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Abstract—We explore in this paper a novel sampling algorithm, referred to as algorithm PAS (standing for Proportion Approximation

Sampling), to generate a high-quality online sample with the desired sample rate. The sampling quality refers to the consistency

between the population proportion and the sample proportion of each categorical value in the database. Note that the state-of-the-art

sampling algorithm to preserve the sampling quality has to examine the population proportion of each categorical value in a pilot

sample a priori and is thus not applicable to incremental mining applications. To remedy this, algorithm PAS adaptively determines the

inclusion probability of each incoming tuple in such a way that the sampling quality can be sequentially preserved while also

guaranteeing the sample rate close to the user specified one. Importantly, PAS not only guarantees the proportion consistency of each

categorical value but also excellently preserves the proportion consistency of multivariate statistics, which will be significantly beneficial

to various data mining applications. For better execution efficiency, we further devise an algorithm, called algorithm EQAS (standing for

Efficient Quality-Aware Sampling), which integrates PAS and random sampling to provide the flexibility of striking a compromise

between the sampling quality and the sampling efficiency. As validated in experimental results on real and synthetic data, algorithm

PAS can stably provide high-quality samples with corresponding computational overhead, whereas algorithm EQAS can flexibly

generate samples with the desired balance between sampling quality and sampling efficiency. In addition, while applying the sample

generated by algorithms PAS and EQAS to incremental mining applications, a significant efficiency improvement can be obtained

without compromising the resulting precision, showing the prominent advantage of both proposed algorithms to be the quality-aware

sampling means for incremental mining applications.

Index Terms—Sequential sampling, incremental data mining.

Ç

1 INTRODUCTION

1.1 Motivations

RECENTLY, important applications have called for the
need for incremental mining to discover up-to-date

patterns hidden in the continuous input data [1], [2], [3],
[4], [5]. It is believed that the demand of online sampling
techniques is increasing since they can prominently
reduce the computational cost of the incremental mining
applications [6]. However, using sampling prior to the
targeted applications inevitably leads to the result being
inconsistent with that obtained without sampling. If
using sampling leads to a very inconsistent mining
result, its usefulness for scaling up is in question. In
practice, the level of consistency between results obtained
in the whole population and those in a sample solely
depends on the quality of the sample. Thus, how to
guarantee the quality of samples is deemed the key to
the success of sampling techniques [7]. In the literature, a
common and successful measure of the sampling quality

is to measure the consistency between the population
proportion and the sample proportion of every measured
pattern [8], [9], [10], [11].

Traditionally, random sampling is the most widely
utilized sampling strategy for data mining applications.
According to the Chernoff bounds, the consistency between
the population proportion and the sample proportion of a
measured pattern can be probabilistically guaranteed when
the sample size is large [9], [12]. However, the overhead of
the posterior mining applications will be increased when
the sample size is large, thus inevitably degrading the
benefit of sampling. Sampling mechanisms to guarantee a
high sampling quality without increasing the sample size
are still strongly demanded. To achieve this, the state-of-
the-art sampling approach, named algorithm EASE, was
proposed in [8] to guarantee the quality of generated
samples with a desired sample size. Specifically, the goal of
EASE is to precisely preserve the population proportion of
each categorical value in the sample. According to the
proposed epsilon-approximation method, algorithm EASE
will obtain the final sample with the desired sample size by
a process of repeatedly halving the intermediate samples.
As such, the difference between the sample proportion and
the population proportion of each categorical value in the
final sample can be limited below ", where the magnitude of
" depends on the desired sample size (a large sample size
leads to a small " and, in contrast, a small sample size leads
to a large "). Algorithm EASE is shown to be an effective
sampling means to provide the prominent proportion
consistency in the sample with a specified size. As
compared to random sampling, the result in [8] demon-
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strates that preserving the population proportion of each
categorical value in the sample can significantly improve
the resulting model accuracy of various posterior applica-
tions such as association-rule mining and the �2 test for
independence, to name a few.

Note, however, that algorithm EASE in essence cannot
sequentially generate the sample, thus it is not applicable to
incremental applications. Formally, EASE, which can be
categorized as a two-phase sampling mechanism [10],
requires a pilot sample of the whole population to be
generated beforehand, indicating that the population data
set will be treated as a static one as opposed to a dynamic
one. Such a constraint is infeasible in incremental mining
applications, where they usually deal with time-variant
data and each tuple is unknown before we receive it.
Moreover, in EASE, each tuple will be repeatedly examined
until it has been decided whether it is to be selected or
discarded, implying that the sampling quality is acquired at
the cost of execution efficiency. The required computational
overhead of generating samples compromises the spirit of
sampling to speed up the execution. Consequently, it is
essential to develop a new sampling algorithm to incre-
mentally generate high-quality samples while not compro-
mising the sampling efficiency and not increasing the
sample size.

As a result, we present in this paper a novel sampling

approach, called algorithm PAS (standing for Proportion

Approximation Sampling) to achieve the goal of generating

a high-quality online sample with the user-specified sample

rate. As with EASE, the sampling quality in PAS is

measured as the level of the proportion consistency, i.e., the

consistency between the sample proportion and the

population proportion of each measured pattern. Note that,

in addition to applications of the frequent-pattern mining

and the �2 test studied in [8], it is also reported that

guaranteeing the proportion consistency provides a great

benefit to many different mining applications such as

supervised learning, clustering [9], [11]. We thus believe

that providing the high proportion consistency of each

measured pattern can lead to general-purpose and high-

quality samples for different application needs. Further-

more, the proportion consistency can be guaranteed in two

ways, namely, absolute proportion consistency and relative

proportion consistency. Specifically, assuming di and si
denote the population proportion and the sample propor-

tion of a measured pattern, respectively, the value of

1� jdi�sijdi

� �
can be viewed as the relative proportion consis-

tency of the pattern. Conversely, its absolute proportion

consistency is equal to the value of ð1� jdi � sijÞ. As opposed

to guaranteeing the absolute proportion consistency (the goal

in algorithm EASE), algorithm PAS aims to guarantee the

relative proportion consistency because recent probabilistic

thresholding methods for wavelet synopses point out that

minimizing the relative error is the more desirable measure

for data reduction techniques [13], [14]. In addition, due to

the time-variant nature of real data, PAS sequentially reads

the incoming population and generates the sample with the

given sample rate on the fly, where the sliding window

model is imposed. Therefore, the up-to-date population

characteristics can be precisely maintained in the generated

sample, allowing PAS to be directly applicable to incre-

mental mining applications.
Briefly, the basic idea behind PAS is to adaptively

determine the inclusion probability of each incoming tuple
as time advances, where the inclusion probability will be
determined according to two criteria: 1) The relative
proportion “inconsistency” of every attribute value can be
guaranteed toward a user-specified error bound " and 2) the
sample rate is close to the user-desired sample rate p. The
concept is illustrated in Fig. 1. Specifically, PAS strives to
minimize the relative proportion inconsistency of each
attribute value progressively until the difference is smaller
than ". While " is specified close to zero, PAS will quickly
and stably keep the relative proportion inconsistency close to
zero, as shown in Fig. 1, even though the data distribution is
not stationary in a time-variant data source. In contrast,
simple random sampling cannot guarantee that the relative
error always approaches to zero in a time-variant data
source, especially when the data distribution changes
suddenly.

In addition, for multidimensional data, it is required to
have an atomic unit of measured patterns, which is a
multivariate statistic. However, maintaining the relative
proportion consistency of every multivariate pattern incurs a
large computational overhead, which is prohibitive in many
applications. For efficiency purposes, PAS maintains propor-
tion consistency of every attribute value, i.e., every single
variate statistic, rather than every multivariate statistic, the
same as in algorithm EASE. Importantly, even though PAS
only maintains the relative proportion consistency of each
categorical value, as shown in our analytical and algorith-
mic results, the relative proportion consistency of multivariate
statistics can also be excellently preserved. In contrast,
EASE may preserve the proportion consistency of each
categorical value, but lose the proportion consistency of
multivariate statistics.

