Semantic Approximation of Data Stream Joins

Abhinandan Das

Johannes Gehrke

*

Mirek Riedewald

Department of Computer Science
Cornell University
{asdas,johannes,mirek } @cs.cornell.edu

Abstract

We consider the problem of approximating sliding win-
dow joins over data streams in a data stream processing
system with limited resources. In our model, we deal
with resource constraints by shedding load in the form
of dropping tuples from the data streams. We make
two main contributions. First, we define the prob-
lem space by discussing architectural models for data
stream join processing and surveying suitable measures
for the quality of an approximation of a set-valued
query result. Second, we examine in detail a large part
of this problem space. More precisely, we consider the
number of generated result tuples as the quality mea-
sure, and we propose optimal offline and fast online
algorithms for it. In a thorough experimental study
with synthetic and real data we show the efficacy of
our solutions.

Keywords: Data streams, approximation algorithms,
approximate query processing, load shedding models,
semantic load shedding, set approximation error met-
rics, join processing, sliding windows

1 Introduction

In many applications from IP network management to
telephone fraud detection, data arrives in high-speed
streams, and queries over those streams need to be
processed in an online fashion to enable real-time re-
sponses [11, 16, 17]. Data streams pose a serious
challenge for data management systems as the tradi-
tional DBMS paradigm of set-oriented processing of
disk-resident tuples does not apply. Recently several
new proposals for data stream processing systems have
emerged [3, 7, 25]. These systems are specifically de-
signed to process data streams in real time.

As for traditional relational database systems,
the join operator is a very important operator in
a data stream processing system. Take for ex-
ample an application that monitors the traffic at
two routers. The first router generates a stream

*The authors are supported by NSF grants 11S-0330201, CCF-
0205452, and IIS-0133481, and by a gift from Microsoft. Any
opinions, findings, conclusions, or recommendations expressed
in this paper are those of the authors and do not necessarily
reflect the views of the sponsors.

R(sourceID, destinationID, length, time), the
second router produces the analogous stream S with
the same schema. To detect traffic patterns, the moni-
toring application determines for each incoming packet
on one router, which packets that arrived within the
last 2 hours on the other router have the same source
address. This is a continuous query, i.e., a long-running
query, which computes a join between the two streams
by matching tuples with the same sourcelD, restrict-
ing the set of possible join partners to a window of size
2 hours. The Stream Query Repository [37] contains
further examples of queries involving joins, e.g., for on-
line auctions, network traffic monitoring, and military
logistics. Joins are needed whenever information from
several streams has to be combined in order to com-
pute correlations or to match events. Notice that these
joins are not restricted to foreign-key joins. For in-
stance computing the correlation between data streams
typically involves a many-to-many matching of tuples
(as in the example above).

While joins are very important, their computation is
resource intensive. For instance, a standard equi-join
carries conceptually unbounded state for two infinite
input streams since each tuple in one stream could po-
tentially match each tuple in the other. To address this
problem, the semantics of the join are usually changed
to restrict the set of tuples that participate in the join
to a bounded-size window of the most recent tuples [3].
Since the window conceptually slides over the input
streams, this type of join is often called a sliding win-
dow join. Notice that there are several possibilities to
define the window boundaries—based on time units,
number of tuples, or landmarks.

The online nature of data streams and their poten-
tially high arrival rates impose high resource require-
ments on data stream processing systems. Especially
in applications where several queries are processed con-
currently, the availability of resources that can be de-
voted to each query is limited and might vary over time.
In addition, it is often impossible to estimate the peak
tuple arrival rate for data streams, and thus sizing a
data stream system for peak loads is a hard problem.
Even if the peak load was known, it is often orders
of magnitude higher than the average load. Hence
guaranteeing resource availability for peak loads would
require the system to keep most of its resources idle

during normal operation. FEven parallelizing stream
queries (cf. [35]) therefore does not guarantee availabil-
ity of sufficient resources at all times. Resource limi-
tations can have two effects. First, for streams with
high arrival rates, the CPU might not be fast enough
to process all incoming tuples in a timely manner. Sec-
ond, for large windows w the available main memory
M might be too small to keep all relevant tuples in-
memory (and frequent access to hard disk will be too
slow when arrival rates are high).

In order to deal with resource limitations in a grace-
ful way, returning approximate query answers instead
of exact answers has emerged as a promising approach
to save resources [5]. In data stream processing sys-
tems, one way of approximating query answers is to
shed load, for example, by dropping tuples before they
naturally expire (i.e., leave the window) or even before
they reach the operator. The current state of the art
consists of two main approaches. The first relies on
random load shedding, i.e., tuples are removed based
on arrival rates, but not their actual values [28]. The
second proposes to include QoS specifications which as-
sign priorities to tuples and then shed those with low
priority first [7]. However, the result of a join consists
of pairs of matching tuples, hence both the join at-
tribute of a tuple and the number of its partner tuples
(i.e., those that match the tuple) in the other stream
determine the output. For this reason both random
load shedding and simple QoS assignments to single
tuples do not fully capture the semantics of the join.
For example, it is well known that random sampling
from the inputs R and S of a join, or biased sampling
from R and S without taking the distribution of the
other relation into account, can greatly skew the out-
put of the join, and lead in the worst case to an empty
join output even though the actual size of the join is
very large [9].

Semantic Join Approximation. We address the
problems outlined above by introducing the notion of
Semantic Join Approzimation (SJA). In STA, we ap-
proximate the output of an operator by maximizing a
user-defined similarity measure between the exact an-
swer and the (approximate) answer returned by the
system. Semantic join approximation avoids the prob-
lems described above by intelligently selecting which
tuples to drop and when they should be dropped —
all in order to minimize the error in the query output.
This paper contains an in-depth study of this problem
for the case of sliding window joins. We also discuss
a related scenario (static join described below) where
semantic join approximation can lead to great improve-
ments. This scenario is similar to a join with tumbling
window semantics [7], i.e., consecutive windows have
no tuples in common.

Static Join: Consider a network of small battery-
powered sensors with limited CPU speed and mem-
ory which measure environmental data. Furthermore

there are sensor prozies in the network that are not
power constrained and have ample CPU and memory
resources. The purpose of the proxies is to collect sen-
sor data and to execute user-supplied queries (cf. [29]),
for instance a join over an attribute of the measured
data tuples. In order to compute that join for a given
time interval, the proxy needs to query the sensors for
their data. Since transmitting data is very expensive in
terms of sensor battery power [30], the goal of the sys-
tem is to transmit as little data as possible to extend
the sensors’ lifetime. Hence before sending the actual
data, each sensor transmits a compact summary, e.g., a
histogram, of the join attribute distribution of its mea-
surements. The proxy uses this summary information
to determine which data to request from the differ-
ent sensors (the requests are also compact summaries,
e.g., a list of join attribute values indicates that the
sensor should send all measurements with these val-
ues). Hence we have an optimization problem to select
the right data to transmit such that the approxima-
tion error of the result is minimized subject to power
consumption constraints (which is equivalent to data
transmission constraints).

Contributions of this Paper. In this paper we
give an in-depth examination of semantic join approx-
imation for data streams. We present novel algorithms
for approximating set-valued join results at tuple gran-
ularity. Our optimal offline algorithms obtain the best
possible approximate result according to a given error
measure subject to given resource constraints. Specifi-
cally, we make the following contributions:

e We outline possible error measures and de-
scribe architectural models for approximating data
stream sliding window joins. (Section 2)

e We then present results for one selected error
measure—the MAX-subset measure, which max-
imizes the number of tuples in the approximate
output of the join. More precisely, we present
hardness results and algorithms for the static join
case (Section 3) and optimal offline algorithms and
very fast lightweight online heuristics for the slid-
ing window join problem. (Section 4)

e We evaluate our algorithms on a large set of syn-
thetic and real-life data. (Section 5)

e While most of our techniques target equi-joins, we
show how to extend the approaches for sliding win-
dow joins to joins with general predicates and e-
joins which are common in spatial databases. (Sec-
tion 6)

A discussion of related work (Section 7) and a sum-
mary and outlook to future work conclude this article
(Section 8).

2 Models and Measures

In this section we define the problem space. In par-
ticular we introduce different models for the approxi-
mate join computation problem and discuss measures
for evaluating the quality of an approximate join result.

2.1 Problem Definition

Let R and S be two data streams that contain a com-
mon attribute J, which is selected as the join attribute.
The equi-join R > S of R and S is the subset of the
cross-product of the two streams that contains exactly
those pairs of tuples (r,s) such that r € R, s € S, and
r.J = s.J. For the static join problem the streams are
finite (relations), since the sensors can only keep a lim-
ited amount of data, e.g., temperature readings from
the last 24 hours. Hence the static join is equivalent to
the join between relations with restricted access to the
input tuples.

A sliding window join is a long-running query. In the
following we will use w to denote the window size. Let
r(i) refer to the tuple of stream R that arrives at time i.
For simplicity we will also use r(i) to denote the value
of the tuple’s join attribute (s(¢) is defined and used
similarly). According to our model, at each time ¢ the
sliding window contains all tuples 7(i) and s(i) with
t—w < i <t. Whenever a new tuple r(t) arrives at
time ¢ in stream R, this tuple generates output with all
matching partners s(i) in the current window t — w <
1 < t (similar for newly arriving S-tuples). Hence the
overall output of the join from time ¢; to time to is

U U (@@ sas@)u(st)sar(@)) .

t=t) i=t—w—1

Note that the operators have bag-semantics, i.e., pro-
duce multisets and do not remove duplicates.

The sliding window join as defined above applies to
windows whose size is specified in time units. For sim-
plicity of presentation we will focus on this type of
join and furthermore assume that time is discrete and
that at each time instant ¢ exactly one tuple r(t) and
s(t) arrive on each stream. Notice that our techniques
easily generalize to tuple-based window definitions and
asynchronous tuple arrival, including the arrival of sev-
eral tuples at the same time. We will also discuss how
to generalize to cases where R and S have different
window sizes and where the window size is allowed to
change over time.

2.2 Error Measures

The output of the join operator is a set of tuples, more
precisely a multiset. In the following for simplicity the
term set will refer to multisets as well. There is no
single universally accepted measure for evaluating the

quality of an approximation to a set-valued query re-
sult [26]. One well-known and widely used measure
is the symmetric difference. For two sets X and Y it
is computed as [(X —Y) U (Y — X)|. For equi-joins
dropping tuples before they expire naturally leads to
a situation where the generated output is a subset of
the exact join result (i.e., the result if there was no re-
source shortage). In that case the symmetric difference
simplifies to the number of missing output tuples. We
will therefore refer to it as the MAX-subset measure.
This measure will be the principal focus of this paper.

In the data mining and information retrieval com-
munities several set-theoretic similarity measures have
been used [24, 39]. The most widely used similarity
measures between two sets X and Y are Matching co-
efficient | X N'Y'|, Dice coefficient 2AX0YL Jaccard co-
|XNY|

IXTHIY]
|XNY]|
VXY

X0v| and Cosine coefficient

X C Y all these measures are maximized by maxi-
mizing the size of set X, hence they are equivalent
to MAX-subset. The Overlap coefficient %
equals 1 for X C Y.

The recently introduced Farth Mover’s Distance
(EMD) [34] is mainly used as a similarity measure in
image processing. It is defined as the amount of work
required to transform a set X into another set Y of
equal or greater mass (number of tuples). If X C Y it
trivially evaluates to 0.

The Match And Compare (MAC) [26] set similarity
measure also requires a distance metric between the
tuples of the two sets. First a minimum cost cover of
the complete bipartite graph whose nodes correspond
to the tuples and whose edges have the weight of the
respective distances is found. Then the overall set dis-
tance is computed as a function of the weights of the
edges in the cover and the number of edges incident to
each node.

We recently introduced a novel “error” measure, the
Archive-metric (ArM) [12]. ArM is relevant for seman-
tic load smoothing, i.e., for applications that can not
afford to discard any input tuples during periods of
high load. Instead these applications store the tuples
which could not be processed in archives. During low-
load periods the tuples from the archive can be used to
refine approximate results which were obtained during
periods of high load. Due to space constraints ArM is
not discussed here.

efficient

2.3 Models for Window Joins

In order to compute the exact result of a sliding win-
dow join, the join operator has to keep track of the
contents of the current window, i.e., the latest tuples
from each stream. Hence for window size w the inter-
nal state of the operator consists of 2w stream tuples.
Furthermore, to compute the exact result, the operator
should process tuples at least as fast as they arrive.
As long as the system has sufficient memory and

Output

fin et ?

¥ ¥
Statistics
~_
R S R S

Modular join model Integrated join model

Queue

Figure 1: Join processing models

CPU resources, incoming tuples are added instantly
to the join memory and remain there until they ez-
pire, i.e., are not part of the current window any more.
In case of resource shortage, tuples either have to be
dropped from memory before they expire (and hence
spend less than w time in memory) or even never reach
the join memory (dropped before participating in the
join). In the following we discuss how to model the
different cases.

Modular vs. Integrated. In practice the process-
ing of the join is affected by fluctuations in resource
availability and load. Hence in addition to the inter-
nal join memory for storing the current window tuples
the join processing unit needs a queue that buffers in-
coming tuples and a statistics unit that gathers statis-
tics about resources and load. The queue smoothes
local fluctuations, while the statistics unit provides in-
put for the join approximation algorithm for deciding
how many and which tuples to evict from the internal
memory or from the queue.

We identify two general models—modular and inte-
grated (cf. Figure 1). In both cases there is join mem-
ory of size M for the tuples in the current window and
a queue for newly arriving stream tuples. The main
difference between the two models lies in the degree of
integration between the components.

In the modular case the queue module only has lim-
ited knowledge about the contents of the join memory
(for example, just a histogram about the frequencies of
join attribute values in memory) and vice versa. Each
module uses its own policy for deciding which tuples to
drop in case of resource shortages. These decisions are
only influenced by the input from the statistics module.
If streams provide input for multiple operators, queues
can be shared, increasing memory efficiency. Note that
different operators might have different preferences for
which tuples to evict from the queue. This can be
taken into account by considering input from several
statistics modules.

