Continuous Skyline Queries for Moving Objects

Zhiyong Huang, Hua Lu, Beng Chin Ooi, and Anthony K. H. Tung

Abstract— The literature on skyline algorithms has so far dealt In the above query, the skyline is obtained with respect to
mainly with queries of static query points over static datasets. a static query point; in this case, it is the origin of both axes.
With the increasing number of m.oblle service applications an.d Now, let us change the example to the scenario of a tourist
users, however, the need for continuous skyline query processing IKi bout to ch t t for di Wi id
has become more pressing. A continuous skyline query involves WalKiNng & Ou. oc OOSQ ares aur.an or dinner. Fj' consider
not only static dimensions but also the dynamic one. In this three factors in the skyline operation, namely the distance to
paper, we examine the spatiotemporal coherence of the problem the restaurant, the average price of the food and the restaurant
and propose a continuous skyline query processing strategy for rank. Different from the previous example, the distance now is
moving query points. First, we distinguish the data points that fixeqd since the tourist is a moving object. Figure 2 shows

are permanently in the skyline and use them to derive a search the changes in the skyline due to the movement. In the figure
bound. Second, we investigate the connection between the spatial 9 y : gure,

positions of data points and their dominance relationship, which the positions of the restaurants are drawn in the X-Y plane
provides an indication of where to find changes in the skyline and while the table shows their prices and ranks. Lower values are

how to maintain the skyline continuously. Based on the analysis, preferred for all three dimensions. A tourist as the query point
we propose a kinetic-based data structure and an efficient skyline moves as the arrow indicates from timeto ¢,. The skyline

query processing algorithm. We concisely analyze the space and
time costs of the proposed method and conduct an extensive™ which refers to the interesting restaurants — changes with

experiment to evaluate the method. To the best of our knowledge, respect to the tourist's position. Skylines at different times are
this is the first work on continuous skyline query processing. indicated by different line chains. The situation becomes more

Index Terms— Skyline, continuous query processing, moving complex When_ aII_data _points can move, V\{hich is frequent in
object databases. real-time applications like e-games and digital war systems.
For instance, one player in a field fighting game wants to keep
track of those enemies who are close and most dangerous in

terms of multiple aspects like energy, weapon, strategy and
ITH rapid advances in electronics miniaturizationgtc.

wireless communication and positioning technologies,

I. INTRODUCTION

the acquisition and transmission of spatiotemporal data using Rost T o Rank
mobile devices are becoming pervasive. This fuels the deman esauran ree a
for location-based services (LBS) [4], [23], [28], [29]. A 1 1 6 4
skyline query retrieves from a given dataset a subset of za [o 2 58 4
interesting points that are not dominated by any other points . _ 3 4 1
[6]. Skyline queries are an important operator of LBS. For 2 skyline at t, 4 2.8 3
example, mobile users could be interested in restaurants that e 5 skyline at { 5 1 2
are near, reasonable in pricing, and provide good food, service ' 6 2 4
and view. Skyline query results are based on the current "o X

location of the user, which changes continuously as the user

moves. Fig. 2. Skylines in a mobile environment

The existing work on skyline queries assumes a static
setting, where the distances from the query point to the datan this paper, we address the problem of continuous skyline
points do not change. Using the common example in thgery processing, where the skyline query point is a moving
literature shown in Figure 1, assume there is a set of hOth‘bject and the skyline changes continuously due to the query
and for each hotel, we have its distance to the beadX({§ point's movement. We solve the problem by exploiting its
and its price ¥ axig. The interesting hotels are all the point$patiotemporal coherence. Coherence refers to properties that
not worse than any other point in both the distance to th@ange in a relevant way from one part to other parts within a
beach and the price. Hotels 2, 4 and 6 are interesting and egéne in computer graphics [8], which is used to build efficient
be derived by a skyline query, for their distances to the beagftremental processing for operations such as area filling and
and their prices are preferable to those of any other hotefisce detection. We use spatiotemporal coherence to refer to
Note that a point with minimum value in any dimension is ghose spatial properties that do not change abruptly between
skyline point — hotels 2 and 6 for example. Also, skyline igontinuous temporal scenes. The positions and velocities of
different from convex hull in that it is not necessarily convexmoving points do not change by leaps between continuous
In this example, hotel 4 makes the skyline not convex. temporal scenes, which enables us to maintain the changing

_ _ _ _ skyline incrementally. First, we distinguish the data points

~The authors are with the School of Computing, National University (ifhat are permanently in the skyline and use them to derive
Singapore, 3 Science Drive 2, Singapore 117543. E-rjailiangzy, luhua,
ooibc, atung@comp.nus.edu.sg. a search bound to constrain the processing of the continuous

room price
skyline

®1

distance to beach

Fig. 1. An example of skyline in a static scenario

skyline query. Second, we investigate the connection betweer-or a moving object,z; and y; are updated using.;

the spatial locations of data points and their dominance reknad v,;,. When it is stationaryy,; and v,; are zero. We

tionship, which provides an indication of where to find changese T'uple(i) to represent the-th data tuple in the database.

in the skyline and update it. Third, to efficiently supportUsers move in the 2D plane. Each of them moves in velocity

the processing of continuous skyline queries, we proposewg., vqy), starting from positionz,,y,). They pose contin-

kinetic-based data structure and the associated efficient quaoys skyline queries while moving, and the queries involve

processing algorithm. We present concise space and tibwh distance and all other static dimensions. Such queries are

cost analysis of the proposed method. We also report on @ynamic due to the change in spatial variables. In our solution,

extensive experimental study, which includes a comparisere only compute the skyline fafz,,y,) at the start timeD.

of our proposed method with an existing method adapted fBubsequently, continuously query processing is conducted for

the application. The results show that our proposed methocemch user by updating the skyline instead of computing a new

efficient in terms of storage space, and is especially suited fove from scratch each time. Moving points are allowed to

continuous skyline queries. To the best of our knowledge, thikange their velocities, which will be addressed in Section V-

is the first work on continuous skyline queries in the mobilB.1. Without loss of generality, we restrict our discussion to

environment. what follows the MIN skyline annotation [6], in which smaller
The rest of this paper is organized as follows. In Section 2alues of distance or attribuig; are preferred in comparison

we present the preliminaries including our problem statement determine dominance between two points.

and a brief review of related work. In Section 3, we present a

detailed analysis of the problem. In Section 4, we propose our _ .))

solution which continuously maintains the skyline for movin&' Time Parameterized Distance Function

query points through efficient update. The experimental resultsin our problem, the distance between a moving query point

are presented in Section 5. Section 6 concludes the paperand a data point is involved in the skyline operator. For a

moving data pointpt; starting from (z;,y;) with velocity

Il. PRELIMINARIES (viz,viy), and a query point starting frorte,,y,) moving
with (vg.,vgy), the Euclidean distance between them can
A. Problem Statement be expressed as a function of time dist(q(t),pti(t)) =

In LBS, most queries are continuous queries [28]. Unlike'at? + bt + ¢, wherea, b andc are constants determined by
snapshot queries that are evaluated only once, continudir starting positions and velocitias:= (v, —vgs)?+ (viy —
queries require continuous evaluation as the query results vagy)?; b = 2[(z; — 24)(Via — Vga) + (i — Yq) (Viy — vgy)];
with the change of location and time. Continuous skyline= (z; — x4)? + (v; — y4)*. For simplicity, we use function
query processing has to re-compute the skyline when tligt) = at*+bt+c to denote the square of the distance. When
guery location and objects move. Due to the spatiotempordi is static,a, b and ¢ are still determined by the formulas
coherence of the movement, the skyline changes in a smoattove withv;, = v;, = 0. This time parameterized distance
manner. Notwithstanding this, updating the skyline of thknction has been used in literature to help processing queries
previous moment is more efficient than conducting a snapshtmoving object databases [10], [21], [27].
query at each moment.

