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ABSTRACT 

To increase the commercial value and accessibility of pages, most content sites tend to publish their 

pages with intra-site redundant information, such as navigation panels, advertisements and copyright 

announcements. Such redundant information increases the index size of general search engines and 

causes page topics to drift. In this paper, we study the problem of mining intra-page informative 

structure in news Web sites in order to find and eliminate redundant information. Note that intra-page 

informative structure is a sub-set of the original Web page and is composed of a set of fine-grained and 

informative blocks. The intra-page informative structures of pages in a news Web site contain only 

anchors linking to news pages or bodies of news articles. We propose an intra-page informative 

structure mining system called WISDOM (Web Intra-page Informative Structure Mining based on the 

Document Object Model) which applies Information Theory to DOM tree knowledge in order to build 

the structure. WISDOM splits a DOM tree into many small sub-trees and applies a top-down 

informative block searching algorithm to select a set of candidate informative blocks. The structure is 

built by expanding the set using proposed merging methods. Experiments on several real news Web 

sites show high precision and recall rates which validates WISDOM’s practical applicability. 
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1. INTRODUCTION 

Many Web pages are generated online for Web site maintenance, flexibility, and scalability purposes. 

They are usually generated by putting page content stored in back-end databases into predefined 

templates. The experimental results in [4] show that, on average, 43% of Web pages contain templates 

which indicates how pervasive template usage has become. Most commercial Web sites, such as search 

engines, portal sites, e-commerce stores, and news, apply a systematic technique to generate Web pages 

and to adapt various requests from numerous Web users. These sites are referred to as systematic Web 

sites [16]. The evolution of automatic Web page generation and the sharp increase of systematic Web 

sites have contributed to the explosive growth of Web page numbers. There exists much redundant and 

irrelevant information in these Web pages [1][23], such as navigation panels, advertisements, catalogs of 

services and announcements of copyright and privacy policies which are distributed over almost all 

pages of a systematic Web site. Such information is still crawled and indexed by search engines and 

information agents, thus significantly increasing corresponding storage and computing overhead. 

We define specific regions of a page that users are interested in as informative blocks (or referred to as 

IB). Information within IBs manifests the main topic of the page and indicates related information. The 

set of these blocks and corresponding connecting structures form the informative structure (or referred 

to as IS) of the page. Figure 1 shows the IS of an example news page and its corresponding parts of 

content. A Web page can be represented by a tree structure, i.e., Document Object Model (DOM) [27] 

and each content block in a page is a sub-tree of the original DOM tree. The IS can be defined as a 

reduced tree united by sub-trees of IBs. The tree relation of united sub-trees is also kept in IS. The IS for 

example in Figure 1 is built by uniting sub-trees of two news table of content blocks and is a tree 

reduced from the original DOM tree. As proposed in [16], which deals with the IS in a site, called inter-

page informative structure. The structure is composed of informative pages within a Web site and 
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interconnecting links. In this paper, we work with ISs of individual pages, called intra-page informative 

structure (for simplicity, we use the same denotation IS in the last parts of the paper). Each page has its 

own IS and the structure is composed of IBs within the page. 

 

Figure 1: The original document structure and its IS of a news page from WashingtonPost. 

Web informative content mining is an important task for search engines and Web agents [11]. Internet 

crawlers can use the IS to focus on crawling informative paths. Search engines can reduce the size of 

indices and make them more precise by removing the redundant and irrelevant page blocks. Inter-media 

information agents that search for specific information among Web sites with different presentation 

styles, page layouts and site mapping can also benefit from the information pre-processed by the 

structure. 

News search engines like Google News, Altavista News and NSE1, are typical examples of inter-media 

information agents. They crawl diverse news articles from thousands of news Web sites and extract and 

index article blocks. The IS of a page consists of sets of table of contents (abbreviated as TOC) blocks 
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and news article blocks. The structure helps agents to automatize crawling and indexing. The IS of 

article pages usually consists of fine-grained and joined IBs and most of them contain only one HTML 

tag in its sub-tree, i.e., leaf nodes in the DOM tree. These blocks contain news article metadata, such as 

title, date, reporter and place, which are very useful in categorizing pages for news information agents 

and metadata extraction. Agents can automatically extract article metadata by using this structure. 

                                                                                                                                                                         

1 Google News: http://news.google.com, Altavista News: http://www.altavista.com/news, NSE: http://nse.iis.sinica.edu.tw. 

 

Figure 2: A sample news page from WashingtonPost and the tree structures of informative blocks. 

 

According to the definitions of hubs and authorities in [18], a good hub is a page linking to a good 

authority page that is relevant to some specific query. Analogously, we define a good information hub as 

a block linking to a good information authority block which will provide useful information. The IS of a 

page can then be considered as the set of blocks of good information hubs and good information 
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authorities within that page. Note that Web pages in news Web sites usually contain the obvious and 

clear ISs, i.e., TOC and article blocks, in our observation. Figure 2 shows the root page of the news Web 

site WashingtonPost (http://www.washingtonpost.com) and blocks 1 and 2 which provide anchors 

linking to hot news and selected news are the information hubs. We consider these two blocks as IBs as 

they are the crawling points for news information agents to collect daily news. Block 3 is merely a menu 

block which is appended ubiquitously to most pages in the WahsingtonPost Web site, and is thus 

considered as redundant. 

In an HTML document, tags are inserted for purposes of the page layout, content presentation and for 

providing interactive functions, e.g., form filling and document linking. After being rendered by the 

browser, tags are invisible to users and are represented by means of visual appearances and functions. 

