
IPSS: A Hybrid Approach to Planning and
Scheduling Integration

Marı́a Dolores Rodriguez-Moreno, Angelo Oddi, Member, IEEE, Daniel Borrajo, and Amedeo Cesta

Abstract Recently, the areas of planning and scheduling in Artificial Intelligence (AI) have witnessed a big push toward their

integration in order to solve complex problems. These problems require both reasoning on which actions are to be performed as well

as their precedence constraints (planning) and the reasoning with respect to temporal constraints (e.g., duration, precedence, and

deadline); those actions should satisfy the resources they use (scheduling). This paper describes IPSS (Integrated Planning and

Scheduling System), a domain independent solver that integrates an AI planner that synthesizes courses of actions with constraint-

based techniques that reason based upon time and resources. IPSS is able to manage not only simple precedence constraints, but also

more complex temporal requirements (as the Allen primitives) and multicapacity resource usage/consumption. The solver is evaluated

against a set of problems characterized by the use of multiple agents (or multiple resources) that have to perform tasks with some

temporal restrictions in the order of the tasks or some constraints in the availability of the resources. Experiments show how the

integrated reasoning approach improves plan parallelism and gains better makespans than some state-of-the-art planners where

multiple agents are represented as additional fluents in the problem operators. It also shows that IPSS is suitable for solving real

domains (i.e., workflow problems) because it is able to impose temporal windows on the goals or set a maximum makespan, features

that most of the planners do not yet incorporate.

Index Terms Planning, scheduling, temporal reasoning, constraint satisfaction problem.

Ç

1 INTRODUCTION

PLANNING and scheduling have always been two very
related but separate areas. Since some problems allow a

strict separation between planning and scheduling, a
possible approach to solving the complete planning
problem (a valid plan with temporal and resource informa-
tion) consists of assigning time and resources (using a
scheduler) to the selected and ordered activities (generated
by a planner). However, in other cases close to real
applications, resource assignments affect the selection and
ordering of activities and the problem is hard to solve by a
simple sequencing of planning and scheduling. For this
motivation, the AI community is showing an increasing
interest in integrating features from both fields in order to
define new algorithms which are able to find better quality
solutions or to solve planning problems, with time and
resource constraints, which cannot be easily solved by state-
of-the-art planners.

Generally, in AI the term planning is used to describe the
construction of a sequence of formally described world-
states. A planning domain consists of a set of operators or
action types. In AI planning systems, world states are often
described in terms of predicates (fluents). The best-known
formalism for planning is STRIPS [16], now represented in
the standard language PDDL3 [19], in which operator effects

are defined by an add list of fluents which become true
when the operator is executed and a delete list of fluents
which become false when the operator is executed.
Problems that planners have when dealing with time and
resource constraints relate to the fact that, although the time
representation (e.g., durative actions) has been one of the
main objectives in the language for the International
Planning Competitions,1 resource constraints are not mod-
eled and handled differently from the rest of planning
knowledge. In addition, solving time-resource dependent
tasks implies the use of some measure of optimality, such as
makespan, and there are few planners that can handle
optimality criteria (though more and more planners are
now incorporating some way of handling them, such as
[14], [20], [21], [23], [36]).

Scheduling is an optimization task where limited re-
sources are allocated over time among a partially ordered
set of activities such that an objective function is optimized.
From this perspective, the integration of Planning and
scheduling systems provides an alternative way to deal
with planning problems with time and resource constraints.
In fact, the problem can be addressed in two ways:

. representing resource constraints within a STRIPS-
like formalism, adding fluents to the domain descrip-
tion and modifying operators accordingly, and

. synthesizing an extended algorithm, which incorpo-
rates time and resource reasoning capabilities.

This work describes a novel framework called IPSS

(Integrated Planning and Scheduling System) that follows
the latter approach to solving planning problems with time
and multicapacity resource constraints. In particular, our
approach integrates a classical planner with a constraint-
based module that models temporal and resource features

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006 1681

. M.D. Rodriquez Moreno is with the Departmento de Automática,
Universidad de Alcala, 28871 Alcalá de Henares, Madrid, Spain.
E mail: mdolores@aut.uah.es.

. A. Oddi and A. Cesta are with ISTC CNR, Italian National Research
Council, Via S. Martino della Battaglia 44, I 00185 Rome, Italy.
E mail: {angelo.oddi, amedeo.cesta}@istc.cnr.it.

. D. Borrajo is with the Departamento de Informática, Universidad Carlos III
de Madrid, 28911 Leganés, Madrid, Spain. E mail: dborrajo@ia.uc3m.es

Manuscript received 19 Sept. 2005; revised 15 May 2006; accepted 20 July
2006; published online 18 Oct. 2006.
For information on obtaining reprints of this article, please send e mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE 0390 0905. 1. http://ipc.icaps conference.org/.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

using state-of-the-art CSP (Constraint Satisfaction Problem
solving) techniques. In the subdivision of work with this
hybrid schema, the planner drives the search that decides
which actions are in the plan. It receives continuous
feedback from the CSP part that represents the temporal
features, like duration of activities and the deadline for a
solution, in a temporal constraint network. The CSP also
handles resources usage like agents performing actions that
are represented and reasoned upon as binary resources in a
CSP representation (although multicapacity resources can
also be handled). The two reasoning modules create a
continuous loop that shows not only good modeling
features, but also an interesting problem solving perfor-
mance, as shown in the experimental part of this paper. In
addition to integrated planning and scheduling, the
proposed representation and the associated solver are also
able to cope with different quality criteria, control knowl-
edge to reduce the search, and learning tools.

The paper is organized as follows: Section 2 reviews the
main approaches that integrate planning and scheduling.
Section 3 presents the IPSS architecture and its components.
Then, Section 4 presents an experimental setting and
discusses the results. Finally, conclusions and future work
are outlined.

2 THE INTEGRATION OF PLANNING AND

SCHEDULING

In some real-world domains, there is a class of planning
problems that contains both the representation of activities
(operators) as well as time constraints (as durations or time
windows) and resources (as agents or fuel). In general, we
can solve this class of problems with a planning algorithm or
with the integration of planning and scheduling algorithms.
In the current literature, the latter approach has evolved
along two lines: loosely coupled and strongly coupled
algorithms. In this section, we describe these approaches
in some detail.

2.1 Loosely Coupled Algorithms

Within this approach the two subproblems of planning and
scheduling are solved one after the other. The planner
generates a sequence of atemporal operations that describes
the precedence relations among activities. All the time-
related and resource information is removed from the
domain, letting the scheduler handle them. The input plan
can be either a Partial Order plan or a Total Order plan. Total
Order plans are sequences of operator instantiations
(activities from the point of view of scheduling). This means
a tight set of precedence constraints for the scheduler.
However, not every precedence ordering between plan steps
is necessary for maintaining its consistency, given that
sometimes two activities can be executed in parallel. So,
generally, these type of plans (and the planners that generate
them [33]) are not the best candidates for a weak integration.
This drawback can be solved using planning algorithms that
either generate Partial Order plans directly [12], [33] or
convert Total Order plans into Partial Order plans, by using
a deordering algorithm, as described in [3], [38]. This last
solution has a disadvantage: Finding an optimal deordering,
an equivalent plan with the minimum number of ordering
constaints as well as a plan with the minimal possible length,
is an NP-hard problem. It is still possible to remove ordering
constraints in polynomial time until the plan remains
feasible and convert it into a minimal deordered plan, which
is not optimal, but might represent a good compromise

when the selection of the ordering constraints is performed
under tailored heuristic criteria (in Section 3.2.2, we present
an example of this criteria). In other recent integrations such
as RealPlan [36], the resource allocation issue is solved
separately from the planning process and the quality of the
plan is measured by plan length.

Despite the simplicity of this integration schema, its main
drawback is the lack of interaction between the two solving
phases; when there is no solution to the final scheduling
problem, a new input plan has to be generated from scratch
and no information is provided from the “scheduling side”
to the planning search in order to drive it toward a
promising solution or to remove infeasible search paths
with regard to the time and/or resource constraints.