For intuitive illustration, we limit the data and the moving
guery points to a two-dimensional (2D) space. Our statemenﬁs
however sufficiently general for high-dimensional space too. For two pointspt; and pts, if dist(pt1,q) < dist(pta,q)
We have a set of data points in the formakz;, v;, v, andpti.pr < pta.pr,Vk, and at least onec holds, i.e.,3k,
Vyis Pils oo Dijs - Pim> (@ = 1,..,n), wherex; andy, such thatpti.py < pta.pr, We saypt; dominatespts. We
are positional coordinate values in the spagg,andv,; are saypt; andpty areincomparable if pt; does not dominate
respectively velocity in the X and Y dimensions whi’s pts, andpt; is not dominated byt,. We usept; < pta to
(j = 1,...,m) are static non-spatial attributes, which will norepresent thapt; dominatespto, andpt; =< pto to represent
change with time. that pt; dominatespt, for all static non-spatial dimensions.

Terminologies

In kinetic data structures, aertificate is a conjunction while events are computed and stored to indicate when and
of algebraic conditions, which guarantees the correctnesshafv the order will change. To reduce the points sorted in the
some relationship to be maintained between mobile d#®S, lwerks, Samet and Smith [10] proposed the Continuous
objects. Readers are referred to [3] for the formal and detailédndowing (CW) k-NN algorithm, which limits search to a
description of kinetic data structures (KDS). In this paper, wamaller region and accesses other points only as needed.
use a certificate to ensure the status of a data point is valid
within a period of timet. For example, a certificate of a point Il1l. THE CHANGE OF SKYLINE IN MOVING CONTEXT

can guarantee it staying in the skyline for a period of time | this section, we analyze the change in skyline in continu-
Beyondt, its certificate is invalid and an event will trigger a5 query processing. We first point out the search bound that
process to update the certificate, which may result in a changg, pe used to filter out unqualified data points in determining

in the skyline. the skyline for a moving query point. Then we carry out an
analysis of the skyline change due to the movement, which
D. Related Work reveals some insights for the algorithms in the next section.

One area with related work concerns skyline queries. IB_ Search Bound
spired by work on contour problem [15], maximum vec-"
tors [14], convex hull [20] and multi-objective optimiza- Although in our problem the skyline operator involves both
tion [25], Borzonyi, Kossmann and Stocker [6] introduced thdynamic and static dimensions, some data points could be
skyline operator into relational database context and propog#ays in the skyline no matter how the data points and
two processing algorithmsBlock Nested LoogBNL) and duery points move. This is because they have dominating
Divide-and-Conquer(D&C). D&C approach partitions the static nop—spatial values, which guarantee that no other objgcts
dataset into several parts, processes each part in memory &y dominate them. We denote this subset of skyline points
finally merges all partial skylines together. BNL scans tm@S SKns and the whole set of skyline points &5<,;. We
dataset sequentially and compares each new point to all skylf@l SKn. the static partial skyling and SK.; the complete
candidates kept in memory. Chomicki et al. [7] proposed &¥line. o _ _ .
variant of BNL by pre-sorting the dataset according to some We call points inSK,,, permanent skyline pointsn this
monotone scoring function. Tan, Eng and Ooi [26] proposd¥gy. We distinguish those points always in the complete
two progressive processing algorithms. Bitmap approach, Skyline from the rest of the dataset. The benefit of this
each data point is encoded in a bit string and skyline féscrimination is threefold:
computed by some efficient operations on bit matrix of all 1) It extracts the unchanging part of a continuous skyline
data points. Inindex approach, data points are transformed query result from the complete skylingK,;. This
into a single dimensional space and then indexed By B allows efforts in query processing to be concentrated on
tree which facilitates skyline computation. Kossmann, Ramsak the changing part only, i.e5K; —S K, . We name that
and Rost [13] proposed another progressive processing algo- part SK.,,, and call those points in olatile skyline
rithm Nearest Neighbo(NN) based on the depth-first nearest points In continuous skyline query processing, only
neighbor search [22] via Rtree. Papadias and Tao [18], SK.ng needs tracking for each query. In this manner,
[19] proposed an improved algorithm naméttanch-and- we can reduce overall processing cost.
Bound Skyline (BBS) based on the best-first nearest neigh- 2) The discrimination can reduce the amount of data to
bor search [9]. By accessing only nodes that contain skyline be sent to clients. Sinc€ K, is always in the final
points, BBS incurs optimal node access and so far is the most skyline result, we need to send it only once from server
efficient skyline algorithm in static settings. In a slightly differ- to client. This benefits mobile applications where clients
ent context, Balke, Guntzer and Zheng [2] addressed skyline and servers are usually connected via limited bandwidth.
operation over web databases where different dimensions ar8) Static partial skylineSK,, also provides an indication
stored in different data sites. of the search bound for processing a continuous skyline

Another area with related work is that of kinetic data query. SinceSK, is always contained it Koy, for
structures (KDS). Basch, Guibas and Hershberger [3] proposed any point not in SK,; to enter SKy, it must be
a conceptual framework for KDS as a means to maintain incomparable to any item iIfK,;. More specifically, it
continuously evolving attributes of mobile data. KDS keeps = must have advantage in distance to the query point since
the relationship of interest between data in some specific it is dominated in all static dimensions by at least one
structures, and the contents do not change unless the rela- pointin SK,,;. This leads to Lemma 1.
tionship has changed. In this way, data retrieval results based.emma 1:For a query poinyg at any timet, if spy is the
on the relationship of interest can be maintained when tferthest point inSK,,; to the query point, then any poinpt
data points move continuously. KDS and its underlying idea®t nearer to the query point thap; is not in the complete
have inspired some unique query processing techniques $ayline.
moving objects database (MOD). Mokhtar, Su and Ibarra [16] Proof: Obviously pt ¢ SK,, thusdsp € SK,, s.t.
proposed an event-driven approach to maintain the resus sp.pr, < pt.pr and at least one inequality holds. From
of k-NN queries on moving objects while time elapses. AWist(q, sp) < dist(q, spy) anddist(q, spy) < dist(q, pt), we
moving objects are sorted by their distance to the query poiget dist(q, sp) < dist(q,pt) by transitivity. Because of its

disadvantage in both spatial and non-spatial dimensjanis, SK,;). We have following lemmas to clearly describe these

dominated bysp at time ¢ so that it is not in the complete possibilities.

skyline. [] Lemma 2:An intersection<pty, pto, t,> (dist(q,pt1) <
Lemma 1 indicates a search bound for the complete skylingst(q, pt2) beforet,) has no influence on the skyline if one

This can be used to filter out unqualified points in quergf the following conditions holds beforg::

processing: those farther away than all point$'iid,,, cannot (1) pt; € SK,s andpts € SK,

be in the complete skyline. Refer to the example in Figure @) pt1 € SK,, andpty € SKpq

SK,s = {3,5}. At time t;, SK.,y, = {1} and restaurants (3) pt; ¢ SK, andpt; € SK,,

2, 4 and 6 are not in the skyline as they are farther to tlf) pt; ¢ SK.; andpts € SKpg

query point than restaurant 5, which is the farthest permandb} pt; ¢ SKy; andpts & SKay

skyline point to the query point. Proof: (1) This is obvious according to the definition of

permanent skyline points.