The integrated model combines the queue with the
join memory. The benefits are potentially better deci-
sions based on the combined knowledge of both mem-
ory contents, but the internal queue cannot be shared

easily with other operators.

Fast CPU vs. Slow CPU. For analysis purposes
we also distinguish between the fast CPU and the slow
CPU case (similar to [28]). The system is a fast CPU
system if incoming tuples can be processed at least as
quickly as they arrive. The queue is not needed since
tuples are directly pushed into the join, therefore both
modular and integrated model essentially are equiva-
lent. Notice that in practice one would still add a small
queue to deal with fluctuations in resource availabil-
ity and load, but conceptually this queue is irrelevant.
Whenever the queue fills up beyond a certain threshold,
the system could switch to the slow-CPU case which is
discussed below.

In general we model the fast CPU case such that the
join has internal memory of size M and two additional
buffer cells for the new arriving tuple of each stream.
When tuples arrive they are instantly joined with their
partner tuples of the other relation in the join memory.
Then it is decided if the tuple will be added to the join
memory (potentially evicting another tuple before it
expires, due to lack of sufficient memory). Hence an
arriving tuple will always be seen by the join.

In the slow CPU case tuples arrive faster than they
can be processed. This implies that the queue is neces-
sary for buffering incoming tuples. The join operator
now pulls tuples from the queue whenever it has pro-
cessed the previous input. Clearly, the queue will fill
up over time and overflow, hence tuples have to be
dropped from it without ever reaching the join. This is
referred to as load shedding in [7]. If a tuple reaches the
join, it is processed as discussed for the fast CPU case.
The slow CPU case therefore constitutes a generaliza-
tion of the fast CPU case. In the latter case, approxi-
mations arise due to memory restrictions, while in the
former case, approximations arise due to both memory
and processing constraints. The load shedding in the
queue affects the contents of the streams that reach the
join operator.

Notice that we do not explicitly introduce another
independent system resource dimension for available
memory. For the fast CPU model the sufficient mem-
ory case would not be of interest since there is no re-
source shortage. For the slow CPU case the sufficient
memory case is vacuous for the following reason: Since
the join processes tuples at a slower speed than they ar-
rive, any amount of available (queue) memory at some
point would be exceeded. Hence for a given amount of
memory the slow CPU case will always be an insuffi-
cient memory case as well.

3 Static Join Approximation

Before discussing approaches for sliding window joins
over data streams in the next section, we present hard-
ness results and algorithms for the static join approxi-
mation case. These results are important in their own

right, e.g., for the sensor network scenario we discussed
before, or in the case of approximating tumbling win-
dow joins with limited memory. In addition to that
they provide useful insights for the hardness of the
problem of efficiently approximating joins of two or
more relations, which can be viewed as the base case
for approximating joins of data streams. For example,
the slow CPU case is a generalization of the static join
approximation (see Appendix E).

3.1 Problem Definition

We consider the following two relation (static) join ap-
proximation problem: We wish to compute an equi-join
of two (non streaming) relations A and B. However,
as motivated in the introduction with a sensor network
scenario, due to reasons such as transmission restric-
tions, a total of k£ tuples need to be dropped from the
input. Hence the join of A and B needs to be com-
puted on the resultant truncated input. Each of the
k dropped tuples may be chosen from either relation,
and we call the resultant join the k-truncated join of A
and B. We measure the approximation quality by us-
ing the MAX-subset measure since most of the popular
and common set approximation error and set similarity
measures actually reduce to MAX-subset for our prob-
lem (cf. Section 2.2). Thus our aim is to find a set of k
tuples to be dropped from the input relations such that
the size of the k-truncated join result is maximized.

We can model the above as a graph problem, as fol-
lows: Consider a bipartite graph G(Va, Vg, E), with
its two partitions V4 and Vg representing the relations
A and B respectively. Each partition has one node for
every tuple in the relation it represents. We have an
edge between nodes na € V4 and ng € Vp if the cor-
responding tuples satisfy the join condition. Thus the
bipartite graph G has an edge for every tuple in the
join result of A and B. Since our join condition is an
equality on one or more of the attributes of A and B, it
is easy to see that G will consist of a union of mutually
disjoint fully connected bipartite components (called
Kurotowski components). Figure 2 shows an exam-
ple bipartite graph representing the join graph of an
equality join between two relations A and B. In the
figure, nodes with the same shape denote tuples hav-
ing identical values for the join attributes, while nodes
with different shapes represent tuples having different
values on the equality join attributes.

Each Kurotowski component can be represented by
a pair of integers (m,n) where m and n are the num-
ber of nodes from V4 and Vg respectively in the com-
ponent. We denote such a Kurotowski component by
K(m,n), as shown in Figure 2. Thus our k-truncated
join approximation problem is equivalent to finding a
set of k nodes in the bipartite join-graph whose dele-
tion results in the deletion of the fewest edges (which
represent join tuples). Note that since dropping a tu-
ple from one of the input relations of a join results

Kurotowski
Component: K(4,2)

Figure 2: Equality join as a bipartite graph

in the dropping of all the output tuples it produced,
our definition of node deletion requires that deleting
a node results in the deletion of all the edges incident
on that node. For arbitrary bipartite graphs, i.e., bi-
partite graphs not necessarily representing a join, the
above problem can be shown to be NP-Hard.

We are now ready to state two versions of the k-
truncated join approximation problem, modeled as a
graph optimization problem as described below.

Primal version

Input: A bipartite graph consisting of ¢ mutually dis-
joint Kurotowski subgraphs specified by the c¢ integer
pairs K (mq,n1), K(ma,n2),..., K(me,n.), and an in-
teger k.

Output: A set of k nodes from the bipartite graph
whose deletion from the graph results in the deletion
of the fewest number of edges.

A potentially useful wvariant of the above problem
is the (ka, kp)-truncated join approximation problem
in which we are required to delete k4 and kp tuples
from the two joining relations respectively as opposed
to k tuples overall. While in the following discussion,
we switch between the two formulations for ease of ex-
position, in most cases the algorithms and hardness
proofs developed for one case can easily be extended
to the other. We will point out explicitly when this is
not true.

Dual version

Input: Same as for primal version.
Output: A set of & nodes to be retained in the bi-
partite graph such that the subgraph induced by them
has the highest number of edges amongst all subgraphs
with k& nodes.

Since an optimal solution to the primal version where
k nodes are selected for deletion is an optimal solution
to the dual problem where n — k nodes are retained
(n denotes the total number of nodes in the bipartite

graph), an optimal algorithm for either version trivially
implies an optimal algorithm for the other.

In the context of the motivating sensor networks sce-
nario, a solution to the problem formulated above may
be used for join approximation at a proxy as follows:
A compact value distribution histogram of the join at-
tribute is transmitted independently by each sensor to
the proxy, which will then run the algorithm for suit-
able parameters based on its knowledge of the power
constraints (which may be conveyed to the proxy by
the sensors themselves) and determine the set of tu-
ples to be requested from each sensor. The aim here is
to maximize the size of the truncated join, subject to
an upper bound on the number of input tuples trans-
mitted by the sensors.

3.2 Optimal
Solution

Dynamic Programming

We consider the dual formulation, where a total of k
nodes need to be retained. Given ¢ Kurotowski compo-
nents, we order the components as per some arbitrary
ordering, and let K (m;,n;) denote the i-th component
(0 < i < ¢) as per this ordering. In the following we
will first show an optimal solution for the special case
of ¢ = 1. Then the general algorithm is presented.

Lemma 1. Let Cy, ,(p) denote the mazimum number
of edges that can be retained when p (< m + n) nodes
are retained from a Kurotowski K(m,n) component.
Then Cyp, n(p) is given by: (w.l.o.g., assume m > n)

(p/2)?

if p<2n, p even

Cn(p)=q (P*—1)/4 ifp<2n,p odd
n(p—mn) else.
Proof. See Appendix A. O

For ¢ > 1 we obtain the optimal solution by using
dynamic programming based on the following observa-
tion. The optimal way to retain j nodes from ¢ compo-
nents is to choose the best from the following options:
Either retain j nodes optimally from the first ¢ —1 com-
ponents, or retain 7 — 1 nodes optimally from the first
i — 1 components and retain 1 node optimally from
the i-th component, or retain 7 — 2 nodes optimally
from the first i — 1 components and retain 2 nodes op-
timally from the i-th component, and so on. Formally,
let T'(¢,j) denote the optimal benefit (i.e., the max.
number of edges retained) of retaining j nodes from
the first ¢ Kurotowski components, as per our order-
ing. Then, fori>1,0<j <k:

N Coyn () HO< G <my+m
T(j) =9 _2 if j>my +n
T(i_17j)v
T(Z —Lj- 1) + Cmi7ni(1)7
T(Z?J) = max T(Z o 17] - 2) + Omi7ni (2)7

The value we are interested in is T'(¢c, k). By keeping
track of the terms which provide the maximum in the
second formula above, we can also maintain the ex-
act set of nodes retained from each component in the
optimal solution.

Analysis: To compute T'(¢, k), we need to compute
c-k entries in the dynamic programming matrix 7', and
each entry takes O(k) time to compute (cf. formula
above for T'(i,j), which takes the maximum over at
most j < k terms). Thus the overall running time
of the algorithm is O(c - k?) and space requirement is
O(c - k). By considering a three-dimensional matrix
T with entries of the form T'(c,ka,kp), it is possible
to extend the above algorithm to handle the variant
where one needs to delete k4 and kg nodes from the
two bipartite partitions respectively.

Strictly speaking, the above algorithm is pseudo-
polynomial in the input size (O(c-log(maz;{m;,n;})+
log k)), since the input is logarithmic in the parameter
k. However, in our case, since we wish to apply the
algorithm for retaining/deleting k& nodes, we need to
spend at least O(k) for processing the two relations.
Also note that the algorithm is polynomial in the sizes
of the input relations.

3.3 Fast 2-Approximation Algorithms

We present two fast polynomial-time 2-
approximations—one is applicable to the formulation
where one needs to delete k4 and kg nodes from the
two bipartite partitions respectively, while the other
is applicable in the case where one needs to delete k
nodes overall.

3.3.1 Node Degree Greedy (NDG) Algorithm

Suppose we are interested in deleting k4 and kg nodes
from the two partitions respectively (primal version).
To select the k4 nodes to be deleted from the A-
partition, we sort the nodes in this partition by their
degrees in ascending order. We then select the k4 low-
est degree nodes for deletion. Similarly, we select the
nodes with the kp lowest degrees in the B-partition for
deletion. We can select the nodes from the B-partition
either based on their degrees in the original bipartite
graph, or based on the graph obtained after the kA
nodes and corresponding edges from the A-partition
have been deleted. It is easy to see that the latter ap-
proach never does worse than the former one. However,
both in the worst case provide a 2-approximation.

Theorem 1. The node degree greedy algorithm pro-
vides a 2-approximation to both the primal and the dual
version of the (ka,kp)-truncated join approximation
problem simultaneously. Its running time and space
requirement are O(cloge) and O(c), respectively.

T(z — 1,5 —mi — ;) + Co, o, (M + m]}’roof. See Appendix B. O

i

3.3.2 Average Degree Greedy (ADG) Algo-
rithm

Consider the primal formulation where we need to
delete k nodes overall. For a Kurotowski component
K (m,n), define its average degree to be m-n/(m+n).
Sort the Kurotowski components by their average de-
gree, and select the p lowest average degree compo-
nents, where p is such that the first p — 1 components
contain less than k nodes, while the first p components
contain at least £ nodes. We then delete each of the
first p—1 components completely. The remaining nodes
are deleted from the last component using the optimal
strategy for deleting nodes from a single component
(cf. Lemma 1). By choosing the highest degree nodes
for retention this algorithm can be easily extended to
solving the dual formulation of the k-truncated join
approximation problem.

Theorem 2. The average degree greedy algorithm pro-
vides a 2-approximation to both the primal and dual
versions simultaneously. Its running time and space
requirement are O(clogc) and O(c), respectively.

Proof. See Appendix C. O

Note that in general for primal-dual algorithms, it
is not necessarily the case that a 2-approximation
to the primal also is a 2-approximation to the dual,
and vice versa. Both the Average Degree and
Node Degree Greedy algorithms, however, guarantee
2-approximations to both primal and dual at the same
time and thus provide stronger approximation guaran-
tees than just 2-approximations to any one of them.

Note that since the input is logarithmic in & (or
ka,kp) simply using the strategy of trying out all pos-
sible 2-partitions of k (there are k + 1 of them) does
not yield a polynomial time reduction from the ‘delete
ka, kg’ problem to the ‘delete k overall’ problem.

3.4 A Hardness Result for Multi-

Relation Joins

Consider a join of three relations A, B and C, and sup-
pose that we need to delete (or retain) k4, kg, and k¢
tuples from the input relations respectively, or k tuples
overall, so as to maximize the number of join tuples
that are produced from the retained input tuples. We
call this the 3-relation static join approximation prob-
lem.

Theorem 3. The 3-relation static join approzimation
problem is NP-Hard.

Proof. See Appendix D. O

Corollary 1. The m-relation static join approxima-
tion problem is NP-Hard for any m > 3.

However, there is a trivial m-approximation to this
problem for the formulation where one needs to delete
(or retain) k; tuples from join relation A; (1 <i < m).
The idea is to independently select for each A; the k;
tuples for deletion which produce the fewest output tu-
ples. Assume the number of lost output tuples caused
by removing k; tuples from A; is p;. The optimal al-
gorithm at least loses max{pi,pa,...,pm} output tu-
ples. The approximation algorithm will at most lose
Z;-Zl p; output tuples, therefore guaranteeing an m-
approximation.

