
Toward an Agent-Based and Context-Oriented
Approach for Web Services Composition

Zakaria Maamar, Soraya Kouadri Mostéfaoui, and Hamdi Yahyaoui

Abstract—This paper presents an agent-based and context-oriented approach that supports the composition of Web services. A Web

service is an accessible application that other applications and humans can discover and invoke to satisfy multiple needs. To reduce

the complexity featuring the composition of Web services, two concepts are put forward, namely, software agent and context. A

software agent is an autonomous entity that acts on behalf of users and the context is any relevant information that characterizes a

situation. During the composition process, software agents engage in conversations with their peers to agree on the Web services that

participate in this process. Conversations between agents take into account the execution context of the Web services. The security of

the computing resources on which the Web services are executed constitutes another core component of the agent-based and

context-oriented approach presented in this paper.

Index Terms—Web service, composition, software agent, context, conversation, security.

�

1 INTRODUCTION

WEB services are nowadays emerging as a major
technology for deploying automated interactions

between distributed and heterogeneous applications [7],
[16]. Various standards back this deployment, including
WSDL, UDDI, and SOAP [13]. These standards respectively
support the definition of Web services, their advertisement
to the community of potential users, and, finally, their
binding for invocation purposes. Aissi et al. argue that Web
services are meant to be used as bridges between applica-
tions that otherwise would have required extensive
integration and development efforts [2].

The increasing demand of users for high quality and
timely information is putting businesses under the pressure
of adjusting their know-how and collaborating with other
peers for various reasons, e.g., cost-effectiveness and
expertise-availability. A strategy that implements this
collaboration is to merge business processes despite well-
known obstacles (e.g., lack of a common ontology [32]). In
this paper, we illustrate a business process with a Web
service. A Web service is an accessible application that other
applications and humans can automatically discover and
invoke [7]. In general, composing multiple Web services
(also called services in the rest of this paper), rather than
accessing a single service, is essential and provides more
benefits to users. Composition primarily addresses the
situation of a user’s request that cannot be satisfied by any
available service, whereas a composite service obtained by
combining available services might be used [8]. Discovering

the component services, adding the component services to a
composite service, triggering the composite service for
execution, and, last but not least, monitoring the execution
in case of exception handling are among the operations that
users will have to be responsible for. Because of the
complexity of most of these operations, software agents
are deemed appropriate candidates to assist users. A
software agent is an autonomous entity that acts on behalf
of user, makes decisions, collaborates with its peers, and
migrates to distant hosts if needed [18].

Entrusting the composition of Web services to software
agents is not straightforward. Different questions arise,
including which businesses have the capacity to provision
Web services, when and where the provisioning of Web
services occurs, how Web services from separate businesses
coordinate their activities so that conflicts are avoided, and,
last but not least, what back-up strategies handle execution
exceptions of Web services. To address a part of these
issues, agents need to be aware of the context [11], [14] in
which the composition and execution of the Web services
are expected to happen. Context is the information that
characterizes the interaction between humans, applications,
and the surrounding environment [11]. For instance, before
provisioning a Web service for execution, the current
computing capabilities of the resources versus the comput-
ing requirements of the Web service needs to be assessed. In
addition, before deploying any back-up strategy, an
assessment of the type of exception is required.

To make Web services composition more efficient, the
interactions between agents of Web services are leveraged
to the level of conversations. A conversation is a consistent
exchange of messages between participants involved in
joint operations and, consequently, have common interests.
Ardissono et al. argue that current Web services standards
support simple interactions and are mostly structured as
question-answer pairs [3]. This lack of standardization
hinders the possibility of expressing complex situations that
call for more than two turns of interaction. The same
comment is made by Benatallah et al. in [5], who noticed

686 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

. Z. Maamar is with the College of Information Systems, Zayed University,
PO Box 19282, Dubai, United Arab Emirates.
E-mail: zakaria.maamar@zu.ac.ae.

. S.K. Mostéfaoui is with the Computer Science Department, University of
Fribourg, Switzerland. E-mail: soraya.kouadrimostefaoui@unifr.ch.

. Y. Hamdi is with the Computer Science Department, Laval University,
Canada. E-mail: hamdi.yahyaoui@ift.ulaval.ca.

Manuscript received 18 Aug. 2003; revised 1 June 2004; accepted 20 Sept.
2004; published online 17 Mar. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0152-0803.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

that despite the growing interest in Web services, several
issues remain to be addressed to provide Web services with
benefits similar to traditional integration middleware. One
of Benatallah et al.’s suggestions to enhance Web services is
the development of a conversational metamodel. In this
paper, it will be shown how software agents, acting on
behalf of services, could engage in conversations with their
peers to, for example, search for the component services,
check their availabilities, and trigger them once they agree
on participating in a composition.

Web services composition is a very active area of
research and development [31]. However, very little has
been accomplished to date regarding the integration of
conversations and context into agent-based composition
approaches of Web services. In particular, several obstacles
still hinder this integration; for instance, 1) web services act
as passive components rather than active components that
can be embedded with context-awareness mechanisms,
2) existing approaches for Web services composition (e.g.,
WSFL, BPEL) typically facilitate choreography only, while
neglecting information about the context of users and
services, and 3) lack of appropriate techniques for modeling
and specifying conversations between Web services. This
paper presents our agent-based and context-oriented approach
for Web services composition. Section 2 overviews the concepts
of software agent, context, and conversation. Section 3
defines Web services and the process of composing them.
Section 4 presents the approach that agentifies the composi-
tion process of Web services. In addition, the value added of
contexts and conversations to this approach is discussed in
this section. Section 5 talks about the security of the
computing resources on which the Web services are to be
executed. Section 6 discusses the implementation of the
approach proposed for agentifying and contextualizing
Web services composition. Section 7 overviews related
work. Finally, Section 8 draws conclusions and highlights
future work. It should be noted at that level that the
mechanisms for discovering the component Web services of
a composite service, while important, do not fall within the
scope of this paper. Mechanisms such as UDDI registries
could be used.