The layout and style of presentations provide hints to users for accessing and understanding information 

easily. The corresponding tagging structure therefore contains information about representation and 

semantics of Web pages. For example, a group of tight sibling anchor nodes with the short anchor-text, 

e.g., the tagging tree of block 3 in Figure 2, is different from a group of sibling nodes with the long 

anchor-text interleaved with context nodes, e.g., the tagging tree of block 2 in Figure 2. In Figure 2, 

block 1 containing several tightly coupled anchor groups also provides different functionality and 

representation from block 2 and block 3. In news Web sites, a TOC block containing categorized news 

is usually similar in structure to that of block 1. Block 2 is also an informative TOC containing the 

abstracts of news and anchors linking to the news articles. Such useful evidences are more prominent in 

pages of the systematic Web sites in which ISs are usually generated automatically and dynamically by 

an iterative program from predefined templates. 

In this paper, we extract and use knowledge from the tagging tree structure of a Web page and apply the 

Information Theory to mine the IS. Considering the structure information and context in these nodes 
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together, we are able to understand and extract the meaning of information contained in Web pages 

more clearly and precisely. Specifically, we propose in the paper an IS mining system called WISDOM, 

standing for Web Intra-page Informative Structure Mining based on the Document Object Model to 

automatically extract and recognize the IS of each page in a Web site. 

The main mining flow in WISDOM first uses the Information Theory to evaluate the information 

amount contained in each DOM tree node, and then constructs the IS by applying the specific searching, 

filtering and merging methods. The searching step finds IB candidates and its principle is based on the 

observation that the root node of an IB uniformly spreads its information around its children nodes in 

most cases. In view of this, WISDOM first splits the original DOM tree into several small and non-

overlapped sub-trees as shown in Figure 3 and selects some of them as the candidate sub-trees, in 

accordance with the assigned threshold of the structure information. The threshold is applied for the 

judgment on the uniformity of information distribution. Some uninformative sub-trees are removed in 

the step. Our system then applies a top-down IB searching algorithm to find the top-k most informative 

blocks and the corresponding filtering criteria to select a set of candidate ISs called the skeleton set. 

The skeleton set can be considered the core sub-trees of the IS shown in the color shaded regions in 

Figure 3. The IS is built by expanding the skeleton set using the proposed merging methods. The 

merging method works in a bottom-up manner to link the qualified sibling nodes in the skeleton set and 

other informative nodes. 

The remainder of this paper is organized as follows. In Section 2, we describe related work. WISDOM 

is described in Section 3. In Section 4, we evaluate the performance of WISDOM by testing it on several 

real news Web sites, university and commercial Web sites. The Section 5 gives our conclusion. 
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Figure 3: The tree splitting and selection in WISDOM. 

2. RELATED WORK 

Many works have been proposed that aim to extract the information of a page. Works on wrappers 

[9][19][22] provide learning mechanisms to mine the extraction rules of documents. The WebKB project 

in [6] automatically creates a computer understandable knowledge base from the textual content and 

hyperlink connectivity of Web pages. The work describes an inductive logic programming algorithm for 

learning wrappers and develops a trainable information extraction system. Works in [1][15][20] provide 

auxiliary systems to aid in the information extraction from semi-structured documents. The clipping 

method proposed in [14] is based on a supervised learning to provide a practical tool to cut the news 

articles. However, they need either a pre-marked training set or a considerable amount of human 

involvement to perform information extraction. When we consider the whole World Wide Web as our 

problem domain, building a useful training set to represent the diversity of Web content and structure is 

very hard. 

In a systematic Web site, IBs are usually generated by a loop program; the entities in blocks are 

therefore similar to one another in view of their tag patterns and information they carry. In Figure 2, it 
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can be seen that the tag patterns of micro blocks (the shaded regions) in IBs 1 and 2 look very similar to 

one another. Therefore, frequent substructure mining is a candidate solution for automatic extraction of 

IBs. The topic of mining frequent substructure on the DOM trees of semistructure pages has recently 

been studied in [2][10][24] where the frequent sub-tree was extracted by respective pattern mining and 

noise node concealment methods, such as the wildcard mechanism in [10] and node-skip and edge-skip 

pruning in [2]. Works also use the tree pattern mining to extract metadata information in Web pages 

[13][28]. However, semantic information in mined blocks with the same tree structure may be different 

from one to another. We need other information measurement methods to filter out redundant 

information blocks from those blocks with similar tree structure. Moreover, some IBs like article blocks, 

are laid out with the unique structures and are indeed difficult to extract by the frequent structure mining. 

Some techniques proposed in [12][29] use the semantics and relationships of tags to extract the record 

boundaries of Web pages. Several heuristic rules of tag characteristics, such as the highest count-tags 

(HT), identifiable “separator” tag (IT) and repeating tag pattern (RP), are proposed in [12] and are 

applied to extract record boundaries on several “.com” Web sites. Research in [29] also categorized tags 

into several groups according to their tagging functionalities and discovered the major schemas between 

them to translate HTML documents to XML documents in a semantic view. 

Research in [7] extends the definition of a hub by dividing a hub page into several fine-grained hub 

blocks with different hub values. This is accomplished by calculating and integrating the hub values of 

each anchor node in the DOM tree of a page. Entropy analysis proposed in [21] discriminates the 

informative authorities of pages by dividing a page into several authority blocks with different authority 

values weighted by the information of each block.  

There are also works on mining informative structure [16][21], which are different from our work in that 

they mainly deal with mining blocks delimited by <TABLE> tags. In contrast, we mine fine-grained 
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blocks using the DOM tree. It is worth mentioning that in the problem of mining the fine-grained IBs in 

a page, a straightforward approach would be to divide the page into several unit blocks that contain only 

one tag and then to merge neighboring blocks that contain information together. This naive method, 

however, does not work well for real-world Web pages in our opinion, because (1) when an IB is 

divided into small blocks with the one-tag granularity, the information contained is also divided into 

many small pieces which are difficult to discriminate from noises and redundant information, and (2) 

there is no obvious method to merge such small blocks to form meaningful and integrated IBs. We 

therefore propose a top-down mining instead of bottom-up algorithm to extract fine-grained IBs. 