Formally, as in algorithm EASE, algorithm PAS also
unavoidably incurs the computational overhead to guaran-
tee the sampling quality by continuously tracking the
relative proportion consistency of each categorical value. To
provide the flexibility of striking a compromise between the
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Fig. 1. Illustration of the relative proportion inconsistency over time.
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sampling efficiency and the sampling quality, we further
devise in this paper another sampling algorithm, named
algorithm EQAS (standing for Efficient Quality-Aware
Sampling). The framework of algorithm EQAS is exhibited
in Fig. 2. Specifically, from our empirical studies, algorithm
PAS can quickly and stably guarantee the relative proportion
consistency with the corresponding computational overhead.
On the other hand, random sampling is very efficient, but
the relative proportion consistency can only be slowly reduced.
Random sampling is also highly sensitive to the burst
sampling error, which is common when the data distribu-
tion is time-variant [15]. Due to their complementary
properties, algorithm EQAS is devised by integrating
random sampling and algorithm PAS. By appropriately
switching between random sampling and PAS, algorithm
EQAS is able to preserve the advantages of these two
schemes while diminishing their side effects. In addition,
while applying the sample generated by algorithms PAS
and EQAS to incremental mining applications, a significant
efficiency improvement can be obtained without compro-
mising the resulting precision, showing the prominent
advantage of both proposed algorithms to be quality-aware
sampling mechanisms for incremental mining applications.

1.2 Related Works

The scalability problem in database applications has been
fully explored with the help of data reduction techniques
such as sampling, histogram [14], and wavelet decomposi-
tion [13]. The discussion here is limited to sampling
techniques. For other data reduction techniques, which are
out of scope for this paper, the reader is asked to follow the
pointers in [16]. In practice, sampling techniques have been
successfully used in various social and scientific applica-
tions. The general introduction of sampling can be found in
many well-known works, such as [7], [17]. Here, we focus on
discussing sampling techniques related to obtaining high-
quality samples for data mining applications.

In essence, sampling has a rich history in statistics with
many variants, including simple random sampling with/
without replacement [7], adaptive sampling [18], and so on.
Among them, simple random sampling is the most widely
employed strategy due to its generality and its simplicity.
Recent advances in streaming analysis and database query
optimization specifically pay attention to utilizing the
variants of simple random sampling, called sequential random
sampling [19] and reservoir sampling [20] due to their high
sampling efficiency. Explicitly, reservoir sampling main-
tains a random sample with a fixed size M as time advances
and Method D in [19] will progressively generate the
sample with the specified sample rate p. Those two
sampling methods can skip some data elements without
processing them while guaranteeing the generated sample

is a uniform random sample. However, it is also reported
that random samples suffer from insufficiency of the
sampling quality, thus resulting in generating a model
with low accuracy [8], [21], [22].

To obtain a model with high accuracy, new sampling
approaches to generate high-quality samples are required.
Algorithm EASE [8] is devised to guarantee high absolute
proportion consistency of each categorical value. As we have
discussed in Section 1.1, the goal of EASE is to limit the
absolute difference between the sample proportion and the
population proportion of each categorical value in the final
sample below ", where the magnitude of " depends on the
desired sample size and other parameters. Note that, for a
measured pattern with the population proportion close to
one, its absolute proportion consistency and relative proportion
consistency are roughly the same. However, if the popula-
tion proportion is small, they are different. For example,
representing di ¼ 0:01 by si ¼ 0:02 and representing di ¼
0:1 by si ¼ 0:11 have the same absolute proportion consistency.
However, the former has a 100 percent error rate and the
latter has a 10 percent error rate, which can be estimated as
the relative proportion consistency. In this case, si ¼ 0:02
deviates quite far from di ¼ 0:01. Equally minimizing the
absolute proportion difference of every attribute value may
result in poor performance for applications which are
sensitive to case, such as di ¼ 0:01 in the previous example.
Clearly, most data mining applications will almost prefer
the relative proportion consistency since mining algorithms is
usually devoted to the discovery of uncommon/surprising
patterns (usually with a small occurrences) as opposed to
the discovery of common sense knowledge (usually with a
large occurrence) [23].

In addition to algorithm EASE, density biased sampling
(abbreviated as DBS) is another sampling strategy which
recently received a great deal of attention in the data mining
research community [21]. Specifically, DBS is devised based
on the observation that the distribution of clusters’ sizes in
real data is usually highly skewed. In such cases, random
samples may miss points from small but dense regions, thus
resulting in the loss of small clusters after sampling. DBS
oversamples the regions with high spatial density and
downsamples the regions with low spatial density. Note that
the goal of DBS intrinsically differs from ours in this paper.
First, we fairly reduce the difference between the population
proportion and the sample proportion of each attribute
value, whereas DBS emphasizes the density differences of
each spatial region. Second, the targeted applications are
quite different. DBS focuses on identifying small clusters
rather than preserving the consistency between clustering
results in the whole population and the sample. Using DBS
is thus not appropriate for other clustering applications such
as subspace clustering [24]. In contrast, we aim to make the
resulting model obtained in the sample be consistent with
that obtained in the population, which is applicable to
various mining applications.

Progressive sampling/dynamic sampling [25], [22] is
another way to improve the resulting model accuracy in the
literature since the sample size estimated by Chernoff bounds
is conservative and is usually too large for specified
applications [12]. Progressive sampling algorithms are
devised by iteratively executing the targeted application
on random samples whose sizes are progressively increased
and the process will be terminated when the mining
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Fig. 2. Framework of sequential sampling PAS and EQAS over sliding
windows.
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accuracy is no longer significantly improved. Finally, a
satisfactory model accuracy can be obtained without a
prohibitively large sample size. However, the targeted
application may be executed on many samples with varying
sample sizes, which is also time-consuming.

Many recent applications, including credit card fraud
protection and network intrusion detection, call for the need
of incremental mining algorithms. Since their data are
usually time-variant and the data characteristics may drift
as time advances, traditional algorithms which are devised
for mining on static data will fail in such cases. Various
incremental mining algorithms, e.g., incremental mining of
frequent itemsets [4], [6], incremental conceptual clustering
[3], and concept-drifting classification [26], are thus speci-
fically devised. We omit the details of these algorithms and
concentrate on the discussion of sampling strategies in the
incremental mining scenario. Due to the time-variant
nature, incremental mining algorithms are designed to
analyze the most recent data in order to retrieve up-to-date
patterns [15]. Two common approaches are usually utilized
to deal with old data in such cases. The first one is aging
[27], where each data is assigned a weight and more recent
data have higher weights. The other approach is to use a
sliding window [4], where only the most recent data covered
by a window are considered. Formally, sampling ap-
proaches such as algorithm EASE will fail either in the
aging or in the sliding window model since EASE assumes the
population proportion in the whole population is static and
can be known in advance. For incremental mining, only
online and sequential sampling approaches can be utilized,
such as Method D [19], reservoir sampling [20], and priority
sampling [15], where, however, random samples are
generated, rather than high-quality samples such as the
one generated by EASE.

1.3 Our Contributions

Our contributions in this paper are many:

1. We propose algorithm PAS to sequentially generate
a sample in which the relative proportion inconsistency
of each categorical value can be minimized toward a
user-specified bound " while also guaranteeing the
sample rate close to the user specific one. Impor-
tantly, although PAS targets on guaranteeing the
relative proportion consistency of each categorical
value, as shown in our analytical and algorithmic
results, the relative proportion consistency of multi-
variate statistics can also be excellently preserved,
which will be significantly beneficial to data mining
applications.

2. For better execution efficiency, we further devise
another sampling algorithm, EQAS, to provide the
flexibility of striking a compromise between the
sampling efficiency and the sampling quality.

3. We complement our analytical and algorithmic
results by a thorough empirical study on real data
and synthetic data and show that algorithm PAS can
provide high-quality samples with slight computa-
tional overhead and algorithm EQAS can flexibly
generate samples with the desired balance between
sampling quality and sampling efficiency. We also
explore their benefits for incremental mining appli-
cations. The result demonstrates their prominent

advantages to be the effective quality-aware sam-
pling means for incremental mining applications.

This rest of the paper is organized as follows: Section 2
introduces algorithm PAS. In Section 3, we give the details
of algorithm EQAS. The experimental results are shown in
Section 4. Finally, this paper concludes with Section 5.