2 PRELIMINARIES

2.1 Software Agent

A software agent is a piece of software that autonomously
acts to carry out tasks on behalf of users [18]. The design of
many software agents is based on the approach that the
user only has to specify high-level goals instead of issuing
explicit instructions, leaving the how and when decisions to
the agent. A software agent exhibits a number of features
that make it different from other traditional components:
autonomy, goal-orientation, collaboration, flexibility, self-
starting, temporal continuity, character, communication,
adaptation, and, last but not least, mobility (it should be
noted that not all these features need to embody a software
agent).

2.2 Context

Composed of con and text, context refers to the meaning
that can be inferred from an adjacent text. Dey et al. define
context as any information that is relevant to the interac-
tions between a user and an environment [14]. This

information can be about the circumstances, objects, or
conditions by which the user is surrounded. Many
researchers have attempted defining context, among them
Schilit et al., who propose three categories of context [36]:
1) computing category (e.g., network connectivity, commu-
nication cost), 2) user category (e.g., profile, location), and
3) physical category (e.g., lighting, temperature).

To enhance systems with context-aware capabilities,
many issues have to be addressed. Satyanarayanan has
listed some of them, including [35]: How is context
internally represented; where is context stored; does context
reside locally, in the network, or in both; how frequently
does context information have to be consulted; and, what is
the overhead of taking context into account?

2.3 Conversation

A conversation is a sequence of messages that involve two
or more participants who intend to achieve a particular
purpose [37]. In addition, a conversation is goal-directed,
has a task-driven pattern, and is specified with conversation
policies that regulate the progress of the information
exchange [20]. A conversation either succeeds or fails. On
the one side, a conversation succeeds because the outcome
expected out of the conversation has been achieved (e.g.,
action implemented, feedback received). On the other side,
a conversation fails because the conversation faced some
technical difficulties (e.g., communication-medium discon-
nected) or the expected outcome has not been achieved
(e.g., action requested not-implemented).

The Web Services Conversation Language (WSCL) is one
of the initiatives on Web services conversations [10]. WSCL
describes the structure of documents that a Web service
expects to receive and produce, as well as the order in
which the exchange of these documents is to happen. In
fact, the conversation component of a service is a means for
describing the operations that the service supports (e.g.,
clients to log in first, then they can request catalog).

3 WEB SERVICES

3.1 Definitions

A Web service is an accessible application that other
applications and humans can discover and invoke. Bena-
tallah et al. suggest the following properties for a Web
service [7]: 1) independent as much as possible from specific
platforms and computing paradigms, 2) mainly developed
for interorganizational situations, and 3) easily composable
so that developing complex adapters for the needs of
composition is not required.

For the needs of our research on Web services [25], [27],
[28], we developed service chart diagrams as a means for
modeling and defining services [24]. A service chart
diagram enhances a state chart diagram1 [17], putting this
time the emphasis on the context surrounding the execution
of a service rather than only on the states that a service takes
(Fig. 1). To this end, the states of a service are wrapped into
five perspectives, each perspective having a set of para-
meters. The state perspective corresponds to the state chart
diagram of the service. The flow perspective corresponds to

MAAMAR ET AL.: TOWARD AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH FOR WEB SERVICES COMPOSITION 687

1. A state chart diagram is a graphical representation of a state machine
that visualizes how and under what circumstances a modeled element
changes its states. In addition, a state chart diagram depicts the actions that
are executed because of the occurrence of specific events.

the execution chronology of the composite service in which
the service participates (Previous services/Next services
parameters—M/O for Mandatory/Optional). The business
perspective identifies the organizations (i.e., providers) that
offer the service (Business parameter). The information
perspective identifies the data that are exchanged between
the services of the composite service (Data from previous
services/Data for next services parameters). Because the
services that participate in a composition can be either
mandatory or optional, the information perspective is
tightly coupled to the flow perspective with regard to
mandatory and optional data. Finally, the performance
perspective illustrates the ways by which the service is
invoked for execution (Performance type parameter, more
details on invocation types are given in [23]).

3.2 Composite Services

A composition approach connects Web services together in
order to devise composite services. The connection of Web
services implements a business logic, which depends on the
application domain and control flow of the business case for
which the composite service is being devised. Examples of
business cases are various, such as travel planning and
journal-paper review. It is accepted that the efficiency and
reliability of a composite service strongly depend on the
commitments, performance, and delivery capabilities of
each of the component services. In what follows, an
overview of the approaches for developing composite
services is presented [12].

3.2.1 Proactive Composition versus Reactive

Composition

A proactive composition is an offline process that gathers
in-advance available component services to constitute a
composite service. The composite service is precompiled
and ready to be triggered upon users’ requests. In a
proactive composition, the component services are usually
stable and may possibly be running on resource-rich
platforms. A reactive composition is the process of
creating composite services on-the-fly. A composite
service is devised on a request-basis from users. Because

of the on-the-fly property, a component manager is
required and ensures the identification and collaboration
of the component services. Despite a ”certain” complexity
of the reactive composition, it has several advantages
over the proactive composition, for instance the possibi-
lity of tracking the status of the composition process so
that corrective actions can be promptly taken and the
possibility of optimizing runtime arguments, such as
bandwidth use, data transfer routes, and execution
charges. Discussions on the pros and cons of each type
of composition is available in [21].

3.2.2 Mandatory Composite Service versus Optional

Composite Service

A mandatory composite service corresponds to the com-
pulsory participation of all the component services in the
execution process. Because it is expected that the compo-
nent services will be spread over the network, the reliability
of the execution process of each component service affects
the whole reliability of the composite service. An optional
composite service does not necessarily involve all of the
component services. Some component services can be
skipped during execution due to various reasons, such as
the possibility of substitution or nonavailability.

Because a composite service is made up of several
component services, the process model underlying the
composite service is specified as a state chart diagram (the
value-added of state charts to Web services composition is
discussed in [6]). In this diagram, states are associated with
the service chart diagrams of the component services (Fig. 1)
and transitions are labeled with events, conditions, and
variable assignment operations. For illustration purposes,
Fig. 2 presents travel assistant composite-service (TAS) as a
state chart diagram. It is composed of several dependent
services, each service having its service chart diagram: flight
booking (FB), hotel booking (HB), attraction search (AS), and car
rental (CR).