(2) Obviouslypt; does not leave the skyline. Assuming that

pto leaves the skyline after,, there must be another skyline
When the query poinf and data points move, their distancgoint s dominating it, i.e.dist(q, s) < dist(q, ptz) for t > t,

relationships may change. This causes the skyline to charg@wf’s_pk < pta.pi. Since intersectior pt,, pts, t,> does

as well. As discussed in Section Ill-A, such changes onfyot change the distance inequality relationship betweand

happen toSK.pg, i.e. SK.; — SKy,. It is also mentioned pta, dist(q,s) < dist(q,pts) also holds fort < t,. Thus

in Section II-B that the square of the distance from each pOiE‘tdominateSth before t,, which contradictspty € SKen,

to the query point can be described as a function of time peforet,. Thereforept, does not leave the skyline either, and
Figure 3 illustrates an example of such functions of sevefigdere is no influence on the skyline.

B. Change in the Skyline

points with respect to the moving query point. (3) Sincept; ¢ SK,; beforet,, there must be at least one
skyline points € SK,; dominating it. Becausdist(q, s) <
pts| distance? dist(q,pt1) does not change after the intersection,still

dominatespt; and thuspt; will not enter the skyline. Since
pto is a permanent skyline point, it will not leave the skyline.
s (4) Due to the same reasoning as in (@), will not enter the
skyline aftert,. Due to the same reasoning in (2}, itself
will not leave the skyline aftet,.

pty

Plo (5) Due to the same reasoning as in (3), neithigr nor pt
pti—— <Pl P2t will enter the skyline aftet.,. ™
0 . e Lemma 3:An intersection<pty, pta, t,> (dist(q,pt1) <
dist(q,pt2) beforet,) may have influence on the skyline if
Fig. 3. An example of distance function curves one of the following conditions holds befotg:

(1) pt1 € SK,s andpty & SKa

Intuitively, a skyline points; in SK.,, before timet, (2)pt1 € SKcng andpty € SKy
may leave the skyline aftet,. On the other hand, a non-(3) pt; € SK.ng andpts € SKcpg
skyline pointnsp at timet,, may enter the skyline and becomeg4) pt; € SK.ny andpts & SK,y
part of SK., after t,. For the former, after time,, s; Proof: (1) Obviously pt; will not leave the skyline
must be dominated by a skyline poisf in SK,;. For the aftert,. Sincept, ¢ SK,; beforet, there must be at least
latter, whennsp enters the skyline after timg,, those points one skyline point inSK,; dominating it. If pt; is the only
that used to dominatesp beforet, will stop dominating dominatingpt, beforet,, aftert,, pt; will stop dominating
it. That momentt, is indicated by an intersection of twopts and no other skyline points will dominate it. Consequently,
distance function curves. We usent, pts, t,> to represent pto, will enter the skyline aftet,..
an intersection shown in Figure 3, where at titpepoint pto (2) Obviously pt, will not leave the skyline after,. But if
is getting closer to the query than poipt;, opposite to the Vk,pto.pr < pty.px holds, pto will dominate pt; and cause
situation beforet,. From the figure, we can see that such ap¢; to leave the skyline sincéist(q, pt2) < dist(q, pt1) holds
intersection only altergt; and pt,’s presence in or absenceafteri,.
from SK.n, if it does cause change. This is because befo(8) If Vk,pta.pr < pti.pr holds, pto will dominate pt,
and after the intersection, the only change of comparisonaad causept; to leave the skyline becaus#st(q, pta) <
dist(q,pt1) < dist(q, pt2) to dist(q, pte) < dist(q,pt1).1fno dist(q,pt;) holds aftert,. Due to the same reasoning as in
intersections happen, the skyline does not change at all beca@3eof Lemma 2 ,pt, itself will not leave the skyline since no
the inequality relationship between the distances of all pointther points will dominate it aftet,.
to the query point remains unchanged. Nevertheless, not evéty Due to the same reasoning as in (&); may enter the
intersection necessarily causes the skyline to change. Whettlerline aftert,.]
an intersection<pty, pto,t,> causes change is relevant to Table | lists all possibilities attached to an intersection.
which setpt; and pty belong to just before time,, i.e., For (4) in Lemma 3, an interesting issue is whetpgr can
SKys, SKcng or SKqy (neither of the former two, i.e., not in dominatept; after timet,.

TABLE |

INTERSECTIONS AND POSSIBLE SKYLINE CHANGES Accordingly, the intersectioripty, pts, t,.> in Figure 4 will

be ignored. After time,, both pto andpt; are in SK,; but

pti \ pts | SKus | SKeng | SKan pt1 is nqt. This result can be achieved as long as the Fhree
intersections are correctly processed one by one according to
SKns — — v our discussion above, regardless of the order in which they
SKehg v v v are processed. Now, let us look at the processing of the inter-
SKa — — — sections in the order listed in the figure. Firstpty, pto, t,>

does not change the skyline becayge does not dominate
pto and thuspt, will not enter SK.,, though it is getting
Lemma 4:For an intersection <pty,pte,t,> closer to the query point thas,. Second<pt, pt3, t,> will
(dist(q,pt1) < dist(q,pt2) beforet,) in which pt; € SK.,, causept; to leave SK.,, becausept; starts dominating it.
andpty ¢ SK, beforet,, pt; will not be dominated byt, Finally, <pts, pta, t,> will causept, to enterSK,, because
and leave the skyline after,, if no other intersection happenspts is the only one that used to dominate and now it stops
at the same time and the static non-spatial valuestpfand dominating the point as its distance to the query point becomes
pto are not the same for all dimensions. larger. The procedures of other processing orders are similar
Proof: Assume thapt; will be dominated bypt, and and thus omitted due to space constraint.
leave the skyline aftet,, we havepts < pt;. Becausepts is An extreme situation is that many distance function curves
not in SK,; beforet,, in SK,; there must exist at leastare involved in the same multiplex intersection. Our processing
one pt3 dominating pte, i.e. pts < pts. For simplicity of strategy can also ensure the correct change as long as each
presentation, we assume thag is the only one skyline point legal intersection is processed correctly in isolation. In fact,
of such kind. By transitivity, we havgts < pt,. But because this situation is rather special and seldom happens because it
pt1 is in SK.pg, the distance fromts to the query point must requires that all the points involved to be on the same circle
be larger than that frompt; beforet,; otherwisepts < pt; centered at the query point. This situation usually happens to
meanspt;’s absence fromSK.,,. Thus forpt, to dominate minority data points only, and it becomes more infrequent in
pt, aftert,, it must first become incomparable fos, which the moving context.
requires that an intersection betwegen andpt; must happen To summarize the above analysis, we only need to take into
no later thart,. If the time of intersection is earlier tha, account two primitive cases in which the skyline may change.
however,pt, will be in SK., beforet,. Thus that time must Case 1:Just before time,, s; € SK.ng and3s; € SKqy
only bet,. Therefore, their three distance function curves mustt. s; < s;. At time ¢,,, an intersection<s;, s;, t,> between
intersect at the same point, arghty, pta, t,> is not the only their distance function curves happens. Then from timen,
intersection at time.,,. si ¢ SKc, and leaves the skyline because < s;, and
Note thatpt; cannot bept; in the above proof. Otherwise, s; € SK,; still.
beforet,, we havept; < pts. Thus, 3k such thatpt.p, < Case 2:Just before time,,, nsp ¢ SK,; and3s; € SKay
pt2.px, because their static non-spatial attribute values are Rt s; < nsp. At time t,, an intersection<s;, nsp, t,>
the same for all dimensions. This mearis cannot dominate petween their distance function curves happens. Then from

pt1 even after time,,. B timet, on,nsp € SK.,, becauseds; € SK,; S.t.s; < nsp.
Case 1 determines a skyline change, whereas Case 2 sug-
distance’ gests a possibility of change which requires further checking.

