementation of Object-Oriented
Views,” Proc. Sixth Int’l Conf. Database and Expert Systems
Applications, pp. 91-102, 1995.

[28] N. Stewart, “Data Warehousing and Business Intelligence Market
Forecast 2001-2005,” Survey.com market forecast report, 2001.

[29] ]. Trujillo, M. Palomar, J. Gomez, and I. Song, “Designing Data
Warehouses with OO Conceptual Models,” Computer, vol. 34,
no. 12, pp. 66-75, Dec. 2001.

[30] P. Vassiliadis and T.K. Sellis, “A Survey of Logical Models for
OLAP Databases,” ACM SIGMOD Record, vol. 28, no. 4, pp. 64-69,
1999.

[31] J. Widom, “Research Problems in Data Warehousing,” Proc. Conf.
Information and Knowledge Mnagement, pp. 25-30, 1995.

[32] J. Yang, K. Karlapalem, and Q. Li, “Algorithms for Materialized
View Design in Data Warehousing Environment,” Proc. Int’l Conf.
Very Large Data Bases (VLDB '97), pp. 137-146, 1997.

Zhiyong Peng received the BSc degree from
Wuhan University in 1985, the MEng degree
from Changsha Institute of Technology of China
in 1988, respectively, and the PhD degree from
Kyoto University of Japan in 1995, all in
computer science. He is a professor and vice
director of the State Key Laboratory of Software
Engineering, Wuhan University of China. He
worked as a researcher at the Advanced Soft-
ware Technology and Mechatronics Research
Institute of Kyoto from 1995 to 1997 and was a member of the technical
staff at Hewlett-Packard Laboratories, Japan, from 1997 to 2000. His
research interests include object-oriented programming, advanced
database systems, information integration, and Web services. He is a
member of the |IEEE and the IEEE Computer Society, the ACM
SIGMOD, and the Database Society of Chinese Computer Federation,
and is vice director of the VLDB School, China. He has served on many
program committees of international conferences and workshops
including WISE2001, APWEB2003, WAIM2004, ER2004, DAS-
FAA2005, etc.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

Qing Li received the BEng degree from Hunan
University, China, and the MSc and PhD
degrees from the University of Southern Cali-
fornia (USA), all in computer science. Before
joining the City University of Hong Kong in 1998,
where he is an associate professor in the
Department of Computer Science, he taught at
the Hong Kong Polytechnic University, the Hong
Kong University of Science and Technology, and
the Australian National University (Canberra,
Australia). His main research interests are in applied object-oriented
systems, multimedia/video databases, flexible workflow systems, data
warehousing, and multimodality search engines. He has authored or
coauthored more than 180 publications in refereed journals and
conference proceedings in these areas. Dr. Li has been actively
involved in the research community and served as a guest/associate
editor for numeral technical journals including the IEEE Transactions on
Multimedia, Information Systems, WWW journal, the Journal of Web
Engineering, Knowledge and Information Systems, etc., and as an
organizer/coorganizer of many international conferences including
WAIM’2004, HSI'2003, VLDB’2002, IFIP DS-9, PAKDD’2001, and
WISE’2000. In addition, he has been a programme committee member
for more than 40 international conferences (including VLDB, ER,
ICDCS, CIKM, CAISE, DASFAA, CooplS, DaWakK, and FODO). Locally,
he has been an executive committee (EXCO) member of the IEEE Hong
Kong Computer Chapter, ACM Hong Kong Chapter, and is currently the
chairman of the Hong Kong Web Society (http://www.hkws.org/); in
addition, he is a steering committee member of the WISE Society (http://
www.i-wise.org/). Dr. Li is a senior member of the IEEE and a member of
the IEEE Computer Society.

Ling Feng received the BSc and PhD degrees
in computer science from Huazhong University
of Science and Technology. She is currently an
associate professor at the University of Twente
in the Netherlands and was an assistant
professor at Tilburg University in the Nether-
lands (1999-2002) and a lecturer at the Depart-
ment of Computing in Hong Kong Polytechnic
University in China (1997-1999). Her research
interests are distributed object-oriented data-
base management systems, knowledge-based information systems,
data mining and its applications, data warehousing, data/knowledge
management issues in the Internet era, including the integration of
database and Web-based information technologies, XML databases,
and knowledge-based digital libraries. She is a member of the IEEE and
the IEEE Computer Society.

Xuhui Li received the BS degree in information
science and the MS and the PhD degrees in
computer science from Wuhan University in
1996, 1999, and 2003, respectively. He is an
assistant professor in the State Key Laboratory
of Software Engineering, Wuhan University of
China. His research interests include data
integration, formal semantics, mobile computing
and grid computing, and computer simulation.

Jungiang Liu received the BS degree from
Henan University, China, in 2002 and the MS
degree from Wuhan University, China, in 2004.
He is a PhD candidate in the State Key
Laboratory of Software Engineering, Wuhan
University. His research interests include infor-
mation integration from heterogeneous data
sources, data mining, and bioinformatics.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