3. WISDOM: A DOM BASED MINING SYSTEM 

WISDOM automatically extracts and recognizes ISs of each page in a Web site according to the 

knowledge in the tree structures of pages. As shown in Figure 4, WISDOM consists of three phases: (1) 

information extraction from DOM trees, (2) k-maximum informative block mining, and (3) block 

expansion and condensation. In the first phase, we extract useful features from the information of the 

original DOM tree. These features can be classified into two types of information: node information and 

structure information. In the second phase, we aggregate the node information to build the Information 

Coverage Tree (ICT). According to the ICT, we devise a greedy algorithm, i.e., k-maximum informative 

block mining algorithm (k-MIB), to extract sub-trees that contain richer information. The extracted sub-

trees are either better information hubs or better information authorities, depending on the criteria 

employed in the greedy algorithm. They form the skeleton set of the IS of a page. We then expand the 

skeleton set by assembling neighboring sub-trees that contain similar features corresponding to the 

original skeleton sub-trees. After condensing the expanded set by removing dummy nodes, the 

assembled forest (or tree), in essence the IS of a page, is constructed. 
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Figure 4: WISDOM system flow. 

3.1 Phase 1: Information Extraction from DOM Trees  

In the beginning, we crawl pages of a Web site in a specific crawling depth. When a page is crawled, we 

first extract the tree structure of a page based on DOM. Note that some HTML pages are not well-

conformed, e.g., missing the ending </a> tag for the <a> tag. We use HTMLTidy2 to fix syntax mistakes 

in source documents. In tree T, each node represents a tag in the page and contains the tag name 

information, attributes in the tag statement and its innerText, i.e., the context delimited by the tag. From 

the definition of DOM, the context of the innerText of node N includes all contexts of nodes in the sub-

tree rooted by node N. We use T(N) to denote the sub-tree rooted by node N. The innerText of the root 

node in each page is the context of a page when all tags are removed. The text of a Web page can be 

classified into two types: (1) anchor texts and (2) contexts which are texts delimited by all other tags 

                                                 

2 HTMLTidy is an HTML fixing tool developed by Dave Raggett from the W3C team, http://www.w3.org/People/Raggett/tidy/. 
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except <A> tags. We use ALEN to represent the length of the anchor text of a node and CLEN to 

represent the length of the contexts. A list of symbols used in this paper is given in Table 1. 

Table 1: The list of symbols used. 

Abbr. Description Abbr. Description 
ALEN length of anchor text ALENA aggregated ALEN 
CLEN length of contexts CLENA aggregated CLEN 
API anchor precision index APIA aggregated API 
F the set of tuple values, 

(ALEN, CLEN, API) 
FA the set of aggregated tuple values, 

(ALENA, CLENA, APIA) 
T a DOM tree ICT tree T with the aggregated set FA 
N a node in the tree T(N) sub-tree rooted by N 
innerText contexts contained in T(N) TLENA InnerText length 
CII content information index SII structure information index 
ST SII threshold TC type constraint 
DSTM direct sibling tree merging k-CSTM the k-th collateral sibling tree merging 

 

We then parse the innerText of the root node to extract meaningful terms. A term corresponds to a 

meaningful keyword or phrase. Applying stemming algorithms and removing stop words based on a 

stop-list, English keywords (terms) can be extracted in a systematic manner [26]. Extracting terms in 

oriental languages is more difficult because of the lack of separators in these languages. In our system, 

we use an algorithm to extract keywords from Chinese sentences based on a Chinese term base. This 

base was generated by our search engine3 by collecting hot queries and excluding stop words. After 

extracting terms in all crawled pages, we calculate the entropy value of each term according to its term 

frequency. From Shannon's information entropy [25], the entropy of term termi can be formulated as: 

,,||0,log)(
1

pagesofsettheisDDnandwwherewwtermEN
n

j
ijijniji ∑

=

=>−=  

where wij is the value of normalized term frequency in the page set. In the experiments on real Web sites 

containing a huge amount of pages, it is not practical to re-calculate entropy values directly when a new 
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page is crawled. In WISDOM, we uses an incremental entropy calculation process in the real Web site 

analysis. In the incremental calculation process, the new entropy value )(1 jk fE + is calculated only by the 

previous entropy value )( jk fE , total term frequency kjTF , and the new term frequency jktf )1( + of the new 

included page for term fj. The incremental calculation can be described as 
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1 . The proof of the correctness of the process is given 

in Appendix A. 

We define the weight of a term Tj as W(Tj)=1-EN(Tj) to represent the importance of the term. The reason 

behind of applying entropy calculation is that terms distributed in more pages in a Web site usually 

carry less information to users. In contrast, those appearing in fewer pages carry more information of 

interest. The weight of a term is similar to its inverse document frequency, IDF [3], which is defined as 

 log
j

n df
n , where dfj is the document frequency of Tj. IDF is usually applied to represent the 

discriminability of a term in a set of documents. According to the definition, we can conclude following 

relationships between W(Tj) and IDFj: (1) If Tj is uniformly distributed among some pages, W(Tj) = 

IDFj, and (2) If Tj is not uniformly distributed among the same pages in (1), then W(Tj) > IDFj and the 

more skewed the distribution of Tj is, the larger W(Tj) is. The two relationships are proved in [17] and 

we include the detail of proofs in Appendix A. Benefiting from these two relationships, the weight of a 

term attained from the entropy value is more representative for the importance of a term than from IDF. 