2 ONLINE SAMPLING FOR GUARANTEEING

RELATIVE PROPORTION CONSISTENCY

2.1 Fundamental Mathematical Model

In this section, we derive our model to generate online
samples of guaranteed relative proportion consistency. For
simplicity and effectiveness, we intend to follow the idea of
random sampling without replacement. The variant lies in
the strategy of determining the inclusion probability. As
opposed to the fixed inclusion probability in random
sampling without replacement, our model will dynamically
determine the inclusion probability of each incoming tuple
so that we can guarantee the relative proportion consistency
on the fly while also ensuring that the size of generated
sample is under the user’s control. We then discuss the
analytical details step by step. For ease of reference, Table 1
shows a summary of major symbols used in this paper.

2.1.1 Problem Description

Suppose that D is a relational table with schema
ðA1; A2; . . . ; AhÞ, where A1; . . . ; Ah are attributes and h is
the number of attributes in D. Let ti ¼ ðxi1; xi2 . . . ; xihÞ be
the ith tuple in D, where xij 2 Aj for 1 � j � h. Moreover,
assuming that aj denotes an attribute value in the domain of
Aj, 1 � j � h, aj is said to be contained in ti, i.e., aj 2 ti, iff
aj ¼ xij. Without loss of generality, we assume that 1) the
order i is able to indicate the receiving order of ti, 2) D
contains infinite tuples, and 3) Aj contains the finite
domain, for 1 � j � h (continuous attributes can be dis-
cretized using methods such as that described in [28]). Note
that those assumptions will be equally applicable to infinite
streams and finite data sets.

To formalize the window-based sampling model,1 we
assume that D is segmented into disjoint windows,
fW1;W2; . . . ;Wn; . . .g, in light of a predefined time granu-
larity such as “day,” “business-week,” “month,” “quarter,”
and “year” to name a few. As such, Wk will consist of a set
of tuples, ftk1; tk2; . . . ; tkig, where each one is received
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within the corresponding time period of Wk. Let jWkj and

NkðajÞ be the number of tuples in Wk and the number of

tuples containing the value aj in Wk, respectively. Then, we

have the population proportion of aj in Wk, denoted by

supðaj;WkÞ, where supðaj;WkÞ ¼ NkðajÞ=jWkj: In addition,

let Sk denote the sample window corresponding to Wk,

where the set of tuples in Sk is a subset of tuples in Wk.

Also, let jSkj and s NkðajÞ denote the number of tuples in Sk
and the number of tuples containing the value aj in Sk,

respectively. We have the sample proportion of aj in Sk,

denoted by supðaj; SkÞ, where supðaj; SkÞ ¼ s NkðajÞ=jSkj.
Our goal in this paper is to efficiently and sequentially

generate a high-quality sample. Following the consideration
in [8], the sampling quality considered in this study also
refers to the consistency between the sample proportion
supðaj; SkÞ and the population proportion supðaj;WkÞ of
each attribute value aj in a window Wk. However, the
solution proposed in [8] merely attempts to reduce the
absolute proportion difference as possible, i.e., minimizing
j supðaj;WkÞ � supðaj; SkÞj for every value aj. As pointed out
earlier, minimizing the relative error is the more desirable
measure for applications to discover uncommon/surprising
patterns. Therefore, to further ensure the generated sample
can better characterize the time-variant data source, we
attempt to generate a sample in which relative proportion
difference can be bounded below the specified error
threshold ".

In general, one way to achieve the bounded relative
proportion difference is to increase the sample size.
However, a large sample size is usually prohibitive. The
sample rate/sample size should be under the user’s control
to prevent generating a large sample. We then formally
present our goal as follows:

Proposition 1. Given a desired sample rate p and the relative

error bound ", we attempt to generate a sample fS1; . . . ; Sng
from the population fW1; . . . ;Wng, in which 1) jSkj

jWkj � p,

where 1 � k � n, and 2)

j supðaj;WkÞ � supðaj; SkÞj � "� supðaj;WkÞ;

for every attribute value aj.

2.1.2 Online Sampling Model with Equivalent Problem

Transformation

Formally, it is difficult to devise an approach to simulta-
neously consider those two heterogeneous criteria in
Proposition 1 since various variables need to be taken into
consideration at the same time. To solve the problem, we
derive Theorem 1 below:

Theorem 1. Suppose that, in a sample S ¼ fS1; . . . ; Sng, we

have
s NkðajÞ
NkðajÞ � p
��� ��� � "

2þ" p, for every value aj in each window.

Then, the sample also satisfies: 1) ð1� "Þp � jSkj
jWkj � ð1þ "Þp,

where 1 � k � n, and 2)

j supðaj;WkÞ � supðaj; SkÞj � "� supðaj;WkÞ;

for every value aj.

In the interests of space, proofs are given in the

Appendix for interested readers.

Theorem 1 points out that a sample in which
s NkðajÞ
NkðajÞ � p
��� ��� � "

2þ" p for every value aj will also satisfy the

goal in Proposition 1. As such, our goal shown in

Proposition 1 can be equivalently transformed to generate

a sample in which
s NkðajÞ
NkðajÞ � p
��� ��� � "

2þ" p for every value aj.

However, the most important problem in the considered

model is that, in the scenario of incremental mining, the

frequency of the attribute value aj in a window Wk, i.e.,

NkðajÞ, will be dynamic and up-to-date. Moreover, each

tuple should be processed on the fly, meaning that, once a

tuple is selected or discarded, we cannot revoke this

decision of this tuple. To meet such a constraint of sampling

algorithms for incremental mining, we reasonably assume

that the latest arriving tuple is the last tuple in the window

and, thus, we shall determine the inclusion probability of

this tuple so as to achieve our goal. In light of Proposition 1

and Theorem 1, we then formally present Proposition 2 as

our new goal to generate online high-quality samples.

Proposition 2. At the arrival of the tuple ti, where ti 2Wk, we

aim to determine the inclusion probability of ti in such a way

that we can have
s Nk

i ðajÞ
Nk
i ðajÞ

� p
��� ��� � "

2þ" p for every categorical

value aj appearing in the window, where s Nk
i ðajÞ and Nk

i ðajÞ
denote the frequency of aj in the sample window Sk and the

population window Wk after the selection/discard of ti,

respectively.

For simplicity, let s Nk
i ðajÞ=Nk

i ðajÞ be denoted by

Fkðaj; iÞ. Importantly, jFkðaj; iÞ � pj is equal to jFkðaj; i�
1Þ � pj for every attribute value aj if aj 62 ti, implying that

selecting ti or not will not affect the proportion consistency

of aj when aj 62 ti (for simplicity, hereafter we assume ti and

ti�1 belong to the same window Wk). Therefore, when the

tuples sequentially arrive, we only need to ensure

jFkðaj; iÞ � pj � "
2þ" p for the value aj belonging to the

arriving tuple ti. This observation implies that the inclusion

probability of ti can be determined by considering at most

h homogeneous variables.
Nevertheless, due to the inherent limit of sampling, it is

difficult to ensure jFkðaj; iÞ � pj � "
2þ" p for every attribute

value aj in the presence of a small " and a small p. The

problem will be apparent when a window is just initialized

or Nk
i ðajÞ is very small. Note that the small " and the small p

are indeed two conflict goals (in algorithm EASE, a small

sample size will inevitably incur a large "). Importantly, we

can still pursue the goal in Proposition 2 by minimizing the

difference between Fkðaj; iÞ and p until the difference is

smaller than "
2þ" p. The feasibility of such a concept is shown

in Theorem 2 below:

Theorem 2. Suppose that
s NkðajÞ
NkðajÞ ¼ ð1þ �jÞ � p for every

value aj in the window Wk, which indicates that
s NkðajÞ
NkðajÞ � p
��� ��� ¼ j�jj � p. Let
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� ¼
PjAj

j¼1 �j �NkðajÞPjAj
j¼1 N

kðajÞ
;

where jAj is the number of distinct attribute values in Wk. We

will have the sample rate jSkj
jWkj equal to p� ð1þ �Þ.

