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Abstract—In the context of sharing video surveillance data, a significant threat to privacy is face recognition software, which can
automatically identify known people, such as from a database of drivers’ license photos, and thereby track people regardless of
suspicion. This paper introduces an algorithm to protect the privacy of individuals in video surveillance data by de-identifying faces
such that many facial characteristics remain but the face cannot be reliably recognized. A trivial solution to de-identifying faces involves
blacking out each face. This thwarts any possible face recognition, but because all facial details are obscured, the result is of limited
use. Many ad hoc attempts, such as covering eyes, fail to thwart face recognition because of the robustness of face recognition
methods. This paper presents a new privacy-enabling algorithm, named k-Same, that guarantees face recognition software cannot
reliably recognize de-identified faces, even though many facial details are preserved. The algorithm determines similarity between
faces based on a distance metric and creates new faces by averaging image components, which may be the original image pixels
(k-Same-Pixel) or eigenvectors (k-Same-Eigen). Results are presented on a standard collection of real face images with varying k.

Index Terms—Video surveillance, privacy, privacy-preserving data mining, k-anonymity.
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INTRODUCTION

1
THERE has been a tremendous proliferation of video
surveillance cameras in public locations such as stores,
ATMs, schools, subway stations, and airports. For example,
a recent survey of Times Square found 500 visible
surveillance cameras in the area and 2,500 total in New
York City [8]. The existence of so many cameras and
proposals for even more cameras have caused many
citizens to protest their use in Tampa, Florida, and Virginia
Beach, Virginia, where video cameras are being used in
conjunction with face recognition software [9], [16], thereby
enabling the eventual possibility of tracking almost all of
the people most of the time.

One could imagine in the near future the widespread use
of video surveillance cameras, the subsequent sharing of
that data, and the use of reliable face recognition software to
explicitly identify and track people in real time. This
extends beyond American society’s current expectations,
thereby challenging a person’s “reasonable expectation of
privacy” as provided in US law. Yet, there are many worthy
purposes for sharing video surveillance data. Three exam-
ples include law enforcement, bioterrorism surveillance,
and medical research.

In the case of law enforcement, obtaining (unaltered)
video surveillance footage from its owner may require a
search warrant, particularly if the footage was not recorded
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in a public space. Alternatively, if the subjects in the footage
could be “anonymized,” then authorities could view the
tape beforehand to gain sufficient evidence for a search
warrant as warranted [6]. A very specific search warrant
could be issued to reveal the identity of an actor exhibiting
suspicious behavior or possibly a witness who might have
been looking in the direction of a crime taking place.
Therefore, the technology described in this work could
allow the general sharing of the tapes with law enforce-
ment, while still providing traditional privacy protections to
those who are not under suspicion.

Second, government agencies engaged in bioterrorism
surveillance want to be able to observe signs of respiratory
distress (e.g., coughing) in the general population to
discover early evidence of an outbreak or a bioterrorism
attack [22]. By observing anonymized video surveillance
images, this work allows for the general sharing of video
tapes originally captured for safety and security without
revealing the identities of the individuals, in accordance
with existing public health laws and to allay fears in the
commercial sector who may supply video footage.

Third, using video data as a basis for conducting
behavioral research is becoming quite common (e.g.,
Alzheimer’s patients living in a specialized care unit [3]).
Because of the restrictions of the Health Information
Portability and Accountability Act (HIPAA), this type of
medical research is limited in its ability to widely share its
recordings unless technology as described in this work can
be used to reasonably anonymize the images. The identity
of nonconsenting patients as well as employees would need
to be concealed.

The goal of this work is to enable the sharing of video
data with scientific assurances of privacy protection while
keeping the data practically useful. Experiments reported
herein demonstrate that many tactics done on television,
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such as covering the eyes, do not thwart face recognition
software. What is needed is an algorithm to de-identify
faces in video data such that many facial characteristics
remain yet face recognition software cannot reliably
identify subjects whose images are captured in the data.
This work precisely defines the problem and provides an
algorithm (k-Same) that is an effective solution. The
algorithm guarantees privacy protection by identifying the
“closest” k faces in a video clip and then replacing each of
the k faces with the same “averaged” face. By sharing these
minimally distorted de-identified images, we can restore
the current expectation of privacy so that society does not
have to choose sharing video data over privacy, but society
can share video data freely with privacy protection.

2 FACE DE-IDENTIFICATION DEFINITIONS

This is the first work to formally introduce the principles of
face de-identification. It is imperative therefore to precisely
define terms and common expressions from this vantage
point.

In face recognition, faces are detected in the raw video
image to provide face stills (Definition 2.1) and a
“registration” process performed to provide a face image
(Definition 2.2). A face still is normalized, rotated, and
cropped, as needed, to provide a face image. The goal is
to adjust for pose and make the location of eyes and their
interpupil distance align in roughly the same position in
each image, thereby making face images somewhat
comparable to one another. Samples are provided in
Example 2.1. The preprocessing needed to get a face
image from a face still is one of the greatest current
weaknesses of face recognition [5]. The detection of faces,
the localization of face stills, and the registration of face
stills into face images are all considered preprocessing to
this work on de-identification. Therefore, the methods in
this work do not exploit current weaknesses in detection
and registration.

Definition 2.1 (Face Still). A face still is a column vector P of
size Ny;.. Each cell in P stores a value from 0 to 255, inclusive,
which is the gray-scale pixel value reporting intensity. The
image displayed in a face still includes only one person’s face.

Definition 2.2 (Face Image). A face image (or simply “face”
or “image”) is a column vector I" of size N. Each cell in T’
stores a color coding for a pixel. In grayscale, a pixel value is
from 0 to 255, inclusive, which is the gray-scale intensity. A
face image contains a normalized image of only one person’s
face. A face image removes much of the hair, clothes, and
background from a face still.

Example 2.1 (Face Still and Face Image). Fig. 1b shows a
face image normalized from the face still in Fig. la.
The face image in this example is a column vector
having 13,266 pixels and is displayed graphically as a
rectangle having 99 columns and 134 rows.'