We use the example illustrated in Figure 5 to explain these relationships. In this figure, TermA is 

uniformly distributed among Page 1 to Page 3 and TermB has the same term frequency and the 

                                                                                                                                                                         

3 The searching service is a project sponsored by Yam, a commercial search engine in Taiwan (http://www.yam.com/). 
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document count with TermA, but most TermBs are located at Page 3. These two relationships are 

conformed by the following calculations. 
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Figure 5: An example of different term distributions 

According to the extracted information, we calculate three extended features to gain more implicit 

information from the tree, namely (1) the content information index (CII) which indicates the amount of 

information contained in the block, (2) the anchor precision index (API) which represents the similarity 

between the anchor-text and the linked document, and (3) the structure information index (SII) which 

indicates the distribution of children’s feature values of one node in the DOM tree. Each node in DOM 

tree T contains the tuple values of the feature set F={ALEN, CLEN, API}. In the following sections, we 

will describe their respective calculations. 

3.1.1 Content information indices (CII) 

When entropy values of terms are calculated, we average the weight values of terms in an innerText of  

node N to get the content information index of N, i.e., 

.,
)(

)( ~1
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The CII value of node N represents the amount of information carried in a sub-tree rooted by N. The 

works in [16][21] have shown that the entropy value corresponds to the recognition of the context parts 

of article pages. Consider the CII distribution of an article page in Figure 6(a). Note that the DOM tree 

is built by a depth-first traversal. The node ID of each node in the tree is generated according to the 

traversal order. Nodes with close node IDs are adjacent to each other in the physical layout of the page. 

The shaded region is an IB of the page, which is identified manually. Observed that (1) nodes with 

higher CII values in an IB are more than others and (2) nodes in an IB form a clear cluster in the CII 

distribution graph. 

3.1.2 Anchor precision indices (API) 

When browsing the Web, people use anchors to get information they want according to the semantics of 

anchors. The semantics of an anchor can be represented by the anchor text, text surrounding the anchor, 

the image or other dynamic representations generated by scripts. The semantics of an anchor is expected 

to be relative to the page it links. Such relevance is, however, weak in some cases. We therefore define 

the value of the anchor precision index to indicate the correlation of the anchor and its linking page. We 

use the anchor text and the bounded text surrounding the anchor to evaluate the value of API. The 

correlation index API is defined as: 

∑
=

=
m

j jtermEN
NAPI

1
,

)(
1)(  

where termj is the term concurrently appearing in both the anchor text of N and the linked page and m is 

the number of matched terms. 

The calculation of API stems from the similarity analysis between documents using the vector space 

model. We extend the model by using the inverse values of entropy to set the weights of terms. If the 

information amount in those matched terms is larger, we get a larger API value that indicates that the 



 14

anchor carries more precise information. The usage of the inverse of entropy values in the API 

formulation is to emphasize and amplify the effect of matched terms. Moreover, the value of API is not 

normalized by the matched count, because we want to show that the longer informative anchor text leads 

to more information. Note that EN(termi) is always larger than 0 because termi appears in at least two 

documents. 

Consider the API distribution of a TOC page in Figure 6(b). It shows that the number of nodes with 

larger API values in the shaded region, i.e., regions of marked TOC blocks, are more than others on 

average. Anchors in the menu block have small API values, because the anchor texts of these anchors 

are short and the entropies of terms they contain are almost one. 

 
Figure 6: The distributions of CII and API for two sample Web pages (shaded regions are IBs 

identified from the answer sets). 

3.1.3 Structure information indices (SII) 

The index SII of a node is calculated according to the distribution of the feature values of the node’s 

children. However, some HTML tags either correspond to information that is not extractable or provide 

no useful information. Such tags, such as the comment tag <!>, the new line tag <br> and the script 

program tag <script>, are called dummy tags and are removed from the following calculation of SII. We 

define the notion fi(N) as the value of feature fi of node N, and children(N) as the set of all non-dummy 

children of the node N. For a simple tree structure of node N with children n0, n1, …, nm-1, we define the 

SII value of node N for feature fi as: 
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Note that fi(N) is larger or equal to the sum of fi(n0), fi(n1), …, fi(nm-1). We apply entropy calculation here 

to represent the distribution of children’s feature values of any node with more than one child. The value 

of SII indicates the degree that the feature values of the node are dispersed among its children. When the 

value of SII(N, fi) is higher, the values of all children’s fi tend to be equal. 

In a systematic Web site, most context and anchors of TOC blocks are generated automatically. The 

styles, appearances and information carried of entities in such a block are always similar from one to 

another. This phenomenon makes the SII values of these features become larger ones for the root nodes 

of such blocks. 

3.2 Phase 2: The k-Maximum Informative Block Mining 

In this phase, we first build the information coverage tree for features extracted during the phase one to 

obtain corresponding aggregated feature values. The proposed k-MIB algorithm is then applied to 

extract and filter out the candidate IBs. In Section 3.2.1, we describe the construction of ICT and the 

aggregated features. Extracting and filtering processes of the proposed algorithm are described in 

Section 3.2.2. 

3.2.1 Information Coverage Tree Building 

We define a tree with bottom-up aggregated features as an information coverage tree (abbreviated as 

ICT). In an ICT, any feature in the aggregated feature set FA is obtained from the corresponding features 

in set F. Each node in an ICT contains all feature information of nodes in the sub-tree rooted by this 

node. The feature aggregation is a bottom-up process from the leaf nodes to the root node. The process 

of level k of the tree is shown below:  
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We aggregate features from the lowest level of the tree to the level one. The complexity of the process is 

O(|N|). Figure 7 shows an example aggregation process where the node marked by * is labeled with 

6=3+(3+0) and the one marked by ** is labeled with 8=1+(1+6). 

 

Figure 7: An example of feature aggregation. 