4 AGENTIFICATION OF WEB SERVICES

COMPOSITION

Three types of input sources can contribute to a context
development: service, user, or both. In [33], Roman and
Campbell observe that a user-centric context promotes
applications that 1) move with users, 2) adapt according to
changes in the available resources, and 3) provide config-
uration mechanisms based on users’ personal preferences.
From our side, we advocate that a service-centric context
promotes applications that 1) allow service adaptability,
2) deal with service availability, and 3) support on-the-fly
service composition. In this paper, the emphasis is on the
context of services.

688 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 1. Service chart diagram of a component service.

Fig. 2. Travel assistant composite-service as a state chart diagram.

4.1 Deploying Composition Using Agents

The aim of agentifying Web services composition is to
determine the appropriate types and roles of agents that
deploy the specification of this composition, as Fig. 2
illustrates. Currently, three types of agents are devised:
composite-service-agent, master-service-agent, and service-agent.
The rationale of each agent is given below.

We consider a Web service as a component that is
instantiated each time it participates in a new composition.
Prior to any instantiation, several elements related to the
Web service are checked. These elements constitute a part of
the context, denoted by W-context, of the Web service and
are as follows: 1) number of service instances currently
running versus maximum number of service instances that
can be simultaneously run, 2) execution status of each
service instance deployed, and 3) request time of the service
instance versus availability time of the service instance.

The role of themaster-service-agent is to track themultiple
Web services of type instance,which are obtained fromaWeb
service of type root (i.e., similar to class-object principle).
Master-service-agents, Web services, and W-contexts are all
stored in a pool (Fig. 3). Amaster-service-agent processes the
requests of instantiation that are submitted to a Web service.
These requests originate from composite-service-agents that
identify the composite services to set up. For instance, the
master-service-agent makes decisions on whether a Web
service is authorized to join a composite service. Upon
approval, a service instance along a context, denoted by
I -context, is created. An authorization of joining a composite
service can be rejected because of multiple reasons: period of
nonavailability, overloaded status, or exception situation.

To be aware of the running instances of a Web service so
that its W-context is updated, the master-service-agent
associates each instance it creates with two components
(Fig. 3): service-agent and I -context. The service-agent
manages the service chart diagram of the service instance
and its respective I -context. For example, the service-agent
knows the states that the service instance will take and the
Web services that need to join the composite service after
the execution of this service instance is completed.

Master-service-agents and service-agents are in a con-
stant interaction. Indeed, the content of I -contexts feeds the
content of W-contexts with various details including:

1. What is the execution status (in-progress, suspended,
aborted, or terminated) of a service instance?

2. When is the execution of a service instance supposed
to resume in case it has been suspended and what
are the reasons of suspending the execution?

3. When is the execution of a service instance expected
to complete? What kind of completion is expected
(success or failure)?

4. What are the corrective actions that are taken in case
the execution of a service instance fails?

With regard to composite-service-agents, their role is to
trigger the specification of the composite services (Fig. 2)
and monitor the deployment of this specification. A
composite-service-agent ensures that the appropriate com-
ponent services are involved and collaborate according to a
specific specification. When a composite-service-agent
downloads the specification of a composite service from
the store of specifications, it 1) establishes a context denoted
by C-context for the composite service and 2) identifies the
first Web services to be triggered. For the sake of simplicity,
it is assumed that the Web services constitute a sequence. It
is needless to say that our description of the operations is
applied to any type of service chronology. When the first
Web service is identified, the composite-service-agent
interacts with the master-service-agent of this Web service
in the objective to ask for service instantiation. If the master-
service-agent agrees on the instantiation after checking the
W-context (Section 2.3), a service-agent and I -context are
both created. Afterwards, the details on the service chart
diagram of the new service-instance are transmitted to the
service-agent. The service-agent initiates the execution of
the service instance and notifies the master-service-agent
about the execution status. Because of the regular notifica-
tions between service-agents and master-service-agents,
exceptional situations are immediately handled so that
corrective actions are carried-out on time. In addition, while
the Web service instance is being performed, the service-
agent identifies the Web services that are due for execution
after this service instance (next services of the flow
perspective, Fig. 1). In case there are Web services due for
execution, the service-agent requests from the composite-
service-agent to engage in conversations with their respec-
tive master-service-agent (Section 2.3).

The aforementioned description of the agentification
approach presents potential advantages for managing
services all along their life-cycle, from (dynamic) prepara-
tion to actual deployment and recomposition, if needed.
The most prominent advantage is the concurrency that
exists between Web services composition and execution.
While service-agents are in charge of executing the Web
service instances, composite-service-agents engage, at the
same time, in conversations with master-service-agents of
the next Web services to ensure that these next Web
services are getting ready for execution. The concurrent
composition and execution of services are usually referred
to as interleaving [26].

Fig. 3 represents an execution session of the composite
service CS1. CS1 has four primitive component-services (in
fact, four Web services of type instance). Each service
instance is associated with a service chart diagram. The
clouds in the same figure correspond to contexts. I -context
is the core context that the service-agent uses for updating
C-context and W-context of the respective composite-
service-agent and master-service-agent. The exchange of
information that occurs between master-service-agent and

MAAMAR ET AL.: TOWARD AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH FOR WEB SERVICES COMPOSITION 689

Fig. 3. Agents deployment for Web services composition.

service-agent has already been discussed in the previous
paragraphs. In addition to a complete copy (or part based on
the level of details that needs to be tracked) of that exchange
that is sent to composite-service-agents, these ones receive
extra details from service-agents including: 1) the next
services to be called for execution and 2) the type of these
services either mandatory or optional (next services para-
meter of the flow perspective, Fig. 2).

4.2 Modeling I=W=C-Contexts

Besides the three types of agents that Fig. 3 encompasses,
three types of services are considered, namely, composite
service, Web service, and Web service instance. Each service
is attached to a specific context. I -context has the fine
grained content, whereas C-context has the coarse grained
content. The W-context is in between. Details on I -context
update W-context and details on W-context update
C-context. We use Tuple Spaces to support the update
operations between contexts [1], but this is outside this
paper’s scope.2

The I -context of a Web service instance consists of the
following parameters (Table 1): label, service-agent label,
status, previous service instances, next service instances,
regular actions, begin time, end-time expected, end-time
effective, reasons of failure, corrective actions, and date.

The W-context of a Web service is built upon the
I -contexts of its respective component Web service in-
stances and consists of the following parameters (Table 2):
label, master-service-agent label, number of instances
allowed, number of instances running, next service instance
availability, status/service instance, and date.