A face set (Definition 2.3) is a set of M face images that
can also be represented as a matrix. It is convenient in

1. What is traditionally done in face recognition to produce a column
vector from a rectangular appearing image is to append the values
appearing in each row, from left to right. In closed form, the cell locations in
the column vector is (i — 1)"N + j for any i in the matrix.
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John Smith,
12 App St,
Houston, TX
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Fig. 1. (a) Face still is (b) normalized to face image, then (c) identified to
provide the name and address of the subject, and (d) the face image is
de-identified.

privacy discussions to have a single face in a face set relate
to one person. This is the idea of a “person-specific” face set
(Definition 2.4). Example 2.2 provides a sample.

Definition 2.3 (Face Set). A face set is a set of M face images,
{Ti:|Ti| =N,i=1,...,M}. The result is analogous to a
matrix of M columns and N rows. Each column is a face
image. Each row corresponds to the same pixel location in each
face image. Each element is a pixel value.

Definition 2.4 (Person-Specific Face Set). Let H be a face set
having M images, {T'1,...,T'vi}. H is person-specific if and
only if each T' € H relates to only one person and no two
images I'y € H, I'y € H relate to the same person.

Example 2.2 (Person-Specific Face Set). The top of Fig. 2
shows two copies of a person-specific face set, H. There
are two face images in H. Each image in H relates to a
distinct person. The two images in H do not relate to the
same person. The images are displayed graphically, but
are stored as two column vectors having 13,266 pixels. H
is stored a matrix having 13,266 rows and two columns.

Both a face set and a person-specific face set may have
duplicates, the latter being realized by the appearance of
identical twins, for example. Therefore, a face set is a
multiset, which is a set that maintains duplicates.

Face identification results when a face image is properly
associated with explicit identifiers, such as name and
address, of the person who is the subject of the face image.
Explicit identification is a grave privacy concern. Fig. 1c
shows the results of face identification in which Fig. 1b is
identified as “John Smith.” “Face recognition” as opposed
to “face identification,” relates a face image to a “known”
face image, which may or may not be explicitly identified.
Recognizing a face is not necessarily the same as identifying
a person because the identities of the subjects of a face set
may not necessarily be known. For example, consider a
robber’s image caught on video during a robbery. The
identity of the robber may not be known, even though the
robber’s image may be recognized as also appearing on a
video clip at a subway stop. The faces are recognized as
belonging to the same person, even though the identity of
the person is not known. Face recognition is the primary
concern in this work.



234 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 2, FEBRUARY 2005

Iy
Face Set "’ 22

Face Set

BlackOut()

Average()

Fig. 2. Face set H with effective de-identification using BlackOut() and preserved face de-identification using Average().

Definition 2.5 (Face Recognition Software). Given a face set
H and a face image T, face recognition software is a
program that returns the image in H best matching T..

The goal of this work is to alter face images in such a way
that face recognition software cannot be reliably performed
on the resulting images. Altering face images to conceal
identity is termed face de-identification (Definition 2.6). An
example of face de-identification appears in Fig. 1d in
which the eyes and nose are covered.

Definition 2.6 (Face De-Identification). Let H and Hy be face
sets, 'eH, T'yeHy, f:H—Hg be a function that
attempts to conceal the identity of the subject of the original
face image; and, f(I') =Tq4 but I # T'q (element-wise). f is
termed face de-identification (“de-identification,” “de-iden-
tification function”). T'q is a de-identified image.

De-identifying a face image may provide some privacy
protection, but the act of de-identification itself provides
no privacy assurance. Other details may remain in the
image that allow the subject to be reidentified. For
example, different ad hoc efforts have attempted to mask
identities of people during television interviews. At least
one de-identification attempt failed to provide adequate
protection and resulted in a lawsuit [24]. Later in this
paper, it is shown that many common ad hoc efforts at
masking faces do not thwart face recognition software. De-
identification alone is not sufficient. Effective de-identifica-
tion (Definition 2.7) de-identifies faces with a provable
privacy assurance. Example 2.3 presents BlackOut() as an
effective de-identification that provably restricts face
recognition.

Definition 2.7 (Effective De-Identification). Let H be a
person-specific face set; Hq be a face set; f: H — Hgq be the
transformation function used in face de-identification, such
that f(I') =Tq4, where I' € H and T'q € Hyq; g be a face
identification relation g : Hq — H; and, C be a provable claim
about f’s ability to restrict face identification (or face
recognition) by g. The function f provides effective de-

identification with respect to C and f is said to be effective.
If fi1 and f, are effective with respect to the same C, then fi

and f, are considered equally effective with respect to C.

Example 2.3 (Effective De-Identification). Let H be a
person-specific face set and BlackOut() be the de-
identification function defined as:

Given person-specific face set H and face image I €
H having N rows, return [vy,...,vy], where each v; = 0.

BlackOut() returns a face image where each of the N
cells has 0 (the color black in gray scale). Let f be

BlackOut : H — Hg,

g be a relation such that g: Hg — H, and C be:

Given face set H, |H| > 1, f:H — Hq4, and face
image T's, where I'y = f(I';) for Ty € H, T'; € Hy, I'y
cannot be uniquely determined.

The correctness of BlackOut()’s claim C is straightfor-
ward. Any relation g will relate to all members of H
indistinctly.

Fig. 2 shows a face set H de-identified by BlackOut().
BlackOut(H,T'y) =Tq and BlackOut(H,T';) = T'4. Given a
resulting de-identified face set {I';,T4},> no human or
machine can determine whether the subject of the image is
I’y or T'y because I'y is the same for both. Correct face
recognition is limited to guessing with probability 1/|H]|.

BlackOut() is certainly an effective privacy guard in
settings in which no facial details are to be provided. But,
some settings, as described in the Introduction, may require
effective de-identification that maintains facial details in the
image. Let F'= {f;} be a set of effective de-identification
functions. Of all f; € F, preference is made for those that
maintain the most detail in the image.

A metric named loss() captures information loss resulting
from de-identification. loss() is monotonic and can be based
on entropy, percentage of changed pixels, or some other
scheme. loss() compares two face images, I'; and I'y, (or two
face sets) and reports the amount of distortion between
them. The greater the value of loss(), the greater the
information loss. Minimum loss() is realized when the
images are the same. Let f be a de-identification function,
and f(T'y) =Ty, loss(I'1,Ty) > loss(T'1,T'y). The loss() metric
helps describe “preserved face de-identification” in Defini-
tion 2.8. Example 2.4 presents Average(), which is as effective
as BlackOut() but more preservative because its results have
less information loss.