The aggregated features in ICT for each node N are subject to the constraint where fAi(nj) is the 

aggregated value of feature fi of node nj: 
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The length of innerText of each node is a typical aggregated feature because the innerText of a parent 

node contains all the innerText of its child nodes. We use TLENA to represent the length of innerText. In 

WISDOM, we also aggregate node information ALEN and API to get the corresponding aggregated 

features, denoted by ALENA and APIA. Note that TLENA(N) is composed of the length of contexts in 

T(N), i.e., CLENA(N), and the length of anchor texts in T(N), i.e., ALENA(N). The value of TLENA is thus 

equal to CLENA + ALENA. We then apply SII calculation on these three aggregated features to get 

corresponding structure information of aggregated features for each node. 
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3.2.2 Block extracting and block filtering 

The proposed maximum informative block mining algorithm MIB(k, fA, ST) is a greedy and top-down 

tree traversal process. For input value k, the algorithm outputs at most k IBs, i.e., TOC blocks or article 

blocks. The aim of the algorithm is to find the top-k nodes with maximal aggregated feature fA values 

under the given SII constraint, i.e., SII Threshold (ST). When the value of ST is larger, the structure 

constraint is tighter and the children of each extracted node in the resulting candidate set will have more 

similar values of aggregated features in accordance with the definition of SII. The searching path of the 

algorithm is shown for example in Figure 8. The original tree is extracted from a real TOC page by 

eliminating those sub-trees removed by MIB. 

When extracting the top-k candidate nodes, we apply type constraints to eliminate pseudo-informative 

nodes. Type constraints (TC) are dependent on the type of blocks described as: 

.,
)(#

)(,""

1)(,""
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TC
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Type constraints are motivated from heuristic observations that (1) article blocks contain informative 

context and hence their entropy values must be bounded and (2) TOC blocks contain highly semantic 

relevant anchors linking to information authorities and the average API value should be more than 

others in blocks with redundant and irrelevant anchors. These heuristic constraints are useful in 

removing pseudo-informative blocks. 

Due to the tree traversal characteristic of the MIB algorithm, each node in the filtered candidate set is 

not an ancestor of any other nodes. The sub-trees rooted by these nodes are therefore isolated and non-

overlapped. The set of these selected sub-trees is called the skeleton of the IS of a page and the root 

nodes of these sub-trees skeleton nodes. 
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Figure 8: An example of k-maximum informative block mining on the tree of a TOC page, k=2. 

3.3 Phase 3: Block Expanding and Condensing 

When investigating on the skeleton set, we find the selected skeleton nodes are often the sub-trees of the 

IBs. The observation is more obvious when the structure threshold (ST) is larger and tighter. This is 

because the selected sub-tree is smaller when ST becomes larger in the k-MIB process. According to the 

skeleton structure, we therefore apply two sibling tree merging methods, i.e., direct sibling tree merging 

(DSTM) and collateral sibling tree merging (CSTM), to expand the skeleton set. The DSTM method 

merges the sub-tree rooted by qualified sibling nodes of each skeleton node S as shown in Figure 9. 
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Note that node S’ may be one of skeleton nodes. Any qualified sibling node S’ needs to match the type 

constraints and fA(S’) must also be smaller than fA(S). We do not need to merge sibling nodes with the 

larger fA values, because they are checked in the previous searching paths of the k-MIB algorithm and 

have been either selected into the skeleton set or removed from the IS. After DSTM, we then select the 

non-singleton ancestors, i.e., P1, P2, …, Pn, of S for the process of CSTM. The i-th non-singleton 

ancestor Pi is the i-th ancestor of S which has more than one non-dummy sibling node. The dummy node 

is defined as a node whose value of fA is zero, e.g., the node with CLENA = 0 for the article block and the 

node with ALENA = 0 for the TOC block. The method of k-CSTM is equal to applying DSTM on Pk. In 

WISDOM, we apply DSTM and 1-CSTM to proceed the default block expanding. For example, in 

Figure 9, we merge sub-trees rooted by three S’ into the skeleton set in the DSTM process. In the 1-

CSTM process, we first traverse the tree from the node S up to the root node to find the first non-

singleton ancestor P1 and we then apply DSTM on P1 to merge its qualified sibling nodes, i.e., two P1’ 

nodes. 

The intention of DSTM is to merge small IBs surrounding the skeleton blocks together. The non-uniform 

distribution between fA values of the skeleton node and corresponding sibling nodes leads to the node 

separation in the k-MIB phase. In our experiments, DSTM can merge the metadata blocks, i.e., the 

article title, date, reporter, etc., into the main body of the article news. They are all IBs, but the 

distribution of their context length is skewed. 

The block condensing process removes the sub-trees rooted by nodes that cannot match the type 

constraints from the expanding trees as these dummy sub-trees are mainly tags for the page layout. This 

process is used to remove the uninformative sub-blocks from the merged trees obtained from the 

previous processes. 
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Figure 9: Two sibling tree merging methods. 

Table 2: Datasets and their informative structure distributions. 