4 Dynamic Window Join Ap-
proximation

In Section 2 we defined the problem space for comput-
ing sliding window joins by introducing its dimensions
(integratedness of model, resource bottleneck, approx-
imation error measure). Examining each point in this
space in detail is beyond the scope of this paper. In-
stead we will present an in-depth analysis for a large
and important subspace. More precisely, we will re-
strict our attention to the fast CPU model and the
MAX-subset error measure. Notice that this covers a
large part of the problem space. As mentioned before,
for a fast CPU system integrated and modular archi-
tecture are equivalent. Furthermore, recall that most
of the popular and common set approximation error
and set similarity measures reduce to MAX-subset for
our problem. We present optimal offline and efficient
online algorithms.

4.1 Fast CPU and Offline

We are now considering the sliding window join as dis-
cussed in Section 2.3. We develop an algorithm OPT-
offline that minimizes the MAX-subset error in the fast
CPU case under the assumption that all tuples that will
arrive in future are already known to the algorithm.
Note that streams are infinite, and therefore knowing
the whole future cannot be modeled. However, this
idealized algorithm is used to provide the baseline for
measuring the efficiency of any real online algorithm
over any given finite subset of the overall stream. For
this subset we can compute the optimal result using
OPT-offline and compare this result to how an online
technique which does not know the future performs on
the same input. Since in the slow CPU case even more
tuples have to be dropped, OPT-offline also constitutes
an upper bound for any technique for the slow CPU
case.

Recall that the join memory holds a total of M tu-
ples, not necessarily distributed evenly between R and
S. We will now describe how to formulate the OPT-
offline optimization problem as a network flow problem
that allows the efficient computation of the best possi-
ble approximation under the MAX-subset measure.

s at time t=3

; ; -
Life time of tuple s(1)

Events for
-~ Stream R

Events ™
for stream S

Optimal solution: 5 output tuples

(r(0),5(2)) at time t=2 (r(2),5(3)) at time t=3
(r(2),5(2)) at time t=2 (r(3),s(1)) at time t=3

(r(3),5(4)) at time t=4

Figure 3: Example flow graph

4.1.1 The Flow Graph

The main idea is to define a flow graph such that each
node corresponds to a tuple being in memory at a
certain time. The arcs implicitly model all possible
combinations of keeping or dropping tuples. Sending
flow through an arc intuitively indicates that the cor-
responding tuple is in memory, i.e., was not dropped.
Since we want to minimize the MAX-subset error, our
goal is to find the optimal strategy of keeping and drop-
ping tuples such that the overall result size is maxi-
mized.

We assign costs to the arcs in such a way that an op-
timal flow corresponds to the strategy which produces
the most output tuples. To do so we assign cost fac-
tor -1 to each arc which corresponds to a result tuple,
all other arcs have cost factor 0. Solving a min-cost
linear flow problem will then find the optimal strategy
efficiently. For the sake of simplicity we will illustrate
the flow graph construction with an example where the
memory M is evenly shared between streams R and S.
Later we generalize the approach.

Let the input “streams” be R = 1,1,1,3,2 and
S = 2,3,1,1,3 and assume the first value arrives at
time 0, the next at time 1, and so on. Furthermore
let the window size be w = 3 and the available join
memory M = 2. Recall that R and S each receive
M/2, i.e., one memory unit to keep tuples in the cur-
rent window. The corresponding flow network is shown
in Figure 3. For simplicity arc cost factors are only in-
dicated for arcs with cost -1. Overall the nodes in the
upper half correspond to events related to R-tuples,
while the nodes on the lower half correspond to the
events related to S-tuples. Nodes with label (i) : j
correspond to the event that the tuple that arrived at
time ¢ in stream X is in memory at time j. Nodes s
and t are the source and sink of the flow graph, respec-
tively. The node labeled t = 2 models the fact that
at time 2 the tuples arriving in both streams have the
same join attribute value (equal to 1).

The flow graph is constructed as follows. All arcs
have capacity 1, i.e., they can transmit any flow be-
tween 0 and 1 (both inclusive). Node s has supply

M + 1 and node ¢ has demand M + 1. All other
nodes have no supply/demand. Except for the top
path s — (t = 2) — t which has a special purpose
and will be discussed later, s has M outgoing arcs.
M/2 of them point to R-tuple nodes, the other M/2
to S-tuple nodes, modeling the arrival of the first M /2
tuples from each stream (arcs from s to r(0) : 0 and
5(0) : 0 in the example). The idea behind these arcs is
that the first M arriving tuples will always fit in mem-
ory, which will be reflected by a flow of 1 through each
arc (a total flow of M).

Since the memory is now filled, the next arriving
tuples could replace existing tuples in memory. Recall
that we currently fix the memory allocated to R and
S, therefore a newly arriving R-tuple can only replace
another R-tuple in memory, but not an S-tuple (and
vice versa). The possibility of replacement is modeled
by the non-horizontal arcs. In the example arc r(0) :
1 — r(1) : 1 indicates that tuple r(0) which is currently
in memory could be replaced at time 1 by the newly
arriving r(1). The horizontal arcs model the fact that
a tuple survives in memory. For instance r(0) : 1 —
r(0) : 2 indicates that r(0) could still be in memory at
time 2. Notice that w = 3, therefore r(0) will expire at
time 3. This means there is no benefit in keeping 7(0)
in memory after it has been matched with a partner
tuple arriving at time 2, therefore there is no outgoing
horizontal arc from node r(0) : 2. Finally, at the end of
the input sequence all nodes that correspond to tuples
in the current window are connected to the sink ¢.

In Figure 3 the general design patterns of the flow
graph are marked by dotted line boxes. The tall box
shows a subset of nodes which correspond to the events
at a certain time ¢ = 3. At that time the window
contains (1), 7(2), s(1), s(2), and the newly arriving
r(3) and s(3). Which tuples are actually in memory
after the arrival of the new tuples is determined by
where flow is sent. Similarly, the wide box corresponds
to the events of a tuple (s(1)) being in memory at time
1, 2, and 3, respectively.

The path on the top contains a node for each pair
(r(7), s(7)) where 7(i) = s(i). In our fast CPU process-
ing model the newly arriving tuples are always joined
with their partners in the join memory, and also with
the tuple that arrives on the other stream at the same
time. The latter is modeled by the top path.

As mentioned before, all arcs i — 7 in the flow graph
have capacity 1, i.e., they can transport any flow f(4, j)
with 0 < f(i,7) < 1. The cost of an arc flow is com-
puted as f(i,7) - c(i,j) where c(i,5) € {0,—1}. The
c(i,7) values are determined as follows. Recall that a
flow through an arc corresponds to a tuple being in
memory. The tuple in memory produces exactly one
output tuple iff the tuple arriving at the corresponding
time in the other stream has the same join attribute
value. If that is the case, the arc cost is set to -1,
otherwise to 0. In the example we have r(0) = 1.

Hence when s(2) = 1 arrives and r(0) is still in memory,
an output tuple is produced. This is modeled by arc
r(0) : 1 — r(0) : 2 which has cost factor -1. In Figure 3
the optimal flow is indicated by the bold arcs. The out-
put corresponding to this optimal flow is shown in the
figure. Note that because of insufficient memory two
output tuples are missed ((r(1), s(2)) and (r(1), s(3))).

The generalization to wvariable memory allocation,
i.e., sharing the memory in any ratio between R- and
S-tuples is easy. We just need to add “cross-arcs” be-
tween R-nodes and S-nodes in the graph which model
the fact that now an R-tuple can replace an S-tuple
and vice versa. In Figure 3 such arcs would be r(0) :
1—s5(1):1,80):1—=7r(1):1,70):2—s(2):2
r(1) : 2 — s(2) : 2, and so on. In general each node
(except s, t, and the top path nodes) now not only has
an outgoing arc to the newly arriving tuple of its own
stream, by also another arc to the newly arriving tuple
in the other stream.

4.1.2 OPT-offline Algorithm

It is not hard to show that the flow graph discussed
above correctly models the offline algorithm. Note that
the arcs do not allow more than a flow of M through the
main network, and exactly a flow of 1 through the top
path. This ensures the memory constraint. Also, the
way the arcs are combined, correctly models the tuple
events. It is not possible for a dropped tuple to re-
enter the memory and only tuples in memory produce
output. Furthermore it is ensured by construction that
no tuple can produce output after it has expired.

There is one major property left to be shown in order
to establish the correctness of the model. We have to
ensure that there are no partial flows, i.e., flows f(i,7)
which are not either 0 or 1. This is ensured by the
following theorem.

Theorem 4. If the flow problem has an optimal solu-
tion, and all capacity constraints and costs are integral,
then there is an optimal solution which is also integral.

Proof. See [33], page 239. O

We can use any standard linear minimum cost flow
algorithm that finds the optimal integer solution of the
flow problem. Since the highest absolute arc cost in our
network is 1, known algorithms find the optimal integer
solution in time O(n?mlogn) [19] or O(nm lognlogm)
[1], where m is the number of arcs and n the number
of nodes.

For our problem we can derive the following upper
bounds for the number of nodes and arcs. Let N de-
note the number of tuples in each stream. Each node
belongs to at most w windows. Furthermore there
are at most N pairs (r(i), s(¢)) with (i) = s(i). To-
gether with source and sink node there are at most
2wN + N 4 2 = 0(wN) nodes. Each node has at most

three outgoing arcs (for the events “remain in mem-
ory”, “being replaced by new R-tuple”, “being replaced
by new S-tuple”). Only the source node has M +1 out-
going arcs, the sink has none. Hence the total number
of arcs is at most (M + 1+ 3 (numberNodes — 2)), i.e.,
is O(wN + M). The formulation as a flow problem en-
ables the computation of the optimal offline solution in

time polynomial in stream, window, and memory size
(O((wN) - (wN + M) -log(wN) - log(wN + M))).

4.2 Fast CPU and Online

An online algorithm does not know which tuples will
arrive in the future. Hence all we can do is maximize
the expected output size assuming certain arrival prob-
abilities. However, even such probabilities and pos-
sible independence assumptions only approximate the
true future. At the same time any real online algo-
rithm faces the challenge that the memory and CPU
resources it consumes are not available for the actual
join processing. Hence our goal is to design very fast
and lightweight techniques which add the lowest possi-
ble overhead but nevertheless try to maximize the out-
put size based on approximate future knowledge. We
present two deterministic heuristics, PROB and LIFE,
which are intuitively appealing and extremely simple
and lightweight.

4.2.1 PROB Heuristic

PROB estimates for each value in the domain of the
join attribute the probability of a tuple with this value
arriving on stream R and stream S. For attribute value
a let these probabilities be pr(a) and pg(a). A tuple’s
priority is equivalent to the corresponding probability
of arrival of a tuple with the same join attribute value
on the other stream. For instance for r(4) the priority is
ps(r(i)). Whenever the buffer overflows, PROB ejects
the tuple with the lowest priority. Ties are broken by
giving higher priority to the tuple that arrived later.
Note that the newly arriving tuple is also a candidate
for eviction.

This heuristic is motivated by the expectation that
tuples with a higher probability of finding incoming
partner tuples are the ones that produce the most out-
put results. Even if a newly arriving tuple with low
partner-arrival probability was admitted to memory, it
would soon be replaced by a later arriving tuple with
higher partner-arrival probability, hence it seems bet-
ter to greedily “hold on” to the best tuples available.

Assuming that the arrival probabilities can be esti-
mated fairly accurately (if this is not possible, any on-
line strategy will perform poorly and hence one could
use random-tuple eviction instead) there is another in-
tuitive reason why PROB performs well: the proba-
bility of those inputs which cause PROB to perform
poorly is low. There are two main scenarios where one

expects PROB (or any online algorithm for that mat-
ter) to perform poorly:

e PROB drops a tuple when in fact it should have
retained it since many joining partner tuples ar-
rive soon afterwards on the other joining stream.
However, the fact that PROB did not retain the
tuple implies that it had comparably low partner
tuple arrival probability, and hence the probability
that several partner tuples of the discarded tuple
arrive in close succession while very few partner
tuples arrive for the retained tuples is low.

The second scenario where PROB performs poorly
arises when PROB retains a tuple in memory for
a long time and very few or no partner tuples ar-
rive for that tuple on the other stream (S) during
this interval. In this case, since PROB has re-
tained the tuple in memory for a fairly long time,
it implies that the partner arrival probability for
the retained tuple is comparably high. Hence the
likelihood of the event that very few partner tu-
ples arrive on S for this retained tuple while many
more partners arrive for some other tuple that ar-
rived on stream R and was dropped is low.

PROB can be used both for fixed memory alloca-
tion between R and S, and also when the allocation
is variable. In the former case there are two priority
queues—one for R and one for S-tuples. In the latter
case there is a single priority queue for all in-memory
tuples of both streams.

A practical issue is to compute the values of pr() and
ps(). Any online algorithm that with high probabil-
ity produces more output than an algorithm that ran-
domly replaces tuples in memory needs at least “good”
approximations of these probabilities. One possibility
to estimate pr() and pg() is to assume that their future
distribution will be similar to the distribution in recent
history (similar to approaches for online caching). De-
pending on the amount of available memory the his-
tory statistics can be exact or approximate, e.g., any
of the previously proposed data stream histograms or
wavelets (see discussion of related work). Such statis-
tics over data streams are usually maintained by de-
fault in most data stream processing systems since they
constitute a basic primitive and can be shared between
multiple queries. Note that rather than an exact knowl-
edge of partner tuple arrival probabilities, PROB only
needs information corresponding to the relative order-
ing between the partner tuple arrival probabilities in
order to evict the correct tuples. Also, the performance
of PROB is not affected much if the approximate sum-
mary statistics interchanges the relative ordering of the
partner tuple arrival probabilities of tuples with ‘sim-
ilar’ partner tuple arrival probabilities, and hence the
estimates of the value probabilities do not need to be
very precise. The performance of PROB is fairly stable
as long as the priorities of tuples with vastly different

10

partner tuple arrival probabilities are correctly ordered
by the summary statistics used.