The C-context of a composite service is built upon the
W-contexts of its respective Web services and consists of the

following parameters (Table 3): label, composite-service-
agent label, previous Web services, current Web service,
next Web services, begin time, and date.

It was pointed out in the beginning of Section 4 that a
service-centric context is adopted in this paper. This is
shown with the W-context of a Web service, which
constitutes the link between I -contexts and C-contexts. A
service-centric context promotes service adaptability, avail-
ability, and dynamic composition. The agentification
approach for the Web services composition of Fig. 3 meets
these three requirements. A composite service might have
to adapt its list of component Web services because of the
availability of certain of these components. Availability is
illustrated with the maximum number of service instances
that can be created versus the current number of service
instances that are running. Since Web services are instan-
tiated on a request-basis and according to their context, this
means that a dynamic composition is supported.

Because of the aforementioned requirements, W-context
is organized along three interconnected perspectives (Fig. 4):

1. Instance perspective is about creating service instances
(e.g., number of instances allowed, number of
instances running), assigning them to composite
services, and getting the next service instances ready
for execution.

2. Execution perspective is about meeting the computing
resource requirements of service instances, tracking
their execution status, and avoiding conflicts on
these resources.

3. Time perspective is about time-related parameters of
service instances and constraints on service instances
(e.g., period of request, period of availability, end-
time expected).

InFig. 4, the threeperspectives are connected to eachother.
First, deployment denotes the connection between instance
and execution perspectives and reflects theWeb services that
are instantiated for execution. Second, tracking denotes the

690 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

TABLE 1
Description of the Parameters of I -Context

2. A sample of a control tuple illustrating an update between contexts:
modified(I -context i, WebServiceInstance wsi)[true]|update(W-context
w, WebService ws) means that if the I -context i of the Web service instance
wsi has beenmodified, then the respectiveW-contextwof theweb servicews
also needs to be updated after collecting information from this I -context i.

connection between execution and time perspectives and

reflects the monitoring of the instances of Web services that

occurs over a certain period of time. Finally, availability

denotes the connection between time and instance perspec-

tives and reflects the continuous verification that the Web

services perform before they commit additional service

instances for a certain period of time.
The use of context ensures that the requirements of and

constraints on the services to participate in a composition

process are taken into account. While current Web services

composition approaches rely on different selection criteria,

such as execution cost, execution time, and reliability [39], it

is deemed appropriate, including context of services, in this
composition, particularly when a reactive composition of
Web services is adopted. Doulkeridis et al. also back the
importance of including context during Web services
composition [15]. We have shown that services take part
in a composition based on their availabilities and the
current needs of the composite services in component
services. Moreover, the use of context is suitable for tracing
the execution of Web services during exception handling. It
would be possible to know at any time what happened and
what is happening with a Web service and all its respective
instances. Predicting what will happen to a Web service
would also be feasible in case the previous contexts (i.e.,
what happened to a service) are stored. In [19], Kouadri
Mostéfaoui makes a reference to different types of context,
including user, computing, time, and history. History
context stores details on other contexts for future and
further use. Applications can make use of not just the
current context, but also past contexts to adapt their
behavior for better actions and interactions with users.

4.3 Managing Conversations between Agents

In the rest of this paper and for the sake of simplicity, a
component service always refers to a Web service. In a
reactive composition such as the one that features the
agentification approach of Fig. 3, the selection of the

MAAMAR ET AL.: TOWARD AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH FOR WEB SERVICES COMPOSITION 691

TABLE 2
Description of the Parameters of W-Context

TABLE 3
Description of the Parameters of C-Context

Fig. 4. Perspectives of a service-centric context.

component services to constitute a composite service is

carried out on-the-fly. The selection operations are out-
sourced to composite-service-agents that engage in con-

versations with the respective master-service-agent of the

appropriate Web services. In these conversations, master-
service-agents decide if their Web service will join the

composition process after checking the W-contexts. In case
of a positive decision, Web service instances, service-agents,

and I -contexts are all deployed.
When a Web service instance is being executed, its

service-agent checks the service chart diagram of this
service instance (Fig. 1). The purpose is to check if

additional Web services have to be executed. If yes, the
service-agent requests from the composite-service-agent to

engage in conversations with the master-service-agents of

these Web services. These conversations have two aims:
1) invite master-service-agents and, thus, their Web service

to participate in the composition process and 2) ensure that
the Web services are ready for instantiation following their

invitation acceptance.
Fig. 5 depicts a conversation diagram between a

service-agent, a composite-service-agent, and a master-
service-agent. The composite-service-agent is in charge of

a composite service that has n component Web serv-

icesð1; ...; i; j; ...; nÞ. In this figure, rounded rectangles are states
(states with underlined labels belong to Web service

instances, whereas other states belong to agents), italic
sentences are conversations, and numbers are the chronol-

ogy of conversations. Initially, Web service instancei takes

an execution state. Furthermore, service-agenti and the
composite-service-agent take each a conversation state. In

these conversation states, activities to request the participa-
tion of the next Web services (i.e., Web servicej) are

performed.

Upon receiving a request from service-agenti about the

need to involve Web servicej (0), the composite-service-

agent engages in conversations with master-service-agentj
(1). This service is an element of the composite service that

is under preparation. A composite service is decomposed

into three parts. The first part corresponds to the Web
service instances that have successfully completed their

execution (Web services1; ...; i�1, previous Web services para-

meter of Table 3). The second part corresponds to the Web

service instance that is now being executed (Web service

instancei, current Web services parameter of Table 3). Finally,

the third part corresponds to the rest of the composite

service that is due for execution and, hence, has to get ready

for execution (Web servicesj; ���; n, next Web services para-

meter of Table 3). Initially, master-service-agentj is in a
monitoring mode in which it tracks the instances of Web

servicej that are currently participating in different compo-

site services. When it receives a request to create an

additional instance, master-service-agentj enters the assess-

ment state. Based on the W-context of Web servicej, master-

service-agentj evaluates the request of the composite-

service-agent and makes a decision on one of the following

options: decline the request, delay its making decision, or
accept the request.