2.2 Strongly Coupled Algorithms

In this approach, planning and scheduling problems are
reduced to a uniform representation without the decom-
position over two sequential subproblems as described
above. The advantage of this approach is based on the idea
that the reduction of scheduling and planning to a unique
formalism facilitates the development of a set of solving
algorithms which can take full advantage of the sharing of
the planning and scheduling knowledge. The common
formalism for representing planning and scheduling pro-
blems is the so-called Constraint Satisfaction Problem [26],
which provides a general device for representing complex
states, causal justifications, resource, and time constraints.
Within the current literature and among the systems which
can be classified in this category, we can mention HSTS [27]
and IXTET [21] among others.

HSTS [27] is an integrated planning and scheduling
system that breaks down a problem domain into a set of
state variables. A state variable represents a component of the
working domain which can assume a set of values over
time, each one in a given time interval. The integrated
planning and scheduling problem consists of finding a set
of temporal evolutions—that is, sequences of interval values
assumed over time by the state variables (components)—
which assumes a set of specific values over a set of temporal
intervals; these values are the goals.

IXTET [21] is a least commitment planner where the time
logic relies on a restricted interval algebra represented by
Time Points (TPS) using a Simple Temporal Problem (STP).
Given a problem and a set of tasks (operators), the system
generates a solution by successive refinements of the initial
problem. A partial plan is composed of a set of temporal
propositions (events, asserts, or resource usage), a time map
(for the management of the temporal constraints post in
each instance), and a table of variables (for the management
of constraint posts on plan variables).

Resource conflicts are detected and solved through
Minimal Critical Sets analysis [24] of a specific representa-
tion of the temporal constraints. A resource analysis module
is integrated into the planning system to select a certain
number of smallest Minimal Critical Sets and compute their
minimal resolvers, whereas the other planning analysis
modules focus on threats and pending subgoals.

2.3 What’s in between?

In the current planning literature there are also other
systems which adopt a schema for integrating planning and
scheduling which lies in the middle of both classes of
systems introduced in the previous two sections. We mainly
identify two trends for planners in this area:

1682 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

. GraphPlan-based [4] planners can easily extend the
graph to represent temporal distances (durations) by
means of time-graphs. Time is specified on each
edge of the time-graph through a pair of numbers
indicating the upper and lower bounds of the
elapsed times between the TPS represented by the
vertices connected by the edge. Among planners in
this group, we can mention TPSYS [18] or SAPA [14].

. Planners not based on GraphPlan need to integrate
methods to represent time to handle temporal
events. It is a common practice to use techniques
from the CS area, particularly, Temporal Constraint
Satisfaction. In this group, we can mention CRIKEY
[22], VHPOP, or the system that will be explained in
detail in the next section, IPSS [31], [34].

CRIKEY [22] is a temporal planning architecture
which aims at recognizing scheduling aspects in a
planning problem instance and dynamically sepa-
rates these aspects from the strictly logical con-
straints. The system is based on FF [23] and a Simple
Temporal Network (STN) solver and can deal with
PDDL2.2 complexities.

VHPOP [39] is a Partial Order planner loosely
based on UCPOP [29]. It is fully compatible with
level 1 of PDDL+. There is also support for planning
with durative actions (level 3 of PDDL+) and this is
accomplished by adding an STN to the regular plan
representation of a Partial Order planner. The STN

records temporal constraints between actions and
supersedes the simple ordering constraints usually
recorded by partial order planners. The use of STNs
permits actions with duration interval constraints.

As we will show in the next sections, our working
framework is more flexible than the ones described here.
The combination of a planning algorithm and a Constraint
Satisfaction Problem (CSP) is a powerful one: We can easily
add search control knowledge and new inference (propaga-
tion) rules to the CSP representation in order to prune
infeasible choices during the search. Our algorithm is more
valuable from an applicative point of view. From the
results, it is shown that classical planning algorithms are
not well-suited for reasoning about resource and temporal
constraints.

3 IPSS: A HYBRID APPROACH

The goal of our approach was to build a flexible, integrated
system capable of planning and scheduling reasoning. The
system is composed of two problem solvers where each one
maintains its own knowledge representation, adequate for
the type of reasoning that was required. So, the planner
reasons about goals and operators that achieve those goals
and establishes causal orderings among them. The sche-
duler is responsible for reasoning about the time and
resource constraints of the problem. Hence, the essence of
our problem solving approach is a two-level architecture
integrating a constraint-based problem and a planning
component which incrementally build a solution by inter-
lacing planning and scheduling steps.

From a planning point of view, the search process can
consider a more abstract vision of the planning problem
(goals, operators, and establishing causal orderings among
them) because time and resource reasoning tasks are
delegated to the scheduler. Hence, the planning search
process is relieved from establishing preconditions which

represent time and resource constraints, which provides
benefits in terms of the planning search complexity. The
constraint-based component reasons about fundamental
properties of time and resource constraints, such as
satisfaction and entailment (or propagation). It contains
and represents the time and the resource constraints
accumulated at some computation step and supports
various queries and operations over these constraints.
Finally, this separation has some obvious software en-
gineering benefits. It is possible to modify these compo-
nents independently, e.g., one can easily change the search
strategies of each component once the interfaces have been
properly defined.

3.1 IPSS Software Architecture

Fig. 1 shows a high-level view of the architecture. The left
part, IPSS P, corresponds to the planning component. It is
comprised of the current implementation of two subsys-
tems: a Total Order planner and a deordering algorithm.
The right part, IPSS S, corresponds to the scheduling
component and incorporates two reasoners: A temporal
reasoner based on a Simple Temporal Network (STN) for the
time related reasoning and a resource reasoner.

The inputs for the new architecture are the same ones as
for the planner (domain theory, problem description, and
control knowledge) plus two new ones referring to new
capabilities: maximum makespan and a list of resources to
be used.

There are two ways in which the problem solvers interact:

. Every time the planner applies an instantiated
operator, adding it to the current incomplete plan,
the scheduler is called on to identify whether any
temporal or resource constraint is violated. If so, the
planner backtracks, removing the operator from the
plan. If no constraint is violated, the planning search
continues.

. At any moment, the planner can determine what the
status is of resource consumption or temporal
constraints in order to make decisions. Thus, more
informative decisions can be made.

In order to implement a first version of this generic
architecture, we have used QPRODIGY [6], an extension of
PRODIGY [37] to handle quality metrics, for the planner
component, and a Constraint-Based Scheduler [10], [35] for
the scheduling component. In the next sections, we describe
in more detail each subcomponent and then we explain how
they are integrated and what knowledge they exchange.

RODRIGUEZ MORENO ET AL.: IPSS: A HYBRID APPROACH TO PLANNING AND SCHEDULING INTEGRATION 1683

Fig. 1. IPSS architecture.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

3.2 The Plan Reasoner

The plan reasoner, IPSS P (see Fig. 1), is composed of the
QPRODIGY planner and the deordering algorithm. Both will
be explained next.

3.2.1 The Planning Algorithm

IPSS P is based on a descendant of PRODIGY, QPRODIGY [6].
More specifically, QPRODIGY redefines PRODIGY4.0 (non-
linear version of the PRODIGY planner). Both PRODIGY and
QPRODIGY explore the same space, using the same decision
points on that search tree. PRODIGY searches a state-space
bidirectionally, from an initial situation S toward the goalsG
(when applying the operators) and vice versa (when
performing the subgoaling) [37]. It uses an augmented STRIPS

representation that incorporates most PDDL2.2 features, plus
some others (such as control knowledge language or
functions for constraining operators variables values).

The difference between PRODIGY and QPRODIGY is that
the latter uses a declarative language for expressing
knowledge about different quality metrics in each domain
operator. So, the user might define a list of cost metrics and
compute the value for each metric in each operator. There
are no predefined metrics, given that users can define their
own. We believe this is conceptually cleaner than defining
them in the effects list as is currently done in PDDL. Also,
the user is not constrained by the type of functions to be
used to compute such cost metrics, given that QPRODIGY

can call any arbitrary function. Once it has cost metrics in
the operators, QPRODIGY can also take as input a cost metric
and a cost bound for that metric (optional). Then, it
performs a branch-and-bound search on top of PRODIGY

so that only solutions with less cost than the cost bound are
searched for. If no cost bound is given, it will search for a
valid solution. Also, since PRODIGY can search for more
than one solution; once it finds the first one, its cost will be
the new cost bound for the next solutions.