Furthermore, the relative proportion difference of the attribute

value aj will be equal to

supðaj;WkÞ � supðaj; SkÞ
�� ��

supðaj;WkÞ
¼ 1� ð1þ �jÞ

1þ �

���� ����:
Formally, Theorem 2 provides the basis that, if we can

minimize j�jj or �2
j , i.e., minimize the difference between

s NkðajÞ
NkðajÞ and p, the resulting sample rate jSkjjWkj will be close to p

and the relative proportion difference of each attribute value

aj will be close to zero. Based on the foregoing, we therefore

aim to determine the inclusion probability of ti when ti

arrives according to the criterion to minimize ½Fkðaj; iÞ � p�2,

where aj 2 ti.

2.1.3 Inclusion Probability with Minimized Relative

Proportion Difference

Before presenting the details of the approach to determine

the inclusion probability by minimizing ½Fkðaj; iÞ � p�2 for

aj 2 ti, we first introduce the proportion-preserved values,

defined as follows:

Definition 1 (Proportion-Preserved Values). A value aj 2 ti
is called a proportion-preserved value of ti if we have
j supiðaj;WkÞ � supiðaj; SkÞj � "� supiðaj;WkÞ, whether ti
will be sampled or not, where supiðaj;WkÞ and supiðaj; SkÞ
denote the population proportion and the sample proportion of
aj after the selection/discard of ti, respectively.

Note that our essential goal is to have the relative
proportion difference of every attribute value aj being
bounded below " and proportion-preserved values indeed
satisfy this requirement. Therefore, we will only need to
concentrate on minimizing the proportion differences of the
remaining attribute values of ti (for ease of presentation, we
defer the advantage of excluding proportion-preserved values
to Section 3.4). In view of this, proportion-preserved values of
ti will be excluded when we determine the inclusion
probability of ti. Note that, before the determination of the
inclusion probability of ti, we can determine whether a
value is a proportion-preserved value of ti or not in light of
Lemma 1 below.

Lemma 1. For the value aj 2 ti, aj is a proportion-preserved

value of ti if two criteria are satisfied:

1.
s Nk

i�1ðajÞþ1

jSk;i�1jþ1 �
Nk
i�1ðajÞþ1

jWk;i�1jþ1

��� ��� � "� Nk
i�1ðajÞþ1

jWk;i�1jþ1 and

2.
s Nk

i�1ðajÞ
jSk;i�1j �

Nk
i�1ðajÞþ1

jWk;i�1jþ1

��� ��� � "� Nk
i�1ðajÞþ1

jWk;i�1jþ1 ,

where jSk;i�1j and jWk;i�1j denote the number of tuples in the
sample window Sk and the population window Wk after the
selection/discard of ti�1, respectively.

Suppose that Vi denotes the set of attribute values of ti,

excluding proportion-preserved values of ti. We then discuss

the way to determine the inclusion probability of ti to

minimize ½Fkðaj; iÞ � p�2, where aj 2 Vi. Note that, for the

value aj 2 Vi, Nk
i ðajÞwill be equal to Nk

i�1ðajÞ þ 1. However,

due to randomness, s Nk
i ðajÞ will be uncertain before ti has

been sampled or discarded. We will have s Nk
i ðajÞ ¼

s Nk
i�1ðajÞ þ 1 if ti is sampled or have s Nk

i ðajÞ ¼ s Nk
i�1ðajÞ

if ti is discarded. Since s Nk
i ðajÞ cannot be exactly identified

before selecting/discarding ti, E½Fkðaj; iÞ� will be the best

estimator of Fkðaj; iÞ in such situations, where E½Fkðaj; iÞ� is
the expectation of Fkðaj; iÞ. Specifically, to select or to discard

ti is a Bernoulli trial [7] for every value aj 2 ti, indicating that

E½Fkðaj; iÞ� is equal to
s Nk

i�1ðajÞþprðtiÞ
Nk
i�1
ðajÞþ1

, where prðtiÞ is the

inclusion probability of ti. Let jVij denote the number of

attribute values in Vi. Following the conclusion of Theorem 2,

we thus aim to minimize
PjVij

j¼1ðE½Fkðaj; iÞÞ� � pÞ
2. Suppose

that bprðtiÞ denotes the inclusion probability of ti correspond-

ing to the minimization of
PjVij

j¼1ðE½Fkðaj; iÞÞ� � pÞ
2. We can

derive the closed form of bprðtiÞ, as shown in Theorem 3

below:

Theorem 3. Note that bprðtiÞ can be formalized as

bprðtiÞ ¼ arg min
0�prðtiÞ�1

XjV ij
j¼1

s Nk
i�1ðajÞ þ prðtiÞ
Nk
i�1ðajÞ þ 1

� p
� �2

" #
:

Suppose that a ¼
PjV ij

j¼1
1

Nk
i�1
ðajÞþ1

� �2
and

b ¼
XjV ij
j¼1

1

Nk
i�1ðajÞ þ 1

� �
s Nk

i�1ðajÞ
Nk
i�1ðajÞ þ 1

� p
� �� �

:

The closed form of bprðtiÞ will be

bprðtiÞ ¼ � b
a ; if 1 � � b

a � 0
1; if � b

a > 1
0; if � b

a < 0:

8<:
Consequently, we can devise algorithm PAS as a

sequential sampling mechanism which determines the
inclusion probability of ti as bprðtiÞ when ti arrives. As such,
the goal in Proposition 2 will be achieved, meaning that our
essential goal in Proposition 1 is also achieved.

Furthermore, the previous discussion only shows how to
guarantee the precision of the marginal distribution, i.e., the
relative proportion consistency of each categorical value,
rather than how to guarantee the precision of the joint
distribution. Importantly, Theorem 4 below shows that our
model will also minimize the relative proportion inconsistency
of multivariate statistics, thus ensuring the preservation of
the joint distribution.

Theorem 4. Let Mi denote a multivariate statistic in the
database. PAS will minimize the relative inconsistency
between its sample proportion and the population proportion.
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Since mining applications usually concentrate on finding

interesting multidimensional knowledge, it is clear that PAS

can generate more desirable sample for different applica-

tion needs.

2.2 Examples of PAS

We show some examples to illustrate operations of PAS.

Suppose that the sample rate p and the error bound " are

specified as 33 percent and 0.3, respectively. Our goal is to

sequentially generate a sample in which the relative

proportion difference of each attribute value can be

bounded below 0.3.

Example 2.1. For the first tuple, t1 ¼ ðA;X; F Þ, we have

N1
0 ðAÞ ¼ 0, s N1

0 ðAÞ ¼ 0, N1
0 ðXÞ ¼ 0, s N1

0 ðXÞ ¼ 0,

N1
0 ðF Þ ¼ 0, and s N1

0 ðF Þ ¼ 0 since the window is

initialized. According to Lemma 1, the attribute values

A, X, and F are not proportion-preserved values of t1.

Therefore, the inclusion probability bprðt1Þ of t1 is

determined by considering all three values:

bprðt1Þ ¼ � 1
1 ð01� 0:33Þ þ 1

1 ð01� 0:33Þ þ 1
1 ð11� 0:33Þ

ð11Þ
2 þ ð11Þ

2 þ ð11Þ
2

¼ 0:33:

As the same as general cases in random sampling, the

inclusion probability of the first tuple in PAS is equal to p to

ensure thatE½supðA;S1Þ�,E½supðX;S1Þ�, andE½supðF; S1Þ�
are equal to supðA;W1Þ, supðX;W1Þ, and supðF;W1Þ,
respectively. One important property of PAS is thus

identified: The sample proportion of each attribute value

is the unbiased estimator of the corresponding population

proportion, which is an essential requirement for prob-

abilistic sampling methods.