For a period of time before the change in Cass;lmust be
out of the circle determined by the query poinand s;. We
useC'ir(q, s;) to denote the circle whose centegiand radius
is dist(q, s;). In Case 2, the possible non-skyline poinip

pty
pts &pfz in SKeng! /-

- _/ is also out of circleCir(q, s;) for a period of time before the
p11J7 Dot change. Namely, the distance from each current skyline point
<ptg, pla, > (permanent or volatile) provides indication of future change
0 t-Dt time in the Skyline.

Fig. 4. An example of multiplex intersection C. Continuous Skyline Query Processing
Figure 4 shows such a scenario indicated by Lemma 4,We now address the issues of continuous skyline query
and we call such an intersectionultiplex intersectionOne processing. A naive way is to pre-compute and store all
feasible processing strategy for this situation is to only copossible intersections of any pair of distance function curves,
sider if pt, has the chance to ente&fK.,,. We need to and then process each one when its time comes according to
check if pt; is the only one that used to domingte,. We the discussion in Section IlI-B. This method produces many
ignore the possibility thgbt, might enter the skyline and startfalse hits which actually do not cause skyline to change as we
dominatingpt; at the same time. That possibility is indicatedhave shown in Table I.
by other intersections at the same time, each of which is toBased on those observations, we compute and store inter-
be processed in isolation. sections in an evolving way. We only keep those intersections

with possibility to change the skyline according to Table kime.t,;, is the time whers; will exchange its position with
Specifically, first, we get the initial skyline and compute somiés successor irlL,,. BesidesL,,, a global priority queu&).
intersections of the distance curves in terms of the curreéstused to hold all events derived from certificates to represent
skyline points. Then, when some intersections happen and theire skyline changes, with preference being given to earlier
skyline is changed, we further compute intersections in terragents.
of the updated skyline. By looking into the near future, we Based on the analysis in Section Ill, we define three kinds
ensure that the skyline query result is kept updated, and mofecertificates used in the KDS, which are listed in Table II.
information will be obtained later for updating the skylineThe first column is the name of a certificate, the second is
further into the future. what the certificate to guarantee, and the third lists the data
Besides, we keep all the current skyline points sorted baggaints involved in the certificate.
on their distance to the query point. At each evolving step, weAn event occurs when any certificate fails due to the
only compute those possible intersections that involve poindistance change resulting from movement. Each event is in
between two adjacent skyline points and s;;1, and will the form of(type, time, sel f, peer), wheretype represents the
happen before; ands;; stop being adjacent. Therefore, wekind of its certificatejtime is a future time instance when the
need to keep track of any intersection between two skylimeent will happen; andel f and peer respectively represent
points that are adjacent to each other in sorted order. skyline point and relevant data point involved in the event.
Certificates; s; ensures for an existent volatile skyline point
distance? s; that any other skyline point; with the potential to dominate
o s; (s; = s;) keeps being farther to query poigtthan s;,
i therefores; is not dominated by any of them and stays in the
s T skyline. Heresel f andpeer respectively point t@;'s ands;’s
‘ entries inLgy,.
Certificatensp;; ensures for a non-skyline poimtsp that
all those skyline points currently dominating it keeps being
closer to query point than nsp, thereforenps is prevented

0titis tsg time from entering the skyline. When a certificate of this kind fails
at time, nsp will get closer to query poing than one skyline
Fig. 5. An example of evolving intersections point s;, but whether it will enter the skyline or not depends

on whethers; is the only one that used to dominate it. This

Figure 5 shows the distance curves of the restaurant examyyi be checked when an event of this kind is being processed.
in Figure 2. At timet;, restaurants, r; and r; are three Hereself points tos;'s entry in L, whereageer is the tuple
adjacent skyline points, and only those two dotted intersectiofi¢ntifier of data pointusp.
are computed and stored for future processing. Then at timeCertificateord;; ensures for an existent skyline pointthat
t1.3, r1 will leave the skyline as; becomes to dominate it. its successos; in Ly, keeps being farther to query poipthan
Next at timets_4, 74 Will enter the skyline as its only dominatorit. This s; does not have the potential to dominajeotherwise
rs stops dominating it. Not all intersections are stored fd s;s; certificate will be used instead. Heself points to
processing, e.g., the intersection betwegrandr,, and that the entry of the predecessor skyline point in the pair, geot
betweenr, andr;. to the successor. Certificated;; not only keeps the order of

Note our method is a kind of sweeping algorithm but witill skyline points inL,,, but also implies a way to simplify
two distinctive features. We have a search bound which rendékgnt computation and evolvement. For Case 1 described in
the search limited in some specific regions instead of the whétgction 1lI-B, it also involves a position exchangelig,, i.e.,
data space. The case study in Section I1I-B helps identify resiyist befores; dominatings;, s; must be its successor. And
changes and reduce processing in the maintenance. The M¢ktneed to determine if an exchange i, really results

section addresses the data structure and relevant algorithm®if:s; event. In this sense, we only need to check dpits
detail. successor to compute a possibje; or ord;; event. Ifs; does

have ans;s; or ord;; event, the event'sime value is exactly
s;'s validity time t,,. If s; has no such event, its validity time
is set to infinity. An event of certificatesp;; with self = s; is
supposed to have a time stamp no later that,, and those
We use a bidirectional linked list, naméd,, to store all cur- events with a later time are not considered.
rent skyline points, which are sorted in ascending order of theirInitially, L,, contains the current skyline points, adg.
distances to the query point. For each current skyline poicdntains events that will happen in the nearest future. As time
si, we keep an entry of forniflag, tuple_id, a, b, c, t,,tskip). €lapses, every due event is dequeued and processed based or
flag is a boolean variable indicatingdf is in SK,,s. tuple_id its type. While processing due events and updating the skyline
is the tuple identifier ofs; which can be used to access thaccordingly, our method also creates new events for future.
record.qa, b, c are coefficients of the distance function betweehhus,). evolves with due events being dequeued and new
s; and query pointg, introduced in Section 1I-Bt,, is only events being enqueued, providing information for correctly
available to each changing skyline point, indicating its validitpnaintaining the skyline. At any time after all due events

IV. DATA STRUCTURE ANDALGORITHMS
A. Data Structure

TABLE I

CERTIEICATES Algorithm initialization(g)

Input: ¢ is the query point

Cert. | Objective Data Points Output: the skyline forg's starting position
555 | Vi € SKong, 55 € SKai, St self = s, the event queue to be used in maintenance
sj = 8i — dist(q,s:) < dist(q,s;) | peer =s; /l load SK,,, into skyline list
nsp;; | Vnsp; € SKqy,Vs; € SKqy, Sit. self = s; 1 for each s, in Sk
S8; < NSp; — peer = nsp; . 1 ns.
dist(q,s;) < dist(q,nsp;) 2. Computea, b, ¢ in terms ofgq;
ord;; | Vs; € SKqu, sit. self = s; 3. Insert an entry(1, s;,a,b, ¢, 00, 00) iNtO Lyy;
dsj € SKau N sj 7 si peer = $; /I search bound determined I3/,
Asj = s;.next in Lgp i)
— dist(q, ;) < dist(q, s;) 4. dypa = dZSt(Lsp~laSt; Q),