4.3.1 Option A

Master-service-agentj of Web servicej declines the request

of the composite-service-agent. A conversation message is
sent back from master-service-agentj to the composite-

service-agent for information (2.1). Because a component

service can be either mandatory or optional in a composite

service, the composite-service-agent has to decide whether

it has to pursue with master-service-agentj. To this end, the

composite-service-agent relies on the specification of Web

692 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 5. Conversation diagram between agents.

servicei and the C-context of the composite service. Two
exclusive cases are offered to the composite-service-agent:

. If Web servicej is optional, the composite-service-
agent enters again the conversation state, asking the
master-service-agent of another Web servicek; ðk 6¼ jÞ
to join the composite service (1).3

. Otherwise (i.e., Web servicej is mandatory), the
composite-service-agent engages in further conver-
sations with master-service-agentj, questioning
about, for example, the reasons of rejection or the
availability of the next instance of Web servicej.

4.3.2 Option B

Master-service-agentj of Web servicej cannot make a
decision before the deadline of response that the compo-
site-service-agent has fixed. Thus, master-service-agentj
requests from the composite-service-agent if there is a
room to extend the deadline (2.2). The composite-service-
agent has two alternatives taking into account the C-context
of the composite service and the fact that a component
service can be either mandatory or optional:

. Refuse to extend the deadline as requested bymaster-
service-agentj. This means that the composite-ser-
vice-agent has to start again engaging in conversa-
tions with another master-service-agentk; ðk 6¼ jÞ
(Option A).

. Accept to extend the deadline as requested by
master-service-agentj. This means that master-ser-
vice-agentj will be notified about the acceptance of
the composite-service-agent (2.2.1). After receiving
the acceptance, master-service-agentj of Web
servicej enters again the assessment state and checks
the W-context in order to make a decision on
whether to join the composite service (Option A).
A master-service-agent may request a deadline
extension for several reasons, e.g., additional in-
stances of Web servicej cannot be committed before
other instances complete their execution (Table 2).

4.3.3 Option C

Master-service-agentj of Web servicej accepts to join the
composite service. Consequently, it informs its acceptance
to the composite-service-agent (2.3). This is followed by a
Web Service Level Agreement (WSLA) between the two
agents [22]. At the same time, master-service-agentj ensures
that Web servicej is getting ready for execution through the
preparation state (i.e., deploy I -context and service-agentj).

When the execution of Web service instancei is com-
pleted, service-agenti informs the composite-service-agent
about that. According to the agreement that is established in
Option C, the composite-service-agent interacts with
service-agentj so that the newly-created instance of Web
servicej is triggered. Therefore, Web service instancej enters
the execution state. At the same time, the composite-service-
agent initiates conversations with the master-service-agents
of the next Web services that follow Web servicej. It should
be noted that the content of agreements is beyond the scope
of this paper.

5 SECURITY OF WEB SERVICES

An exhaustive list of the security risks that can prevent the

widespread adoption of Web services is reported in [4], [38].
These risks range from authentication of the requesters and

providers of services to denial of service and data integrity

of WSDL files. In addition, Aissi et al. claim in [2] that the

biggest challenge for Web services is the fragmentation of
the security requirements. The inability to describe where

and how to apply security measures is a large gap in the

description of Web services. In this paper, because Web

services require the computing resources of hosts on which
they are executed, it is important to ensure that neither the

services misuse the resources of hosts nor that the hosts alter

the integrity of the services. In the following, we highlight

the first part of the security strategy, which consists of
preventing services from misusing the computing resources

of hosts. The second security strategy, which consists of

protecting services from malicious hosts, is part of our

future work. It should be noted here that the security of
services is discussed at the instance level.

5.1 Service-Based Access Control

The Role-Based Access Control (RBAC) is a well-known
strategy for managing access rights of users in businesses
[34]. In a business, it is common that users fulfill various
roles. For each role a set of rights to use some resources are
granted. In an open service-oriented environment, the
RBAC strategy is inappropriate. Because new services
may be offered and existing services may be changed or
withdrawn, a continuous adaptation of the access privileges
that are assigned to roles and, thus, to users is deemed
mandatory. Therefore, managing roles and their access
privileges becomes a real burden. The execution of the Web
services constitutes a serious threat to computing hosts. A
Web service can use the local services of a host (e.g.,
calendar, word processor) to request some sensitive
information, such as a banking-application secret code.

To handle the aforementioned security situations, we
designed a service-based access control architecture. Fig. 6
represents this architecture where numbers correspond to
the steps that grant a Web service the right to run on the
resources of a host. The rationale of monitoring module,
security context, and pattern database is explained in the
following paragraphs. It should be mentioned the security
context of Fig. 6 is totally different from the contexts of
Section 4.2.

First of all, a service submits a request of use to the
monitoring module (1). Upon receiving the request, the
monitoring module checks the security context of the
resource that this service is about to use (2). Details on the
security context are given in Section 5.2. Afterwards, the
monitoring module browses the pattern database (3). The
objective is to identify any malicious pattern that might exist
in the database and present some similarities with the
execution trace of the service that requests the use of the
resources. Details on the pattern database are given in
Section 5.3. A response to grant or deny the request for use
is sent back to the service (4). Finally, the request is
implemented (5) in case of a positive response from the
monitoring module.

MAAMAR ET AL.: TOWARD AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH FOR WEB SERVICES COMPOSITION 693

3. Web servicek is a substitute for Web servicej. If a substitute service
does not exist, the composite-service-agent bypasses Web servicej and
works on Web servicejþ1.

5.2 Security Context Specification

In Fig. 6, the monitoring module decides if a service has the
right to use a resource. To make this decision, the
monitoring module relies on a security context that has
the following format: (S1 ! S2 ! � � � ! SnÞ �R, where Si is
a service, R is a resource, ! is a calling operation between
services, and � is a use request of a resource. The calling
chain (S1 ! S2 ! � � � ! Sn) of the service being currently
monitored is determined upon the collaboration happening
between the monitoring module and the service-agent of
this service. A request, which originates from the monitor-
ing module to the service-agent, allows collecting informa-
tion on the calling chain. The service-agent uses previous
service instances parameter of the service’s I -context (Table 1)
in order to constitute the calling chain, namely, the list of
services being called for execution. With regard to the
resources in Fig. 6, each resource R has a security context
that needs to be checked each time a request of use of that
resource is initiated. The final decision to grant or deny the
use of a resource R is based on the algorithm of Fig. 7.