QPRODIGY, like PRODIGY, follows a four step decision
cycle, as shown in Fig. 2. First, the system must decide
whether to apply the applicable planning operators to the
current situation S (forward mode) or to work on a goal in
G (backward mode). In forward mode, the first currently
applicable operator is applied if the actual cost of the
already applied operators does not surpass the cost bound
of the current cost metric (in PRODIGY, the operator is
applied without having in mind the cost).2 In backward
mode, an unachieved goal g 2 G must be selected. Then, an
operator O able to fulfill g must be chosen. And, finally, its
unbound variables must be bound. Each one of these four
decision points is backtracking points. So, the user can
define control rules (if-then rules) to help the planner to take
the right alternative at those points and avoid backtracking.
Control rules can select, reject, or prefer alternatives at
decision points. Select and reject rules are used to prune
parts of the search space, while prefer rules determine the
order of exploring the remaining parts. First, PRODIGY

applies all select rules whose if-part matches the current
situation, and creates a set of candidate branches of the
search space. Next, it applies all reject rules that match the
current situation and prunes the rejected candidates.
Finally, it applies prefer control rules to determine the
order of exploring the remaining candidate branches.

The reasons to choose QPRODIGY are manyfold. Among
them, we can highlight the possibility of defining and
handling different quality metrics [6], reasoning about
multiple criteria [1], flexibility to easily define new
behaviors, capability to represent and reason about general
numeric variables on fluents, definition of functional
constraints on variable values in preconditions of operators,
explicit definition of control knowledge as well as its
automatic acquisition through different machine learning
techniques [37], or explicit rationale of each problem
solving episode through the search tree.

3.2.2 Deordering Total-Order Plans

QPRODIGY incrementally generates totally ordered plans
composed of the operators that have been applied so far in
each search tree node. These plans are usually over
constrained with respect to precedence constraints. So,
from a scheduling point of view, in order to efficiently
reason about time and resources it is better if unnecessary
precedence constraints are removed from these partially
built total-order plans. Therefore, a deordering algorithm is
applied that generates as output an equivalent partial order
(PO) plan, so plans can represent parallel execution of
operators. This is referred to as deordering of the solution.

1684 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

2. In the latest versions of PRODIGY (FLECS), this is also a decision point
that determines which ground operator will be applied. We do not consider
it in this paper, though.

Fig. 2. QPRODIGY four steps decision cycle. Steps marked with ð�Þ
represent nondeterministic choices; that is, the planner can backtrack to

the corresponding decision point.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

This module follows a similar approach to the one
presented in [38]. It computes causal links among the
operators in the totally ordered plan and identifies threats
that might appear among them [30].

. Causal links generation. Given a new applied instan-
tiated operator Ob and a current plan, for each
precondition of Ob, it finds an instantiated
operator O0b already in the plan that satisfies the
preconditions of Ob. Then, it creates a causal link
between O0b, the producer, and Ob, the consumer. To
compute the links, our algorithm starts searching
from the first operator applied in the plan (origin).
This heuristic selects producers as close to the origin
as possible and tries to minimize the makespan. We
have called it the Minimal Deordered Link heuristic.

. Threat analysis. If the operator Ob deletes any
condition previously established in any link, then
the deordering algorithm decides which threat
solving strategy to apply (promotion or demotion).
If any of the other instantiated operators in the plan
deletes any condition established in the new links for
the operator, a new causal link is found for the
corresponding precondition of the operator, starting
from the next applied operator that satisfies the
precondition. This is repeated until there are no
more threats. In the worst case, the link would be
established with the last applied operator.

The complexity of the deordering algorithm is Oðn2Þ, n
being the number of applied operators.

Let us clarify how this algorithm works with the problem
of Fig. 3. It belongs to the ROBOCARE domain [11]. It is a
multiagent (robots) domain for generating user services for
human assistance in a closed environment such as a
healthcare institution or a domestic environment. Basically,
the domain consists of robots that have to perform tasks
such as clear beds, serve meals, make beds, or move people
from one room to another. But, there are some restrictions to
consider. For example, one agent cannot perform two
operations at the same time or, in order to make the bed, it
must be clean.

The problem of Fig. 3 has two goals: make beds B1 and
B2, using any of the six available agents. B2 is already
cleared, but B1 is not. One of the possible solutions given by
QPRODIGY is shown in Fig. 4. We have added, on the left
part, an operator identifier and, on the right part, the
duration for each operator. The duration values are
internally computed by QPRODIGY using the cost functions
definitions provided in the operators in the domain
description.

Fig. 5 shows the deorderings after each operator in the
solution is applied during the search. The operators whose
identifiers are S OP and F OP correspond to the initial and
goal states, respectively, and are numbered as operator 1
and operator 2. As is shown in the solution to the problem
(see Fig. 4), the first applied operator has the identifier
number 3, the second operator 4, and so on.

After the planner applies operator 3 or

ðmake bed agent7 bed2 room2Þ;
it calls the deordering algorithm that generates a causal link
that satisfies the preconditions of this operator and it starts
from the S OP operator. Therefore, a link is established
between S OP and 3. Again, no threat is detected.

When applying the second operator,

ðclear bed agent6 bed1 room1Þ
or operator 4, the deordering algorithm generates a link
between the origin and the new operator ðS OP ! 4Þ. Since
operator 3 does not delete any condition established by
operator 4, there is no need to calculate the next operator
that supports the preconditions of operator 4.

After applying the last operator

ðmake bed agent6 bed1 room1Þ
or operator 5, the deordering algorithm starts looking from
operator S OP , but it does not support its preconditions. So,
it looks for operators 3 (it does not support them either) and
4. Finally, it returns the link (4 ! 5), which also does not
generate any threat. As a last step, links to the goal operator
(or operator F OP) are added from operators that achieve
the goals (3! F OP and 5! F OP).

Because in the previous example there are no threats,
let us consider that we have just one robot to perform
two activities: make two beds that are clean and placed in
two different rooms (see Fig. 6). The solution given by

RODRIGUEZ MORENO ET AL.: IPSS: A HYBRID APPROACH TO PLANNING AND SCHEDULING INTEGRATION 1685

Fig. 3. A problem in the ROBOCARE domain where several agents must

make two beds.

Fig. 4. QPRODIGY solution to the problem of Fig. 3.

Fig. 5. The deordered solution of Fig. 4.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

QPRODIGY is shown in Fig. 7. Because there is only one
resource, the deordering algorithm will give a TO plan as
a solution to the deordering process, as Fig. 8 shows.

As mentioned before, the operators whose identifiers are
S OP and F OP correspond to the initial and goal states,
respectively. After the planner applies

ðmake bed agent1 bed1 room1Þ
or operator 3, it calls the deordering algorithm that
generates a causal link that satisfies the preconditions of
operator 3, ðis agent agent1 room1Þ and ðclear bed1Þ.
Therefore, a link is established ðS OP ! 3Þ and any threat
is detected in this first call. When applying the second
operator, ðgoto room agent1 room1 room2Þ, the deordering
algorithm generates a link between the origin and the
new operator ðS OP ! 4Þ because the preconditions have
been met ðis agent agent1 room1Þ. But, this link threa-
tens the previous one because there is a delete effect
ðnot ðis agent agent1 room1ÞÞ in operator 4 that deletes
the precondition established in the link ðS OP ! 3Þ. The
algorithm detects this situation and establishes, instead,
the link (3 ! 4) (that is, promotion). The next step is to
calculate the links of operator 5. In this case, just
operator 4 establishes the two preconditions of operator 4
ðis agent agent1 room2Þ and ðclear bed2Þ, so the algo-
rithm adds a (4 ! 5) link for each condition. As a last
step, links to the goal operator (or operator number
F OP) are added from operators that achieve the goals
(3! F OP and 5! F OP).

3.3 The Scheduler Reasoner

The scheduling problem is represented as a Constraint
Satisfaction Problem (CSP) and the scheduler reasoner,
IPSS S, breaks it in two subproblems: a basic GROUND CSP
to reason about temporal constraints and a META CSP to
reason on resource constraints (see the right part of Fig. 1).