2. Recall that face sets are multisets in which duplicates are maintained.
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Definition 2.8 (Preserved Face De-Identification). Let H be
a person-specific face set; Hq be a face set; F' = { f;} be a set of
equally effective de-identification functions where each
fi:H—Hg; I' € H; and, loss() be a precision metric related
to F. If for any f; € F, there does not exist f; € F such that
loss(T, f;(T')) < loss(T, fi(T")), then f; is a preserved face
de-identification (or “preserved de-identification” over F
with respect to loss(). It is said that f; is “preservative.” If
loss(T, fi(T)) = loss(T, f;(T)), then f; and f; are equally
preservative with respect to loss() and F.

Example 2.4 (Preserved Face De-Identification). Let H be a
person-specific face set and Average() be the de-identifi-
cation function defined as:

Given person-specific face set H and face image I €
H having N rows, return:

[H]| [H]

;Fj[l] ) N
U= TR :H.ZFJ. (1)

Average() returns a face image (V), where each pixel in
VU is the sum of the value for that pixel in all the faces of
H divided by the number of faces in H. Average : H —
Hy is effective with respect to claim C' defined in
Example 2.3. Any relation g: Hq — H relates to all
members of H indistinctly because each face is replaced
with the same average face V. Fig. 2 shows a face set H
de-identified by Average(). Average(H,T1)=T. and
BlackOut(H,T'y) =Ty. Given a resulting face image
I'e {T';,T4}, no human or machine can determine
whether the subject of the image is I'; or I'; because
both I'. and T’y are ¥. As with BlackOut(), correct face
recognition is limited to guessing with probability 1/|H]|.
BlackOut() and Average() are equally effective. But,
Average() retains more facial details than BlackOut().

Let I'y and I'y; be face images of size N. Euclidean
distance, euclid(), is a loss metric defined as the square root
of the sum of the square of the differences in pixel values in
the faces:

.
euclid(T1,Ta) = | S |11 [i] - Dufi] [, (2)

=1

Fig. 2 shows results from BlackOut() and Average()
on H. For BlackOut(), euclid(I'1,T,) =14,187 and
euclid(T'y, I'y) = 14,869. For Average(), ¥ =TI.=T4.
euclid(T'y, ¥) = 2,143 and euclid(Ty, ¥) = 2,153. Average()
is preservative in comparison to BlackOut().

A de-identification function can provide images that
retain a lot of detail, but such functions may not be effective
and therefore are not preservative. For example, a de-
identification function that de-identifies by changing a
randomly selected nonblack pixel to black, maintains many
facial details, but it does not respect claim C' in Example 2.3,
so it is not as effective as BlackOut() and Average() and,
therefore, cannot be preservative with respect to them.

The effectiveness of BlackOut() and Average() relies on
resulting images relating ambiguously to all members of the
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original person-specific face set (H). A substantive improve-
ment involves having each de-identified image relate
ambiguously to & members of the original face set, where
2 <=k <= [H|. This provides k-anonymity privacy protec-
tion, which was introduced in earlier work on field-
structured data [21]. De-identifying each face in H, main-
taining duplicate faces, provides a face set Hy that adheres to
k-anonymity if and only if each face image appearing in Hqy
appears at least k times; see Definition 2.9. Samples of
k-anonymized face sets are provided in Examples 2.5 and 2.6.

Definition 2.9 (k-anonymity on Face Images). Given a
person-specific face set H, a set of de-identified face images Hq
in which duplicates are maintained (Hq is a “multiset”),
|H| > 1, |H| = |Hq|, a de-identification function f : H — Hg,
and g : Hq — H a relation that is the inverse of f. If for each
I’ € H there exists I’y € Hq, where f(I') =Tq and for each
Ty € Hy, |g(Tq) =T'| > k, then Hq adheres to k-anonymity.
It is said that Hq is k-anonymized over H.

Example 2.5 (k-anonymity on Face Images). Let H =
{T'1,...,T100} be a person-specific face set of 100 images
where || = Nfori =1,...,100 and let k = 2. Average() is
applied to each face in H such that Average(H,T}) =
;41 and Average(H,Tj1) = ¥4 for j=1,3,...,99.
;i1 is the average face computed for I'; and T'j;;. The
resulting de-identified face set is

Hy = {T15,Vi9,..., Y9100, Yog.100}
|Hq4| = 100 images. Hq is k-anonymized, where k is 2.

Example 2.6 (k-anonymity on Face Images). Let H =
{T'1,..., T} be a person-specific face set of 100 images
where || = N for i = 1,...,100. BlackOut() is applied to
each face in H such that BlackOut(H,T';) = [01,...,0x]
for j=1,...,100. The resulting de-identified face set Hq
has 100 face images in which all pixel values are 0
(black). Hq is k-anonymized, where k is 2,3, ..., 100.

Partitioning a person-specific face set into smaller face
sets or “clusters” of at least k faces provides privacy
protection because an aggregate face is published for the
members of each cluster in lieu of their original images.
Basing each aggregate face on a cluster of homogeneous
original faces minimizes information loss. One concern is
finding optimal clusters—those having the k& most homo-
geneous faces. A distance measure is used to determine
closeness.

A face image has been represented as a column vector
having N cells, but it can also be represented as a point in
N-dimensional space by viewing the vector as a tuple. A
measure, such as Euclidean distance (2), can be used to
compute distances between points to determine clusters of
closest neighboring points (or faces).

Once minimally distant clusters are found, aggregate
face images must be constructed in such a way as to
minimize information loss. Many strategies are possible.
This work constructs an aggregate face as the N-dimen-
sional (or pixel-wise) “average” of the cluster. In data
mining, this is termed a geometric centroid (or center of
mass) [25]. Equation (1) computes ¥ as the centroid of
cluster H.
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In summary, this work seeks preserved de-identifica-
tion that thwarts face recognition software by enforcing
k-anonymity. This is termed the k-Same problem
(Definition 2.10).