5.3 Pattern Database

The pattern database aims at storing the potential threats on
the resources, which are deployed in an environment of
Web services. Each threat is identified with a pattern. A
pattern is determined based on the execution trace of a
service with regard to the sequence of primitive actions that
the service implements. Threats are, first, parameterized
with resource labels (e.g., file name, port number, etc.) and,
second, associated with rules that specify under which
circumstances a threat is malicious. It is planned to create
and update the pattern database offline. In addition, only
the system hosting the database has the right to use it so
that malicious accesses are prevented.

Relying on the malicious pattern database, the monitor-
ing module controls both the security context of any use
request to a resource as well as the primitive actions that a
service is going to be performed. For illustration purposes,
we assume a and b as primitive actions. When a service
plans to perform action a then action b, the monitoring
module checks if a � b does not constitute a malicious

pattern (� represents a sequence of actions). To this end, the
monitoring module consults the pattern database.

Malicious patterns are detected using traces and data
security levels. Data are labeled with security levels
including public, shared, and secret. A malicious pattern
is specified by one or several rules. Each rule specifies why
a service is considered malicious. Fig. 8 illustrates a
specification rule of a malicious pattern. It states that Read �
Send is a malicious pattern if-and-only-if Read is an action
of reading a secret data x and Send is an action of sending
the same secret data x out through the network.

6 IMPLEMENTATION STATUS

We overview the progress of implementing the agent-based
and context-oriented approach for Web services composi-
tion. After assessing our objectives and constraints, we
decided to focus on a rapid and flexible prototyping of this
approach rather than low-level implementation details. We
have adopted Borland JBuilder Enterprise Edition 9.0.4

JBuilder has a toolkit for building, testing, and deploying
Web services. JBuilder includes as well a Web services
explorer facility for publishing and searching for Web
services.

The prototype architecture of the agent-based and
context-oriented approach for Web services composition is
depicted using a class model (Fig. 9). The following outlines
the functionality of some classes:

. Service chart diagram is used to specify Web services
and Web service instances.

. State chart diagram is used to specify composite
services. A state chart diagram aggregates the
service chart diagrams of the component Web
services of a composite service.

. Agents is used to specify all agents (service-agent,
master-service-agent, and composite-service-agent)
of the prototype. Each agent has a label, type, and
location, which is the platform where it resides.

. Context, with its types (I -context, W-context,
C-context), is responsible for gathering, processing,
and parsing contextual information. It translates the
information parsed into XML documents (Appendix
A, available on the IEEE Computer Society’s Digital
Library at http://www.computer.org/publications/
dlib) and attaches each context to the appropriate
agent.

. Conversation is the central unit for managing and
maintaining conversations between all agents of the
prototype. Conversations are represented as XML
documents.

The validation of the model of Fig. 9 was started with
developing a Web services composition manager. The
manager offers a set of tools that allow Web services’

694 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 6. Service-based access control architecture.

Fig. 7. Validation algorithm for a resource request of use. Check_
rules() is a function that uses a database of malicious patterns. The
function guarantees that the actions to be performed before granting the
right to use the resource R do not constitute a malicious attack.
Otherwise, the request of use is denied.

Fig. 8. Example of a specification rule of a malicious pattern.

4. http://www.borland.com/jbuilder/enterprise/index.html.

providers and users to create, compose, and execute
services based on the different contexts. WSDL is used for
Web services specification, whereas UDDI is used for Web
services announcement and discovery. We recall that the
details of each type of context are presented as XML files.
For example, Appendix A (available on the IEEE Computer
Society’s Digital Library at http://www.computer.org/
publications/dlib) illustrates the XML code associated with
I -context. A dedicated XML editor was implemented in
order to develop and validate the different context files,
which have all to comply with specific DTDs.

The Web services composition manager also offers an
editor for describing service chart diagrams of a component
service participating in composite services (Fig. 10). The
editor provides tools for directly manipulating service chart
diagrams, states, and transitions (add, remove, modify, etc.)
graphically using simple drag and drop actions. All changes
are reflected in the corresponding context details and
WSDL description files.

7 RELATED WORK TO THE COMPOSITION

APPROACH

There are several research initiatives in the field of Web
services [31]. However, to our knowledge, none of these
initiatives have attempted including context in the compo-
sition process of Web services. Besides the traditional
selection criteria that are used in a similar process (e.g.,
execution cost and execution time), we have shown that
context has a major effect on the Web services, in general,
and their composition, in particular. For example, reaching

the maximum number of instances that can be obtained
from a Web service definitely delays the development of a
composite service. Furthermore, being aware of when these
instances will become available helps adjust the execution
of the composite service. We have also shown that the
context has been part of the conversations that agents of the
Web services engage. In the rest of this section, we highlight
some of the works that have supported our thoughts and
inspired us shape our agent-based and context-oriented
approach for Web services composition.

In the service chart diagram of Fig. 1, the flow
perspective illustrates the pre and postcomponent services
of a composite service. These component services can be
either optional or mandatory. These types of services are
similar to what Berfield et al. call vital and nonvital services
for a workflow application in [9]. Another use of previous
and next services of the flow perspective is related to pre and
postconditions. These conditions specify what must be true
before a component service can be executed and what will
be true as a result of the component service execution.

In Section 2.3, we introduced the Web Services Con-
versation Language of [10]. While this language focuses on
specifying the operations that Web services support, our
conversations focus on the mechanisms of establishing
composite services. We classify these mechanisms into four
categories: domain-dependent, domain-independent, com-
position-driven, and execution-driven. Domain-dependent
conversation mechanisms deal with the features of the
application domain when it comes to structuring the format
and content of the conversations to occur. For example,
conversations for car rental are different from those for
hotel booking. The opposite occurs for domain-independent

MAAMAR ET AL.: TOWARD AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH FOR WEB SERVICES COMPOSITION 695

Fig. 9. Prototypical class model.

conversation mechanisms when it comes, for example, to
trigger a service for execution. The domain does not affect
the way a service is triggered. Instead, the implementation
technology on which the Web services are deployed affects
the triggering of the service. With regard to composition-
driven conversations, they represent the conversations that
are needed to devise a composite service, such as how to
look for the component Web services and how to exchange
agreements between these component Web services. Ex-
ecution-driven conversation mechanisms represent the
messages that are needed to deploy a composite service.
Therefore, the chronology of conversations starts with
composition-driven conversations and continues with ex-
ecution-driven conversations.