4.2.2 LIFE Heuristic

The LIFE heuristic is also based on estimates of the
pr() and pg() values. However, LIFE aims at giving
more weight to the remaining lifetime of a tuple. The
priority of a tuple r(7) with remaining lifetime ¢ is com-
puted as t - pg(r(:)). As with PROB, the LIFE heuris-
tic ejects the tuple with lowest priority, with ties being
broken by giving a higher probability to a tuple that
arrived later. Like PROB, LIFE can be used for both
fixed and variable memory allocation between R and
S-tuples.

Note that for large window size newly arriving tuples
are almost guaranteed to enter the memory because of
their high lifetime value. LIFE in general overestimates
the expected number of output tuples because tuples
might be evicted before they expire, whereas the pri-
ority calculations are based on time to expiry. This
holds especially for tuples with low pr() or ps() val-
ues. A better approach would be to use the expected
lifetime of a tuple for computing the priority. This will
be addressed in future work (note that more complex
algorithms which are based on expected lifetime are
also less robust against errors in estimating pr() and

ps())-

5 Experiments

5.1 Static Join Approximation

In this section we compare the performance of the Av-
erage Degree Greedy (ADG) approximation algorithm
with the optimal dynamic programming based algo-
rithm (henceforth called OPTDP). We consider the
dual version of the static join approximation problem
(maximize number of retained output tuples). Recall
that ADG guarantees a 2-approximation, and that the
running times of ADG and OPTDP are O(clogc) and
O(ck?), respectively. In this section, we evaluate the
actual running times of ADG and OPTDP as well as
the approximation quality of ADG.

The input data is generated synthetically. For each
relation we use a Zipfian distribution with skew pa-
rameter z to generate the number of nodes in each of
the ¢ disjoint Kurotowski components. The same skew
parameter is used for generating data in both bipartite
partitions, however, both distributions are generated
independently. All running times reported in the ex-
periments below are the averages of at least 5 runs on
a 1.8 GHz Intel PIII machine running RedHat Linux
9.

Approximation Quality of ADG for Varying Kurotowski Component Skew

1000

Running Time Vs Number of Retained Input Tuples (k)

Running Time Vs Number of Kurotowski Components (c)
100

100

0.998

0.996

Running time (sec)

0.994

#Outputs of ADG as a fraction of OPTDP

0.992

,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Running time (sec)

0.99

0.001
0

0 0.2 0.4 0.6 0.8

Zipf parameter

1 12 14 16 2 4 6

Figure 4: ADG Approximation

5.1.1 Approximation Quality

Figure 4 compares the performance of ADG and the
optimal algorithm OPTDP for varying degrees of skew
in the distribution of the Kurotowski component sizes.
In these experiments, the size of the joining input rela-
tions was 50K tuples each, and the number of retained
input tuples (k) was set to 5K, while the number of
Kurotowski components (¢) was 1K. As can be seen
from the figure, ADG performs extremely well, pro-
ducing over 99.5% of the output tuples produced by
OPTDP for varying degrees of skew (note that the
y-scale starts at 0.99). For moderate skew, the per-
formance of ADG is marginally worse than OPTDP,
but for very low and very high skew ADG produces
almost the same number of output tuples as OPTDP.
This behavior at low and high skews can be explained
as follows: At very low skew, most of the Kurotowski
components are of the same size, and hence choosing
one over the other does not affect the join output by
much. At very high skew, some Kurotowski compo-
nents are clear ‘winners’, producing a large number of
output tuples, and these are selected by both OPTDP
and ADG. These components dominate the total num-
ber of join tuples produced, and thus the performance
of ADG is very close to OPTDP. Similar results were
observed for other values of k£ and ¢. In the above ex-
periments, the average running time of OPTDP was 26
seconds, as compared to 0.002 seconds for ADG.

5.1.2 Running Time

Figures 5 and 6 show (on a logscale) the running times
of ADG and OPTDP as the number of input tuples to
be retained (k) and the number of Kurotowski compo-
nents (¢) is varied. In these experiments, the size of the
joining relations was 50K tuples each, and the Kuro-
towski components were generated using a Zipfian dis-
tribution with skew parameter 0.5. In the experiments
in Figure 5, the number of Kurotowski components (c¢)
was 1K, while in the experiments in Figure 6, the num-
ber of retained tuples (k) was held constant at 5K.
As can be seen from Figure 5, the running time of
ADG is three to four orders of magnitude less than
that of OPTDP. The running time of ADG is indepen-
dent of k£ and remains constant at 0.002 sec. As we

8

#input Tuples retained (1000's)

Figure 5: Running time vs. k

11

0.001
0

0 12 14 16 18 20 2 4 6

of Kurotowski Components (1000's)

8

Figure 6: Running time vs. ¢

showed analytically, the running time of OPTDP in
the worst case increases quadratically with k. In prac-
tice the growth was almost linear. (This linear growth
is not obvious in the figure because of the logarithmic
y-scale.)

The effect of varying ¢ on running times is shown in
Figure 6. As expected, the running time of OPTDP
increases linearly with ¢, while ADG’s running time
grows at a slightly faster rate (O(clog ¢)). However, the
running time of ADG, which is always below 0.02 sec-
onds, still remains much smaller than OPTDP whose
running time varies between 23 to 33 seconds.

5.1.3 Discussion of Experimental Results

The aim of the above experiments was to bring out
the tradeoffs involved between running time and ap-
proximation quality of the OPTDP and the ADG al-
gorithms. As can be seen from the graphs, the run-
ning time of ADG is orders of magnitude below that
of OPTDP, while the number of outputs produced is
almost identical. Hence ADG provides a viable alterna-
tive for scenarios where faster responses are required or
where the processors are already heavily loaded, with-
out sacrificing approximation quality by much. In ad-
dition, the space requirement of ADG, which can be im-
plemented ‘in-place’ and thus requires only O(c) space,
is lower than that of OPTDP (O(ck)).

5.2 Dynamic Window Join Approxima-
tion

We perform an extensive evaluation of the sliding win-
dow join approximation techniques suggested in Sec-
tion 4.2 on both synthetic and real life datasets. We
compare the performance with the state of the art, i.e.,
dropping tuples randomly from the join input buffers
(henceforth referred to as RAND), as well as with the
optimal offline approach OPT-offline described in Sec-
tion 4.1. We will abbreviate OPT-offline as OPT where
appropriate. Our experiments indicate that the sim-
ple heuristic approach (PROB) of dropping tuples from
buffers based on the probabilities of the corresponding
tuples arriving in the other stream does surprisingly
well in practice.

For solving the linear min-cost network flow prob-
lem arising out of the optimal offline join approxima-
tion algorithm we used the CS2 network flow solver
as described in [19]. This solver is based on one of
the fastest known algorithms for min-cost flow prob-
lems, which still is super-linear in the input size (cf.
Section 4.1.2). Hence for all the experiments involving
comparison with OPT, we restrict the input length to
5600 tuples. Note that all algorithms store the first
M/2 tuples from each stream in memory and there-
fore output the same set of resulting join tuples for
these tuples. Hence in order to prevent such startup
effects from dominating the number of output tuples
produced, we introduce a warmup phase during which
output is not counted. The warmup phase is selected
as twice the window size. This ensures that all the
tuples that filled the memory at the start of the exper-
iment will have expired, and the join approximation
algorithm will have reached a stable phase before gen-
erating output. Since in our experiments, the join win-
dow size was at most 800, the chosen input length of
5600 tuples guarantees that for any window size w, at
least 4000 tuples are processed after the warmup phase
of 2w. In our experiments it turned out that larger in-
put size does not affect the validity of the conclusions
drawn from the graphs obtained on these streams.

For our synthetic datasets, we used Zipfian distri-
butions with varying degrees of skew and correlation
between the data in the two joining streams. Within
a stream, the data values were generated in iid (in-
dependently and identically distributed) fashion from
the corresponding Zipfian distribution. For our real-life
dataset experiments, we used a weather dataset [22].
The input streams had the same tuple arrival rates,
with a tuple arriving on each stream at every timestep.

For all experiments the probabilities pr() and pg()
used by the heuristics (cf. Sections 4.2.1 and 4.2.2) are
set according to the actual distribution over the whole
input stream (determined empirically). Hence at each
moment in time both PROB and LIFE are in fact us-
ing approximate values which might differ considerably
from the true “local” distribution for a given window.

5.2.1 Effect of Window Size

Our first set of experiments was aimed at studying the
behavior of the various join approximation algorithms
for different window sizes. Figures 7 and 8 show the
number of join output tuples as the amount of avail-
able memory is varied for the different algorithms for
window sizes (w) of 400 and 800 respectively. In all
our experiments where we vary memory M, we vary it
as 0.1w, 0.25w, 0.5w, w and 1.5w. To guarantee ex-
act computation of the join result, M = 2w would be
necessary.! The input data streams in Figures 7 and 8

1Strictly speaking only M = 2w — 2 is needed because of the
extra memory cells provided by the two input buffer cells in the
fast CPU model (cf. Section 2.3).

12

are generated from uncorrelated Zipf distributions with
parameter 1. The domain size of the data was set to
50 (see Section 5.2.4 for justification).

As expected, the behavior of the various algorithms
is similar for different window sizes. In the figures,
EXACT refers to the number of output tuples gener-
ated if the sliding window join were to be computed
eractly, i.e., with 2w memory. The number of out-
put tuples generated by RAND increases linearly with
available memory, as expected. As can be seen from
Figures 7 and 8, the PROB heuristic by far outperforms
the RAND and LIFE approaches, and is very close to
the OPT curve, which is the optimal offline algorithm
representing an upper bound on the best performance
(in terms of number of output tuples generated) possi-
ble by any online algorithm. The poor performance of
LIFE is caused by the way it computes the tuple pri-
orities based on remaining lifetime, and not expected
lifetime (cf. Section 4.2.2). Even though w = 400 and
w = 800 are fairly small window sizes from a practical
point of view, they are large enough to give even tuples
with low pr() and pg() values a high enough priority
to replace better tuples which have a lower remaining
lifetime.

Since the window size does not impact the nature
of the graphs obtained, the results for the rest of the
experiments in this section are shown only for a window
size of 400. Similar graphs were obtained for various
other window sizes in each of these cases.

5.2.2 Effect of Skew

If both data streams consist of tuples with uniformly
distributed join attribute values, we expect all online
algorithms to produce about the same number of out-
put tuples. The reason for this is that all the tuples in
memory have the same probability of seeing a counter-
part (i.e., a tuple with the same join attribute value)
in the other stream, therefore there is no reason to
prefer keeping one tuple over another. This is equiv-
alent to RAND’s strategy of evicting random tuples
from memory. Figure 9 confirms our prediction, show-
ing the performance of the different algorithms for a
window size of 400 when both the input streams have
a uniform data distribution. Notice that even know-
ing the future (OPT curve) does not result in a major
improvement. This is in contrast to the results shown
in Figure 7. There for an almost identical setup (the
difference being Zipf distributed join attribute values
in one stream) both OPT and PROB are much more
rapidly approaching the exact result with increasing
memory. The non-uniform distribution generates tu-
ples which are more valuable than others because of
the frequency of their join attribute value in the stream.
Both OPT and PROB successfully identify these tuples
and keep them in memory.

As can be seen from Figures 7, 8 and 9, the LIFE
heuristic does only marginally better than RAND for

#Outputs Vs memsize for w=400 z1u distribution, domainsize=50 (fixed allocation)

250000

#Outputs Vs memsize for w=800 z1u distribution, domainsize=50 (fixed allocation)

#Outputs Vs memsize for w=400 uniform distribution, domainsize=50 (fixed allocation)
70000

120000

,,,,,,,,,,,,

100000 200000 |

80000
150000 ~

60000

#Output tuples
#Output tuples

,,,,,,,,,,, 60000 -

50000 -

40000

30000 -

#Output tuples

100000 - 7

40000 Random (RAND) —+— /
P / Random (RAND) 20000 - Random (RAND) ——
Optimal Offine (OPT) K —— __PROB -

EXACT 50000 - Optimal Offine (OPT) . Optimal Offine (OPT)
20000 LIFE o 7 EXACT —x 10000 - EXACT
LIFE --a-- LIFE --8-]
0 0)
0 100 200 300 400 500 600 0 200 400 600 800 1000 1200 0 100 200 300 400 500 600

Memory Size

Figure 7: Window size w = 400

#Outputs Vs zipf parameter (w=400, m=400) for uncorrelated zipf, domainsize=50

Memory Size

Figure 8: Window size w = 800

#Outputs Vs zipf parameter (w=400, m=400) for correlated zipf, domainsize=50

Memory Size

Figure 9: Uniform input

#Outputs versus memsize for w=5000 weather data (Sep85L-Sep86L)

1.2e+08 [

rrrrrrrrrrrrrrrrrrrrrr

#Output tuples as a fraction of Offline Optimal

#Output tuples as a fraction of Offline Optimal

=

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

1e+08 - T

Random (RAND)
PROB ---x--- -
8e+07

6e+07

#Output tuples

2e+07
Random Var (RANDV) ——
PROBY -

EXACT -
Random Fixed (RAND) =
Prob Fixed (PROBF) --u--

2e+07 | S

0
0 1000 2000 3000 4000 5000 6000 7000 8000

0 02 0.4 0.6 0.8 1 12

Zipfian Skew Parameter (uncorrelated)

14 16 0 0.2 0.4 0.6

Figure 10: Uncorrelated Zipf

reasons explained earlier. Similar behavior was ob-
tained for other data, hence the LIFE approach is not
included for comparison in the remaining experiments
in this section.

Figures 10 and 11 nicely bring out the effect of skew
in the input data streams on the performance of the
algorithms. The number of output tuples generated by
the RAND and PROB algorithms is plotted as a frac-
tion of the number of tuples generated by OPT as a
function of the Zipfian skew parameter. Both the ar-
riving input streams have Zipfian distribution with the
same parameter. In Figure 10, the distributions of the
two input streams are uncorrelated, while in Figure 11,
the two Zipfian distributions are perfectly correlated,
in the sense that the high (low) frequency values on
one stream are also high (resp. low) frequency values
on the other stream. As can be seen from the graph, for
uniform data distribution (Zipf with parameter 0), the
performance of RAND and PROB is essentially identi-
cal as has been noted earlier. However, as the skew in
the input is increased, PROB gains an advantage over
RAND because it is able to distinguish between tuples
that have different probabilities of joining with tuples
on the other stream.