Definition 2.10 (k-Same). Given a person-specific face set H;
and, a face set Hy which is k-anonymized over H using a
preserved face de-identification function f:H — Hg, if f is
effective with respect to the claim:

Given any face image I'y € Hy, where I'y = f(T") for
I' € H, there cannot exist any face recognition software
for which the subject of I'q can be correctly recognized as
I' with better than 1/k probability.

Then, f is a k-Same de-identification function and Hgy
is a k-Same_de-identification. The goal is to determine the
appropriate function f with minimal information loss.
Partitioning a person-specific face set into k-sized

clusters of faces achieves k-anonymity. Each cluster is

replaced by a single image that will be replicated to
represent each image in its cluster. If the faces in a cluster
are averaged together to produce the replacement image,
then the averaged face may retain characteristics more
similar to one image than another in the cluster. However,
because all images in the cluster are replaced by the same
averaged face, correctly relating the k occurrences of the
averaged face can at best be correct 1 in k times. The
recognition would be incorrect for the other replacement
images. This is the approach for achieving k-Same taken in
this paper. It reduces to being the same problem as
microaggregation in statistical disclosure control. Recent
work [13] on microaggregation has shown that the optimal
selection of k-sized clusters of minimally distant N-dimen-
sional points, where N > 1, is an NP-hard problem. A
corollary is that no algorithm can run in reasonable time to
find optimal groups of “closest” faces for k-Same clusters.
The problem addressed in this work is not to determine
the optimal size of clustering or how to divide faces
optimally into k clusters. These are both classical problems
in statistics and computer science. The problem in this work
is to find the optimal selection of faces to form as many
clusters as needed provided each cluster has k closest faces.
In the next section, the method and operating paradigm
of face recognition software is introduced. Then, two
heuristic solutions, k-Same-Pixel and k-Same-Eigen, are
presented as ways to thwart face recognition software.

Following that are experimental results. This paper ends

with a discussion on related work and a discussion on the

general applicability of this work.

3 FAceE RECOGNITION SOFTWARE

The current baseline face recognition algorithm is “Eigen-
faces,” also known as Principal Components Analysis
(PCA) [23]. Eigenfaces is the technique against which others
are measured and is the basis of methods explored in this
paper. A description of how Eigenfaces work is provided,
but first, some basic terms are described.

Three face sets are traditionally used in face recognition
software [11]. Training is a face set used to initially learn
parameters about the faces to classify. Gallery is a face set
of known faces. Training and gallery need not be the same.
Probe is a face set of faces to “recognize” by selecting best

matches in gallery. Subjects in probe are not necessarily
also in gallery.

Recognition of a face in probe is a rank ordering of the
faces in gallery where the “closest” face appears first and
the least similar face appears last. The performance of a face
recognition program is defined as the percentage of faces in
probe correctly matching their e closest gallery images [23],
where e > 1. When e is 1, only the single “best matched”
results.

Supporting methods for Eigenfaces() appears in Fig. 3. Here
is an overview before examining the details. Initialization
consists of mapping all images in gallery into a face space
characterized by the faces in training. This is done by
executing: Setup(gallery, training) which generates the face
space. Then, for each face in probe, display the image in
gallery that best matches it in that face space. Having a loop
thatiterates through each facein probe(I" € probe) does this.
The body of the loop has two steps: 1) match = Recognize(T")
and 2) print I', match[1][1], to display the face and its best
match.

In the next paragraphs, details of these methods are
explained. Throughout this discussion, each face image in
probe, gallery, and training has N pixels and the number of
face images in training is M.

The goal of Setup() is to create an Eigen “face space”
based on the faces in training and then, projects images
from gallery into the face space. An “average face,” U, is
computed across the A face images in training (Fig. 3a,
line 2). The “average face,” ¥, is subsequently taken away
from each image, I'; in training, yielding difference faces, ®;
(Fig. 3a, lines 3-4). The set of these “difference” faces is an NV
by M matrix, A (Fig. 3a, line 5).

A covariance (or scatter) matrix is the product of the
transpose of A with itself AAT, but due to the structure of
face recognition data, namely, M << N, the variable C is
computed using ATA, yielding a square matrix of dimen-
sion M [20]. The eigenvectors (or “eigenfaces”) of C are
determined by satisfying the characteristic equation, where
the determinant of the matrix less the eigenvalues along the
diagonal elements is equal to zero using the method of
Lagrange multipliers. See Fig. 3a, lines 7-8. For more in-
depth details of lines 7 and 8, refer to [23].

“Eigenfaces” is the resultant multidimensional face-
space characterized by the Eigenvectors and the average
face. All images in gallery are projected into the face space
and their original and projected images saved in a matrix,
facespace (Fig. 3a, lines 9-14). Fig. 3b, line 1 shows the
expression for projecting an image into eigenfaces.

The result of Setup() is facespace, the average face (¥),
and the eigenvectors V. These are used by Recognize(), in
Fig. 3¢, to match faces as follows: Face images in probe are
projected through the eigenfaces (Fig. 3c, line 1). The
distance between the projected probe image and each
projected gallery image is computed (typically using
Euclidean distance or Mahalanobis distance). A face,
I' € probe, is recognized as the face in gallery whose
projected image is closest to I'’s projected image. Recognize()
returns all the images in gallery sorted by closeness of
projected images to I'’s projected image (Fig. 3¢, line 3). This
is a copy of facespace sorted in rank order of best matches.
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Algorithm: Setup(gallery, training) // initialization
Input: Face sets gallery and training.
Output: facespace, a 2-dimensional matrix. Each row has a pair of face images. Column
[1]is a face from gallery and column [2] is that face projected in “face space”. Each face
in gallery is present once in the matrix, so there are |gallery]| rows.
Steps
let M = [training| 1
Y = Average(training) // defined in Equation 1 2
for each I'ietraining 3
D =T,-¥ // difference of average face 4
let A=[®y, ..., Dy] // matrix of difference vectors 5
letC=AA" // variation of covariance matrix | 6
L[i]= A; such that IC-All=0 fori=1,..., N // eigen values 7
V[i]= v; such that Cv;=Av;fori=1,..., N // eigen vectors 8
for i=1 to Igalleryl do: 9
let T'e gallery // select a face from gallery 10
gallery = gallery - {I'} 11
facespacelij[1]=T // store face 12
facespaceli][2]=Project(I’) // projected face 13
return facespace 14
(a)
Algorithm: Project(I') // projecting a face image into Eigenfaces’ face space
Input: Face image I
Output:  aface image, which is I" in the “face space” characterized by the previously
derived eigenvectors and average face from the training set.
Uses: Eigenvectors V and average face W
Steps
Q[i] = V[i]T(F-‘P) fori=1,..., M // store weights using only top eigenvectors 1
return Q 2
(b)
Algorithm: Recognize(I)  // recognizing a face image
Input: Face image I’
Output: a copy of facespace where the rows are sorted in order of closeness to I'’s
projected face. The most similar face appears in the first row and the least similar face
appears in the last row.
Uses: facespace and a distance function dist()
Steps
O = Project(I) // project into face space 1
let match = facespace // make a copy 2
Sort match by row based on dis(O, match[][2]) 3
// sort projected images
return match 4