/I compute initial skyline
5. Search the grid cellell,,, in which q¢ lies;

are processed],, is the correct skyline with respect to the 6. While there still exist grid cells unsearched

query pointg’s current position. 7. for each cell cell; on next outer surrounding circle
8. if (mindist(q,cell;) > dpna)
) 9. break;
B. Algorithms 10. elseSearcheell;;

For a given dataset, itSK, s is pre-computed and stored // compute events
as a system constant. Before maintaining skyline continuousl¥l. for eachs; from L,.last.prev to Lg,. first
an initialization is invoked to compute the initi&lK.,, and 12. createEventsy, ¢);
the earliest events. To compud(,.;, over static dataset for 13. handleBoundy t...);
the query point's starting position, in order to use the search
bound determined by K,,, and reduce intermediate steps t&'9- &
access data tuples when computing events, we use the grid-fite—
to index all data points. Grid file provides a regular partitiorf'90rithm handleBoundf, ¢ ..)
of space and at most two-disk-access feature for any singigPut: ¢ is the query point
record [17]. In our solution for the static dataset, we use @UtPUt: upcoming events for, last
simple uniform 2D grid file dividing the data space irtox v~ L+ tnewt = Q- first.time;

cells to indexD’, and the data points within each cell areg- Stast = Lisp-last;

stored in one disk page. - C=Cir(qtnert); stast) = Cir(q(teur), Stast)

For the similar reasons we use a hash based method [#4] for €achpointnsp in C ,
to index moving data points id’. The data space is also > for each s; from sias; 0 Ly first
divided into regular cells, with each representing a bucket t§- t = time nsp will get closer tog than s;;
hold all those moving data points within its extent. Data pointg - if ((t > s5.,) Or (t = 5;.t50ip)) CONtNUE;
can move across adjacent cells with the velocities in its tupl@,- if (Vk,s;j.pr < nsp.px)
which is monitored by a pre-processing layer and declared i Enqueue;, t, nsp, nspij) 10 Qe;
an explicit update request to the database. An update requ break;
can also change a data point’s speed. How to deal with t8g 7. Handle bound
updates of moving data points to maintain the correct skyline
will be addressed in Section I1V-B.1. Except for the difference
on underlying indexing schemas, the initializations for statitandleBound is called to compute a possiblg;; event for
and moving datasets share the same framework and evehtse points farther thasy, ;.
creation algorithm. Algorithm handleBound is presented in Figure 7. It does

The initialization framework is presented in Figure 6. Firstot involve all outer non-skyline points af,,’s, instead it is
all permanent skyline points 8K, are inserted intal,, limited to an estimated region. This regichis the difference
according to their distance to query poirg starting position. between the two circles determined &y,; and query poiny
The farthest distance is recorded in varialyg; as the search at two different times, the current time and the earliest event
bound. Then starting from celtell,,, where ¢’s starting time ¢,.,; in the future. Only those non-skyline points
position lies, all grid cells are searched in a spiral mannbave chance to enter the skyline before,;.
that those on an inner surrounding circle are searched beforélgorithm createEvents is presented in Figure 8. For a given
those on an outer one. Cells beyodig,; are pruned, where skyline points; in L,,, the algorithm first computes the time
mindist is computed as in [22] by regarding a cell as ahwhens; and the next skyline poind; in L, will exchange
MBR. Points in a cell not pruned are sequentially compareleir position in the list, i.e. whes; will get closer tog than
to the current skyline points id,,, which is adjusted with s;. If ¢ is later thans;’s skip time ors;’s validity time, it is
deletion or insertion if necessary. After all cells are searchaghored. Otherwise, it means afs; event depending os;’s
or pruned, algorithm createEvents is invoked for each skylimalidity time if s; € SK.,4, Or it is a simple order change
points; from outermost to innermost, to compute all events fa@vent. Then for each non-skyline poidp betweenC'ir(q, s;)
all skyline points except the last ong,.;. Finally, algorithm andCir(q, s;), the algorithm computessp;; event by looping

Initialization framework

Algorithm createEvents(, q) mpt;'s old distance function. Figure 9 shows how a data

Input: s; is a skyline point inLs, point’s velocity change causes the intersections of the function
q is the query point curves to change. Thus, it may cause the skyline to change in
Output: upcoming events fos; the future.
1. peer = null;
Il compute events with next skyline point iy, distance?
2. s; = s;.next; Pty
3. t=times; ands; will exchange position; new curve
4. if ((t < sj.terip) @and (t < s;.ty)) ots
5. if (!s;.flag)
6. if ((t < si.ty) and (Vk, s;.px < 8i-px)) Ptz
7. 8;.ty, = t, peer = s;, P~ < O —oldcurve
8. elses;.topip = 1;
/I enqueue relevant events 0 tupt time
9. if (peer # null)
10. Enqueued;, s;.ty, rep, s;s;) 10 Q.; Fig. 9. An example of the change of moving plan
11. if (Si~tskip < Si.tv)
12. Enqueuest, s;.tskip, 55, ordi;) 10 Qe; To ensure correct process with updates, we need to add
/I compute events involving non-skyline points for each moving object’s tuple a fielt,,; indicating its last
13. for each point nsp betweenCiir(q, s;) andCir(q,s;) update time. We define an update request for any moving data
14. for each s;, from s; to Ly, first point mpt; in the formupdate(id, x,y, vy, vy). id iS mpt;’s
15. t = time nsp will get closer tog than sy; identifier which can be used to locate its tuple directhyand
16. if ((t = sk.ty) OF (¢ = sp.tskip)) CONtiNUE; y represent its current position, andwv, represent its current
17. it (Vk, sg.pr < nsp.p) speed. The algorithm updateMotion in Figure 10 is used to
18. Enqueues, t, nsp, nspi;) 10 Qe; process such updates. When an update request comes in, it is
19. break; first checked ifmpt; has moved to a new cell and if its speed

has been changed since the last update afdy indicate that
mpt; has moved to a different cell, we need to remove it from
the old one and insert it into the new one (line 1-5), which
. L . incurs 2 10s. Ifv, and v, indicate thatmpt;'s speed is not
on all skyline points in the inner afsp. Once annsp event : f . A
. . : . . changed, the algorithm stops (line 6-7). Otherwise, we need
is derived, the loop on all inner skyline points breaks. .)

During the lif f i Kyli h to update the speed record fotpt; (line 8-10), and adjust
_ buring the litespan of a continuous skyline query, the Sk¥'elevant events starting from the first skyline points till the
line rt_asult is maintained by correc_tly processing due events Wt one out ofimpt; (line 17). If mpt; is a skyline point, then
creating new events. In each malnteqance SteP' the due eVRByents will be re-computed and the algorithm stops (line
are dequeued and processed according to their types, and 5_/\15)_ Otherwise, the algorithm continues to compuig;
events fc_)r_ further future are C,OmP”ted and enqueued bage OBnts fonmpt; (line 19-24). With the independent distribution
new positions. As in the initialization, the event of those polhgssumptionﬂSKam +1)/2 skyline points are expected to be
out of _the last skyline po!nt IS computed ina special way wit cessed. To facilitate location of events involving a data point
an estimated search region by calling algorithm handleBo”rbCfﬁciently, the priority event queue is implemented using'a B

The actions to process each.kmd of events are descn_bedn%@, and each current skyline pointhas a list of pointers to
follows. For ans;s; event,s; is removed from the skyline all those events whoself is s;

. S i

list Ls, and new events are computed fers predecessor It also can be seen in Figure 9 that right at the mo-

because its successor skyline pointZig, has been changed.ment tup: When an update request comes in, the skyline

For annsp;; event, the non-skyline pointsp will be checked ' j,q¢ change abruptly. To keep the skyline correct, the
against all those skyline points closer to the query point, to Sﬁﬁdate request is only processed after all due events are