Site Abbr. Answer Coverage 

 

URL Total 
pages

TOC 
pages

Marked
TOC 
pages

Marked 
article 
pages

Marked 
Toc 

blocks

Marked 
article 
blocks 

TOC (S-NC) Article (IC) 

CDN www.cdn.com.tw 261 25 22* 60# 38 63 46.30% 98.40%
CTIMES news.chinatimes.com 3747 79 69 66 313 68 32.10% 82.50%
CNA www.cna.com.tw 1400 33 29 50 106 50 21.90% 80.10%
CNET taiwan.cnet.com 4331 78 38 37 84 86 17.50% 63.60%
CTS www.cts.com.tw 1316 31 19 53 21 80 54.80% 52.10%
TVBS www.tvbs.com.tw 740 13 12 50 25 50 73.70% 56.90%
TTV www.ttv.com.tw 861 22 18 42 20 75 20.10% 54.50%
UDN udnnews.com 4676 252 243 52 674 106 28.00% 67.80%
CORN www.cs.cornell.edu 1346 N/A$ 14 14 24 18 45.42% 80.80%
UTEX www.cs.utexas.edu 2935 N/A 11 10 11 10 45.02% 84.90%
WASH www.cs.washington.edu 1526 N/A 16 10 23 10 79.04% 69.98%
WISC www.cs.wisc.edu 2973 N/A 10 15 11 15 41.73% 77.08%
ABOUT compnetworking.about.com 498 N/A 10 10 11 48 18.65% 43.54%
ECNET reviews.cnet.com 500 N/A 10 10 10 10 38.89% 57.72%
ESPN sports.espn.go.com 494 N/A 8 10 16 12 28.32% 58.39%
MONET www.mo.net 261 N/A 9 10 9 13 35.78% 54.91%
XML www.xml.com 807 N/A 10 10 10 26 43.46% 80.89%
*: Unmarked TOC pages are removed from the TOC answer set due to the error occurring when parsing their DOM trees. 
#: Domain experts selected the article pages with different and distinctive tagging styles to be the article answer set. 
$: We only select some TOC and Article pages containing different structures for performance evaluation. We do not find all 
answers in English Web sites. 

4. EXPERIMENTS AND RESULTS 

In this section, we describe several experiments conducted on some real news Web sites in order to 

evaluate the performance of WISDOM. Datasets used and employed evaluation criteria are described in 

Section 4.1. We evaluate the performance of selection and filtering in the k-MIB algorithm in Section 0. 
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Performance of block expanding and condensing is assessed in Section 4.3. Finally, Section 4.4 provides 

the overall performance evaluation of WISDOM. 

4.1 Datasets 

We conduct our experiments on the datasets4 used in [16]. In addition to these news Web sites, for 

evaluating WISDOM on other domains, a good example is the dataset used in the WebKB project [8] 

and the dataset used in the page segmentation research [9]. These datasets contain several university 

sites and commercial Web sites as described in Table 2. To assess WISDOM, we add two new answer 

sets, i.e., TOC blocks and article blocks. These blocks are extracted manually by news domain experts5 

according to their experience in issuing real-world newspapers. We select most TOC pages and some 

candidate pages among all article pages with different tagging structures to mark. Unmarked TOC pages 

are pages which cannot be correctly parsed, or those containing many out-site anchors linking to un-

crawled pages, e.g., TOC pages in CNET and TTV. The latter case will cause the accuracy of API 

calculation to decrease suddenly and blur the evaluation results. 

As shown in Table 2, the percentages of information coverage of the IS over the original page vary 

among datasets. Values are dependent on the styles and page layouts of news sites. The more redundant 

information added, the less information the IS carries. 

To attain a quantitative evaluation, we employ two different evaluating methods to measure the values 

of precision and recall of article and TOC blocks. The TOC evaluation method is called significant node 

coverage (SNC). In SNC, we count the matched anchor nodes in sub-trees rooted by nodes in the answer 

set and our output. For evaluating article blocks, we calculate the ratio of the matched context contained 

                                                 

4 Pages of Web sites in datasets were crawled on 2001/12/27, 2002/4/11 and 2004/3/29. The datasets can be retrieved at our research site 
http://kp06.iis.sinica.edu.tw/isd/index.html. 

5 The news domain experts are researchers at the Department of Journalism, National Chengchi University, Taiwan. 
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in each sub-tree by length to indicate the performance. The method is called information coverage (IC). 

The selection is made because only the context and anchors in the IS need to be indexed and extracted 

for crawling. In our experiments, we use the rates of precision (P) and recall (R) to indicate the 

similarity of these two sets. We also use F-measure [3] which combines recall and precision in a single 

efficiency measure. The value is the harmonic mean of precision and recall, and is formulated as 

PR
PR

+
)*(*2 . With the example in Figure 10, we show the evaluation results of four methods in Table 3. The 

answer sets are two sets of root nodes, i.e., the TOC answer set { }TnTTT aaa ,,, 21 L=Α  and the article 

answer set { }AnAAA aaa ,,, 21 L=Α . The extracted results are the set of TOC blocks { }TnTTT wwwW ,,, 21 L=  and 

the set of article blocks { }AnAAA wwwW ,,, 21 L= . 

 
Figure 10: A simple tree with an answer node and two results marked. 

 

Table 3: The evaluating calculation of the example in Figure 10. 

(AT, WT) (AA, WA) Method 
AW AO WO P R F AW AO WO P R F 

SNC 3 3 0 1 0.50 0.67 5 5 0 1 0.50 0.67 
IC 9 6 0 1 0.60 0.75 17 8 0 1 0.68 0.81 
*AW=the number of answer of the intersection of A and W 
*AO=the number of answer in A but not in W 
*WO=the number of answer in W but not in A 
* P = AW/(AW+WO), R=AW/(AW+AO) 
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We show the result of the incremental entropy calculation in Figure 11. In the figure, the value of the Y-

axis means the ratio of the resulting entropy and the final entropy value calculated from the whole page 

set. We can find that the ratio difference is smaller than 0.1 when the corresponding document count is 

larger than 200. Therefore, in the practical usage, WISDOM can achieve a stable performance when the 

crawled page set is smaller than the whole page set of a Web site. 

 
Figure 11: Incremental Entropy distribution for datasets CDN, CTS, ABOUT and CORN. 