Fig. 3. Supporting methods for Eigenfaces.

4 k-SAME-PIXEL AND k-SAME-EIGEN

This section presents k-Same-Pixel() and k-Same-Eigen(),
which are effective at limiting the face recognition soft-
ware’s ability to reliably recognize faces, even when
Eigenfaces is not the face recognition software used. They
are not optimal k-Same solutions because there may exist
other equally effective de-identification functions that
maintain more detail in the resulting images.

41 k-Same-Pixel() and k-Same-Eigen()

Fig. 4 presents the k-Same-Pixel() algorithm. Given an
original person-specific face set, H, and a value k, the
algorithm returns a k-Same face set over H with respect to k.
Using Eigenfaces’” Setup() routine, H is used to generate an

()

overall average face and the projected gallery images
against which faces will be recognized (line 1).

Each face in H is de-identified in lines 4 through 10 as
follows: For a given face, Recognize() provides a matrix
containing all the face images, not yet de-identified, sorted
by closeness to the given face. The top k rows of the matrix,
representing the k closest faces, are averaged together in
line 7. k copies of this average face are added to the solution
set, Hy, in line 8. The k faces are then removed from H
(line 9) and from facespace (line 10) because they have all
been de-identified. On each iteration of the loop, the
number of faces to de-identify is reduced by k. In case the
number of original face images in H is not evenly divisible
by k, an adjustment to k£ is made in line 5 on the last
iteration, to group up to 2k —1 faces together. When
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Algorithm: k-Same-Pixel(H, k)
Input: Person-specific face set named H and a k privacy constraint
Output: a k-Same face set named Hy
Assumes: [H| = &
Uses: Eigenfaces pseudo-code and its facespace variable
Steps
Setup(H, H) // H is gallery and training 1
let Hy be an empty multi-set 2
for I'eH do: 3
match = Recognize(T) 4
if IHI < 2k then k = IHI // group all remaining together 5
let closest be the face set containing match[1][1],...,match[A][1] 6
¥ = Average(closest) 7
Add k copies of ¥ to Hy 8
Remove faces match[1][1], ..., match[k][1] from H 9
Remove rows match[1][], ..., match[K][] from facespace 10
return Hy 11

Fig. 4. De-identification algorithm k-Same-Pixel averages k closest gallery images.

execution concludes, the resulting face set, Hq, has at least &
occurrences of each face image contained within it. Each
image in Hq is the average of k closest faces.

In k-Same-Pixel(), the de-identified image is based on
the pixel-wise average of the original face images. A
variation is to use the projected images as the basis for
averaging. This is done in k-Same-Eigen(). Line 6 is
replaced in Fig. 4 with: let closest be the face set
containing match[1][2],..., match[k][2]. That is the only
difference between k-Same-Pixel() and k-Same-Eigen().
Images from k-Same-Eigen() have a blurred effect com-
pared to those from k-Same-Pixel() because the projected
images used in k-Same-Eigen() retain only the most
important characteristics. Less important components
have been removed.

Fig. 7a shows face images de-identified by k-Same-Pixel()
and k-Same-Eigen() over the same subjects for k = 2, 3, 5, 10,
50, and 100. The number of faces in the original face set is 200.

4.2 Correctness of k-Same-Pixel() and
k-Same-Eigen()

Let H be a person-specific face set, |[H| > 1, k be a privacy

constraint, k> 1, |H| >k and H,; be the result from

k-Same-Pizel(H, k), or alternatively from

k-Same-Eigen(H, k).

Theorem 1 states that Hgq is k-anonymized over H.
Theorem 2 states that k-Same-Pixel() is effective at thwarting
face recognition software. There may exist some other k-
same de-identification function, other than k-Same-Pixel(),
however, that can have less information loss.

Theorem 1. If His a person-specific face set, |H| > 1, kisa privacy
constraint, k> 1, |H| > k, and Hq = k-Same-Pizel(H, k),
then Hyq is k-anonymized over H.

Proof. Fig. 4 contains pseudocode for k-Same-Pixel(). In each
iteration of the loop contained in lines 3 through 10, k&
faces are added to Hy (see line 8), and k faces are
removed from H (see line 9). On the last iteration, & is
adjusted from its original value, ko, if needed, to be the
number of faces remaining (line 5) in H. On the last
iteration, ky < k < 2ky. When the loop ends, the number
of faces originally in H is the number of faces in Hgq. On
each iteration, k copies of the same averaged face (V¥ in

line 7) are added to Hg (line 8), so the k copies are
indistinguishable. The k copies of the average face (¥)
have a one-to-one correspondence to the original k face
images in H (see lines 6 and 7) that composed ¥. In
summary, 1) |H| = |Hgq4|, 2) for each " € H there exists
¥ € Hy, and 3) for each ¥ € Hy, there are k original faces
on which it was based. O

Theorem 2. IfH is a person-specific faceset, |H| > 1, kisa privacy
constraint, k > 1, |H| > k, Hq = k-Same-Pizel(H, k), and
I'q € Hy, there cannot exist any face recognition software for
which the subject of T'q can be correctly recognized in H with
better than 1/k probability.