!f nsp W'”te;ter the skyllns. gtEOL a posa_ﬁli ne’%‘? Evg?t processed, i.e., updateMotien§) at timet,,: executes after
is computed an enqueued. erwisep will be added into _updateSkyline,,;) completes.

the skyline listL, and relevant events will be computed for it
and its predecessor. For and;; event, the skyline lisL, is _ _ _
correctly adjusted by switching; ands;, and relevant events C. Cost Analysis and Discussion

are computed and enqueued for them and their predecessor ifhe space cost incurred by our method consists of two
It exists. components: the space used to keep the skyline and that used
1) Updating the Moving PlanA moving data pointnpt;’s to store events. For d-dimensional dataset witiv points
distance function does not change unless its moving planbject to independent distribution, the expected size of its
changes. When this happens, the intersections of its distaskgline isng, = O((In N)4~1) [5]. Since there aren static
function and other points’ will also be changed as a consdimensions involved in skyline operator in our assumption
guence, which invalidates those events computed basedimrSection II-A, the size of skyline on static dimensions is

Fig. 8. Create events

Algorithm updateMotionfeq) IO when accessing data points. The main IO cost is incurred by

Input: req is an update request createEvents, which accesses all non-skyline points between
Output: updated hash index, tuple adgl the circles of two adjacent skyline points In,. This access
1. cell; = Tuple(req.id).cell; can be regarded as a special region query over the dataset
2. celly = Hash(req.z,req.y); indexed by grid file, asking for points between two circles
3. if (celly # cells) with same center but different radiuses. The 10 cost of such
4. Tuple(req.id).cell = cells; a query can be estimated with a simple probabilistic model.
5. removeregq.id from cell; and insert it tocells; Let the data space be a 2D unit space (as we use a 2D grid
6. if ((req.v, == Tuple(req.id).v,) and file to index all data points), and the outer and inner circles
(reg.vy == Tuple(req.id).vy)) have radiiR; andr; respectively when we create events for

7. return; theith skyline inL,. Then the area of the query circle§s=
8. Tuple(req.id).v, = req.v, 7(R?—r?), and the query will accessP = n(R?—r2)P grid
9. Tuple(req.id).v, = req.v, cells (pages), wher@ is the total number of grid cells. Next
10. Tuple(req.id).typs = teur we estimateR;, the distance frong to thei+1th skyline point

/I Adjust relevant events in Lsp,. Suppose we do an incrementeN search forg, if
11. for each s; in Lg, from Lg,.first we have met+1 permanent skyline points, then we must have
12. if (s;.tuple_id == req.id) met the thei+1th skyline point already. With the assumption
13. Delete alls;’'s events; of independent distributioni + 1) N/|SK, | points are met
14. createEventsy, q); before thei+1th permanent skyline point. Then in the 2D unit
15. return; space, we haveR? = ((i +1)N/|SK,s|)/N, which leads to
16. Delete alls;’s events withpeer == req.id; an upper bound oR; satisfyingR? = (i+1)/(7|SK,s|). For
17. if (dist(q, Tuple(req.id)) < dist(q,s;)) break; r;, Which is the distance from query poiqtto theith skyline
18. nsp = req.id; point, we use a lower bounthin(+/i/(r|SK,|),i/(vVN —
19. for each s; from s; to Ly, first 1)) to approximate it. In this way, we get an upper bound of
20. t = time nsp will get closer tog thans;; SP.
g; :; E(vtkzjj'tvloés(t Z)Sj'ts’“i”)) continue, Let us compare the time cost of continuous skyline query to
23, Er;qugl]je;(j tpﬁ];; nspis) 10 Qu: that of snapshot skyline queries. Assuniesnapshot queries
24' break: o PR e are triggered within a time peridd, , ¢2], and the cost of each

is C;. Then the total and average cost of that method are
Fig. 10. Handle the change of moving plan Zf; 1 Ci andzﬁ 1 Ci/N respectively. More snapshot queries
incur higher total processing cost, while each single snapshot
query’'s cost is expected to vary little from the average cost
ISK,.s] = O((InN)™1), and the size of skyline on all € b_ecause of the static processing f_ashion. F(_)r the same time
dimensions isSK,y| = O((In N)™) at any time. Thus the penpd, our method computes the |n|t|§\I skyline and events
size of changing part i$SK.ny| = |SKa| — |SKns| = at t!me t1, qnd then updates the skyline only when. some
O((ln N)™ — (In N)™~1) at any time. ce_rt|f|cate fayls beforefg. Supppse th_e numbgr_gf _ceryﬂcate
Now we consider the worst-case number of events, i.e., ffflures during [fy,] 'S /Y/ (including the initialization),
ure of certificates, at any time. In our method, any; event and the cost of f,"f‘Ch, I8, thi//tOta/‘I at'd average cost of
or ord;; event is determined by an underlying intersectioRY" method are_;_, Cj and > ;- Cj/N" respectively. The
between two adjacent skyline points’ distance function curvedimber of certificate failures/" is a constant in a fixed time
They areexternal eventbecause they affect the skyline resulP€riod, therefore the average cdstis determined by the total
we maintain [3]. Therefore, the maximum number of events §PSt Only. It makes little sense to compare the total costs of
these two kinds i$SKa|max/2, Since we reduce multiplex these two methqu. If too many snapshot queries are trlgg.ered
intersections into simple ones and store only one at a tin{B€ total cost will be very high, while few snapshot queries
In contrast,nsp;; events ardnternal eventsecause they are deteriorate the result accurac/y._To ensure a fair comparison of
used to adjust internal data structure. As we at most keep Gitgrage costs, we se¢’ — A" in our experiment. In other
nsp;; event for a non-skyline point at any time, the worst cadiords, we trigger snapshot queries by assuming when the
is that every non-skyline point is involved in such an evengkyline changes is known, which is gained from our method.

which means the number ofsp;; events is not more than The experimental study results in r?e_xt section show that
N — |SKa1|maz. By summing up all events, the total numbePU" method even outperforms the privileged snapshot query
of events in the worst case 1§ — |SKa|maz/2. Hence, the Method.
ratio of total events to external events28//|.S K| maz — 1. Our problem formulation assumes a linear movement model
In the worst case WhergS K 11| maz 1S 1, the upper bound of for both query point and data points (if they are moving),
this ratio is2V — 1 which is linear with the number of all which is justified by the fact that linear movement model has
points involved. This worst case ratio verifies that our KDS iso far been the most popular one in the literature of moving
efficient. objects research [1], [12], [16]. This model itself assumes that
As we store datasets in hard-disk, our method needs to mioving objects hold their current velocities for a period of

10

TABLE Ill
PARAMETERS USED IN EXPERIMENTS

| Parameter | Setting \
Dataset cardinality 100K, 200K, ..., 1000K
Dimensionality of non-spatial attributes2,3,4,5
Distribution of non-spatial attributes | Independent, Anti-Correlated
Spatial range 10000 x 10000
Non-spatial attribute range [0, 10000]
Point speed range [10, 30]
Speed Zipf factor 0,05,1.0,15,20
Update interval 30, 60, 90, 120
Update ratio 4%, 6%, 8%, 10%

time, which is also usually considered as a system paramederEffect of Cardinality

in typical indexing structures such as TPR-tree [23] arfd B |, thjs set of experiments, we used synthetic datasets of data
tree [11]. In most cases, on the other hand, a user can chagggyis with spatial attributes (x and y) and two non-spatial
the speed but seldom changes it every time stamp while siirinytes. For each dataset, all data points are distributed
issuing a continuous query. As long as the velocity keeps f{ndomly within the spatial space domainl6t 000 x 10, 000,
a period of time, our method pays off because it saves Mughy their non-spatial attribute values range from 1 to 100,000
computation cost in the result maintenance for future, aRdcording to either independent or anti-correlated distribution.
it always reports result changes in time, which renders oyhe cardinality of datasets ranges from 100K to 1M. For each
method beneficial. set of data we executed 100 continuous queries moving in
random directions. For each query, we randomly generated
)) a point within the data space as the starting position of the
D. Possible Extensions moving query point. The speed of each moving query point