Example 2.2. Suppose that two tuples were selected in the

sample before the tuple t9 ¼ ðB; Y ;HÞ 2W1 arrives. In

addition, we have N1
8 ðBÞ ¼ 2, s N1

8 ðBÞ ¼ 0, N1
8 ðY Þ ¼ 2,

s N1
8 ðY Þ ¼ 0, N1

8 ðHÞ ¼ 4, and s N1
8 ðHÞ ¼ 1. Note that, for

attribute value H,

s N1
8 ðHÞ þ 1

2þ 1
�N

1
8 ðHÞ þ 1

8þ 1

���� ���� � 0:3�N
1
8 ðHÞ þ 1

8þ 1

and
s N1

8 ðHÞ
2 � N1

8 ðHÞþ1

8þ1

��� ��� � 0:3� N1
8 ðHÞþ1

8þ1 , meaning that H is

a proportion-preserved value of t9. Therefore, we will only

consider B and Y when we calculate the inclusion

probability of t9, which yields that

bprðt9Þ ¼ � 1
3 ð03� 0:33Þ þ 1

3 ð03� 0:33Þ
ð13Þ

2 þ ð13Þ
2

¼ 0:99:

In this case, PAS prefers to select t9 with a high

probability 99 percent and we can expect j supðB;W1Þ �
supðB;S1Þj � "� supðB;W1Þ since supðB;S1Þ will be

equal to 1
3 with the high probability. Note that, whether

t9 will be selected or not, we always have the

j supðH;W1Þ � supðH;S1Þj � "� supðH;W1Þ since H is a

proportion-preserved values of t9.
On the other hand, while H is considered in the

determination of the inclusion probability of t9, we will
have the inclusion probability be equal to

bpr�ðt9Þ ¼ � 1
3 ð03� 0:33Þ þ 1

3 ð03� 0:33Þ þ 1
5 ð15� 0:33Þ

ð13Þ
2 þ ð13Þ

2 þ ð15Þ
2

¼ 0:93:

Comparing bprðt9Þ with bpr�ðt9Þ, it can be seen that
considering proportion-preserved values when we deter-
mine the inclusion probability of the incoming tuple will
lead to the lower probability to have the bounded relative
proportion differences of other attribute values. In this
case, we demonstrate the feasibility to exclude proportion-
preserved values when we determine the inclusion prob-
ability of the incoming tuple.

Example 2.3. Suppose that, before tuple t10000 ¼ ðA;Z; F Þ 2
W10 arrives, we have

N10
9999ðAÞ ¼ 99; s N10

9999ðAÞ ¼ 30; N10
9999ðZÞ ¼ 9

s N10
9999ðZÞ ¼ 2; N10

9999ðF Þ ¼ 2; s N10
9999ðF Þ ¼ 0;

jS10;9999j ¼ 31; and jW10;9999j ¼ 100:

It can be seen that the data are highly skewed in this

window since attribute value A frequently occurs but

attribute value F rarely occurs. In this case, attribute

value A will be a proportion-preserved value of t10000

because A satisfies the two criteria stated in Lemma 1.

Note that �
1
10ð 2

10�0:33Þþ1
3ð03�0:33Þ

ð 1
10Þ

2þð13Þ
2 ¼ 1:01. In such cases, PAS

will determine if bprðt10000Þ is equal to one so that t10000

will be definitely selected in the sample. As a result,

the relative proportion differences of F and Z are

3
101� 1

32

�� ��= 3
101 ¼ 0:05 < " and 10

101� 3
32

�� ��= 10
101 ¼ 0:05 < ", re-

spectively. In this example, we show the feasibility of

PAS in skewed data.

3 EFFICIENT QUALITY-AWARE SAMPLING

In Section 2, we have introduced algorithm PAS to generate
a high-quality online sample by adaptively determining the
inclusion probability of each incoming tuple ti. We, in this

section, present algorithm EQAS (standing for Efficient
Quality-Aware Sampling) to provide the flexibility of

striking a compromise between the sampling quality and
the sampling efficiency.

3.1 Framework of EQAS

Before presenting the details of algorithm EQAS, we first
show the implementation of algorithm PAS. Specifically, in
PAS, the frequency of every attribute value in a window
needs to be maintained in main memory. To efficiently
achieve this, PAS is devised by employing a hash structure,
called CF (standing for cumulative filter). Let CF ðajÞ denote
the hash function to hash the attribute value aj, where the
hash entry contains the up-to-date frequencies of aj in the
sample window and the population window. While a new
window starts, all entries in CF will be released and
initialized again, indicating that the memory usage is
irrelevant to the size of input data and will be bounded
with respect to the count of distinct attribute values in the
database. The function of PAS to determine whether the
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tuple ti is selected in the sample or not is outlined in the
procedure IsSample_PAS.

Indeed, as compared to traditional sequential sampling
algorithms such as random sampling, PAS will incur the
higher computational overhead since the sample proportion
and the population proportion of at most h attribute values
will be examined when a tuple arrives. As a result, we
further devise algorithm EQAS to simultaneously achieve
high sampling quality and the high sampling efficiency by
integrating PAS and random sampling. The basic concept
behind algorithm EQAS is to switch between PAS and
random sample at the appropriate moment. While deferring
the details, we first formally present an important measure
of the sampling quality, called the expected square relative
error.

Definition 2 (Expected Square Relative Error). The expected

square relative error (abbreviated as ESRE) before tiþ1 arrives

is defined as ErðiÞ ¼
PjAj

j¼1
Nk
i ðajÞ

h�jWk;ij �
supiðaj;WkÞ�supiðaj;SkÞ

supiðaj;WkÞ

� �2
,

where supiðaj;WkÞ and supiðaj; SkÞ denote the population

proportion and the sample proportion of the attribute value aj

in the kth window before tiþ1 arrives, respectively.

Specifically, ESRE is a fair measure for the sampling
quality of the sequentially generated sample because ESRE
represents the expected relative proportion inconsistency of an
attribute value over time. It is worth mentioning that, as
will be validated in our empirical studies, PAS can quickly
reduce ESRE since pursuing the minimization of the relative
proportion error is the inherent goal of PAS. However, as
illustrated in Fig. 3, ESRE will no longer be significantly
reduced by PAS while the passing data size in the window
exceeds a size, denoted by Nmin in Fig. 3. Formally, due to
the natural limit of sampling, the relative proportion errors
of some values may still exceed the desired relative error
bound " after jWk;ij > Nmin. For example, assuming an
attribute value occurs only one time during a window

(usually deemed as noise), we cannot ensure that its relative

proportion difference will be bounded below " ¼ 0:1 when

p ¼ 0:1. Actually, such a problem is well reported in the

literature and a reasonable sanity bound  is usually used to

avoid that the relative error metric is unduly dominated by

attribute values with very small occurrences, where the

relative error is defined as the form of
supiðaj;WkÞ�supiðaj;SkÞ

maxf ;supiðaj;WkÞg [13].

In our cases, further attempting to reduce their errors by

PAS will pay for the computational overhead without the

prominent improvement of the sampling quality. As such,

we can initially execute PAS (to pursue the high sampling

quality) and switch to random sampling when the window

size exceeds Nmin (to pursue the high sampling efficiency).
Note that random sampling cannot guarantee the

sampling quality in the presence of the burst sampling

error when the data distribution changes suddenly. There-

fore, we periodically perform an offline probing process to

examine the expected square relative error when random

sampling is executed. If the result shows that ESRE

drastically increases, the sampling approach will be

switched back to PAS to ensure the sampling quality.

Accordingly, the comparison of ESRE among random

sampling, PAS and EQAS, is illustrated in Fig. 4, where

ESRE in algorithm EQAS is expected to be close to ESRE in

algorithm PAS. Correspondingly, the sampling time con-

sumed by algorithm EQAS will be close to the time

consumed by random sampling. As a result, algorithm

EQAS can achieve the high sampling quality and the high

sampling efficiency at the same time.
The overall implementation of EQAS is thus outlined

below with three algorithm inputs: the data source D, the

sample rate p, and the relative error bound ". In addition, a

global variable, called Status, indicates the up-to-date

variation of the expected square relative error. While Status is

identified as unstable, meaning that the variation of ESRE is

obvious (either drastically increases or drastically de-

creases), algorithm EQAS will execute PAS to sample the

following tuples for pursuing the high sampling quality.

Alternatively, while Status is identified as stable, meaning

that the variation of ESRE is insignificant (either slightly

increases or slightly decreases), algorithm EQAS will

execute random sampling to sample the following tuples

for pursuing high execution efficiency.
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The remaining issue of algorithm EQAS is to identify the
timing to switch from PAS to random sampling and vice
versa. We first discuss the timing to switch from PAS to
random sampling, which can be considered as the process
of identifying the convergence of the ESRE curve over time.

3.1.1 Convergence Detection

We refer to the technique of the convergence detection
utilized in progressive sampling [22]. Formally, the power-
law fit [25] and the linear regression with local sampling [22]
are two common approaches in progressive sampling to
detect the convergence point of the learning curve. We
follow the idea of the linear regression with local sampling
since, as demonstrated in [22], it is robust and is the state-of-
the-art approach.