Proof. The proof is straightforward, but is expounded to
demonstrate characteristics of the privacy protection
provided. Let ¢g: Hq — H be a software recognition
program, and ¥4 € Hy. Let P be a face set containing
the subjects of Uy that is, P={[ [ € H and
k-Same-Pizel(T;) = ¥y, for i=1,...,k}. There are
three cases to consider.

Case 1 (k best choices are all onto P). Each ¢g(¥,) is
a vector whose best matching %k faces are the same
(and only the same) as the faces in P. The k faces in P
are the subjects of the k occurrences of ¥y. The U4s are
indistinguishable, so correctly assigning (“recogniz-
ing”) a ¥4 to the face in P that was its subject has
probability 1/k.

Case 2 (k best choices are not all onto P). Let A be the
face set containing the k best matches of ¢(¥4). A
includes some faces in P and some not in P. Assigning
(“recognizing”) a ¥, to the face in A that was its subject
is probability 0 if the subject is not present in A and 1/k
otherwise.

Case 3 (matching each face in P). If P is known and
g(¥q) claims its best match to be T', T' € P, then for each
of the k faces I'; € P, declaring ¥, to be recognized as
each I'; will only be correct once, so the probability of a
correct recognition is 1/k. If I ¢ P, then the probability of
a correct recognition is 0.

In all cases, the probability of correctly recognizing a
face was no better than 1/k. ]



NEWTON ET AL.: PRESERVING PRIVACY BY DE-IDENTIFYING FACE IMAGES

The basis of the validity of Theorem 2 is realized
because k faces are replaced with the same replacement
image. The recognition task is then left to disambiguate
the k occurrences of the same image to k or more people.

Theorem 2 shows that, even though methods of
Eigenfaces() is used by k-Same-Pixel() and k-Same-Eigen(),
their ability to provide k-anonymized solutions is invariant
to the face recognition software that attempts to recognize
faces from their results. The de-identified faces are not just
protected against matrix decomposition-based face recogni-
tion technology. k-Same-Pixel() and k-Same-Eigen() can
protect against any face recognition system, including
technologies that have yet to be designed. Let H be a
person-specific face set that is the subject of de-identifica-
tion. A k-anonymized solution over H reduces the number
of distinct faces to |H|/k prior to a recognition attempt. It is
impossible to distinguish between at least k faces in H for
any face in the k-anonymized solution over H.

Optimal clusters are not necessarily found in k-Same-
Pixel() or k-Same-Eigen(). If each face in a cluster, selected the
same, and only the same, set of k faces as its closest faces,
then k-Same-Pixel() would provide an optimal solution. But,
this partitioning is a special and rare case. More often
clusters overlap, making the best choice of minimally
distant clusters difficult to determine. k-Same-Pixel() does
not attempt to disambiguate these nested cluster prefer-
ences. Instead, one face is randomly selected and its k closest
faces are grouped together. A different selection of faces
typically reveals different clustering choices over the same
face set. For these reasons, k-Same-Pixel() can provide results
with more information loss than is minimal, and k-Same-
Eigen() can have worse recognition results because of its
additional loss of facial details.

k-Same-Pixel() and k-Same-Eigen() do not always make
optimal cluster selections, but they do run quickly, in linear
time. Even though the composition of k-Same-Pixel() and
related methods focused on clarity, not operational effi-
ciency, they still demonstrate linear time execution. For
details of this complexity claim, see [12].

5 EXPERIMENTS
5.1 Materials

Experiments were run on images from the U.S. Army’s Face
Recognition Technology (FERET) database, which is pub-
licly available [15]. The database has 14,126 face stills of
1,199 people. Coordinates for the center of the eyes and tip
of the nose are provided for each face still. Face stills were
cropped, rotated, and scaled to provide face images using
this information. Each resulting face image has 13,266 pixels,
displayed graphically as 99 columns and 134 rows.

Numerous editions of Eigenfaces are publicly available.
This work used MatLab to run experiments, with
“calcpca.m” version 2.4 written by Matthews and edited
by Gross.

5.2 Test Design

In all experiments, training, gallery, and probe face sets are
person-specific. Each subject appearing in gallery also
appears in probe, and vice versa. Unless otherwise noted,
200 face images were randomly chosen for each experiment
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to make a person-specific face set H for that experiment. Let
Hq4 be the de-identified face set of H. The probability of
correctly recognizing a face image in Hq to a face image in
H by guessing is 1/|H| = 0.005.

Current face recognition algorithms have numerous
weaknesses, such as: detecting faces, producing face images
from face stills, and recognizing the same person after a
lapse in time. These are all issues independent of de-
identification. It is crucial to test de-identification in such a
way as to not exploit these weaknesses in face recognition
software. Therefore, all experiments reported herein test
recognition using only a face set of well-formed face images
against itself. Because Eigenfaces always yields 100 percent
recognition for this setup [14], these experiments show how
performance degrades due to de-identification. Recognition
performance using Eigenfaces is reported as the percentage
of correct recognitions having a single best match.

To test de-identification techniques, consider the options
available to an attacker, who attempts to reidentify (by face
recognition software) a de-identified face set. There are
three different kinds of attacks, corresponding to three
different arrangements of recognizing gallery images to
probe images, available. These involve matching: 1) original
images to altered images, 2) altered images to original
images, and 3) altered images to altered images.

The first type of attack, in which original images are
matched to altered images, is termed naive recognition in
the context of these experiments. No action is taken by the
attacker to account for the de-identification affect. The de-
identified images are just run through the face recognition
software. For experimental soundness herein, the gallery in
naive recognition tests, will be only the original face set of
the images subject to de-identification. In the general case,
outside of this experimentation, the gallery would pre-
sumably include faces beyond those de-identified thereby
possibly providing even better de-identification results.

The second type of attack, in which altered images (as
gallery) are matched to original images (as probe), is termed
reverse recognition in the context of these experiments.
Reverse recognition assumes the attacker already has a face
set containing the original images that were the subjects of
de-identification. The goal is to determine a correct one-to-
one correspondence. By using the altered images as the
gallery, the alterations due to de-identification may decom-
pose and become dispersed through some number of
principal components, thereby limiting the affects of the
alterations when matching faces.