Another use of conversations in Web services enables
dealing with the composability issue of Web services as
Medjahed et al. report in [29]. For instance, mapping
operations of the information exchanged between Web
services may be required. Ensuring the composability of
Web services can be achieved through conversations. For
instance, agents engage in conversations for agreeing on
what to exchange, how to exchange, when to exchange, and
what to expect from an exchange.

In Table 1, parameters of type expected versus para-
meters of type effective have a major overlapping with the
QoS of type advertised (or ”promised”) versus QoS of type
delivered [30]. Ouzzani and Bouguettaya report that a key
feature in distinguishing between competing Web services
is their QoS, which encompasses several qualitative and
quantitative parameters that measure how well the Web
service delivers its functionalities [30]. A Web service may
not always fulfill its advertised QoS parameters due to
various fluctuations related for example to the network
status or resource availability. Therefore, some differences
between QoS advertised and QoS delivered values occur.
However, large differences indicate that the Web service is
suffering a performance degradation in delivering its
functionalities. The same comment is made on parameters
of type expected versus parameters of type effective of
Table 1. A major difference between end-time expected and
end-time effective indicates the obstacles that might have
faced the execution of a Web service.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented our approach for composing
Web services using the concepts of software agent and
context. Several types of agents have been put forward,
namely, composite-service-agents associated with compo-
site services, master-service-agents associated with Web
services, and, finally, service-agents associated with Web
service instances. The different agents are aware of the
context of their respective services in the objective to devise
composite services on-the-fly. To reach this objective, three
types of context have been used: I -context, W-context, and
C-context. Conversations between agents have also featured
the composition of Web services. Before Web service
instances are created, agents engage in conversations to
decide if service instances can be created and annexed to a
composite service. Such a decision is based on several
factors, such as the maximum number of service instances
that can be deployed at the same time and the availability of
these instances for a certain period of time.

Our future work includes the completion of the proof-of-
concept prototype. We also plan to examine the support for
exception handling during conversation-based service
composition. Software agents of composite services could
perform some run-time changes of the specification of
composition by adding new component services, removing
certain component services, or replacing certain component
services.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
comments and suggestions of improvements. Thanks are
also due to Professor W.J. van den Heuvel from Tilburg
University in the Netherlands for his feedback on earlier
versions of this paper.

REFERENCES

[1] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and Friends,”
Computer, vol. 19, no. 8, Aug. 1986.

[2] S. Aissi, P. Malu, and K. Srinivasan, “E-Business Process
Modeling: The Next Big Step,” Computer, vol. 35, no. 5, May 2002.

696 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 10. Editor for service-chart diagram definition.

[3] L. Ardissono, A. Goy, and G. Petrone, “Enabling Conversations
with Web Services,” Proc. Second Int’l Joint Conf. Autonomous
Agents and Multi-Agent Systems (AAMAS ’03), 2003.

[4] A. Barbir, “Web Services Security: An Enabler of Semantic Web
Services,” Proc. Business Agents and the Semantic Web, held in
conjunction with the 16th Canadian Conf. Artificial Intelligence
(AI ’03), 2003.

[5] B. Benatallah, F. Casati, and F. Toumani, “Web Service Conversa-
tion Modeling, A Cornerstone for E-Business Automation,” IEEE
Internet Computing, vol. 8, no. 1, Jan./Feb. 2004.

[6] B. Benatallah, M. Dumas, Q.Z. Sheng, and A. Ngu, “Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web
Services,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), 2002.

[7] B. Benatallah, Q.Z. Sheng, and M. Dumas, “The Self-Serve
Environment for Web Services Composition,” IEEE Internet
Computing, vol. 7, no. 1, Jan./Feb. 2003.

[8] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella, “A Foundational Vision for e-Services,” Proc. Work-
shop Web Services, e-Business, and the Semantic Web (WES ’03), held
in conjunction with the 15th Conf. Advanced Information Systems
Eng. (CAiSE ’03), 2003.

[9] A. Berfield, P.K. Chrysanthis, I. Tsamardinos, M.E. Pollack,
and S. Banerjee, “A Scheme for Integration E-Services in
Establishing Virtual Enterprises,” Proc. 12th Int’l Workshop Research
Issues in Data Eng.: Eng. e-Commerce/e-Business Systems (RIDE ’02),
2002.

[10] D. Beringer, H. Kuno, and M. Lemon, “Using WSCL in a UDDI
Registry 1.02,” http://www.uddi.org/pubs/wsclBPforUDDI_5_
16_011.doc, 2001.

[11] P. Brézillon, “Focusing on Context in Human-Centered Comput-
ing,” IEEE Intelligent Systems, vol. 18. no. 3, May/June 2003.

[12] D. Chakraborty and A. Joshi, “Dynamic Service Composition:
State-of-the-Art and Research Directions,” Technical Report TR-
CS-01-19, Dept. of Computer Science and Electrical Eng., Univ. of
Maryland, 2001.

[13] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The
Next Step in Web Services,” Comm. ACM, vol. 46, no. 10, Oct. 2003.

[14] A.K. Dey, G.D. Abowd, and D. Salber, “A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-
Aware Applications,” Human-Computer Interaction J., special issue
on context-aware computing, vol. 16, no. 1, 2001.

[15] C. Doulkeridis, E. Valavanis, and M. Vazirgiannis, “Towards a
Context-Aware Service Directory,” Proc. Fourth Workshop Technol-
ogies for E-Services (TES ’03), held in conjunction with the 29th Int’l
Conf. Very Large Data Bases (VLDB ’03), 2003.

[16] S. Evren, P. Bijan, and H. James, “Composition-Driven Filtering
and Selection of Semantic Web Services,” Proc. 2004 AAAI Spring
Symp. Semantic Web Services, 2004.

[17] D. Harel and A. Naamad, “The STATEMATE Semantics of
Statecharts,” ACM Trans. Software Eng. and Methodology, vol. 5,
no. 4, Oct. 1996.

[18] N. Jennings, K. Sycara, and M. Wooldridge, “A Roadmap of Agent
Research and Development,” Autonomous Agents and Multi-Agent
Systems, vol. 1, no. 1, 1998.