The graphs for both cases are similar, indicating that
the correlation between the two data streams does not
affect the relative performance of the algorithms. This
is because, in the case of PROB, the decision to re-
tain or drop tuples from one relation only depends on
the data distribution of the other joining relation, and
not on the its own data distribution or the correlation
between the two. Clearly in the case of RAND, the

Figure 11: Correlated Zipf

08 1 12 14 16 Memory Size

Zipfian Skew Parameter (perfectly correlated)

Figure 12: Weather data: Perfor-

mance

eviction policy does not depend on the data distribu-
tions at all. Thus, while most of the Zipfian distri-
bution experiments have been performed for uncorre-
lated streams, the results obtained hold for correlated
and “anti-correlated” (i.e. the high frequency values on
one stream are the low frequency values on the other
stream and vice versa) distributions as well. Note how-
ever, that correlation does affect the total number of
output tuples generated by the joins.

Both window and memory size in the experiment
were set to 400. Similarly shaped graphs were obtained
for other memory sizes. Note that even for M = w (i.e.,
at only 50% of the actually needed memory for ex-
act computation), the PROB approach does extremely
well, generating over 96% of the output tuples for in-
put with moderate to high skew that can be generated
by the optimal offline algorithm (OPT).

5.2.3 Variable Memory Allocation

The experimental results discussed so far were obtained
for a fixed memory allocation of M /2 to each of streams
R and S. In the following set of experiments, we al-
low the memory allocated to each stream for storing
tuples to vary, while keeping the total amount of mem-
ory constant. Hence an incoming R-tuple can replace
an S-tuple in memory and vice versa. This obviously
generalizes the fixed memory approach, and therefore
improved output results are expected, especially if the
join attribute value distributions in the streams are dif-
ferent. In the following, we will use PROB, RAND, and
OPT for the fixed memory algorithms, and PROBV,
RANDV, and OPTYV for their variable memory coun-

13

#Outputs Vs memsize for fixed and variable allocation, z1u distribution (w=400)
120000

110000
100000
90000
3
S5 80000 -
2
5 70000 -
s
3 60000 |
*
50000 ProbFixed (PROB) —+— q
Offline Opt Fixed (OPT) -----—
40000 + Prob Variable (PROBV) - 4
Offline Opt Variable (OPTV) &
30000 R
20000 L L L L L
0 100 200 300 400 500 600
Memory Size
Figure 13: Zipf(1.0) both
terparts.

We report the number of output tuples generated as
a function of total memory size for window size 400. In
Figure 13 both the input streams have an uncorrelated
Zipf(1.0) distribution. In Figure 14 one of the streams
(R) has Zipf(1.0) distribution while the other has uni-
form distribution. As can be seen from the graphs,
when the two arriving streams have the same distribu-
tion, the performance of the fixed and variable algo-
rithms is very similar (cf. Figure 13). However, Fig-
ure 14 shows that the performance difference increases
(up to 10% of output size) as the disparity in the skew
of the distributions of the input streams increases. This
behavior is both expected and reasonable. If the two
input streams have similar distributions, there is no
reason to allocate more memory to one relation as com-
pared to the other. Hence the fixed and variable mem-
ory allocation versions of the algorithms behave simi-
larly. As the disparity in the skew of the input streams
increases, it makes more sense to allot more memory to
the relation having a greater number of high priority
tuples arriving as compared to the relation where all
tuples have the same moderate priority.

Figures 15 and 16 show the allocation of memory
between the two streams done by the variable memory
algorithms for various data distributions as a function
of time. As expected, based on our discussion above,
when the two input streams have the same distribu-
tion (Figure 15), both the relations get about half the
memory. When the two joining relations have differ-
ent skews, the relation with the higher skew is allotted
more memory (up to a share of 85%).

5.2.4 Effect of Domain Size

Figures 17, 18 and 19 bring out the effect of domain size
(10, 50, and 200 respectively) of the join attribute on
the performance of the algorithms. The graphs show
the number of output tuples generated by the various
algorithms as a fraction of the output generated by the
optimal offline algorithm OPT as a function of memory

14

#Outputs Vs memsize for fixed and variable allocation, rz1u/sz0 distribution (w=400)
65000

60000 - 4
55000 q
a
50000 X
E 45000
o
2 40000
5
£ 35000
15
30000
25000 |- e ProbFixed (PROB) —+—
" Offline Opt Fixed (OPT) ------
20000 Prob Variable (PROBV) ----x---
Offline Opt Variable (OPTV) &
15000 - q
10000 L L L L L

200 300

Memory Size

400 500 600

Figure 14: Zipf(1.0)/uniform

size (window size 400, Zipf(1.0) distribution for both
input streams). An increase in domain size has oppo-
site effects on the performance of OPT and PROB. As
the domain size increases, the performance of PROB
seems to get worse as compared to OPT, while the
number of tuples generated by OPT approaches the
number of tuples in the EXACT sliding window join.
Similar effects were observed for other input distribu-
tions (not shown here). As a tendency the lines for
EXACT and OPT get closer as the domain size in-
creases from 10 to 200, while the lines for PROB and
OPT become more and more separated.

This phenomenon can be explained as follows. As
the domain size becomes larger, the distribution for a
given Zipf parameter is less skewed due to a longer
heavy tail, which makes the maximum frequency
smaller as the size of the domain increases. This brings
us closer towards the uniform distribution case, for
which we know that all algorithms perform equally bad,
at par with RAND. Since the effects of changing the
domain size are similar to the effects of varying the
skew, in our experiments with synthetic data we fixed
the domain size (to 50) and varied the skew.

The relative improvement of OPT versus EXACT
with increasing domain size is caused by the increasing
number of tuples with low arrival probabilities in the
tail of the Zipf distribution. This results in a higher
percentage of tuples for which no matching partner tu-
ple will arrive within the window. Since OPT knows
the future, it can safely discard these tuples without
much effect on the result size. In fact, as we can see in
Figure 19 the OPT and EXACT lines meet at M = w,
indicating that we can compute the exact join result
with only 50% of the memory that would be required
in general to guarantee the exact result.

5.2.5 Real Life Dataset Experiments

For our real life dataset experiments, we used weather
data available at [22] which consists of cloud measure-
ments organized by month and collected over several

Variation of memory allocated to streams R & S for w=400 rz0.25u/sz0.25u distribution

400 -
Memory to R
Total Memory --------
350 | 50% Memory - |
°
2
8
8 300 |
©
>
S
5 250 |- |
=
200 VWMWMMWMM W
150 .) ‘ ‘ ‘
0 1000 2000 3000 4000 5000
TimeStep

Figure 15: Zipf(0.25) both

#Outputs versus memsize for w=400 z1u distribution with domainsize=10 (fixed allocation)

45 T

#Outputs versus memsize for w=400 z1u distribution with domainsize=50 (fixed allocation)

Variation of memory allocated to streams R & S for w=400 rz1u/sz0 distribution

400
Memory to R
Total Memory --------
350 - 50% Memory - |
°
2
8
8 300 - \
©
>
IS]
5 250 |- |
=
200
150 .) ‘ ‘ ‘
0 1000 2000 3000 4000 5000
TimeStep

Figure 16: Zipf(1.0)/uniform

#Outputs versus memsize for w=400 z1u distribution with domainsize=200 (fixed allocation)

5 T T T T ;
Random (RAND) ——

L] o
45 Optimal Offine (OPT) % 4
EXACT

al

35 1
sl]

251 b
2| .]

15+ 4

: 25 T T T T p

Random (RAND) ——

Optmal Offine (OPT) -
EXACT

Random (RAND) ——
Optimal Offine(OPT) -
EXACT

15+ 4

1t

0

#Output tuples as fraction of Opt. Offline
#Output tuples as fraction of Opt. Offline

05

#Output tuples as fraction of Opt. Offline

0 100 200 300 400 500 600 0 100 200
Memory Size

Figure 17: Domain size 10

Variation of memory allocated to streams Sep85 and Sep86 for w=5000,m=5000

5000

Memory to stream Sep85 ——
Total Memory -
50% Memory

4500 -
4000 -
3500
3000 -

2000

Memory allocated

1500
0 200000 400000 600000

TimeStep

800000 1e+06

Figure 20: Weather data: Memory allocation

years by thousands of sensors located all over the globe,
in land and water. The data sets contain measurements
such as the time the reading was taken, sensor location,
sky brightness, cloud cover, solar altitude and others.
For our experiments, we chose the readings taken by
the land sensors in the month of September over two
consecutive years (1985, 1986). These datasets con-
tain just over a million tuples each. The attributes of
interest were the latitude and longitude information,
pinpointing the location of the sensor. We performed
a streaming sliding window join on the two datasets
using the latitude and longitude attributes to identify
sensors located physically near each other. We divided
locations on the earth into a 18 by 36 square grid con-
sisting of 10 degrees of latitude and longitude each,
and mapped sensors falling in the same grid cell to the

Memory Size

Figure 18: Domain size 50

300 400 500 600 0 100 200 300 400 500 600
Memory Size

Figure 19: Domain size 200

same location for the purpose of the join. (There were
about 650 distinct location values). Such a join query
could potentially be used to examine correlations be-
tween values measured by sensors in the same region,
with the join window enforcing that the matched read-
ings are taken at nearby points in time. For PROB the
frequency table of the data values in the whole dataset
was used to estimate the probabilities of the next in-
coming tuple.

The size of the join window was set to 5000, and
a plot of the number of tuples output by the various
join approximation methods with varying memory size
is shown in Figure 12. This graph closely resembles
those obtained for smaller stream lengths and window
and domain sizes (see Figures 7, 8). The performance
of the variable and fixed memory allocation versions
PROB and PROBV were almost identical, indicating
that the two input streams had similar data distribu-
tions. This is made more apparent by the graph in
Figure 20 which indicates that the memory allocation
remained more or less at the 50-50 mark (2500) for the
entire duration of the join. The PROB and PROBV
methods again performed very well, generating over
90% of the output tuples produced by EXACT with
only 50% of the memory. Note that we did not include
a comparison to OPT because the time and memory
requirements of the flow solver exceeded available re-
sources.

15

5.2.6 Discussion of Experimental Results

We presented a comparison of the performance of sev-
eral join approximation techniques for computing slid-
ing window joins with limited memory. We showed the
efficacy of the fixed and variable memory versions of
the PROB technique on both synthetic and real life
datasets. PROB clearly improves on the state of the
art, i.e., random tuple eviction, and it can perform
almost as well as the optimal offline algorithm OPT-
offline. As seen from the graphs, the performance of
PROB (measured in terms of the number of join tuples
output) degrades gracefully as the amount of available
memory decreases, and it performs exceptionally well
for skewed data, typically producing over 90% of the
total output with as little as 50% of the memory (com-
pared to the EXACT algorithm). In cases where both
the input streams have join attribute values distributed
uniformly at random, no online algorithm can do bet-
ter than evict tuples at random. In cases where there is
a large disparity in the skew of the two joining streams,
the variable memory allocation approaches fare better
than the fixed memory approaches.

The question of how to split the available memory
between the buffer space for join processing and any
summary structures is an important and complex one
that is beyond the scope of this article. However, we
would like to note that summary statistics about the
frequencies of the various domain values occurring in
each stream are usually a basic primitive required for
answering and optimizing virtually any type of query
(not just joins) over the corresponding streams. Hence
this summary space can be shared by several queries,
similar to the summary statistics stored in a relational
database system.

6 Generalization of the Dynamic
Window Join Approximation

In Section 4 we introduced an optimal offline algorithm
and proposed two online heuristics. All three were de-
veloped for standard equi-joins, i.e., where two tuples
join if the values of the join attribute(s) are equal. Fur-
thermore we assumed that the tuples of streams R and
S arrive in synchrony, one per time unit. The win-
dow size w and available memory M were fixed. These
assumptions obviously will not be satisfied by most ap-
plications. In this section we show how to generalize
the approaches.

6.1 Extensions of OPT-Offline

The flow network model for OPT-offline (cf. Sec-
tion 4.1.1) has the great advantage of enabling the
efficient computation of a baseline for evaluating the
approximation quality of any real online algorithm. In
addition to that it is fairly flexible.

6.1.1 More General Application Parameters

Varying window size. Variations of the window size
w over time can easily be incorporated into the flow
graph. Consider the wide box in Figure 3 which high-
lights the lifetime of tuple s(1). Instead of all such
boxes having the same number of horizontal arcs (2 in
the example), varying window size can be reflected by a
correspondingly larger or smaller number of these arcs.
For instance, if the window size temporarily shrinks to
w = 2 at time ¢ = 1, then node s(1) : 3 would not exist
and s(1) : 2 would only have a single outgoing edge
to s(2) : 2. It is interesting to note that we can even
model a different lifetime for each single tuple.

As an extreme case, we can also model unbounded
joins, i.e., joins with no window restrictions. This can
be done by adding the corresponding horizontal arcs
for each tuple and each time instant after this tuple
has arrived. For instance in Figure 3 there would be
horizontal arcs to new nodes r(0) : 3 and r(0) : 4,
indicating that r(0) never expires.

Varying amount of memory. Dealing with
resource fluctuations, in this case memory, is of
paramount importance for applications. We show how
such fluctuations can be modeled by the flow graph.
Recall that the source node s has M outgoing arcs
(ignoring the path for output generated by matching
input tuples which arrive at the same time, e.g., the
top path through node ¢ = 2 in Figure 3). Through
these arcs a total flow of M is pushed, modeling the
amount of available memory. Allowing variable mem-
ory implies that memory is added or removed at certain
time instants. The flow graph can reflect these changes
by introducing additional source and sink nodes that
adjust the flow for these time instants.