Specifically, we periodically examine ESRE for a short
time duration when PAS is executed. Suppose we obtain
ErðiÞ; Erðiþ 1Þ; . . . ; ErðiþmÞ, where m is the length of a
duration. Those values are then used to estimate a linear
regression line whose slope is compared to zero. If the slope
is smaller than a threshold �, which is a value sufficiently
close to zero, the tuple ti can be deemed as the convergence
point. In such cases, the variable Status will be modified as
stable and the sampling strategy will be turned to random
sampling.

We then present how to determine the time of switching
from random sampling to PAS. The procedure is called the
probing procedure.

3.1.2 Probing

Note that originally, frequencies of all attribute values in

the sample and in the population will not be maintained

during the execution of random sampling, thus causing

the difficulty of having to examine the up-to-date ESRE

over time. In practice, we can approximately estimate

ESRE by only maintaining frequencies of several attribute

values. More specifically, at the end of executing PAS, we

randomly select jF j attribute values from CF (others will

be released) and continue to monitor the frequency of

those jF j attribute values during the execution of random

sampling. Therefore, we can periodically execute the

probing process to calculate the estimated ESRE, which is

formularized as
PjF j

j¼1
Nk
i ðajÞ

h�jWk;ij �
supiðaj;WkÞ�supiðaj;SkÞ

supiðaj;WkÞ

� �2
. If the

estimated ESRE is larger than � times the estimated ESRE

obtained in the end of the former execution of PAS, the

variable Status will be modified as unstable and the

sampling strategy will be turned to PAS. Note that

investigating the estimated ESRE will increase the com-

plexity by a constant factor since jF j attribute values need

to be continuously maintained. However, the overhead is

slight as compared to time consumed by PAS.
The implementation of the convergence detection and

the probing method is outlined in the procedure Status_
Detection() below, in which the function linear_reg refers to
a function executing the linear regression and returning the
slope of the regression line. In addition, the variable pre_e
denotes the value of estimated ESRE obtained in the end of
the former execution of PAS.

3.2 Parameters in Algorithm EQAS

Note that, as discussed in related works, it can be seen that
sampling quality is usually obtained at the cost of the extra
computational overhead, which somewhat compromises
the applicability of those sampling algorithms. Indeed,
algorithm EQAS enables the flexibility between the sam-
pling quality and the sampling efficiency. Without loss of
generality, the trade-off between the sampling quality and
the sampling efficiency solely depends on the fraction of the
execution of algorithm PAS. While the sampling quality is
the primary concern, the fraction of the execution of
algorithm PAS can be raised. On the other hand, the
fraction of the execution of algorithm PAS will be reduced
when we pursue the high sampling efficiency. As shown in
Fig. 5, three parameters, i.e., �, �, and the probing interval,
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in algorithm EQAS, will control the execution fraction of
PAS, indicating the position either close to the high
sampling quality or close to the high sampling efficiency.
Specifically, setting small � and � implies that we need to
strictly check whether random sampling can handle the
following tuples or not. In such cases, algorithm PAS
usually carries over to handle the following tuples. More-
over, the small probing interval will lead to frequently
performing the probing process, which will raise the
probability of switching from random sampling to PAS. In
contrast, setting large �, �, and probing interval will tend to
frequently switch from PAS to random sampling for the
following tuples. From our empirical studies, we suggest
that � ¼ 0:01, � ¼ 1:1, and the probing interval is equal to
100 (the probing procedure is periodically executed every
100 tuples), which usually leads to the better balance
between the sampling efficiency and the sampling quality.

Readers may be able to achieve the analogous flexibility
by giving the execution fraction of PAS and then periodi-
cally switching between random sampling and PAS without
the need of the probing procedure and the convergence
detection. However, such a straightforward solution suffers
from the problem that tuples, during the burst sampling
error, cannot be precisely handled by PAS. It will drastically
affect the sampling quality. Note that it may also lead to the
meaningless situation of using PAS to handle data which
are stable and uniformly distributed. Algorithm EQAS with
the proposed convergence detection and the probing
procedure will obviously outperform the naive approach.

The remaining issue in algorithm EQAS is to determine
the appropriate value of jF j, i.e., the number of attribute
values whose frequencies will be maintained during the
execution of random sampling. Note that maintaining a
large jF j will pay for the overhead similar to PAS, thus
losing efficiency gained from random sampling. Formally, it
is meaningful to have jF j larger than 30 in the sense of
statistics [7]. We therefore set jF j ¼ 30 in default.

3.3 Complexity Analysis

Formally, random sampling is with the linear time
complexity and its space complexity is a constant, which
implies that the overhead required by EQAS is dominated
by the complexity of algorithm PAS. As such, we show the
complexity of EQAS by analyzing the one of PAS at first.

3.3.1 Time Complexity

The time complexity of PAS is Oðh� jDjÞ, where jDj is the
data set and h is the number of dimensions in the
population. Since either PAS or random sampling is linear
with respect to the database size, algorithm EQAS is also
linear with a factor determined by how many tuples are
passed by PAS. In addition, the execution of the function
Status_Detection in algorithm EQAS requires constant time
to look up all attribute values in CF, thus only increasing the
complexity of algorithm EQAS by a negligible constant
factor.

3.3.2 Space Complexity

The space complexity of PAS is OðjAjÞ, where jAj is the

number of distinct values in a window. While considering

the distribution of real data generally follows the Zipf

distribution [29], an OðN1=zÞ upper bound of the memory

usage is derived, where N is the number of tuples in a

window and z is the level of skewness in the distribution of

attribute values. Specifically, assuming the distribution

follows the Zipf distribution with parameter z, the

frequency of the ith rank attribute value is equal to N
�ðzÞ�iz ,

where �ðzÞ ¼
PjAj

i¼1
1
iz [29]. Note that

P1
i¼1

1
iz converges to a

small constant2 when z > 1 (this is a common case in real

data), implying that �ðzÞ is also a small constant. Since the

absolute frequency of an attribute value always exceeds

one, we have N
jAjz � 1. Therefore, the bound of jAj is OðN1=zÞ,

indicating that the space complexity of PAS is OðN1=zÞ.
Moreover, since the memory consumed by random sam-

pling is a constant, the space complexities of algorithms

EQAS and PAS are the same.

3.4 Discussions on Quality-Aware Sampling

In this section, we provide more insights into the proposed
algorithms. We first describe why PAS and EQAS utilize
probabilistic sampling mechanisms rather than a determi-
nistic sampling mechanism like the one used in algorithm
EASE [8]. Specifically, readers may argue why we do not
simply select or drop the tuple ti based on which action
results in a smaller value of

PjVij
j¼1ðFkðaj; iÞÞ � pÞ

2, thus
resulting in a deterministic process of selecting tuples. The
major reason is that probabilistic models can provide
randomness and unbiasedness. Note that, in EASE, the
data distribution is observed in a pilot sample and it can
utilize a deterministic procedure to select the sample based
on what it has observed beforehand. In contrast, PAS and
EQAS do not check the population in advance so as to fulfill
the need for incremental mining. As can be simply seen, the
first tuple is always dropped if p < 0:5 when a deterministic
procedure is applied in PAS, leading to a biased sample (as
compared with the discussion in Example 2.1). Since the
unbiasedness is an important property for sampling [17],
the probabilistic model is more appropriate for our model.

In addition, comparing our quality-aware sampling
mechanisms and EASE [8], it is clear that the error
threshold " in PAS and EQAS can be specified by users
and, in contrast, the absolute error in EASE is guaranteed
below a system-determined bound whose magnitude
depends on the desired sample size and can be estimated
after the first pilot sample is generated. In practice, the
small error bound and the small sample size/rate are two
conflicting goals due to the inherent limits of sampling (the
relative error upper bound will be dominated by attribute
values with very small occurrences [13]). Coupled with the
mechanism of excluding proportion-preserved values de-
scribed in Section 2.1.3, the tunable error threshold will
enable the balance between the small error bound and the
small sample size. The details will be observed and
discussed in our experimental results.