It is true that users may issue continuous skyline queris/S0 randomly determined and ranges from 10 to 30. Each

with constraints in SQL WHERE clauses. Our current solutidf/€ry €nds as soon as the query point moves out of the data
can be adapted to deal with such constraints with sorfe@c€ extent. The minimum, maximum and average validity

modifications of the kinetic data structures (the certificate) fine for all these queries are 1, 475 and 149 units respectively.
tender the WHERE clauses. In brief, we first apply the give-Flhe experimental r_esults to be reported are the average values
constraints taSK,,, so that an updated k., are gained for On those 100 queries. o

further use. Then, in the use of the kinetic data structures, only>inc® BBS algorithm is the most efficient method for
those data points satisfying the specified constraints will E@MPuting skyline in static settings (both dataset and query

considered and processed. Thus, our method is still effectR@INt are static) [18], we adapted it for comparison in our
to support the WHERE clauses. experiments. At each time instance, the BBS algorithm is

Our current method is focused on processing single contnyOked to re-compute the skyline in terms of the query

uous skyline query efficiently, whereas it still provides helpftﬁo'nt’S new position. Besides, we extended BBS algorithm

indications for concurrent continuous skyline queriegs’, | to exploit the pre-computed static partial skyline poifis.,.

obviously is the common part for all concurrent queries, whidf" Pruning. i-e.,5Ky,; is used in every call of BBS algorithm
means computation savings can be achieved |if,..|. Be- to prune more unqualified tree nodes and data points. In Fhe
sides, concurrent queries still can share volatile skyline poirﬂ%suIt reports that follows, we use “BBS-Ex” to denote this

in some way. These indicate that with proper adaptations pthl;)d,hlnBcBontlraast tg the ;r:)]urde BBS method. It||s Wﬁrthhnotmr?
current method can be used to handle this more complex 404t bot S based methods cannot correctly tell when the

skyline changes as our method does.
The comparison was carried out on a fair basis. The same set
V. EXPERIMENTAL EVALUATION of randomly generated queries are used by all methods on the
same series of datasets. Processing costs, 10 count and CPU
We conducted our experiments on a desktop PC runnitime, in all methods are amortized over the same number of
on MS Windows XP professional. The PC has a Pentium INme units when the skyline changes. For both kinds of indices,
2.6GHz CPU and 1GB memory. All experiments were codd®*-tree and grid file, we set the data page size to 1K bytes.
in ANSI C++. The parameters used in the experiments arel) Datasets of Independent Non-spatial Attribute Values:
listed in Table Ill. We used both static datasets and movirgigure 11(a) shows that as cardinality increases the logarithm
datasets. For the former, we explored into the effects of 10 count of our maintenance method grows steadily, and
cardinality and non-spatial dimensionality on the performanceearly 2 orders of magnitude less than that of BBS. Fig-
For the latter, we investigated into the effect of points speedle 11(b) shows that as cardinality increases the CPU time
distribution and moving plan update. cost of our maintenance solution grows steadily, in a rate much

11

all 100 queries. It can be seen that the queue event size
increases as the cardinality increases, the average queue size
is much smaller compared to the maximum size, and it does
not exceed 6% of the cardinality.

Figure 11(d) shows the effect of cardinality on skyline size
v v] and the number of events being processed at any time unit.
o It can be seen that complete skyline size roughly increases as
cardinality increases, but the average number of due events
at any time unit of skyline change never exceeds 4, which

10 count

2 L L L L
100K 300K 500K 700K 900K

Cardinality
a) 1o indicates the efficiency of our maintenance strategy.
12 e By comparing Figure 11(c) and 11(d) we can see that
BBSEX e some events are not processed before the query ends. In a

real application, we can take advantage of this observation to
further reduce the queue size. The lifetime of a query can
be estimated in a specific scenario, e.g., in 2 hours or this
afternoon, and any event whose due time later than it will be
prevented from being enqueued.

2) Datasets of Anti-Correlated Non-spatial Attribute Val-
ues: We also carried out experiments on datasets whose two

CPU time (s)

0. n "
100K 300K 500K 700K 900K

Cardinalit
(o) CPU'time non-spatial attributes are anti-correlated. We used the method
160000 [in [6] to generate such datasets. Figure 12 shows our continu-
Average - ous skyline query processing still outperforms both BBS based
120000 | methods. The higher cost than that on independent datasets
8 is attributed to the increase of skyline size of anti-correlated
% 80000 | datasets. The anti-correlation between non-spatial attributes
& also makes the events number increases less unsteadily, as
40000 ¢ the dominance relationship of data points is more irregular
| compared to the independent datasets.
100K 306K SOBK 706K 906K
Cardinality
(c) Event queue size])] .
o — B. Effect of Non-spatial Dimensionality
alll —#—
2 100] Dueevens e 1 In this set of experiments, we used datasets of 500K
% 80 ./././_/.\H/'_/' points with non-spatial dimensionality ranging from two to
® ol | five to evaluate the effect of non-spatial dimensionality on
~§ our solution. Values on those non-spatial dimensions are of
g or independent distribution. Other settings are the same as in
& °L et] Section V-A. Datasets with anti-correlated non-spatial values
DU S incur similar performance trends, except that every single cost
1ok oo f:(;?:mam oo S0 is higher than its counterpart on the independent datasets.
(d) Skyline size and due events Hence we omit those figures here. Figure 13(a) and 13(b) show
the 10 and CPU cost respectively. Again our maintenance
Fig. 11. Effect of cardinality of independent datasets method outperforms the BBS based methods, and BBS-Ex is

better than pure BBS.

Figure 13(c) shows that the event queue size decreases as
less than that of BBS. At each time instance, our maintenartbe non-spatial dimensionality increases. The probability that
solution does not need to search the whole dataset again toome volatile skyline point will be dominated by others is lower
compute the skyline from scratch, instead it mainly involveshen more dimensions are involved, because all dimensions
event processing which consists less computation of distarare independent in our dataset. This reduces the number of
and comparison of attribute values than BBS based methodgents.
which do a totally new search via*Rree. This processing Figure 13(d) shows the effect of non-spatial dimensionality
behavior difference leads to the difference on processing cogg. skyline size and the number of events being processed
The improvement gained by BBS-Ex compared to pure BB any time unit. It can be seen that both static partial
indicates thatSK,,; does help pruning, nevertheless BBS-Exkyline and complete skyline size increases as non-spatial
cannot tell the skyline changes either. dimensionality increases, but the average number of due events

Figure 11(c) shows the effect of cardinality on event quewd any time unit is still drastically smaller. This indicates that
size at any time unit. The maximum size is gained throughooitir continuous query processing method still works efficiently.