[19] S. Kouadri Mostéfaoui, “Towards a Context-Oriented Services
Discovery and Composition Framework,” Proc. AI Moves to IA:
Workshop Artificial Intelligence, Information Access, and Mobile
Computing, held in conjunction with the 18th Int’l Joint Conf.
Artificial Intelligence (IJCAI ’03), 2003.

[20] F. Lin and D.H. Norrie, “Schema-Based Conversation Modeling
for Agent-Oriented Manufacturing Systems,” Computers in In-
dustry, vol. 46, no. 3, Oct. 2001.

[21] S.W. Loke, “Proactive and Reactive Discovery, Composition, and
Activation of Localized Services Accessed from Mobile Devices,”
Proc. AI Moves to IA: Workshop Artificial Intelligence, Information
Access, and Mobile Computing, held in conjunction with the 18th
Int’l Joint Conf. Artificial Intelligence (IJCAI ’03), 2003.

[22] H. Ludwig, A. Keller, A. Dah, and R. King, “A Service Level
Agreement Language for Dynamic Electronic Services,” Proc. 4th
IEEE Int’l Workshop Advanced Issues of E-Commerce and Web-Based
Information Systems (WECWIS ’02), 2002.

[23] Z. Maamar, “Moving Code (Servlet Strategy) versus Inviting Code
(Applet Strategy)—Which Strategy to Suggest to Software
Agents?” Proc. Third Int’l Conf. Enterprise Information Systems
(ICEIS ’01), 2001.

[24] Z. Maamar, B. Benatallah, and W. Mansoor, “Service Chart
Diagrams—Description and Application,” Proc. Alternate Tracks of
the 12th Int’l World Wide Web Conf. (WWW ’03), 2003.

[25] Z. Maamar and W. Mansoor, “Design and Development of a
Software Agent-Based and Mobile Service-Oriented Environ-
ment,” e-Service J., vol. 2 no. 3, 2003.

[26] Z. Maamar, Q.Z. Sheng, and B. Benatallah, “Interleaving Web
Services Composition and Execution Using Software Agents and
Delegation,” Proc. First Int’l Workshop on Web Services and Agent-
Based Eng. (WSABE ’03), held in conjunction with the Second Int’l
Joint Conf. Autonomous Agents and Multi-Agent Systems
(AAMAS ’03), 2003.

[27] Z. Maamar, Q.Z. Sheng, and B. Benatallah, “On Composite Web
Services Provisioning in an Environment of Fixed and Mobile
Computing Resources,” Information Technology and Management J.,
special issue on workflow and e-business, vol. 5, no. 3, 2004.

[28] Z. Maamar, H. Yahyaoui, and W. Mansoor, “Design and
Development of an M-Commerce Environment: The E-CWE
Project,” J. Organizational Computing and Electronic Commerce,
vol. 14, no. 4, 2004.

[29] B. Medjahed, A. Rezgui, A. Bouguettaya, and M. Ouzzani,
“Infrastructure for E-Government Web Services,” IEEE Internet
Computing, vol. 7 no. 1, Jan./Feb. 2003.

[30] M. Ouzzani and A. Bouguettaya, “Efficient Access to Web
Services,” IEEE Internet Computing, vol. 8, no. 2, Mar./Apr. 2004.

[31] M. Papazoglou and D. Georgakopoulos, “Introduction to the
Special Issue on Service-Oriented Computing,” Comm. ACM,
vol. 46, no. 10, Oct. 2003.

[32] A. Ranganathan and R.H. Campbell, “A Middleware for Context-
Aware Agents in Ubiquitous Computing Environments,” Proc.
ACM/IFIP/USENIX Int’l Middleware Conf. (Middleware ’03), 2003.

[33] M. Roman and R.H. Campbell, “A User-Centric, Resource-Aware,
Context-Sensitive, Multi-Device Application Framework for Ubi-
quitous Computing Environments,” Technical Report UIUCDCS-
R-2002-2282 UILU-ENG-2002-1728, Dept. of Computer Science,
Univ. of Illinois at Urbana-Champaign, 2002.

[34] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based
Access Control Models,” Computer, vol. 20, no. 2, Feb. 1996.

[35] M. Satyanarayanan, “Pervasive Computing: Vision and Chal-
lenges,” IEEE Personal Comm., vol. 8, no. 4, Aug. 2001.

[36] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing
Applications,” Proc. IEEE Workshop Mobile Computing Systems and
Applications, 1994.

[37] I.A. Smith, P.R. Cohen, J.M. Bradshaw, M. Greaves, and H.
Holmback, “Designing Conversation Policies using Joint Intention
Theory,” Proc. Third Int’l Conf. Multi-Agent Systems (ICMAS ’98),
1998.

[38] A. Yang, “Web Services Security,” eAI J., Sept. 2002.
[39] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng,

“Quality Driven Web Services Composition,” Proc. 12th Int’l World
Wide Web Conf. (WWW ’03), 2003.

Zakaria Maamar received the PhD degree in computer science from
Laval University, Quebec, Canada in 1998. Currently, he is an associate
professor in the College of Information Systems at Zayed University,
Dubai, United Arab Emirates. His research interests lie in the areas of
mobile computing, Web/mobile services, and software agents.

Soraya Kouadri Mostéfaoui is a PhD candidate in the Pervasive and
Artificial Intelligence Research Group in the Computer Science Depart-
ment of the University of Fribourg, Switzerland. Her research interests
include ubiquitous computing, context-aware computing, Web services,
and emergent behaviors.

Hamdi Yahyaoui is currently pursuing the PhD degree regarding the
acceleration and semantic foundations of embedded Java Virtual
Machines. He is a researcher in the Languages, Semantics, and Formal
Methods Research Group at the Computer Sciences Department of
Laval University, Quebec, Canada. His research interests lie in the
areas of formal semantics, static analysis, Java acceleration, and Web
services. He actively participated in the implementation of a Java
optimizing compiler and a lightweight dynamic compiler for embedded
Java Virtual Machines.

MAAMAR ET AL.: TOWARD AN AGENT-BASED AND CONTEXT-ORIENTED APPROACH FOR WEB SERVICES COMPOSITION 697