4.2 Evaluation of k-MIB 

After the ICT of a page is built, we have to determine the searching (fA) and branching (ST) criteria 

before applying k-MIB to the ICT. These selection criteria of k-MIB will affect the performance of the 

algorithm. In Figure 12, we first conduct experiments to show the effects of different selection criteria 

for TOC blocks. We select ALENA and APIA for the searching criteria and corresponding SII values for 

the branching criteria. The result in Figure 12 shows that using SII(APIA) for the branching criterion 

outperforms the one using SII(ALENA) when the selection criterion is to use a threshold of being equal to 

or smaller than 0.8. This is because APIA contains more information for discriminating the informative 

and redundant links than the length of anchor texts does. 
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Figure 12: The effect of different criteria of k-mib for TOC blocks. 

We then apply the k-MIB algorithm to the ICT with the parameter pair (k, fA, ST). We use different ST 

values to control the number and granularity of the IBs. When the ST value is larger, more tighter and 

smaller blocks will be induced as shown in Figure 13. Note that the average size of IBs in CTIMES is 

about three times as others and is out of the boundary of Figure 13. This is due to the existence of big 

TOC blocks with entries of all categories of news in CTIMES. The sizes of these blocks are about 800 

tags (nodes). 

In the second phase of WISDOM, type constraint filtering plays an important role to remove the false-

positive nodes. The selection of TCTOC and TCArticle is made as follows. The distributions of the average 

API values, i.e., the criterion of the TOC type constraint, of top-k IBs in UDN are shown in Figure 14 

where it can be seen that there are two obvious noise groups of values in this figure, i.e., 1.1 and 2.2, and 

they are reasonably chosen to be the TCTOC. The selection of TCArticle is not so straightforward as the 

selection of TCTOC. This is because when the size of IBs is divided into smaller ones, the number of 

extracted terms in each small block decreases, so does the accuracy of corresponding CII. Moreover, the 

index CII is not an aggregated value. We choose the uninformative link threshold described in [16], i.e., 

0.8, to be TCArticle. Consequently, we use (1.25, 0.8) as default values for (TCTOC, TCArticle) for all 

datasets in WISDOM. The choice of TCTOC value, 1.25, is simply motivated from the API formulation. 
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We assume that each basic informative link contains one matching term with entropy 0.8, and its API 

value is 1.25 by the formulation. The value conforms to our observation on the real data shown in Figure 

14. 
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Figure 13: The average number and size of total IBs in a page selected by k-MIB without filtering. 

 
Figure 14: The selection of the type constraint of TOC blocks [UDN, ST=0.9]. 

We show the average precision and recall values of k-MIB under the different selections of ST and k in 

Figure 15. The results of TOC and article blocks both show the phenomena incurred by ST. When the 

value of ST increases, the sizes of split IBs decrease and the granularities of these blocks become finer. 

The selection of more fine-grained IBs increases the precision, but reduces the coverage of IBs, i.e., the 

recall. The same observation can be made in the same figure when the value of k becomes smaller. 
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From the results in Figure 15, WISDOM is good at mining the informative article blocks rather than 

TOC blocks. First, there exists only one informative article block in most marked article pages. The 

information of an article page is thus more concentrated than information of a TOC page. This helps 

WISDOM discriminate informative article blocks easily. Second, noises affect and blur the API value. 

Using entropy to indicate the amount of information does not work well when few terms are extracted 

from the anchor text. The local menu effect mentioned in [16] can also decrease the entropy values of 

anchors in the menu blocks. The noise effects are prominent in CNET and UDN and the discriminability 

of the API value in these Web sites decreases suddenly. In CNET, more than 68% of all IBs have 

average API values of less than 2 if k <= 5. Third, some informative TOC blocks mined by WISDOM 

are not “news” TOC blocks. These blocks are not selected in the answer set. The effects of applying 

different TCs are shown in Figure 16. Filtering constraints can be used to remove pseudo-informative 

blocks. 
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Figure 15: The average values of precision and recall before phase 3 (caption: block type [fA, SII]). 
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4.3 Evaluation of block expanding and condensing 

Figure 17 shows that the average improvement of different merging methods. The performances of 

experiments with different STs become similar after block expansion. This is because most blocks 

extracted by a high ST value are real IBs, though the sizes of these blocks are smaller than blocks 

extracted by a low ST value. The sizes of these smaller blocks can be expanded to the sizes of larger 

blocks by merging sibling sub-trees which are also real IBs. Merging methods do not work well if a 

skeleton set contains many pseudo-informative blocks, such as TOC blocks in CNET. Expansion of the 

skeleton set will incur more false-positive results. This is also the reason that the results with k=1 are 

better than those with k=3. 
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Figure 16: The effects of different type constraints. 

TOC [APIA, SII(APIA)], TC=1.25

0.500

0.600

0.700

0.800

0.900

0.70 0.75 0.80 0.85 0.90

ST

F-
m

es
ur

e

k=1 k=1, DSTM k=1, DSTM + 1-CSTM
k=3 k=3, DSTM k=3, DSTM + 1-CSTM

Article [CLENA, SII(CLENA)], TC=0.8

0.850

0.875

0.900

0.925

0.950

0.975

1.000

0.70 0.75 0.80 0.85 0.90
ST

F-
m

ea
su

re

 

Figure 17: The effects of DSTM and 1-CSTM. 
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4.4 Overall Performance 

In Figure 18, we use the system default setting, i.e., k=1, ST=0.8, TC=(0.8, 1.25) and merging methods 

DSTM and 1-CSTM, to show the overall performance of WISDOM on each dataset. This figure shows 

that WISDOM is very good at the article blocks mining of all datasets and exhibits excellent 

performance on TOC blocks mining of CDN, CTIMES, CNA, CTS, and TVBS. The low values of 

precision and recall on CNET, TTV and UDN are caused by the low accuracy of API values. Another 

low precision value on UDN is affected by the merging method 1-CSTM. Many pseudo-informative 

blocks are merged in the 1-CSTM step even though WISDOM has reached the high recall rate after 