12

10 count
10 count

10° 10° 4 a
02 102 . .
100K 300K 500K 700K 900K 2 3 4 5
oAl Non-spatio Dimensionality
Cardinality
(a) 10 (@) 10
6.0 .
BBS —=—
— z
n
K 2
£ =
hag o
2 o
Q. (@]
O
"
00 % s
0 ‘ ‘ ‘ ‘ 2 3 4 5
100K 300K 500K 700K 900K . onali
Cardinality l\éog—spcalllaoﬁlTﬁqsgna ity
(b) CPU time
70000 -
160000 - T T T - Maximum —&—
Maximum —&— m_ Average —a—
Average -4 56000
120000 N
N 42000
[»
N)
© 3
< 80000 S 28000
5} (o4
p=3
& -
14000
40000
,,,,,,,, A AT 2 3 4 5
100K 300K 500K 700K 900K Non-spatio Dimensionality
. (c) Event queue size
Cardinality
(c) Event queue size
4000 .
|SKay| —m—
300 o Kl -——am
|SKa| —=— N Due events -+
8 SKpg| —am © 3000
E 250 - Due events * £
>
@ <
£ 200 =
% £ 2000 r
2 150 E
5 = L
g 100 g 1000
o b4 P
g g | it .
L S N D
ki 50 Al A - N e R
2 3 4 5
3 R * * S S * *

Non-spatio Dimensionality
100K 300K SOOK 700K 900K (d) Skyline size and due events

. Cardinalit
(d) Skyline size anJ due events
Fig. 13. Effect of non-spatial dimensionality
Fig. 12. Effect of cardinality of anti-correlated datasets

C. Effect of Movement Update mainly explore into two aspects of moving data points update:
Apdate interval length and the ratio of points requesting update.

In this set of experiments, we used the dataset of 500K dW ied th date | | h 120 i .
points with spatial attributes (x and y) and two static non~c Vane the update interval length from 30 to 120 time units

spatial attributes. Every point in each dataset moves WithziWd update ratio from 4% to 10%.
the 2D extent with a speed ranging from 10 to 30. The hashFigure 14(a) shows the 10 count decreases as the update
mechanism is based on the same grid file used for staiiterval increases, and higher ratio of moving data update
datasets, with each cell as a bucket containing moving dateurs more 10 counts. Longer update interval reduces the
points. Periodically, a number of moving data points send #imortized update cost which involves changing tuple and
update requests. Queries are picked up in the same way ageitomputing events, and weakens the effects of different
Section V-A. update ratios. While higher update ratio increases update cost
In this set of experiments, the initial speeds of all 500kt every update time. The similar trend is seen for the CPU
points were randomly distributed in the range of 10 to 30. Wane shown in Figure 14(b).

13

5 5
10 10% —+— 10 10% —+—
8% % 8% —x—
6% ¥ 6% -k
4% @ 4% 8

10 count
10 count

30 60 90 120 0 0.5 1 15 2

Update interval Zipf factor of sineed distribution (6)
(@) 10 (@) 10
6
10% —+—
8% -
6% ¥
5 4% &

CPU time (s)
CPU time (s)

0 0.5 1 1.5 2
Update interval Zipf factor of speed distribution (6)
(b) CPU time (b) CIgU time
Fig. 14. Effect of update Fig. 15. Effect of speed distribution

g Eﬁe_Ct of Speed letrlbutlon)]] [3] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile
In this set of experiments, we fixed the moving data points data. ACM SODA pages 747-756, 1997.

update interval to 60, varied the update ratio from 4% to 109 R. Benetis, C. Jensen,‘G. Karciau_skas, and S Saltgnis. Nearest neighbor
. L . and reverse nearest neighbor queries for moving object®HAS pages
to see the effect of initial speed distributions. The Zipf factor 44 53 2002.

0 of speed distribution varies from 0, which is a uniforms] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the
distribution, to 2, which is a skewed distribution where 80% a}/ifé%/le géla)bgrggfg‘g“?; gﬂ a set of vectors and applicatiémsnal
. 0 . [0} . —. y .

data points move _SIOW|y ?‘nd the 20% move fast. Other Settm[gf S. Borzonyi, D. Kossmann, and K. Stocker. The skyline operator. In
are the same as in Section V-C. ICDE, pages 421-430, 2001.

Figure 15(a) shows that the 10 cost of the proposed meth@l J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting.
is not too sensitive to skewness on speed. In Figure 15(b), CPU " ICDE, pages 717-816, 2003. _ . .
. . lowlv aé increases from O to 1.5. and the 8] D. Hear_n and M. P. BakeComputer Graphics C VersiorPrentice-Hall
time Increases s wa 0 International, Inc., New Jersey, 1997.
decreases whe# increases from 1.5 to 2. For the same [9] G. Hjaltason and H. Samet. Distance browsing in spatial dataBae!
a higher ratio of mobility data set incurs a higher processing TODS 24(2):265-318, 1999.

]
:] G. S. lwerks, H. Samet, and K. Smith. Continuous k-nearest neighbor
cost. The experiments show that our method performs well P queries for continuously moving points with updates. VbDB, pages

the different distributions of moving speed. 512-523, 2003.
[11] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient b+-tree
VI]. CONCLUSION based indexing of moving objects. WLDB, pages 768-779, 2004.

. [12] G. Kaollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects.
In this paper, we have addressed the problem of con- in PODS pages 261272, 1999.

tinuous skyline query processing. The method, using th] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An

: f online algorithm for skyline queries. MLDB, pages 275-286, 2002.
Kinetic data structure, is based on the analysis that expl l]‘.: H T KSng F. Luccioy anqu. P. Preparata.pogn finding the maxima of

the spatiotemporal coherence of the problem. Our solution”, set of vectorsJournal of ACM 22(4):469-476, 1975.
does not need to compute the skyline from scratch at evety] D. H. McLain. Drawing contours from arbitrary data poin@omputer

time instance. Instead, the possible change from one time to JOH“r’:‘Aalkﬁz(“):flSS‘Sz“& gﬂl‘g- o ing object qUeriePTDS
. . . . Mokntar, J. ou, an . Ibarra. On moving object queries:
another is predicted and processed accordingly, thus makih pages 188-198, 2002.

the skyline query result updated and available continuousjy;] J. Nievergelt and H. Hinterberger. The grid file: an adaptable, symmetric
The experimental studies conducted using different datasetsmultikey file structure ACM TODS 9(1):38—-71, 1984.

; D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive
and parameters demonstrate that the proposed method is ro%&glgomhm for skyline queries. ISIGMOD pages 467478, 2003,

and efficient. To the best of our knowledge, this is the firgf; b papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
work on skyline queries in the moving context. computation in database systerdCM TODS 30(1):41-82, 2005.
[20] F. P. Preparata and M. |. ShamosComputational Geometry: An
Introduction Springer-Verlag, 1985.
REFERENCES [21] K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos. Fast nearest-
[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In neighbor query processing in moving-object databa&eInformatica
PODS pages 175-186, 2000. 7(2):113-137, 2003.
[2] W.-T. Balke, U. Guentzer, and J. X. Zheng. Efficient distributed skylining22] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
for web information systems. IEDBT, pages 256-273, 2004. In SIGMOD, pages 71-79, 1995.

[23] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing
the positions of continuously moving objects. $GMOD, pages 331—
342, 2000.

[24] Z. Song and N. Roussopoulos. Hashing moving object® M, pages
161-172, 2001.

[25] R. E. SteuerMultiple criteria optimization Wiley, New York, 1986.

[26] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive skyline
computation. InVLDB, pages 301-310, 2001.

[27] Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal
databases. 18IGMOD, pages 334-345, 2002.

[28] X. Xiong, M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar.
Scalable spatio-temporal continuous query processing for location-aware
services. INSSDBM pages 317-326, 2004.

[29] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based
spatial queries. 'SIGMOD Conferencepages 443-454, 2003.

14