Consider time instant ¢ = 3 in Figure 3 (tall box).
Suppose that at this time not only the new tuples 7(3)
and s(3) arrive, but also the memory is reduced by m
units. Figure 21 shows the modified section of the flow
graph. We model the event by adding a new sink node
sink(3) with demand m. Furthermore, nodes r(1) :
3, r(2) : 3, s(1) : 3, and s(2) : 3 now each have an
additional outgoing arc to sink(3). Hence at time ¢ = 3
exactly a flow of m will be redirected from the tuples
which are in memory at that time to the sink node,
reducing the flow and hence the modeled amount of
memory as desired.

Increasing amounts of memory can be modeled sim-
ilarly, but requires more care. If m more memory slots
are available beginning at time ¢ = 3, we add a new
source node source(3) with supply m. This node has
outgoing arcs to the next [m/2] incoming pairs of R-
and S-tuples with the next higher arrival times. In
the example for m < 2, node source(3) is connected to
r(3) : 3 and s(3) : 3. For 2 < m < 4 it is connected
to r(3) : 3, s(3) : 3, r(4) : 4, and s(4) : 4, and so
on. This way of modeling larger memory increments
by more than two slots might appear artificial, but it

16

e

Figure 21: Memory shrinks at time 3

perfectly models reality. Even if more than 2 memory
slots are added at a certain time, there are only two
newly arriving tuples to fill them. Hence the m — 2
remaining additional memory slots are essentially ir-
relevant in that moment and can only be filled at later
times, two tuples at each time instant.

There is one more subtlety to be considered when
modeling increasing memory. We illustrate it with an
example. Assume at time ¢ the memory increases by 10
slots, followed by a decrease by 16 slots at time ¢t+2. In
this case the increment by 10 would be distributed over
5 consecutive time instants, hence overlapping with the
decrement at time t + 2. In such cases of artificial
overlap we simply compute the aggregate change in
memory and only add the corresponding nodes. In the
example there would be a source node with supply 4
and four outgoing arcs to the tuples arriving at times
t and t + 1. For time t + 2 we add a sink node with
demand 10 (=16-104+4). Notice that this accurately
reflects the real situation. At times t and ¢t 4+ 1 the
effect of the added 4 memory slots is equivalent to the
effect of adding 10 new slots at time ¢ (recall that only
at most 2 slots can be filled per time unit). From time
t + 2 we have ensured that the memory reflects the
overall loss of 6 memory slots (compared to time ¢ —
1). Interestingly, if we have several phases of memory
increases overlapping each other, this simply leads to
a cascading effect of adding arcs from source nodes to
tuples at later time instants.

Asynchronous tuple arrival. Instead of exactly
one tuple per time unit, we allow any number of tuples
to arrive at a given time unit (including zero tuples).
Notice that a sliding window defined based on time
units might contain a varying number of tuples over
time.

This case can be incorporated into the flow graph
very easily. Consider the tall box in Figure 3 which
highlights the window contents at time ¢ = 3. Tuples
r(3) : 3 and s(3) : 3 are the new tuples that arrive
at that time. If asynchronous arrival is possible, there
might be no such tuple, or several of them. We can
model this by adding the appropriate number of nodes
for each stream and by connecting the nodes from pre-
vious tuples to them. In the example r(1) : 3, 7(2) : 3,
s(1) : 3, and s(2) : 3 would have additional outgoing

arcs to these new tuples, or would directly point to the
tuples arriving at time ¢t = 4.

Notice that we can even model continuous time do-
mains. All we need for our model is the arrival order
of the tuples. As before we can model both fixed and
variable memory allocation between R and S.

6.1.2 Other Join Operators

The equi-join is arguably the most commonly used join
operator in database systems. In general any predicate
over the schemas’ attributes could be used to match the
tuples of streams R and S. Common examples are join
conditions which are conjunctions of terms of the form
r.J10s.Jy, r.J10c, and s.J10c where r and s are tuples
arriving in streams R and S, respectively; ¢ denotes a
constant, and 0 € {<, <,=,#,>,>}. Another popular
join operator from spatial applications is the spatial-
or e-join that matches tuples r and s if their distance
is less than or equal to e.

Our flow model can handle all these join operators.
In fact, it can handle any subset of the cross-product
(including the cross product itself) of two data streams.
Hence our model can by definition handle any join [32].
Notice that for each element of the cross-product of
R and S, limited to the contents of a window of size
w, there is a corresponding horizontal arc in the flow
graph. In Figure 3, arc r(2) : 2 — r(2) : 3 corresponds
to the pair (r(2), s(3), because it models that r(2) re-
mained in memory until time 3 when tuple s(3) : 3 ar-
rives. In general, arc r(i) : j — r(4) : j + 1 corresponds
to the pair (r(¢), s(j+1)), similarly for the correspond-
ing horizontal S-arcs. If the tuple pair satisfies the join
condition, the arc has cost factor -1, otherwise zero.

6.1.3 Other Approximation Error Measures

The MAX-subset measure assigns the same benefit
value to all output tuples of the join. In practice cer-
tain tuples might be more valuable than others. For
instance, in network monitoring systems, packages that
might indicate a denial of service attack are of higher
importance than others. Our model is general enough
to assign a different priority to each single output tuple.
Hence we can not only handle applications where tuples
with the same value have the same priority, but also
cases where the priority of an output tuple is defined by
an arbitrary function val : R x S — R, i.e., a function
that assigns a real number independently to each possi-
ble output tuple. In the model we simply add the cost
factor —val((r(i),s(j+1)) to arc r(i) : j — (i) : j+ 1,
similarly for the horizontal S-arcs.

The measure we are optimizing now is to approx-
imate the sliding window join with limited memory
such that the sum of the priorities of the join tuples
output by the approximation is as large as possible.
This enables our model to support value-based QoS
specifications [7].

17

6.1.4 Discussion of the OPT-Offline Exten-
sions

With the above extensions we can model any applica-
tion with synchronous or asynchronous tuple arrival,
discrete or continuous time, fixed or varying window
size, windows defined based on time or number of tu-
ples, fixed or varying memory size, fixed or varying
memory allocation between R and S, any type of join
condition, and any approximation quality measures
that assign weights (priorities) to output tuples. In
fact the only relevant property we could think of, which
can not be modeled by the flow graph are tuple prior-
ities that depend on the output history, i.e., if certain
previous output tuples have been generated or not.
All generalizations we proposed for the flow graph
model retain the polynomial complexity and hence en-
able efficient computation of the offline benchmark.

6.2 Extensions of the Online Heuristics

Recall that the PROB and LIFE heuristics assign pri-
orities to input tuples in the current window in or-
der to decide which tuples to drop in case of resource
shortage. Both heuristics generalize to varying win-
dow size, varying amount of memory, and asyn-
chronous tuple arrival (including a continuous time
domain) in a straightforward manner. For example, if
the window size changes, the behavior of PROB does
not change (except for expiring tuples at the appropri-
ate time), while LIFE modifies the priority estimation
calculation where the remaining lifetime is computed
by taking into account the new window size. For un-
bounded joins, i.e., joins with no window restriction,
LIFE would be meaningless (since no tuple ever ex-
pires), but PROB would just work in the same manner
as before. Note that over time all memory slots will fill
up with high-priority tuples.

If other join operators or other approximation error
measures are used, one simply needs to change the pri-
ority computation accordingly. This is identical to the
way we change the cost factor of horizontal edges in
the flow model. The only difference is that here we do
not know the future, hence the benefit of an input tu-
ple is weighted by the probability of seeing a matching
partner in the other stream.

Interestingly, the heuristics can even handle the case
when priorities of current tuples depend on past output
(or drops). All we need is some compact synopsis data
structure that summarizes the relevant properties of
the previous output. Here we can select from a variety
of efficient stream synopsis techniques (see discussion
in Section 7).

7 Related Work

There is a growing interest in the general field of
data stream processing. The general issues and some

18

architectures for stream processing systems are dis-
cussed in [3, 4] (Stanford’s STREAM) and [7] (Aurora).
The latter introduces the notions of QoS-optimization
based on QoS graphs for response times, tuple drops,
and values produced. Our work is the first to exam-
ine in detail efficient drop-based QoS optimization for
sliding window joins. As such, our techniques can well
be integrated into the Aurora query processor.

In a recent paper Kang et al. [28] propose a unit-time
based cost model for selecting the appropriate imple-
mentation and memory allocation for the join of two
input streams according to their arrival rates. Load is
shed by simple random eviction. Our work addresses
more complex memory allocation problems based on
the values of single tuples (hence the notion of seman-
tic join approximation introduced in this paper). In
that respect our work is also related to uniform sam-
pling over joins [9]. However, our goal is to maximize
the accuracy of the output, not its statistical properties
(e.g., being a uniform sample).

In a recent paper Tatbul et al. [36] propose several
load shedding approaches for data stream processing.
The goal is to find the optimal position and drop rate of
operators which are inserted into the query plan of the
Aurora query network. This work is complementary
to ours in the sense that our techniques specifically
target load shedding for joins and provide results about
the theoretical foundations of approximating static and
dynamic joins.

Hammad et al. [23] propose new techniques for
scheduling for shared window joins over data streams.
In other recent work on joins over data streams Viglas
et al. [40] propose multi-way join operators to speed
up the generation of a prefix of the overall join output.
Shah et al. [35] examine how to process stream queries
in parallel on a cluster.

Adaptive query processing systems like Tele-
graph [25], NiagaraCQ [10], sensor database systems [6]
and adaptive techniques as proposed in [8, 27, 31] aim
at providing the best possible query performance in
continuously changing environments like the Internet.
Our algorithms can also adapt to changing amounts of
available resources and hence can be used in adaptive
query processing systems.

Arasu et al. [2] examine when stream queries can
be computed with bounded storage. Joins in gen-
eral might require unbounded memory, hence in data
stream systems they are restricted to computation over
sliding windows as discussed earlier.

For maintaining online data stream statistics, e.g.,
in order to compute the tuple priorities for join mem-
ory replacement, some of the recently proposed stream
aggregation approaches could be applied. Recent work
includes [13, 14, 18, 20, 21, 38].

8 Conclusions and Future Work

We discussed the problem of approximately comput-
ing sliding window joins for data streams. We defined
the problem space of fine grained tuple-based join ap-
proximations using different set error measures, and we
examined the MAX-subset measure in depth and gave
optimal offline and good online algorithms for sliding
window joins. We believe that this work shows that
semantic join approximation, i.e., adapting to resource
shortages by dropping tuples based on their values, is
clearly superior to random load shedding at the cost of
a small overhead for maintaining simple stream statis-
tics.

We showed how our techniques for sliding window
join approximation, both the optimal offline bench-
mark algorithm and the online heuristics, can be ex-
tended to capture almost any possible application sce-
nario, including a general class of approximation qual-
ity measures, asynchronous tuple arrival, continuous
time domain, any join operator, windows defined based
on tuples or time, and variations in window size and
resources. For the static join case we provided hard-
ness results and optimal and approximate algorithms
for the MAX-subset measure.

Nevertheless this work only examined part of the
overall problem space, and many problems remain
open, e.g., developing efficient algorithms for the
Archive-metric and examining the other join process-
ing models, especially the slow-CPU case. Another in-
teresting direction of future work is to examine how
multiple queries can efficiently share resources and how
to combine semantic join approximation with the join
implementation selection in [28]. Also, for complex
queries which involve joins and other operators, new
approximation techniques are required. We could eas-
ily integrate aggregate operators like SUM on the join
output, and selections on the join inputs. On the other
hand, for instance optimizing MAX-subset for each sin-
gle node of a join tree will not optimize MAX-subset
overall. Examining complex queries therefore is an-
other challenging problem which will be addressed as
part of our future work.

Acknowledgement

We thank Rohit Ananthakrishna, Al Demers, and Alin
Dobra for helpful discussions.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Net-
work Flows: Theory, Algorithms, and Applications.
Prentice-Hall, 1993.

[2] A. Arasu, B. Babcock, S. Babu, J. McAlister, and
J. Widom. Characterizing memory requirements for
queries over continuous data streams. In Proc. Symp.

19

[5]

[10]

(11]

[12]

[13]

[17]

on Principles of Database Systems (PODS), pages
221-232, 2002.

B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream sys-
tems. In Proc. Symp. on Principles of Database Sys-
tems (PODS), pages 1-16, 2002.

S. Babu and J. Widom. Continuous queries over data
streams. ACM SIGMOD Record, 30(3):109-120, 2001.

D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas,
J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish,
T. Johnson, R. T. Ng, V. Poosala, K. A. Ross, and
K. C. Sevcik. The New Jersey data reduction report.
IEEE Data Engineering Bulletin, 20(4):3-45, 1997.

P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proc. Int. Conf. on Mobile Data
Management (MDM), pages 3—14, 2001.

D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams — a new class of data

management applications. In Proc. Int. Conf. on Very
Large Databases (VLDB), 2002.

S. Chandrasekaran and M. J. Franklin. Streaming
queries over streaming data. In Proc. Int. Conf. on
Very Large Databases (VLDB), 2002.

S. Chaudhuri, R. Motwani, and V. R. Narasayya. On
random sampling over joins. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 263-274,
1999.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Nia-
garaCQ: A scalable continuous query system for inter-
net databases. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 379-390, 2000.

C. D. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk,
and O. Spatscheck. Gigascope: High performance net-
work monitoring with an SQL interface. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, page
623, 2002.

A. Das, J. Gehrke, and M. Riedewald. Approximate
join processing over data streams. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, pages 40-51,
2003.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. Main-
taining stream statistics over sliding windows. In Proc.
ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 635644, 2002.

A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Ras-
togi. Processing complex aggregate queries over data
streams. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 61-72, 2002.

M. R. Garey and D. S. Johnson. Computers and In-
tractability. W. H. Freeman and Company, 1979.

M. N. Garofalakis, J. Gehrke, and R. Rastogi. Query-
ing and mining data streams: You only get one look.
In Proc. ACM SIGMOD Int. Conf. on Management of
Data, 2002.