4 EXPERIMENTAL RESULTS

The simulation model of our experimental studies is
described in Section 4.1. To assess the performance of PAS
and EQAS, we present empirical studies based on both
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synthetic and real data sets. The feasibility and the

scalability are examined in Section 4.2. In Section 4.3, the

effectiveness of sampling for the various mining applica-

tions is demonstrated.

4.1 Simulation Model

In our experiments, synthetic data sets are generated for the

sensitivity analysis. Those synthetic data sets are generated

as follows: First, a Zipfian data generator was used to

produce Zipfian frequencies for various levels of skew. By

tuning a parameter z, i.e., the level of skewness in the

distribution of attribute values, we generate data sets to

simulate highly skewed ðz ¼ 1:5Þ and weakly skewed ðz ¼
0:5Þ data, where 1.5 and 0.5 are commonly used parameters

to investigate the algorithm performance in different levels

of skewness [30]. Moreover, the synthetic data generation

program takes other parameters, as shown in Table 2, and

the values of parameters used to generate the data sets are

summarized in Table 3. Data sets of high dimensions with

the skewed distribution (named z1.5N30T50) and low

dimensions with the approximately uniform distribution

(named z0.5N5T50) are both considered.
In addition, Table 3 also shows two employed real data

sets. The first one is a data set of network alarm logs, named

AlarmLog, which is provided by a major telecommunica-

tion company in Taiwan. The AlarmLog data set will be

utilized to verify the feasibility of various sampling

algorithms in the time-variant database. Note that this data

records various alarms generated by a huge number of base

station controllers and some types of alarms indeed more

frequently occur during the weekday while others types of

alarms may only occur during the weekend. Another real

data set is a well-known public domain data, called the

Mushroom data set, which is downloaded from the UCI
machine learning repository [31].

The simulation is coded in C++ and performed in an IBM
compatible PC with 3.2 GHz CPU and 1.0 GB memory. All
implementations employ the common set of functions for
performing I/O. There are four sampling algorithms, i.e.,
PAS, EQAS, simple random sampling (abbreviated as SRS
in the sequel), and EASE [8]. Note that EASE is the state-of-
the-art sampling algorithm used to reduce the absolute
proportion difference of each attribute value. The code of
EASE is given from the authors of EASE. In addition, the
default error threshold " is set as 0.1 for algorithms PAS and
EQAS and the sample rate p ¼ 0:1.

4.2 Sensitivity Analysis of Algorithms PAS and
EQAS

4.2.1 On Sampling Quality as Time Advances

We first investigate ESRE, i.e., the expected square relative
error in algorithms PAS, EQAS, and SRS as time advances
(algorithm EASE cannot be compared in this experiment
since it cannot sequentially generate the sample). Fig. 6a
shows ESRE as time advances, where the time-variant data
set AlarmLog is utilized and the time granularity of a
window is specified as “day.” Note that two windows are
shown, where 3/1/2002 is Friday and 3/2/2002 is Satur-
day. In practice, data distributions in these two windows
are quite different, and some types of alarms are more
frequently in the weekday (3/1/2002). That is why the
curves of ESRE are so different in these two windows,
which can show the applicability of various sampling
algorithms in a time-variant data. It is clear to see that ESRE
in algorithm PAS is on orders of magnitude smaller than
that in random sampling. Importantly, we see that the curve
of ESRE in algorithm EQAS is close to that in algorithm
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TABLE 2
Notations in Data Sets

TABLE 3
Parameters of Data Sets

Fig. 6. The curve of ESRE over time in two real data sets. (a) ESRE in AlarmLog. (b) ESRE in Mushroom.
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PAS, where only 10 percent 	 20 percent data in algorithm
EQAS are handled by algorithm PAS. As also shown in
Fig. 6a, we find the execution time of algorithm EQAS is
nearly equal to the time consumed by random sampling. It
demonstrates that algorithm EQAS can gain the high
execution efficiency without much compromising the
sampling quality. It is worth mentioning that some types
of alarms will emergently and repeatedly occur during the
rush time, which incurs the challenge of the burst sampling
error. In algorithm EQAS, while the burst sampling error is
identified by the probing process, algorithm PAS can
quickly take over and preserve the sampling quality. In
this experiment, we demonstrate our claim that algorithms
PAS and EQAS can quickly reduce the relative proportion
difference and they will be robust to the burst sampling
error as compared to random sampling.

Fig. 6b shows ESRE in the Mushroom data set with
various sample rates (for ease of presentation, only the
observations of the first 1,000 tuples are shown). As can be
seen, ESRE in algorithm PAS is stably and quickly reduced
toward a convergent value. In contrast, random sampling
suffers from the burst sampling error and ESRE cannot be
effectively reduced, even though the sample rate is large
ðp ¼ 0:2Þ. It is interesting to point out that algorithms PAS
and EQAS have the sampling quality with p ¼ 0:1 better
than that of random sampling with p ¼ 0:2, showing the
excellent proportion precision of the proposed algorithms.
Note that the memory usages are also shown in Fig. 6. We
can find that the memory usage is much smaller as
compared to the memory required by the posterior mining
applications such as the frequent-itemset mining [4].

4.2.2 On Execution Time and Relative Error Distribution

The sampling efficiency is further investigated in the two

synthetic data sets, z1.5N30T50 and z0.5N5T50. We also

investigate the sampling quality in a different perspective,

called the relative error distribution. The relative error distribu-

tion refers to the distribution of the value
supðaj;WkÞ�supðaj;SkÞ

supðaj;WkÞ

h i2

of each value aj at the end of a window. In general, relative

proportion errors of most values in a high-quality sample are

close to zero so that the relative error distribution will be highly

left-skewed. In Fig. 7, we show the execution time and the

relative error distribution obtained in four sampling algo-

rithms, including algorithm EASE [8].

We first investigate the scalability of different sampling
algorithms on synthetic data sets with various sizes. Note
that, for fair comparison of different algorithms, the
window size in PAS, EQAS, and SRS will be set equal to
the size of the population because EASE cannot be directly
extended to the window-based scenario. As shown in
Fig. 7a, whether data is highly skewed or not, the execution
time of each sampling method grows linearly as the data set
size increases. Note that the execution time of SRS is
independent to various parameters of the two synthetic
data sets because random sampling did not maintain/
analyze the distribution of the population. Thus, we only
show one execution time of SRS in Fig. 7a. Furthermore, the
major reason of EASE having the longest execution time
results from that EASE requires a corresponding time to
obtain an initial large sample since EASE is a kind of two-
phase sampling methods (the same as the size specified in
[8], the size of the initial large sample is 0:3� jDj), showing
that algorithm EASE gains the sampling quality at the cost
of sampling efficiency. Formally, the time consumed by
PAS is also large as compared to the one of SRS, particularly
in the data set z1.5N30T50 since the number of attributes is
large. However, EQAS has the execution time very close to
that of SRS. It is because, in algorithm EQAS, the fraction of
data passed by PAS is relatively small as compared to that
passed by SRS, thus leading to the insignificant computa-
tional overhead.

We then show the relative error distribution of generated
samples in Fig. 7b and Fig. 7c. For ease of illustration, the
relative proportion difference larger than 0.05 is truncated in
these figures. In the high-dimensional and skewed data
(Fig. 7b), each sampling algorithm inevitably leads to the
larger relative proportion inconsistency. Importantly, the
sampling quality of PAS is the best one since its relative
error distribution is highly left-skewed. We also find that the
result of EQAS is close to PAS. Similar results are also
obtained in Fig. 7c, where the relative proportion difference
in the low-dimensional and nonskewed data is relatively
small as compared to that shown in Fig. 7b. Note that the
result of EASE in the high-dimensional and skewed data is
not good as compared to those of PAS and EQAS. Since
EASE only minimizes the absolute proportion difference, the
relative proportion difference of many attribute values,
which rarely occur, will be apparently large in the skewed
data set. In practice, the relative proportion error is very
difficult to be bounded, especially for those attribute values
whose population proportions are small. As a result, we
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Fig. 7. The relative error distribution and the execution time in various sampling algorithms. (a) The execution time. (b) The relative error distribution

(z1.5N30T50). (c) The relative error distribution (z0.5N5T50).
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show the effectiveness of algorithms PAS and EQAS to
preserve the sampling quality. Clearly, both considering the
execution time and the sampling quality, EQAS will be the
winner.