3.3.1 The Temporal Reasoner

This component represents the set of temporal constraints as
a Simple Temporal Problem [13]. In particular, significant
events such as start/end time of operators are represented as
temporal variables tpi called time points. Each temporal
constraint has the form a � tpi � tpj � b, where tpi and tpj are
time points and a and b are constants. Then, if tps and tpe are
the start and end time of an operator, Op, its duration
constraints can be represented as d � tpe � tps � d, where d is
its duration.

Currently, the IPSS architecture supports a set of
incremental functionalities for adding and removing both
time points and constraints of the form a � tpi � tpj � b in a
Simple Temporal Network (STN). A further and funda-

mental function is the verification of the consistency of the
set of temporal constraints represented in an STN. These
incremental functions are used inside the algorithm of
Fig. 17, where, as part of the backtracking process, a partial
solution can increase and reduce its size many times before
a solution is found. In particular, the sequence of Steps 1.2
and 1.3 can be seen as the generation of new time points
and constraints and Step 1.4 is the consistency checking.
The retraction of the last elements is done in case of failure
by the backtracking step. The time complexity for adding
(including the consistency checking) or removing a con-
straint is OðneÞ, where n equals the current number of time
points and e is the number of constraints. In fact, we use a
Bellman-Ford based implementation for this kind of
algorithm in line with [8].

3.3.2 The Resource Reasoner

The previous algorithm only checks temporal inconsisten-
cies, but it does not check whether plans are using the same
resource for performing two actions at the same time. As
introduced above, there have mainly been two ways of
handling resources in planning and scheduling:

. Implicit definition of resources. They are defined as
another type of domain (in the best of cases since, in
domains such as the blocksworld, the arm is not
even defined) and reasoning about them during
planning. Examples are trucks and airplanes, rovers,
satellites, etc. This implies that the planner has to
reason about them and special care has to be taken
when defining the domain theory to not allow the
same resource to perform two actions at the same
time. While planners that generate TO plans can
handle this (no parallel actions), planners that
generate Partial Order plans do have problems if
actions requiring the same resource are applied at
the same time.

. Explicit definition of resources. This has been the major
approach for schedulers and this is the approach we
follow in this paper. Actions do not have to specify
that an agent cannot do two things at the same time.
We just specify that an agent has a limited capacity.

1686 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

Fig. 6. A threat example in the ROBOCARE domain.

Fig. 7. QPRODIGY solution to the problem of Fig. 6.

Fig. 8. The deordered solution of Fig. 7.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

In the META CSP, the resource conflicts are reviewed and
addressed. In particular, conflicts are called peaks [9], [10]. A
peak is any subset of overlapping activities requiring the
same resource and such that the sum of the resource
requirement is over the resource’s capacity. In general, a
peak is eliminated by leveling it, that is, by posting one or
more precedence constraints between pairs of activities
contributing to the peak.

The choice of which pair of activities to order is made
after the so-called Minimal Critical Set analysis. A Minimal
Critical Set is a resource conflict where each proper subset is
not a resource conflict. Hence, the philosophy under the
META CSP is based on isolating Minimal Critical Sets, so a
single precedence relation between any pair of activities in
the Minimal Critical Set eliminates the resource conflict. The
META CSP is defined by taking the current set of Minimal
Critical Sets as decision variables and the set of precedence
constraints that can be feasibly posted between some pair of
activities in a given Minimal Critical Set as the domain of
the corresponding variable. If the META CSP has no
assigned variables, there are no remaining resource con-
flicts and a solution has been found. But, if the set of
possible orderings of a conflict is empty, then there is no
feasible solution.

To limit the number of Minimal Critical Sets, special
attention has to be paid to the the META CSP due to
exponential time to complete the computation of the whole
set of Minimal Critical Sets. To address this problem, two
main ideas have been integrated [9], [10]:

1. After propagation in the GROUND CSP, the earliest
start times of all temporal variables are extracted;
this is used as a basis for computing the Minimal
Critical Set (i.e., the META CSP).

2. A polynomial Minimal Critical Sets sampling meth-
od is introduced to extract a subset of Minimal
Critical Sets and overcomes the exponential worst
case of complete enumeration.

Having generated a Minimal Critical Sets choice set, the
next step is to identify one particular Minimal Critical Set
for resolution. If at least one solvable Minimal Critical Set
remains, the selected Minimal Critical Set is removed by
selecting and posting an additional precedence constraint
between two of the competing activities in the Minimal
Critical Set. In particular, to select and solve a conflict, the
heuristic followed is to choose the most constrained
variable and set the value (a precedence constraint) that is
least constraining. This is measured by computing the
temporal flexibility, that is, the number of temporal
positions that the time variables in a solution may be
assigned with respect to each other. The less flexibility a
Minimal Critical Set has, the more critical it is to solve it
first. Only those Minimal Critical Sets closest to an
unsolvable state are chosen.

Here is an example that more clearly shows the resources
conflict resolution. The problem proposed is shown in
Fig. 9. It has two goals: ðmade bed1Þ and ðmade bed2Þ using

the only agent placed in the same room where the two beds
are. To simplify the problem, bed1 and bed2 are cleared.

One of the two possible solutions given by QPRODIGY is
shown in Fig. 10. In the domain definition, the make� bed
operator does not require the agent to be free in order to
make a bed; thus, for any POP algorithm, it could potentially
perform both actions at the same time (our deordering
algorithm just computes the links: ðS OP�!3Þ, ðS OP�!4Þ,
ð3�!F OP Þ, and ð4�!F OP Þ). So, the solution (make two
beds at the same time by the same agent) will not be valid if
we do not have in mind the resource conflicts.

The IPSS algorithm checks resource conflicts between
pairs of activities and imposes precedence relations
between them. Therefore, it is called when more than one
operator is on the list of operators that consume the same
resource. Considering agent1 as a resource, we have just one
list of operators. The two operators in the solution are on
the same list, so there is a conflict. Because both operators
can be used, the algorithm chooses the precedence ordering
given by the planner, that is, it establishes the (3 �! 4) link.

3.4 Properties of the IPSS Algorithm

In this section, we analyze the soundness, completeness,
and admissibility of the IPSS algorithm.

3.4.1 Soundness of the IPSS Algorithm

The head plan construction in QPRODIGY always returns a
valid plan defined as a sequence of operators that achieves
the goals from the initial state. When we use a quality
metric, there is nothing that prevents it from removing
soundness given that it only reasons about the cost of
solutions and not about goal-operators relationships, so
QPRODIGY is also sound.

In the case of IPSS, it also constructs a head-plan as its
precedent and it applies a deordering to the solution that is
always a valid one because all the causal links are proven to
be safe. Each time a new set of links is computed, the
algorithm checks whether any of the previous links are
threatened. If this occurs, we apply any of the methods used
in POP algorithms to solve threats. Also, the TN provides a
correct time and resource assignment to the TPs that
compose it. Thus, IPSS is sound.

3.4.2 Completeness of the IPSS Algorithm

PRODIGY is based on bidirectional planning, that is, a
combination of goal-directed backward chaining with
simulation of plan execution. Experiments have shown that
it is an efficient technique, but it is not complete [17]. In this
paper, its authors describe how to make it complete.

In IPSS, we are going to analyze each of the layers that we
have added to the search in PRODIGY in order to evaluate
their degree of completeness.

. The Meta-CSP layer. It calculates the precedence
constraints between activities that consume the same
resource. The algorithm has in mind all the activities
involved in the consumption of the same resource,
but, when there is more than one possible order it
chooses the link following a logical order, that is, if
links 3 �! 4 and 4 �! 3 are possible, it returns the

RODRIGUEZ MORENO ET AL.: IPSS: A HYBRID APPROACH TO PLANNING AND SCHEDULING INTEGRATION 1687

Fig. 9. A threat example in the ROBOCARE domain.

Fig. 10. A QPRODIGY solution to the problem of Fig. 9.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

3 �! 4 link because it always chooses the chron-
ological order imposed by PRODIGY in the operators
and does not backtrack over that decision. So, the
Meta-CSP layer is not complete.

. The Ground-CSP layer. It consists of a propagation
algorithm and selection of variables and values. In
[7], it is shown that the propagation algorithm is
correct and complete because a TN is arc-consistent
if and only if it is also temporally consistent. This
only happens when an assignment of values to the
temporal variables exists. Due to the fact that
variables and values assignments are embedded
within a backtracking framework, the CS algorithm
is basically complete.