The third type of attack, in which altered images are
matched to altered images, is termed parrot recognition in
the context of these experiments. Many de-identification
techniques can be replicated. For example, placing a black
band over the eyes can easily be duplicated. The attacker
can invoke the same de-identification technique on his face
sets, thereby de-identifying them. The training set and
gallery of the attacker are then de-identified also, and
recognition matches a de-identified gallery to a de-
identified probe. For experimental soundness herein, the
gallery in parrot recognition tests, will contain only those
images appearing in the probe. In the general case, outside
of this experimentation, the gallery would presumably
include faces beyond those de-identified in the probe,
thereby possibly providing even better de-identification
results.
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(e)

Fig. 5. Examples of (a) an original face image and each ad hoc de-
identification method: (b) bar mask, (c) T mask, (d) pixelation,
(e) blackout, (f) threshold, (g) random in gray scale, and (h) random in
black and white.

5.3 Ad Hoc De-Ildentification Methods do not Thwart

Face Recognition Software
There exist a number of ad hoc de-identification techniques
that attempt to mask the identity of a subject in a face
image. To the human eye, a masked face image may look
sufficiently de-identified. This section reports how several
ad hoc de-identification techniques affect the recognition
abilities of face recognition software. See [12] for a more
comprehensive list of ad hoc methods. Other than blocking
out the entire image, BlackOut(), these experiments show
that ad hoc attempts do not thwart face recognition
software.

Face de-identification is not the same as a lack of
recognition. Previous experiments have shown that some
face recognition algorithms can be robust to different types
of image degradation and occlusion, e.g., [7], [10]. However,
recognizing degraded or obscured images is not the same as
provably de-identifying images. None of the previous
experiments attempted to prevent de-identification expli-
citly, rather they were attempting to identify the current
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limits of face recognition. In order to test de-identification
attempts directly, below are descriptions of the ad hoc de-
identification techniques tested and following that are
experimental results.

Mask. BlackOut: colors the entire face image with either a
single color or pattern (see Fig. 5e).

Bar masks: covers the eyes with a single-colored band (see
Fig. 5b). T masks: cover the eyes and nose with a single color
(see Fig. 5c).

Pixelation. Reduces the number of distinct pixel values
in a face image by replacing a square block of pixel values
with their averaged value (see Fig. 5d). Experiments were
conducted on square pixel blocks of 15, 20, and 30 pixels
across.

Random Noise. In black/white images, choose a random
pixel position to flip (see Fig. 5h). In gray-scale images, a
random value between 0 and 255 replaces a set of randomly
chosen pixel positions (see Fig. 5g). The same set of pixels is
randomly perturbed in each image.

Threshold. Transforms all gray-scale pixels to either a
black or white value (0 or 255, respectively) depending
upon a threshold value chosen in the range of 0 to 255 (see
Fig. 5f). In additional experiments based on black/white
techniques, a threshold value of 65 achieved 100 percent
recognition; see Fig. 6a.

Many ad hoc de-identification methods are capable of
defeating naive recognition, which matches original (gal-
lery) to altered (probe) images. The percentage of correct
best match recognitions for: 1) bar mask was 2 percent, 2) T
mask was 1 percent, and 3) black out was 0 percent. Recall,
100 percent correct recognition was realized when matching
original-to-original images. Masking deteriorates this per-
formance. However, using parrot recognition, as described
below, bar mask and T mask images have 100 percent
correct recognition rates rendering them ineffective de-
identification techniques.

Pixelation is an exception: 99 percent correct recognition
was realized when matching original to pixelated images.
Despite looking somewhat de-identified to humans (Fig. 5d),
and despite pixelation’s common use on television to hide
faces during interviews, pixelation has virtually no effect on
thwarting naive face recognition software. Pixelation is not
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Fig. 6. Eigenfaces recognition based on best matches using: (a) threshold images and (b) images perturbed by adding random noise.
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Fig. 7. Face images from (a) k-Same-Pixel (top) and k-Same-Eigen
(bottom) for k = 2, 3, 5, 10, 50, and 100 from left to right; (b) performance
of naive recognition on faces de-identified by k-Same-Pixel and k-
Same-Eigen.

the only exception. Fig. 6a shows a maximum of 30 percent
correct recognition when matching original to threshold
images with a threshold of 118.

Fig. 6b shows the results of naive recognition on images
de-identified by adding random noise. The bottom curve
shows the recognition rate when matching original to noisy
images. When 9,000 of 13,266 (or 68 percent) of the pixels
were made noisy, the recognition plummeted to 1 percent,
but at 6,000 pixels perturbed, correct recognition was
23 percent. Random noise in black/white images decreases
recognition after approximately half of the pixel values
were perturbed.

Reverse recognition, which matches altered (gallery) to
original (probe) images, performs the same as naive
recognition on most of the ad hoc de-identification
techniques tested. There are exceptions. In threshold de-
identification, Fig. 6a shows a maximum of 30 percent
correct recognition at a threshold of 118 using naive
recognition. Reverse recognition shifts the curve to the
right and slightly down. A maximum of 29 percent correct
recognition resulted at a threshold of 120 using reverse
recognition. More noticeable, differences appear with
additive random noise. The bottom curve in Fig. 6b shows
the performance of naive recognition, and the top curve
shows the performance of reverse recognition. With
68 percent of the pixels made noisy, naive recognition was
only 1 percent, but reverse recognition was 70 percent.

In parrot recognition, Eigenfaces was retrained on face
images having the same alteration and the gallery was
also de-identified. Parrot recognition circumvents most of
the ad hoc de-identification techniques tested. More than
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99.8 percent correct recognition was realized when
matching altered-to-altered pixilation images, and 100 per-
cent correct recognition was realized for single bar and T
bar images. However, as will be shown in the next
section, retraining on k-same images will not succeed.

There are exceptions. BlackOut, which provides no
information, retains results no better than guessing with
parrot recognition. For threshold and additive random
noise, results for various levels are shown in Figs. 7a and 7b
(for gray-scale), respectively. In Fig. 6a, the threshold
experiments of altered to altered (the highest curve in
Fig. 6a marked with xs) show that parrot recognition
remains above 10 percent within the threshold values of 5
and 250, which are the extremities of the gray-scale.