J. Gehrke, editor. Special Issue on Data Stream Pro-
cessing, volume 26 of IEEE Data Engineering Bulletin,
2003.

(18]

(19]

20]

(21]

22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

(31]

32]

(33]

A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. In Proc.
Int. Conf. on Very Large Databases (VLDB), pages
79-88, 2001.

A. V. Goldberg. An efficient implementation of a scal-
ing minimum-cost flow algorithm. Journal of Algo-
rithms, 22(1):1-29, 1997.

M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages
58-65, 2001.

S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. In Proc. ACM Symp. on the Theory of
Computing (STOC), pages 471-475, 2001.

C. J. Hahn, S. G. Warren, and J. Lon-
don. Edited synoptic cloud reports from ships
and land stations over the globe, 1982-1991.

http://cdiac.esd.ornl.gov/ftp/ndp026b, 1996.

M. A. Hammad, M. J. Franklin, W. G. Aref, and
A. K. Elmagarmid. Scheduling for shared window joins
over data streams. In Proc. Int. Conf. on Very Large
Databases (VLDB), pages 297-308, 2003.

D. Hand, H. Mannila, and P. Smyth. Principles of
Data Mining. MIT Press, 2001.

J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran,
A. Deshpande, K. Hildrum, S. Madden, V. Raman,
and M. A. Shah. Adaptive query processing: Tech-
nology in evolution. IEEE Data Engineering Bulletin,
23(2):7-18, 2000.

Y. E. Ioannidis and V. Poosala. Histogram-based ap-
proximation of set-valued query-answers. In Proc. Int.
Conf. on Very Large Databases (VLDB), pages 174—
185, 1999.

Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and
D. S. Weld. An adaptive query execution system for
data integration. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 299-310, 1999.

J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating
window joins over unbounded streams. In Proc. Int.
Conf. on Data Engineering (ICDE), 2003.

F. Korn, S. Muthukrishnan, and D. Srivastava. Re-
verse nearest neighbor aggregates over data streams.
In Proc. Int. Conf. on Very Large Databases (VLDB),
2002.

S. Madden and M. J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor data.
In Proc. Int. Conf. on Data Engineering (ICDE), 2002.

S. R. Madden, M. A. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 2002.

R. Ramakrishnan and J. Gehrke. Database Manage-
ment Systems. McGraw-Hill, 3 edition, 2003.

R. T. Rockafellar. Network flows and monotropic op-
timization. John Wiley & Sons, 1984.

20

34]

[35]

37]

(38]

39]

[40]

Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases. In
Proc. Int. Conf. on Computer Vision (ICCV), pages
207-214, 1998.

M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An adaptive partitioning opera-
tor for continuous query systems. In Proc. Int. Conf.
on Data Engineering (ICDE), pages 25-36, 2003.

N. Tatbul, U. Cetintemel, S. Zdonik, Mitch Cherniack,
and Michael Stonebraker. Load shedding in a data
stream manager. In Proc. Int. Conf. on Very Large
Databases (VLDB), pages 309-320, 2003.

Stanford STREAM Team. Stream query repository.
http://www-db.stanford.edu/stream/sqr.

N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dy-
namic multidimensional histograms. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2002.

C. J. van Rijsbergen. Information Retrieval. Butter-
worths, 2 edition, 1979.

S. D. Viglas and J. Burger J. F. Naughton. Maximizing
the output rate of multi-way join queries over stream-
ing information sources. In Proc. Int. Conf. on Very
Large Databases (VLDB), pages 285-296, 2003.

A Proof of Lemma 1

We show the following. Let Cp, »(p) denote the maxi-
mum number of edges that can be retained when p (<
m+n) nodes are retained from a Kurotowski K (m,n)
component. Then C,, ,(p) is given by: (w.l.o.g., as-
sume m > n)

(p/2)? if p<2n, p even
Crmn(p) = p?> —1)/4 if p<2n, podd
n(p—mn) else.

Proof. Given a single Kurotowski component K (m,n),
the optimal way to retain 0 < p < m+n of its nodes (or
equivalently, to delete m+n—p of its nodes), is to retain
m’ < m nodes from the first partition and n’ < n nodes
from the second partition such that m’-n’ (i.e., the
number of retained edges) is as large as possible. This
corresponds to choosing m’ and n’ such that m’+n’ = p
and |m’ —n/| is as small as possible. Thus, the p nodes
to be retained can be chosen one by one by selecting
alternately a node from the ‘m partition’ followed by a
node from the ‘n partition’ until a count of p is reached.
If all the nodes of one partition are exhausted before a
count of p is reached, we simply select the remaining
nodes to be retained from the larger partition. The
formula for C, ,(p) follows immediately. O

B Proof of Theorem 1

We show that the node degree greedy algorithm
provides a 2-approximation to the k4, kp-truncated
join approximation problem at a cost of O(clogc) and
O(c) for running time and space, respectively.

Proof. Let p; and ps denote the sum of the degrees of
the k4 and kp lowest degree nodes from the A- and
B-partitions in the original graph, respectively. The
NDG algorithm deletes at most p; + po edges. On
the other hand, any algorithm that deletes k4 and kp
nodes from the A- and B-partitions, respectively, (and
hence also the optimal algorithm) must delete at least
max{py, pa} edges.

A similar argument shows that the solutions ob-
tained using the above approaches are also 2-
approximations to the dual version (i.e., the number
of edges retained is at least half the number of edges
retained by an optimal solution retaining m—k 4, n—kp
nodes, where m and n are the number of tuples in re-
lations A and B respectively).

The running time of NDG is dominated by the cost
of sorting the components, i.e., O(clogc). The algo-
rithm can be implemented ‘in-place’, and thus needs
only O(c) space, viz. the space needed to store the
inputs. ([

C Proof of Theorem 2

The running time of the ADG algorithm is dominated
by the cost of sorting the components, i.e., O(clogc).
The algorithm can be implemented ‘in-place’, and thus
needs only O(c) space.

We show now that the average degree greedy algo-
rithm provides a 2-approximation to both the primal
and dual versions simultaneously. We give separate
proofs of 2-approximations to the primal and dual ver-
sions respectively. Before presenting the actual proof,
we first state some useful observations.

Lemma 2. There exists an optimal solution for the
primal and dual k-truncated join approximation prob-
lem which is of the following form: For all but at
most one Kurotowski component, either all the nodes
in the Kurotwoski component are retained or none of
the nodes in the Kurotwoski component is retained.

Proof. (Sketch) The main idea is to show that any op-
timal solution to the primal or dual k-truncated join
approximation problem can be ‘converted’ to the re-
quired form without reducing the number of retained
edges in the resulting graph. Assume there is an opti-
mal solution with two or more partially selected compo-
nents, i.e., components where some of their nodes are
retained and others are not. Pick any two such par-
tially selected components K;(m;,n;) and K;(m;,n;)
(let mj, n}, m}, n; denote the respective numbers of
retained nodes) and progressively increase the number
of nodes to be retained from one and correspondingly
decrease the number of nodes to be retained from the
other until either the former is completely retained or
the latter has no node left. A standard case-by-case
analysis (based on the relative sizes of mj, nj, m/, n})
shows that there is always a way to ‘transfer’ the nodes
chosen for retention from one partially selected com-
ponent to another such that none of the node-transfer
operations decreases the number of retained edges and
at the end, either the former component has no nodes
selected for retention, or the latter component is com-
pletely selected. The whole process is repeated until
there is at most one partially selected component left.
Since none of the node-passing operations from com-
ponent to component ever decreases the number of re-
tained edges, the proof is complete. O

Lemma 3. If the solution found by the ADG algorithm
has no partially selected component, then this solution
is optimal.

Proof. (Sketch) For a given solution of the dual k-
truncated join approximation problem, assign to each
node of this solution an amortized value equal to the av-
erage degree of the component it belongs to. Then the
total number of edges retained is the sum of the amor-
tized values assigned to all retained nodes. We argue
that the k nodes retained by ADG have the highest

possible amortized values amongst all solutions retain-
ing k nodes. Notice that a retained node in a partially
selected component K (m, n) with m’, n’ nodes retained
from the two partitions of the component respectively
is assigned an amortized value of m’-n'/(m’ +n’). Tt
can be shown that m' - n'/(m' +n') <m-n/(m +n).
Hence nodes of components which are not selected by
ADG can never achieve a higher amortized value than
nodes selected by ADG. It follows that retaining nodes
from any Kurotowski component which is not selected
by ADG would result in introducing nodes with lower
amortized values, and hence a lower number of retained
edges than the one achieved by ADG. The argument
for the primal version is similar, with the amortized
value for a deleted node in a partially deleted compo-
nent being defined as the ratio of the number of edges
deleted from the component to the number of nodes
deleted from the component. O

We are now ready to state the proof for Theorem 2:

Proof. Based on Lemmas 2 and 3 we only need to per-
form the proof for the case that the solution given by
the ADG algorithm has exactly one partially selected
component. For a Kurotwoski component K (m,n), let
its average degree be d = mn/(m-+n). W.lo.g. assume
that m < n. Then it is easy to see that

m/2 < d < min(m,n/2) (1)
Consider a Kurotwoski component K(m,n) with av-
erage degree d. If p nodes are deleted from such a
component, then it is can be shown that the number
of nodes deleted is always at least p * d and if p nodes
are retained from this component, then the number of
nodes retained is always at most pxd. We first show the
2-approximation for the primal version of the problem:

Lemma 4. Primal version: The number of nodes
deleted by the ADG algorithm is at most twice the num-
ber of nodes deleted by an optimal algorithm.

Proof. Let delyoges be the number of nodes deleted in
the partially selected component K (m,n) by ADG. Let
delzgggglete be the number of edges deleted in the (zero
or more) components completely deleted by the ADG

algorithm. Notice that delggrgrleglete may be 0 if no com-
ponent is completely deleted. Let d = m-n/(m+n) be
the average degree of the partially selected component,
and let d be the amortized value assigned to deleted
nodes of the partially selected component, as described

above. Thus if del?”"! edges are deleted by the ADG

edges
algorithm from the partially selected component, then

d = del?$r0™ /delyodes-

Let C(Greedy) denote the number of edges deleted
by ADG and let C(OPT) denote the number of edges
deleted by an optimal algorithm. With the above no-
tation we obtain:

complete partial
deledges + deledges

C(Greedy) =

complete 7
= deledgef; +d - delpodes

1
< delzggg; ote +m - delyodes

The last inequality follows from the fact that if nodes

are deleted optimally from a single Kurotwoski compo-

nent then each deleted node gets an amortized value of

at most m and hence d < m. From Equation 1 follows

that

delzzg;zlete +m- delnodes < delgglgnezlete +2-d- delnodes
Hence,
C(Greedy) < deliqa?®® +2-d- delyodes (2)

Note that if del,oqes nodes are deleted from a compo-
nent K(m,n) with average degree d, then the amor-
tized value of each deleted node is always at least d,
since the number of edges deleted is always at least
delyodes - d- Using this, and comparing the amortized
values of the deleted nodes in decreasing order in the
greedy and OPT solutions, we can argue along the
lines of the amortized value argument used above for
Lemma 3, hence:

> deliP® 4 d - delnodes

C(OPT) (3)
The conclusion that the ADG algorithm is a 2-
approximation to the primal follows immediately from
Equations 2 and 3. In fact, as can be seen, if the num-
ber of edges deleted from the completely deleted com-

ponents in the greedy algorithm is delggggglete > 0, we
have a 1 + d - delyodes/ (delzgglezlete + d - delyoges) < 2
approximation scheme to the primal. O

With similar arguments as for the primal we will now
show the following lemma for the dual formulation of
the k-truncated join approximation problem:

Lemma 5. Dual version: The number of nodes re-
tained by the optimal algorithm is at most twice the
number of nodes retained by the ADG algorithm.

Proof. The proof of the dual version is similar in spirit
to the primal version, except that there are two cases
to consider. Suppose that ADG retains nodes from
j Kurotowski components and let K(m;,n;) and d;
(i =1,...,5 — 1) be the completely retained compo-
nents and their corresponding average degrees in non-
increasing order of average degree. Furthermore let
K(mj,n;) be the component partially retained by the
greedy solution and let d; be its average degree. Thus
we have

(4)

For the following discussion assume w.l.0.g. that m; <

n;. Using notation analogous to the primal case, let

retzzglezlcm be the number of edges in the components

K(mi,n1),...,K(m;j_1,nj_1), and let retyoqes be the
number of nodes retained in the component K (m;,n;)

dy>dy> ... >dj >d;

which is partially selected by the ADG algorithm.
We distinguish between the following two cases: (1)
etnodes < 2m; and (2) retnpodes > 2m;. Analogous to

the notation introduced earlier, let d; be the amortized
value assigned to retained nodes of the partially se-

lected component, as described above. Thus if retg‘}g;fl
edges are retained by ADG from the partially selected
component K(mj,n;), then (fj = retgggel:l/retnodcs.
We will use C(Greedy) to denote the number of edges

retained by ADG and C(OPT) to denote the number
of edges retained by an optimal algorithm. Case (1):
retnodes > 2m;. The proof of this case is very similar
to the primal version:

tcornplete

partial
edges ret

edges

C(Greedy) +

complete
edges

+ Cij - Tetpodes

+ (mj/z) “ Tebnodes

ret

I‘etcompletc

2 edges

The last inequality makes use of the following fact: If
2m; nodes are optimally retained from K (mj,n;), the
amortized value assigned to each retained node is ex-
actly m;/2 (see Lemma 1). Thereafter each additional
node retained in the component results in the reten-
tion of m; additional edges, so that dAj > m;/2. From
Equation 1 follows that

toomn 4 (m/2) - Tetuodes > Tetigmn 4+ (d;/2)
Hence,
C(Greedy) > r1etiqmP® 4+ (d;/2) - retodes (5)

Similar to the primal case, it is easy to argue using
amortized values that

C(OPT) < I‘etcomplete

edges

(6)

The 2-approximation property of the ADG algorithm
follows from Equations 5 and 6.