. The Deorder-layer. As described in Section 3.2.2, the
deordering algorithm starts computing the link that
determines that the preconditions of the last operator
added to the head plan are supported by the effects of
an operator in the list of applied operators. The links
search follows the order of the operators in the head
plan, that is, it starts from the origin and continues
until the last operator is applied. But, the use of the
Minimal Link Deordered heuristic can sometimes lead
to incompleteness (because we do not backtrack over
its decision), so the deordering algorithm is incom-
plete. If we use the temporal information that the TN
returns when we have imposed a temporal horizon,
we can see that any deordering different from the one
calculated (let us call it LR) will be inconsistent if LR
is. The inverse does not necessarily hold. If the Ground-
CSP returns an inconsistency for LR, we can compute
another link farther from the one calculated, but the
TN will again return an inconsistency. In all the
experiments that are presented in the next section, we
have followed this heuristic and they show that, when
QPRODIGY finds a solution, so does IPSS with the
heuristic.

3.4.3 Optimality, Quality, and Efficiency of the IPSS

Algorithm

The QPRODIGY algorithm is not optimal given that it is not
complete. So, IPSS cannot be optimal. IPSS, as QPRODIGY,
can improve the quality of the first solution found, given a
time bound, when we set the multiple solution mode. In that
case, the makespan and the cost of the first solution are
used as a bound to the next one and so on. With respect to
efficiency, the three layers added to the original algorithm
usually increase the time to find a solution, given that the
time needed for computing deorderings and time/resource
inconsistencies is Oðn2Þ.

3.5 Some Benefits of the Approach

Up to now, the only interaction between IPSS P and IPSS S

has been by providing new causal links and inconsistency
checks from the scheduling component to the planner
component. Given the flexibility of the approach, we have
devised two initial ways of making use of this integration.

The first one uses the temporal network information and
the second one the resource reasoning.

3.5.1 Using the Temporal Reasoner

From what has been described up to now, apart from
imposing some temporal constraints on the operators, the
scheduler does not provide anything new for the planner.
Given that, for each causal link, it always adds the most
unconstrained temporal range, from a temporal point of
view, it does not imply any constraint on the computed
causal links. If we provide a maximum makespan ðHÞ, then
it would be ½0; H�. In this case, the temporal and resource
reasoners can change the behavior of the planner, deliver-
ing inconsistent solutions. Let us try to solve a different
problem of the same ROBOCARE domain. This is shown in
Fig. 11 and we will impose a makespan of two time units.

The first stage starts when the planner explores the
search space building a node tree with each node belonging
to one of the decision points depicted in Fig. 2. The only
goal to work on is ðmade bedÞ and the only operator that
achieves that goal is make bed. Let us suppose that the
planner chooses A1 as a binding for this operator. The
QPRODIGY solution for this option is shown in Fig. 12.

Because the initial conditions are not yet satisfied,
ðnot ðclear bedÞÞ and ðin room A1 R1Þ, the algorithm
chooses another operator that achieves the first goal
condition, ðclear bedÞ. In order to clear the bed, the agent
and the bed must be in the same room. The algorithm
decides to move A1 to room R2. At this point, the operator
ðgotoÞ can be applied as the initial conditions are satisfied.
The deordering algorithm is executed and the two time
points corresponding to the operator are added to the STN:
the start (s) and end time (e) of the operator. At step a in
Fig. 13, the Ground- and Meta-CSP return consistency. The
next applied operator is ðclear bedÞ; again, it is added to
the STN with success (step b). But, when the next applicable
operator is added, ðmake bedÞ, the GROUND CSP layer
returns inconsistency as it goes beyond the imposed
makespan (step c). This forces the planner to backtrack
and discard nodes 3, 4, and 5. As a next step, the planner
binds ðmake bedÞ with A2. The QPRODIGY solution for this
option is shown in Fig. 14.

The initial conditions are not yet satisfied ðnot
ðclear bedÞÞ, so the planner chooses the operator
ðclear bedÞ by A2. At this point, the operator can be
applied, the deordering algorithm is called again and the
two time points corresponding to this operator are added
to the STN. The two CSP subsystems return consistency as
step a in Fig. 15 shows. Then, operator ðmake bedÞ is also
applied, deordered, and applied to the STN (step b) which
achieves the goal by the imposed deadline.

The question is where do we get this upper limit on the
makespan from? We have devised two simple potential
ways of providing it. First, we can impose a maximum
makespan H to each problem in a domain dependent way.
As an example, in the ROBOCARE domain, it can be
computed as:

1688 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

Fig. 11. Another example in the ROBOCARE domain.

Fig. 12. One posible QPRODIGY solution to the example of Fig. 11.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

H ¼ Nop �
lNG

NA

m
; ð1Þ

where, in (1), Nop is the number of operators, NG is the
number of goals, and NA is the number of agents. Second,
the planner we are using, QPRODIGY, can compute more
than one solution, performing a branch-and-bound search.
Therefore, the first solution provides a second limit on the
makespan given by the formula and then the makespan can
be improved.

3.5.2 Using the Resource Reasoner

The second idea that uses this type of integration consists of
providing resource availability from the resource reasoner
to the planner. One of our goals is to minimize the
makespan at the same time that we compute a valid plan.
If we use the feedback from the META CSP, we can aim at
efficiently using all the available resources. As a first
approach to using such feedback, we have implemented a
resource (load) balancing heuristic in the form of domain
dependent control rules to choose resource bindings that
minimize the makespan and at the same time avoid
resource conflicts.

A control rule is a production (if-then rule) that tells the
system which choices should be made (or avoided)
depending on the current state. There are three types of
rules: selection, preference, or rejection. One can use them
to choose an operator, an instantiation of an operator
(binding), a goal, or deciding whether to apply an operator,
or continue subgoaling. First, it applies all select rules
whose if-part matches the current situation and creates a set
of candidate branches of the search space that must be

considered. A branch becomes a candidate if at least one
select rule points to this branch. If there are no select rules
applicable in the current decision point, then, by default, all
branches are considered candidates. Next, it applies all
reject rules that match the current situation and prunes
every candidate pointed to by at least one reject rule. After
using select and reject rules to prune branches of the search
space, it applies prefer control rules to determine the order
of exploring the remaining candidate branches.

In IPSS, the control rules consult the META CSP module
through a condition on their left-hand side to know which
resource is used less at that time point.

Fig. 16 shows an example of a control rule for the
make bed operator in the ROBOCARE domain. The rule says
that IF we have just inserted an operator make bed ð< a0 >
< b0 > < r0 >Þ to achieve an unsatisfied goal literal
ðunmade < bb >Þ, the resource less used p metapredi-
cate implements the consult to the META CSP and the return
value is set in the < aa > variable THEN it should
instantiate the variable < a0 > with the value < aa >
given by the META CSP, and the value of the < b0 >
variable with the < bb > value.

As the results on Section 4 show, these control rules can
greatly improve the makespan.

3.6 The IPSS Algorithm

In the last sections, we have described how each of the
different subsystems that compose IPSS works. In this
section, we will describe the IPSS algorithm. Fig. 17 shows a
description of the complete algorithm. The difference with
respect to the QPRODIGY algorithm (see Fig. 2) is high-
lighted in italics. As explained in previous sections, if the
planner decides to apply an action instead of immediately
applying it, it first calls the deordering, GROUND CSP and
META CSP algorithms. If the new Partial Order plan
resulting from the deordering is time and resource
consistent, then IPSS applies the operator. If not, it fails,
forcing backtracking.

RODRIGUEZ MORENO ET AL.: IPSS: A HYBRID APPROACH TO PLANNING AND SCHEDULING INTEGRATION 1689

Fig. 13. First step in the solution.

Fig. 14. The other QPRODIGY solution to the example of Fig. 11.

Fig. 15. Second step in the solution.

Fig. 16. A ROBOCARE control rule to bind resources.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

In this algorithm, the temporal-resource inconsistencies

are discovered as soon as they occur and this is due to the

integration between the planner and the scheduler which
interchange information at every decision point. Then, as we

show in the experimental section, the possibility of finding

better quality plans increases thanks to the capability of the

CSP system to perform different kinds of solution analyzes
that can be used to guide the planning search.