DSTM merging. The high average values of precision and recall also represent the robustness of 

WISDOM. We also compare WISDOM with two straightforward extracting methods in Figure 19 to 

show the improvement. The method M1 selects and merges leaf nodes of a DOM tree to a set of sub-

trees and is similar to the straightforward method described in Section 2. These merged leaf nodes must 

satisfy the same information constraint of WISDOM. The method M1 can be treated as simplified 

WISDOM that selects all leaf nodes into the skeleton set in the k-MIB phase. The method M2 works 

like M1 as well. The difference is that the method M2 uses the length constraint to filter the merged leaf 

nodes, i.e., the TLEN of a node must be larger than 5. Figure 19 shows that WISDOM with the default 

setting leads these two methods and gives the prominent performance for the article pages. 
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Overall Performance [k=1, ST=0.8, DSTM + 1-CSTM]
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Figure 18: Overall performance of WISDOM. 
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Figure 19: Comparison of WISDOM to two straightforward methods. 

The result in Figure 20 shows the overall performance for English Web sites which consist of university 

and commercial domains by using the default setting same as in news Web sites. The performance for 

the article block extraction is also good as that in news Web sites. However, the performance of the 

TOC block extraction is worse than that in news Web sites. We found three reasons to cause the 

negative effect, which are (1) some informative anchors contains short anchor-text and common terms 

between anchors and linking pages are few. We cannot extract the anchor information in these cases and 

the feature APIs of these informative anchors therefore cannot be discriminated from redundant ones, (2) 

some important terms are considered as stop-words and ignored, e.g., course-id in the university course 

pages. WISDOM ignores the numerical terms to reduce the noise effect caused by their high weights, 
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which are obtained from the entropy calculation. However, course-id is an important clue for users to 

choice which course they feel interesting. This evidence shows that the stop-words selection must be 

dependent on the domain characteristics, otherwise some important words will be ignored, (3) many 

commercial anchors are generated by the script language embedded in the pages. WISDOM cannot 

extract the anchor texts from these dynamic links. 

To remedy these issues, we conduct an experiment to use different features instead of API to extract 

TOC blocks. The result in Figure 21 shows the improvement when the feature ALEN and corresponding 

ST threshold are applied on some datasets in which API doest not work well. This can be explained by 

that the TOC structure characteristics are retained when features ALEN and SII(ALEN) are applied and 

blurred when API is not correctly calculated or hard to be evaluated due to the lack of matched terms. 

API values are always zero even though corresponding ALEN values are larger than zero in these 

situations. We can evaluate the ratio of numbers of zero-API anchors over all meaningful anchors, i.e., 

their ALEN values are more than some threshold, in a page to be our criterion on the selection of 

appropriate features. The average ratios of datasets in Figure 21 are obviously higher than others from 

our experimental observations. 

Overall Performance for English Web sites
[k=1, ST=0.8, TC=1.25, DSTM + 1-CSTM]
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Figure 20: Overall performance of WISDOM on other domain Web sites. 
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A: k=1, ST=0.8, TC=1.25, DSTM+1-CSTM, fA=APIA, ST=SII(APIA)
B: k=1, ST=0.9, TC=1.25, no expand,  fA=ALENA, ST=SII(ALENA)
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Figure 21: Different feature selection for the TOC extraction. 

5. CONCLUSION 

We propose WISDOM to mine the ISs of a page. Given an entrance URL, WISDOM is able to crawl the 

site, parse pages into DOM trees and analyze node and structure information in order to build 

information coverage trees. The system uses the Information Theory to split the DOM tree of a Web 

page into a set of IBs and uses the proposed searching (k-MIB), filtering and merging (DSTM, 1-CSTM) 

methods to mine the IS of a page. 

For search engines, inter-media information agents, and crawlers, the IS mined by WISDOM is useful 

for indexing, extracting and navigating significant information from a Web site. Experiments on several 

real news Web sites show high precision and recall rates attained by WISDOM which validates its 

practical applicability on news Web sites. We are integrating WISDOM into our news search engine 

(NSE) to help system managers speed up their work flow and reduce the labor of maintaining the site-

dependent rule based extraction. For Web sites in other domains, even for non-systematic Web sites, we 

are conducting some augmented feature to remedy the noise effects and improve the applicability. 
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APPENDIX A 

[Proof 1]: Prove relationships between W(Tj) and IDFj: (1) If Tj is uniformly distributed among some 

pages, W(Tj) = IDFj, and (2) If Tj is not uniformly distributed among the same pages in (1), then W(Tj) > 

IDFj and the more skewed the distribution of Tj is, the larger W(Tj) is. 

Relationship (1): If Tj is uniformly distributed among some of pages, W(Tj) = IDFj 

Proof: assume n=|D|, tfj=the total frequency of Tj, because Tj is uniformly distributed, tfij, i.e., the term 

frequency of Tj in pagei, is equal to 
j

j

df
tf

. According to the definition of the entropy-based weighting, 
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Relationship (2): If Tj is not uniformly distributed, then W(Tj) > IDFj  

Proof: When the distribution of Tj is more skewed, EN(Tj) will decrease according to Information 

Theory. W(Tj) will therefore increase, but dfj is constant under the assumption. The relationship (2) is 

therefore conformed.  

 

[Proof 2]: Prove 
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Proof: Suppose we have obtained the entropy value )( jk fE for term jf  from the page set containing k  

Web pages by Equation A.1. 
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where ijtf  means the term frequency of jf  in page iP  and kjTF ,  is equal to ∑
=

k

i
ijtf

1

. When a new page is 

added into the page set, the new entropy value )(1 jk fE +  can be calculated by the following equation. 
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