Case (2): retpodes < 2m;. We consider the case
when retyoqes is even. A similar argument can be used
for the case when ret,oqes 18 odd. The cost of ADG is

+ d] ‘- Tetnodes

complete

partial
edges ret

edges

C(Greedy)

+
+ (retnodes/2)2 .

ret

complete
edges

ret

This follows from Lemma 1. As before we have

complete
I‘etedges

O(OPT) < + dj ‘- Tetpodes

If retzggzlete = 0 (no component is completely retained
by ADG) it can be easily shown that the ADG al-
gorithm in fact finds the optimal solution. This is
based on the observation that for m = mq + mo and
n = ny + ng the Kurotwoski component K (m,n) al-
ways has at least as many edges as K(mi,n1) and

K(mgz,ny) together. complete),

Hence assume retedges

. let
Clearly, if d; - retnodes < retzzggze °, we have a 2-

approximation. Hence suppose, for the sake of con-

. let
tradiction, that d; - retnodes > retgggfg € Then,

Jj—1
i=1
Jj—1
> (mi+ni) - d

i=1

complete
edges

d; - Tetnodes > Tt

\%

The last inequality follows from Equation 4. Thus if
the ADG solution is not a 2-approximation, then we
have

j—1
retnodges > Z(mi—f—ni)
i=1

Let s; = (m; +n;) for i =1,...,j — 1. For any i €
{1,..,5 — 1} we have:

retpodes > My +n; =8;

For a given s; (and hence a fixed m;+n;) we can obtain
an upper bound on d; and show that this bound leads
to a contradiction. Formally:

< m-n
max
“ Tenodes ~ {mn€Zim+n=s;} S;
o G2
54
< I‘etnodes/4
< m;/2 Condition of case (2)
< d Equation 1

This contradicts Equation 4. O

Theorem 2 follows immediately from Lemmas 4 and

d. O

D Proof of Theorem 3

We show that the 3-relation static join approximation
problem is NP-Hard.

Proof. We model a 3-relation join using a tripartite
graph and then use a reduction from the balanced bi-
cliqgue problem [15].

The tripartite join graph representing a 3-way join is
constructed exactly as the bipartite join graph for a two
relation join. In this case, we have three partitions, one
for each relation with each partition having a node for
every tuple of the corresponding relation. Suppose that
the 3-way join involved is A <1 B <1 C. W.lo.g. we
assume that the joins are on different join attributes J;
(for A B and Jy (for B < C). We slightly overload
notation and also refer to the partitions corresponding

to relations A, B and C' as partitions A, B, C. There
is an edge between a node in partition A and a node
in partition B iff the corresponding tuples produce at
least one output tuple in the 3-way join. Similarly, we
add edges between nodes in partition B and partition
C. However, for concise representation and to avoid
redundancy, we do not have any edges between nodes
in partition A and nodes in partition C'. Notice that we
can figure out whether or not a given tuple in partition
A joins with a given tuple in partition C' to produce
output for the 3-way join by checking if there is a path
from the node in partition A to the node in partition
C or not. Note that a tuple from A may join with a
tuple from B based on the 3-way join conditions, but
the tuple from B may not join with any tuple from
C. In that case this A-tuple joining with the B-tuple
produces no output for the 3-way join and hence there
is no edge between them.

With the formulation as a graph problem, we are
now ready to show the reduction from the balanced
biclique problem (decision version).

Problem 1 (Balanced Biclique Problem). Given
an arbitrary bipartite graph G and a an integer k, does
G contain a K(k,k) subgraph (i.e. a biclique with k
nodes in each partition)?

Given an arbitrary bipartite graph, we construct a
corresponding tripartite graph representing the join of
three relations as follows (see Figure 22). The A and
C partitions of the tripartite graph are the same as
those of the given bipartite graph. The third partition
is constructed by inserting nodes on every edge in the
original bipartite graph and putting all the newly in-
serted nodes into the same partition, i.e., partition B.
Each of the nodes of partition B has degree 2, and is
connected to the two nodes in partitions A and C' that
were originally connected by the edge onto which the
newly added node of partition B was inserted.

Clearly the transformation of the given bipartite
graph to the corresponding tripartite graph as ex-
plained above is polynomial in the number of edges in
the original bipartite graph. To complete the hardness
proof, we shall show that the decision version of the
primal k4, kp, ko-truncated join problem is NP-Hard.
Thus, we need to show the following lemmata:

Lemma 6 (Correctness of Construction). The tri-
partite graph obtained by using the above construction
represents a 3-way join graph for any arbitrary bipar-
tite graph.

Lemma 7 (Reduction for k4, kg, kc version). The
given bipartite graph has a K(k, k) subgraph iff the tri-
partite join graph produces exactly k2 join tuples when
optimally (w.r.t. MAX-subset measure) retaining k,
k2, and k nodes from partitions A, B and C respec-
tively.

Strictly speaking, the decision version asks if there
erists a solution which when retaining k, k2, and k
nodes from the three partitions respectively produces
at least k2 join tuples. But as we shall soon see, this is
equivalent to the optimal solution producing ezactly k>
join tuples for join graphs where the B partition has
only nodes of degree 2. For the variant of the problem
where “k” nodes overall are retained, we will show the
following lemmas:

Lemma 8 (Reduction for k£ nodes overall ver-
sion). The given bipartite graph has o K(k,k) sub-
graph iff optimally retaining 2k + k? nodes (overall)
from the tripartite graph produces k? join tuples.

Lemma 6. To see why Lemma 6 is true, first note that
every node in partition B has degree two, and hence
imposes no structural constraints on the tripartite join
graph (i.e., no set of edges implies the existence of an-
other edge). More concretely, we can assume the join
represented by the tripartite graph to be an equality
join with the predicates A.J; = B.J; A B.Jy = C.J;
where the schemas of relations A, B and C are A(Jy),
B(J1, J2), C(J2) respectively. For each tuple of rela-
tion A, we associate the value a;, ¢ € {1,...,|A|} such
that ¢ # j = a; # a;. Similarly, with each tuple of
relation C, we associate the value ¢;, i € {1,...,|C|}
such that ¢ # j = ¢; # ¢;. For each edge which con-
nects an a; with a ¢; in the original bipartite graph, we
have a tuple in partition B with join attribute values
(@i, ¢;) (cf. Figure 22). Since every tuple in partition B
has degree exactly 2, its value is uniquely determined
by the above construction. Thus the tripartite graph
obtained by the transformation described above repre-
sents a 3-way join graph. O

Lemma 7. To show Lemma 7, first suppose that the
given bipartite graph had a (k, k) subgraph. Suppose
we need to optimally retain k, k2, k nodes from parti-
tions A, B, C respectively of the corresponding tri-
partite 3-way join graph. (This is the dual version
of the ka,kp, kc-truncated join problem.) We shall
show that an optimal solution retains k2 join tuples
in the k, k2, k truncated 3-way join. Consider the k, k
nodes from partitions A,C respectively of the tripar-
tite graph which correspond to the K(k, k) subgraph
in the original bipartite graph. These k, k nodes are, by
construction, inter-connected via k2 nodes in partition
B. (Each of the k nodes in partition A is connected to
each of the k nodes in partition C via a unique node in
partition B). Then, if we retain this set of k, k2, and k
nodes from the partitions A, B and C respectively, the
retained subgraph produces k2 join tuples. Thus we
have a solution which produces exactly k2 join tuples.
To see that this is an optimal solution, we only need to
note that since the nodes in partition B all have degree
exactly two, no solution to a k4, kg, kc-truncated join
on such a graph could ever produce more than kg join
tuples in the truncated result. This is because every

Arbitrary bipartite graph

NPH Reduction
Transformation

Tripartite Join Graph

Figure 22: Example construction

tuple in partition B can produce at most one output
tuple in the 3-way (non truncated) join. Thus we have
shown the “only if” direction of Lemma 7.

For the “if” direction, suppose that an optimal solu-
tion to the dual version of the k, k2, k-truncated join
approximation problem for the tripartite graph ob-
tained from the given bipartite graph retains exactly
k? join tuples. We claim that the original bipartite
graph must contain a K(k, k) subgraph. To see this,
first note that the number of join tuples produced is
exactly equal to the number of nodes retained from
partition B. Since every node in B has degree exactly
2, this implies that every node in B produced exactly
one output tuple. However, each node in partition B
is connected to a distinct pair of nodes from relations
A and C. Since we have exactly k nodes retained from
each of the partitions A and C and these k nodes can
correspond to at most k2 distinct pairs, it must fol-
low that each of these pairs appears in some join tuple
in the truncated result. By construction, for a pair
of tuples from A, C to appear in a join output, the
nodes corresponding to the pair in the original bipar-
tite graph must have been connected. Thus the k, k
nodes in the original bipartite graph which correspond
to the retained k, k nodes from partitions A and C in
the optimal solution to the dual k, k2, k-truncated join
problem must form a K(k,k) subgraph. Hence the
original bipartite graph has a K (k, k) subgraph. O

Lemma 8. For the variant where a total of “k” nodes
need to be retained owverall, we use the same transfor-
mation to a tripartite join graph as before. Suppose the
original bipartite graph has a K (k, k) subgraph. Argu-

Output
A

Join operator

\ «———1tuple/ r time units

. =—1tuplelunittime

Figure 23: Slow CPU model

ing as before, it can be easily shown that there exists a
solution retaining 2k + k2 nodes overall from partitions
A, B and C (respectively retain k, k2, k nodes from the
3 partitions as before) that produces k2 join tuples.

Conversely, suppose there exists a solution retain-
ing 2k + k2 nodes from partitions A, B and C which
retains k2 join tuples. We need to show that the origi-
nal bipartite graph must have a K (k, k) subgraph. We
do this by proving that any solution retaining 2k + k2
nodes which produces k? join tuples must retain k, k2, k
nodes from partitions A, B and C respectively. Then,
arguing as in the case of the k4, kp, ko variant, we can
conclude that the original bipartite graph must contain
a K(k, k) subgraph.

Consider any solution that retains p, 2k + k2 —p—gq,
and g nodes from the partitions A, B and C' respec-
tively, hence a total of 2k 4 k2 nodes overall. Clearly,
the number of join tuples produced can not exceed p- ¢
and 2k + k2 —p— ¢. This follows from the fact that the
nodes of partition B each have degree 2, hence for each
pair (a;,c;) there is at most one join result tuple, and
each tuple in B can generate at most one join tuple.
Since k2 join tuples are retained in total, we obtain the
following inequalities:

k2
k2

p-q (7)
2k +k*—p—gq (8)

IAIA

From Equation 8 we obtain ¢ < 2k — p, therefore p-q <
2kp—p?. With Equation 7 it follows that k? < 2kp—p?
which is equivalent to (p — k)? < 0. This can only be
satisfied for p = k, which implies ¢ = k, completing the
proof of the lemma. O

With Lemmata 6, 7, and 8 the proof of Theorem 3
for the NP-Hardness of the 3-relation static join ap-
proximation problem is complete. O

E Static Case as a Special In-
stance of the Slow CPU Of-
fline Case

Consider an instantiation of the slow CPU case where
the join operator has sufficient memory to store all the
tuples in a join window. As shown in Figure 23, let
R and S be the joining streams, and let w be the size
of the join window. Thus, we assume that the join
operator has a memory size of 2w tuples.

Recall that in the slow CPU case, the join oper-
ator processes input tuples slower than they arrive.
W.lo.g., let us normalize the arrival rates as follows:
We assume that input tuples arrive on streams R and .S
at the rate of 1 tuple per time unit, while the join oper-
ator processes 1 tuple every r time units (r > 1,r € R).
Thus, as shown in Figure 23, the system needs to have
input queues to buffer arriving tuples before they en-
ter the join memory for processing. Let ¢ be the total
queue size in number of tuples. (Figure 23 shows a
queue size of 2¢ with ¢ being allocated to each stream,
but in general the allocation of queue space amongst
the streams may not be equal and may vary with time.)
Note that since we are assuming that there is sufficient
join memory available, once a tuple moves from the
queue to the join memory, it is retained in the join
memory until it is joined with all its arriving partner
tuples which also made it to the join memory. Since
the queue size is bounded, whereas the joining streams
are potentially infinite or very large so as to make it
infeasible to buffer all input tuples before they enter
the join memory, our aim is to decide which tuples to
retain in the queues so as to maximize some objec-
tive function. In our case, we shall be looking at the
MAX-subset metric, where the goal is to maximize the
number of join tuples produced.

Consider the offline version of the slow CPU case,
where an algorithm knows the entire streams in ad-
vance, and must decide which tuples to retain in the
join queues so as the maximize the number of join tu-
ples produced. We claim that the static case discussed
in Section 3 is a special instance of the slow CPU of-
fline case. This can be seen as follows. Let n be the
length of the joining streams (n > w + ¢). Consider
the special case where r > n. In this case, the first
2w tuples (w from each stream) enter the join memory
initially, but since the join operator takes r > n time
to process each input tuple, the entire input streams
R and S arrive before a single tuple from the first 2w
tuples has been completely processed. Hence an op-
timal offline algorithm which knows the sequence of
input tuples on either stream must decide which ¢ of

the 2n — 2w tuples to retain so as to maximize the size
of the join output. Also suppose that none of the first
w tuples in each stream joins with any of the tuples
in the other stream which arrive after time w. Hence
none of the tuples which need to be buffered in the
queue join with the tuples already in the join memory.
Further consider the case where the input is such that
none of the tuples which have the same join attribute
value and appear in different streams arrive more than
w time units apart. For this setup the problem that
the optimal offline algorithm needs to solve is exactly
the static case: Retaining ¢ out of 2n — 2w nodes of a
bipartite equi-join graph so as to maximize the number
of retained edges.

Note that, more generally, we can replace the re-
quirement r > n by r > w + ¢ and still have a scenario
at time 7 in which more than ¢ tuples have arrived and
need to be buffered in a queue of size ¢ so as to produce
maximum join output.

Thus any optimal solution to the slow CPU case
must also be able solve the static case optimally.