We observe that, although the QPRODIGY planner can

handle time and some type of resources (consumable,
producible and resources with single capacity), with the

IPSS algorithm we can:

. Reason about activities in parallel. This is an
important feature when trying to minimize the
makespan.

. Perform different levels of reasoning, that is, we can
decide when to reason about resources: during the
planning or scheduling processes or both.

. Handle multicapacity renewable resources. Due to
the modularity of the approach, we can use any
algorithm in the META CSP without affecting the
other subsystems or replace the IPSS P part of IPSS

(see Fig. 1) by any other planning algorithm.

4 EXPERIMENTS

In this section, we describe the IPSS versions, the benchmark
we have used to test, and the obtained results by comparing
them with other planners.

4.1 Domains and IPSS Configurations

As described in previous sections, we have used the
ROBOCARE domain [11] for the experiments. The ROBO
CARE domain is one of the domains that considers the
object robot as a resource of binary capacity and treats it
separately from causal reasoning. The modeling of the
ROBOCARE domain does not consider in the operators if the
agents are busy doing something else or not. So, the
solution given by PO planners will not be valid. They can
generate solutions in which the same agent performs
different actions in parallel, which is impossible, but
preconditions of operators do not represent this fact.
Planners that generate sequences of instantiated operations
(TO) solve this problem by not allowing the parallel
execution of actions.

The second domain, TI considered is the example of
installing a new telephone line as described in [32]. Here, the
different activities have to be performed by different
workers who should move to the zone where the spares or
lines are, in order to accomplish the work. In this case,
workers are also considered as a resource of binary capacity.

In order to compare our approach against Partial Order
planners, we have also coded these domains forcing each
action to require that the agent/worker not be busy
performing some other action. After the execution of the
action, the agent (robot/worker) is freed by a dummy action
with duration zero (the free-agent action). In the initial
conditions, we have added the predicate (not-busy <robot>)
for each <robot> in the problem (and also for each worker in
the second domain). We have called these domains the
ROBOBUSY and TI OCCU domains.

We have used three different configurations of our
system: IPSS that uses the integrated planner and scheduler,
IPSS-R that incorporates a load balancing heuristic (Sec-
tion 3.5.2) and IPSS-Q/IPSS-R-Q that searches for more than
one solution using branch and bound.

4.2 Results for the ROBOCARE Domain

From all the planners of the Third International Planning
Competition3 that we can compare to, we have chosen
METRIC FF [23] for its very good performance. With respect
to the type of domains of the competition, IPSS can solve
Strips, Time, and Complex problem types. The planners
that can solve these types of problems are: LPG [20], MIPS
[15], SHOP2 [28], TALplanner [25], TLplan [2], and TP4 [5].
We have discarded TP4 because it is an optimal planner and
ours is not, so the comparison would not be fair. We also
discarded TALplanner and TLplan because they use

1690 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

3. http://ipc.icaps conference.org/.

Fig. 17. IPSS decision cycle.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

domain-specific search control information to control the
search and SHOP2 because it needs a handcrafted definition
of the domain. But, any of the other mentioned planners
could have been used. We have decided to use LPG,
METRIC FF, and MIPS.

We randomly generated 11 sets of problems, with three
problems in each set, increasing the number of goals (1, 2, 3,
4, 5, 10, 15, 20, 30, 40, and 50). Then, for each set, we
increased the number of agents (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20,
30, 40, and 50). The total time given to solve each problem
(time bound) was 120 seconds.

Given that LPG bases its search on a nondeterministic
local search, we ran each problem five times and considered
the best solution, the median solution, and the worst
solution. This is represented in the tables by LPG Min, LPG

Med (it will be considered the baseline to compare the
results) and LPG Max, respectively. Tables 1 and 2 show the
number of solved problems by each planner considering the
number of robots: A1 stands for problems with one agent,
A2 with two agents, and so on; and goals: G1 stands for
problems with one goal, G2 with two goals, and so on. As
can be seen, FF and LPG are fast and efficient planners that

solve all problems. IPSS R and IPSS solve almost all the
problems and the worst performance is by the MIPS planner.

The IPSS configurations have bad performance when the
number of goals is high and when one agent is used
(39 problems are solved versus 42 in IPSS R and 35 versus 42
in IPSS that also represents bad performance with two
agents). Since none of the added algorithms can provide
knowledge that improves the Total Order behavior, they
effectively work as the QPRODIGY planner.

Here, we have used the makespan as the quality measure
to compare the generated plans. We have only considered
the makespan of problems solved by all configurations
except for MIPS (because it solved half of the problems).
Fig. 18 shows the makespan for all problems averaged over
each number of goals. The best results are obtained by
IPSS R. It has an improvement of 47 percent over FF and of
17 percent over LPG-med.

Fig. 19 shows the number of operators used by each
planner. FF obtains the plans with a smaller number of
operators and the LPG family with more operators. This is
one example of a domain in which obtaining shorter plans
does not imply obtaining better quality. So, we are trading
solution length for quality of solutions in terms of
makespan.

Fig. 20 shows the time in seconds needed by the systems
to solve the problems. In this case, the IPSS configurations
have worse performance because IPSS is based on
QPRODIGY, which is not a heuristic planner (it does not
have domain independent heuristics as FF or LPG have).
Also, it is coded in CommonLisp. Thus, in this case, we are
trading time to solve for quality of solutions.

But, it obtains better results in the makespan thanks to
not considering the predicates (busy ...) and (not (busy ...)) in
the planning process. In fact, due to the use of the busy
predicates, the augmented number of preconditions needed
by the operators tend to create PO solution graphs with a
higher number of links among the operators, with a
subsequent possibility of obtaining the longest paths in
the graph or, equivalently, greater makespan for the output
solutions. Therefore, it shows that the type of integration we
pursue in this paper provides good results, even when not
using the best options for its search strategies.

However, given that both LPG and IPSS can improve
quality over time and to be fair in the comparison with
respect to time needed to obtain a good solution, we run a

RODRIGUEZ MORENO ET AL.: IPSS: A HYBRID APPROACH TO PLANNING AND SCHEDULING INTEGRATION 1691

TABLE 1
Number of Problems Solved by Each Planner versus

the Number of Agents (Timeout 120 Seconds)

TABLE 2
Number of Problems Solved by Each Planner versus

the Number of Goals (Timeout 120 Seconds)

Fig. 18. Makespan for all systems in the robocare domain.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

second set of experiments in which we give them the same

amount of time to generate better solutions. We have called

this the Q mode. The total time given to both is

120 seconds.
Fig. 21 shows that IPSS R Q globally finds solutions as

good as LPG Q configurations. Again, it shows that the

planning and scheduling approach can obtain equivalent or

better results (with respect to some criteria) than the ones

obtained by one of the best planners in the International

Planning Competition.
The fact that we are able to show good results with respect

to the makespan means that the deordering and the temporal

reasoning provide an improvement with respect to the

sequential choices of the Total Order planner. Additionally,

1692 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

Fig. 19. Number of operators used by each system in the robocare domain.

Fig. 20. Total time to solve the problems in the robocare domain.

Fig. 21. Makespan for all the systems in the robocare domain running each problem during 120 seconds.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

the planner takes advantage of the feedback from the
resource reasoner through the control rule, improving the
use of resources, and then reducing the makespan.

4.3 Results for the TI Domain

For the second domain, we have randomly generated 11 sets
of problems, with three problems in each set, increasing the
number of goals (1, 2, 3, 4, 5, 10, 15, 20, 30, 40, and 50). Then,
for each set we have increased the number of workers (2, 3,
4, 5, 6, 7, 8, 9, 10, 20, 30, 40, and 50). The total time given to
solve each problem (time bound) was 120 seconds.

The set of problems for the TI OCCU domain is exactly
the same as in the TI domain with the condition that, in all
the problems, the availability of the worker must be
explicitly set to not-occupied (that is, in the initial conditions,
we add the predicate (not-occupied <worker>) for each
<worker> in the problem), so we have added an extra
operator to free the worker with duration 0. Tables 3 and 4
show the number of solved problems by each planner
considering the number of workers.