In summary, the percentage of correct best match
recognitions for: 1) bar mask was 2 percent using naive
recognition but 100 percent using parrot recognition,
2) T mask was 1 percent using naive recognition but
100 percent using parrot recognition, 3) black out was
0 percent using both naive recognition and parrot recogni-
tion, and 4) pixelation was 99.8 percent using naive
recognition and 100 percent using parrot recognition.
Therefore,only BlackOut and additive random noise (at
approximately 13,000 pixels changed) are equally effective
with respect to providing no better than 0.5 percent
(random guessing) correct recognition. Of these, additive
random noise is preservative with respect to the Euclidean
distance from the original image.

These experiments demonstrate that many ad hoc de-
identification techniques may look convincing to human
eyes, but in general, they provide little or no protection
from face recognition software. With the exception of
BlackOut, significant numbers of images were correctly
recognized by one or more of the attacks described.

5.4 k-Same Thwarts Face Recognition Software

Fig. 7a displays visual results of k-Same-Pixel (top row) and
k-Same-Eigen (bottom row) for k=1, 2, 3, 5, 10, 50, and 100
from left to right. The performance of naive recognition,
which matches original (gallery) to altered faces de-
identified by k-Same-Pixel and k-Same-Eigen (probe), is
provided in Fig. 7b. Both algorithms were tested for k = 2,
3, 5,10, 50, and 100, with person-specific face sets of 805 face
images. Results are based on best match (“top rank”). The
averaged results are plotted along with the expected value
at each k. Correct recognition results from k-Same-Pixel and
k-Same-Eigen experiments appear below the ideal value of
1/k, which is also plotted as the top curve. The expected
value, 1/k, and the actual performance of k-Same-Pixel and
k-Same-Eigen have an average difference of -1.6 percent
(each) at k = 2 and -63 percent and -81 percent, respectively,
at k = 100. The k-Same-Pixel and k-Same-Eigen results have
an average absolute difference of 0.0017, compared on the
same data set for 20 runs. The average absolute difference
across the two different data sets is found to be 0.0050,
which is larger than that between the two algorithms.
Similar recognition results of less than 1/k were found with
reverse recognition and parrot recognition.

These experimental results demonstrate k-Same-Pixel
and k-Same-Eigen’s ability to provide k-anonymity protec-
tion, and in so doing, thwart face recognition software from
reliably recognizing their de-identified faces. Therefore
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k-Same, BlackOut, and additive random noise (at approxi-
mately 13,000 pixels changed) are equally effective with
respect to providing no better than 0.5 percent (random
guessing) correct recognition. Of these, k-Same is preserva-
tive with respect to the Euclidean distance from the original
image.

6 RELATED WORK IN PRIVACY PRESERVING DATA
MINING

This work can be viewed as privacy preserving data mining
in high-dimensional data. Research in privacy preserving
data mining techniques has been split into: secure multi-
party computation, rule hiding, and perturbation techni-
ques. Here is how face de-identification fits in. Face de-
identification seeks to protect data that must be shared
outside the original collecting institution, so secure multi-
party computation has no bearing.

The goal in rule hiding [4], [18], [19] is to prevent
sensitive rules from being revealed in shared data. One way
to determine sensitive information for rule hiding in facial
images might be to consider the principal components of
the eigenface decomposition. If rules are considered as the
eigenvectors of decomposition, then controlling for certain
eigenvectors, through a technique such as suppressing
them, may protect the identity of certain faces. However,
different principal components, or a combination of such,
can be sensitive for different faces and one cannot suppress
all principal components. It remains a challenge to the
research community to classify the features of an image into
sensitive and nonsensitive rules for rule hiding techniques.

Perturbation approaches to privacy preserving data
mining have been addressed in previous research, namely,
[1], [2], [17]. In de-identifying faces, one could consider the
set of original faces as X, and the set of perturbed faces as
Y. The problem with such an approach in facial images is
that modern face recognition software is highly insensitive
to noise in the images. This was demonstrated in the
experimental results reported in the previous section by
additive random noise on individual pixels of the original
face images. Additive random noise has little effect on the
ability to dampen the recognition of de-identified faces by
Eigenfaces, until roughly half of the pixel values have been
flipped in black and white images or three-quarters of the
pixels are changed to random values in gray-scale images.
Facial details remaining in the de-identified images may
appear horribly obscured due to the amount of perturbation
necessary to sufficiently thwart recognition. There may exist
different types of perturbation beyond additive random
noise that would provide reasonable face de-identification.
Using more complex perturbation models for face de-
identification is an open research question.

7 PRIVACY IMPLICATIONS

Consider the real-world task of de-identifying a surveil-
lance video clip. There is a preprocessing step to convert
facial representations in the video clip to a person-specific
face set. There is also a postprocessing step to place de-
identified faces into a video clip so that the behaviors and
actions of the people remain from the original video clip,
but the de-identified faces replace the original facial
representations. For example, a person coughing in the

original video clip should be a de-identified person
coughing in the final video clip. If needed, postprocessing
can also apply encrypted identifiers to the de-identified
faces, so that given a proper key, the original face for a
person is revealed. Both the preprocessing and postproces-
sing steps contain active areas of research in computer
vision, computer graphics and face recognition.

The basis of privacy protection of k-same algorithms is
k-anonymity. There are numerous possible attacks on
k-anonymity with known solutions [21]. One of the biggest
problems is determining the proper privacy constraint k.
The selection of k depends in part on whether protection
must also prohibit the ability for all £ individuals to be
known. For example, for a k-samed face, all k subjects may
be identified by name. Even though determining which
named person appears in which frames in the de-identified
video clip cannot be done exactly, the k people can all be
identified and acted upon as a group. With other kinds of
data, k is prescribed by policy, but even still, care must be
taken.

De-identification, as described in this work, is not a
guarantee of anonymity. This work seeks to thwart face
recognition for the purpose of limiting automatic persistent
recognition of populations whose images are captured on
video but who have done nothing suspicious. While these
techniques thwart face recognition software, for example,
correct identification is still possible by recognizing clothes,
behavior, or cooccurrences with other people.
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