Fig. 22 shows the makespan obtained for all the planners
in problems solved by all. We have not included MIPS in the
graphs due to the low percentage of problems solved, but, if
considered, it achieves the worst results in makespan and
time, although it generates plans with less number of

operators than LPG. The best results are obtained by IPSS R
and LPG Min. Then, LPG Med, LPG Max, IPSS, and the worst
makespan is, as expected, by FF because it is a TO planner.

An important feature of our system that the rest of the
IPC state-of-the-art planners do not incorporate is the ability
to impose temporal windows on the goals. This is a very
critical problem in workflow and other real systems because,
in most cases, the activities that have to be performed will
not be valid if they are not executed in a specific temporal
horizon. For example, it is common in telecommunication
companies to agree to install a telephone line in two days,
so plans whose execution takes more time are not valid.

To test this type of problem, we have not generated any
sets, but we show how IPSS works through an example.
Because we can set the temporal windows in the operators
or in the goals, we have decided to impose temporal
constraints on the goals for clarity.

Let us consider a problem with five workers
ðW1;W2; . . . ;W5Þ who have to perform five goals: checking
five spare line cards ðSP0; . . . ; SP4Þ. The spare lines
represented with a double circle also need to set the spare
pair of wires. Once they are set, the worker can check the
line. Fig. 23 shows the disposition of the spare lines, the
workers, and the communication among the different zones.

For simplicity, all the activities have a unit duration. We
will impose temporal windows on three of the four goals, as
Fig. 24 shows. The first goal has to start before or at three
time units, the second goal should start at or after one time
unit, the third goal can start at any time, and the fourth goal
should be contained in the interval (0 3).

The solution that IPSS finds to the problem of Fig. 23 is
shown in Fig. 25. It achieves a solution fulfilling all goal
constraints.

5 CONCLUSIONS AND FUTURE WORK

In the AI Planning field, two different approaches have
been used to solve problems with time and resources. The
first, more traditional, approach uses predicates for the

RODRIGUEZ MORENO ET AL.: IPSS: A HYBRID APPROACH TO PLANNING AND SCHEDULING INTEGRATION 1693

TABLE 3
Number of Problems Solved by Each Planner in the TI Domain

from a Total of 429 Problems Given 120 Seconds
Considering the Number of Workers

TABLE 4
Number of Problems Solved by Each Planner in the TI Domain

from a Total of 429 Problems Given 120 Seconds
Considering the Number of Goals

Fig. 22. Makespan for FF, LPG, IPSS, and IPSS R in TI.

Fig. 23. Initial conditions for the temporal window example.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

action duration and resource availability. The second
approach consists of the integration in the planning module
of structures and algorithms to manage time and resource
availability. All classical planners use the first option, but
the search space grows with problem complexity. In this
paper, we have described IPSS that is based on a classical
planner that uses constraint-based reasoning and extends
the reasoning capabilities with a hybrid integration. The
main idea is to integrate planning and scheduling having
two systems which incrementally build a solution running
in parallel, a planner and a time-resource reasoner.
Information is “continuously” exchanged between these
two systems such that temporal and/or resource incon-
sistencies are discovered as soon as they occur and inform
the planner search when to prune choices that lead to either
temporal or resource inconsistencies.

We have modified the default search strategy of the
planner that searches for optimized Total Order plans to a
strategy which searches Partial Order plans under time and
resource constraints with the goal of minimizing the
makespan of the final solution. The experiments described
in Section 4 show improvements with respect to some state-
of-the-art planners with a good balance between efficiency
and quality. The most important features of IPSS are:

. An integration mechanism such that the planning
(scheduling) search process can be incrementally
driven by information discovered during the sche-
duling (planning) search.

. It is implemented in a modular way, so we can easily
change any of its components. In particular, when a
component is targeted for solving a particular
subproblem, it is possible to change the degree of
reasoning that can be given to each subproblem.

. It is easy to add control knowledge, metrics, and
learning to the system. IPSS, as a QPRODIGY descen-
dant, can use any of the modules implemented for
improving its quality or any other learning technique.
For example, we have modified the default behavior
of IPSS for load balancing of resources.

. We can delegate the planner as just the solution of the
temporal aspects of the problem, leaving the resource

assignments to the scheduler, or let the scheduler
solve both the time and resource assignments.

. The proposed representation and the associated
solver are also able to cope with different quality
criteria, control knowledge to reduce the search, and
learning tools.

The results in this paper pave the way for further
development of hybrid integration. In particular, we are
interested in understanding how different information that
is exchanged between two modules can reflect on the
performance of different solvers that use this schema.
Additionally, we are interested in using some learning tools
to generate control knowledge for the correct decisions
made during the problem solving and, again, generating
different solvers with additional capabilities.

ACKNOWLEDGMENTS

Maria Dolores Rodriguez-Moreno thanks the ISTC-CNR
group for their help during the visit to CNR and Minna
Vallentine for proofreading this paper. This work was
partially funded by the Universidad de Alcalá project UAH
PI2005/084, the CICYT projects TAP1999-0535-C02-02 and
TIC2002-04146-C05-05, and a bilateral coordinated project
funded by Spanish and Italian Foreign Affairs Departments.
Angelo Oddi and Amedo Cesta’s work has been partially
supported by ASI (Italian Space Agency) under project
ARISCOM and is currently supported by MIUR (Italian
Ministery for Education, University, and Research) under
project ROBOCARE.

REFERENCES

[1] R. Aler and D. Borrajo, Learning Single Criteria Control Knowledge
for Multi Criteria Planning, pp. 35 40, 2002.

[2] F. Bacchus and F. Kabanza, “Using Temporal Logics to Express
Search Control Knowledge for Planning,” Artificial Intelligence,
vol. 16, pp. 123 191, 2000.

[3] C. Bäckström, “Computational Aspects of Reordering Plans,”
J. Artificial Intelligence Research, vol. 9, pp. 99 137, 1998.

[4] A. Blum and M. Furst, “Fast Planning through Planning Graph
Analysis,” Artificial Intelligence, vol. 90, pp. 281 300, 1997.

[5] B. Bonet and H. Geffner, “Planning as Heuristic Search,” Artificial
Intelligence, vol. 129, nos. 1 2, pp. 5 33, 2001.

[6] D. Borrajo, S. Vegas, and M. Veloso, “Quality Based Learning for
Planning,” Working Notes of the IJCAI’01 Workshop on Planning with
Resources, 2001.

[7] R. Cervoni, A. Cesta, and A. Oddi, “Managing Dynamic Temporal
Constraint Networks,” Proc. Second Int’l Conf. Artificial Intelligence
Planning Systems (AIPS ’94), 1994.

[8] A. Cesta and A. Oddi, “Gaining Efficiency and Flexibility in the
Simple Temporal Problem,” Proc. Third Int’l Conf. Temporal
Representation and Reasoning (TIME ’96), 1996.

[9] A. Cesta, A. Oddi, and S.F. Smith, “Profile Based Algorithms to
Solve Multiple Capacitated Metric Scheduling Problems,” Proc.
Fourth Int’l Conf. Artificial Intelligence Planning Systems (AIPS ’98),
1998.

[10] A. Cesta, A. Oddi, and S.F. Smith, “A Constrained Based Method
for Project Scheduling with Time Windows,” J. Heuristics, vol. 8,
pp. 109 136, 2002.

[11] A. Cesta and F. Pecora, “The RoboCare Project: Multi Agent
Systems for the Care of the Elderly,” European Research Consortium
for Informatics and Math. (ERCIM) News No. 53, 2003.

[12] A. Cesta, F. Pecora, and R. Rasconi, “Biasing the Structure of
Scheduling Problems through Classical Planners,” Proc. Workshop
Integrating Planning into Scheduling, 2004.

[13] R. Dechter, I. Meiri, and J. Pearl, “Temporal Constraint Net
works,” Artificial Intelligence, vol. 49, pp. 61 95, 1991.

[14] M.B. Do and S. Kambhampati, J. Artificial Intelligence Research,
vol. 20, pp. 155 194, 2003.

1694 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

Fig. 24. Temporal windows imposed on the goals.

Fig. 25. The solution to the temporal windows example.

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

[15] S. Edelkamp and M. Helmert, “On the Implementation of MIPS,”
Proc. AIPS Workshop Model Theoretic Approaches to Planning, 2000.

[16] R. Fikes and N. Nilsson, “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving,” Artificial
Intelligence, vol. 2, pp. 189 208, 1971.

[17] E. Fink and J. Blythe, “Prodigy Bidirectional Planning,”
J. Experimental & Theoretical Artificial Intelligence, vol. 17, no. 3,
pp. 161 200, Sept. 2005.

[18] A. Garrido, E. Onaindı́a, and F. Barber, “Time Optimal Planning
in Temporal Problems,” Proc. European Conf. Planning (ECP ’01),
pp. 397 402, 2001.

[19] A. Gerevini and D. Long, “Plan Constraints and Preferences in
PDDL3. The Language of the Fifth International Planning
Competition,” technical report, Dept. of Electronics for Automa
tion, Univ. of Brescia, Italy, 2005.

[20] A. Gerevini, A. Saetti, and I. Serina, “Planning through Stochastic
Local Search and Temporal Action Graphs,” J. Artificial Intelligence
Research, vol. 20, pp. 239 290, 2003.

[21] M. Ghallab and H. Laruelle, “Representation and Control in
IxTeT, a Temporal Planner,” Proc. Second Int’l Conf. AI Planning
Systems (AIPS ’94), 1994.

[22] K. Halsey, D. Long, and M. Fox, “CRIKEY A Temporal Planner
Looking at the Integration of Scheduling and Planning,” Proc.
Workshop Integrating Planning into Scheduling, 2004.

[23] J. Hoffmann, ”Where Ignoring Delete Lists Works: Local Search
Topology in Planning Benchmarks,” Technical Report No. 185,
Institut für Informatik, 2003.

[24] P. Laborie and M. Ghallab, “Planning with Sharable Resource
Constraints,” Proc. Int’l Joint Conf. Artificial Intelligence (IJCAI ’95),
1995.

[25] M. Magnusson, Domain Knowledge in TALplanner. PhD thesis,
LiTH IDA Ex 02/104, 2003.

[26] U. Montanari, “Networks of Constraints: Fundamental Properties
and Applications to Picture Processing,” Information Sciences,
vol. 7, pp. 95 132, 1974.

[27] N. Muscettola, S.F. Smith, A. Cesta, and D. D’Aloisi, “Coordinat
ing Space Telescope Operations in an Integrated Planning and
Scheduling Architecture,” IEEE Control Systems, vol. 12, pp. 28 37,
1992.

[28] D. Nau, H. Muñoz Avila, Y. Cao, A. Lotem, and S. Mitchell,
“Total Order Planning with Partially Ordered Subtasks,” Proc.
Iint’l Joint Conf. Artificial Intelligence (IJCAI ’01), 2001.

[29] J.S. Penberthy and D.S. Weld, “UCPOP: A Sound, Complete, Partial
Order Planner for ADL,” Proc. Int’l Conf. Principles of Knowledge
Representation and Reasoning (KR ’92), pp. 103 114, 1992.

[30] M.E. Pollack, D. Joslin, and M. Paolucci, “Flaw Selection Strategies
for Partial Order Planning,” J. Artificial Intelligence Research, vol. 6,
pp. 223 262, 1997.

[31] M.D. R. Moreno, “Representing and Planning Tasks with Time
and Resources,” PhD thesis, Universidad de Alcalá, 2003.

[32] M.D. R. Moreno and P. Kearney, “Integrating AI Planning with
Workflow Management System,” Int’l J. Knowledge Based Systems.
vol. 15, pp. 285 291, 2002.

[33] M.D. R. Moreno, A. Oddi, D. Borrajo, A. Cesta, and D. Meziat,
“Integrating Hybrid Reasoners for Planning and Scheduling,”
Proc. 21st Workshop UK Planning and Scheduling: PLANSIG2002,
2002.

[34] M.D. R. Moreno, A. Oddi, D. Borrajo, A. Cesta, and D. Meziat,
“IPSS: Integrating Hybrid Reasoners for Planning and Schedul
ing,” Proc. 16th European Conf. Artificial Intelligence (ECAI ’04),
2004.

[35] S.F. Smith and C. Cheng, “Slack Based Heuristics for Constraint
Satisfaction Scheduling,” Proc. 11th Nat’l Conf. AI (AAAI ’93), 1993.

[36] B. Srivastava, R. Kambhampati, and M.B. Do, “Planning the
Project Management Way: Efficient Planning by Effective Integra
tion of Causal and Resource Reasoning in RealPlan,” Artificial
Intelligence, vol. 131, pp. 73 134, 2001.

[37] M. Veloso, J. Carbonell, A. Pérez, D. Borrajo, E. Fink, and J. Blythe,
“Integrating Planning and Learning: The PRODIGY Architecture,”
J. Experimental and Theoretical AI, vol. 7, pp. 81 120, 1995.

[38] M. Veloso, A. Pérez, and J. Carbonell, “Nonlinear Planning with
Parallel Resource Allocation,” Proc. DARPA Workshop Innovative
Approaches to Planning, Scheduling, and Control, pp. 207 212, 1990.

[39] H.L. Younes and R.G. Simmons, “On the Role of Ground Actions
in Refinement Planning,” Proc. Sixth Int’l Conf. Artificial Intelligence
Planning and Scheduling Systems, pp. 54 61, 2002.

Marı́a Dolores Rodriguez-Moreno received
the PhD degree in computer sciences from the
Universidad de Alcalá (UAH) in Madrid, Spain, in
2004 with the distinction of the European
Doctorate. She has participated in several
research projects funded by the European Union
and the Spanish government. She has worked at
different international centers such as the British
Telecom Adastral Park in the United Kingdom,
CNR in Rome, and NASA Ames Research

Centre in the US, where she is actually developing her postdoctoral
research. Her main topics are AI planning and scheduling, execution,
and monitoring in real systems as satellite domains, workflow systems,
or the Web. Finally, she has more than 50 publications in international
conferences, books, and journals in the computer sciences and
engineering areas.

Angelo Oddi received the master’s degree in
electronic engineering from the University of
Rome “La Sapienza” in 1993 and the PhD
degree in computer science from the same
university in 1997. He is a research scientist in
the Institute of Cognitive Science and Technol-
ogy at the Italian National Research Council
(ISTC-CNR). He was a visiting scholar at the
Intelligent Coordination and Logistics Laboratory
at the Robotics Institute at Carnegie Mellon

University in 1995-1996. His work focuses on the application of Artificial
Intelligence techniques for scheduling, automated planning, and tempor-
al reasoning. Regarding his professional activities, he has published
more than 40 papers, both in journals and in proceedings of international
conferences in the field. He has vast experience in the design of
intelligent systems for real-world applications. In particular, he has been
involved in several projects financed by the Italian and European Space
Agencies (ASI/ESA) concerning the development of intelligent mission
planning support software. He is a member of the IEEE.

Daniel Borrajo received the BS and PhD
degrees in computer science in 1990, both from
the Universidad Politécnica de Madrid. He has
published more than 110 journal and conference
papers, mainly in the fields of problem solving
methods (planning and game playing) and
machine learning.

Amedeo Cesta received the master’s degree
(“Laurea”) in electronic engineering and the
PhD degree (“Dottorato di Ricerca”) in compu-
ter science from the University of Rome “La
Sapienza” in 1983 and 1992, respectively. He
is a senior research scientist in the Institute of
Cognitive Science and Technology at the Italian
National Research Council (ISTC-CNR), where
he has founded and currently leads the Plan-
ning and Scheduling Team (PST, http://

pst.istc.cnr. it). His work focuses on the integration of planning and
scheduling in software architectures, the use of specialized constraint
languages, the synthesis of scheduling heuristics, and on the
interactive solution of complex planning and scheduling problems.
He is also interested in investigating the gap between theory and
practice in planning and scheduling. His research interests also cover
multiagent systems and human-computer interaction. He has several
publications on all these topics and wide experience in research
projects in the area of Artificial Intelligence.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RODRIGUEZ MORENO ET AL.: IPSS: A HYBRID APPROACH TO PLANNING AND SCHEDULING INTEGRATION 1695

Authorized licensed use limited to: Univ Carlos III. Downloaded on February 8, 2010 at 07:05 from EEE Xplore. Restrictions apply.