4.2.3 On Parameter Sensitivity

We investigate the effect of two parameters of PAS, i.e., "
and p. In the interests of space and ease of exposition, only
PAS and SRS are compared in this analysis since EQAS and
PAS have the similar sampling quality and only showing
the results of PAS can demonstrate the pure behavior of our
model without the effect from random sampling. Fig. 8a
shows the relative error distribution of PAS in the Mush-
room data set, where the error threshold " varies from 0.01
to 0.5 ðp ¼ 0:1Þ. Formally, the results of PAS with various "
are not obviously different to each other in this experiment.
It is because PAS tries to minimize the relative proportion
error no matter what level of " is specified. However, on
further investigation, we can see that the relative error
distribution of PAS with " ¼ 0:01 is slightly left-sharper than
that of PAS with " ¼ 0:5, but the relative error distribution of
PAS with " ¼ 0:01 has a few small peaks in high relative
proportion errors. The reason is that PAS simultaneously
considers all attribute values of ti, excluding proportion-
preserved values, when ti arrives. Note that it is difficult for
each attribute value of ti to become a proportion-preserved
value of ti when " is small. As such, PAS with " ¼ 0:01 tries
to simultaneously minimize the relative proportion differ-
ences of more attribute values and it leads to a slow
convergence of the relative proportion errors of a few
attribute values. In contrast, although the relative error
distribution of PAS with " ¼ 0:5 is not as sharp as that of
PAS with " ¼ 0:01, the relative errors of all attribute values
are equally reduced, leading to a relative error distribution
with less peaks. Clearly, the results of PAS all outperform
SRS, demonstrating the robustness of PAS.

The investigation of another parameter of PAS, i.e., the
sample rate p, is shown in Fig. 8b. As can be seen, the result
of PAS with p ¼ 0:1 is similar to that with p ¼ 0:2, showing
that PAS can guarantee the sampling quality without the
need for large sample rates/sizes.

It is worth mentioning that random sampling with a
fixed sample rate can also achieve the goal of having the
bounded relative proportion difference of each attribute
value as long as the database size is large enough.
Therefore, an interesting question arises: What is the
minimal population size to have the relative proportion

difference of each attribute value being bounded below the

specified threshold "? We show the result in Fig. 8c. As can

be seen, the relative proportion differences of all attribute

values in SRS can be bounded while the database size is

prohibitively large both in p ¼ 0:1 and in p ¼ 0:01. In

practice, having such a large database within a time

window is not prevalent. In contrast, algorithms PAS and

EQAS both require a small database size, which is the

reasonable size within a time window, to have the relative

proportion difference of each attribute value being

bounded, thus showing the applicability of algorithms

PAS and EQAS.

4.2.4 On Relative Proportion Consistency of Multivariate

Statistics

The relative proportion consistency of multivariate statistics

is further investigated in the Mushroom data set. We show

the relative error distributions of two-dimensinoal variables

and three-dimensional variables in Figs. 9a and 9b,

respectively. For ease of illustration, the relative proportion

error larger than 0.05 is truncated in these figures. Clearly,

we can see that PAS still excellently preserves the relative

proportion consistency of multivariate statistics in orders of

magnitude better than random sampling since the relative

error distribution of PAS is highly left-skewed, thus

confirming the statement shown in Theorem 4.
We also observe the relative proportion consistency of a

randomly selected three-dimensional variable “stalk-shape:

enlarging, stalk-root:equal, stalk-surface-above-ring:

smooth,” whose population proportion is equal to

4.3 percent. Its square relative error over time is shown in

Fig. 9c. As compared to SRS, PAS can quickly and stably

ensure a close-to-zero square relative error. Meanwhile,

Fig. 9d shows the sampling distribution of the square

relative error of this three-dimensional variable, generated

from 10,000 runs with a sample rate equal to 0.1. The

sampling distribution generated by PAS has a sharper curve

than that generated by SRS, indicating that the variance of

the multivariate statistic’s sample proportion in PAS is

much smaller than that in SRS. In this experiment, we

demonstrate that PAS would guarantee the relative propor-

tion consistency of multivariate statistics and also show that

PAS is an excellently unbiased and robust sampling

mechanism.
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Fig. 8. Studies of parameter sensitivity. (a) The relative error distribution with various error thresholds (Mushroom data set). (b) The relative error

distribution with various sample rates (Mushroom data set). (c) The minimum population size to achieve the required relative error bound (synthetic

data sets).
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4.3 Application Studies

To investigate the advantage gained by preserving the
relative proportion consistency, we first execute algorithm FP-
growth, which is downloaded from Christian Borgelt’s Web
site,3 on samples generated by PAS, EQAS, EASE, and SRS.
First, in Figs. 10a and 10b, we show the accuracy of
retrieved frequent itemsets in the Mushroom data set,
where the minimum supports are specified as 0.3 (2,735 fre-
quent itemsets are discovered in the original Mushroom
data set) and 0.15 (98,575 frequent itemsets are identified in
the original Mushroom data set). Formally, we use the
F-Score measurement [8], F ðSÞ, to evaluate the accuracy of
frequent itemsets which are obtained in the sample S,
where F ðSÞ ¼ 2�jLðDÞ\LðSÞj

jLðDÞ�LðSÞjþjLðSÞ�LðDÞj . LðDÞ and LðSÞ denote
the sets of frequent itemsets obtained in the original data
set D and in the sample S, respectively. We show the
accuracy of discovered frequent itemsets of each sample
size as the average of 50 runs. As can be seen, algorithms
PAS, EQAS, and EASE outperform SRS in orders of

magnitude, especially when the sample size is small. In
addition, note that PAS will reduce the relative proportion
difference as opposed to the absolute proportion difference
reduced by EASE. Reducing the relative proportion differ-
ence indeed avoids the information loss of some attribute
values whose population proportions are close to the
specified minimum support. Thus, we can see accuracy of
frequent itemsets obtained by PAS and EQAS both exceed
that of EASE about 5 percent in average, demonstrating the
effectiveness of PAS and EQAS for mining frequent item-
sets. In addition, Fig. 10b shows accuracy of frequent
itemsets with the minimum support equal to 0.15. As can be
seen, PAS outperforms EASE in orders of magnitude when
the sample rate is small since preserving the relative
proportion consistency is more important than preserving
the absolute proportion consistency in the presence of a small
minimum support, thus demonstrating the feasibility of
PAS and EQAS.

We also executed EM clustering, which is implemented
in WEKA [32], on the generated samples. Similarly to the
training-and-testing process for evaluating clustering re-
sults in [32], the effectiveness of sampling for clustering can
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Fig. 9. The relative error distribution of multivariate statistics (Mushroom data set). (a) The relative error distribution of two-dimensional variables.
(b) The relative error distribution of three-dimensional variables. (c) The Square Relative Error as time advances (three-dimensional variable: “stalk-
shape:enlarging, stalk-root:equal, stalk-surface-above-ring:smooth”). (d) The sampling distribution of the Relative Error (three-dimensional variable:
“stalk-shape:enlarging, stalk-root:equal, stalk-surface-above-ring:smooth”).

3. The URL is http://fuzzy.cs.uni-magdeburg.de/~borgelt/
fpgrowth.html.

Fig. 10. Sampling effectiveness for frequent-itemset mining and clustering (Mushroom data set). (a) Mining frequent itemsets with min sup ¼ 0:3.

(b) Mining frequent itemsets with min sup ¼ 0:15. (c) EM Clustering.
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be evaluated by allocating each unsampled tuple to an
appropriate cluster (corresponding to the testing process),
where clusters are extracted from the sample (correspond-
ing to the training process). Specifically, after blinding the
class attribute ci of every sampled tuple ti, the EM
clustering algorithm in WEKA is executed to generate two
clusters from the sample of the Mushroom data set; one
cluster can be regarded as poisonous and the other as edible.
Next, the “classes to clusters” evaluation model in WEKA
uses a log-likelihood function to assign a class to each
unsampled tuple. We then have a 2� 2 contingency table that
shows the relationship between the original class and the
estimated class. Finally, the clustering accuracy, calculated as
the number of correctly clustered tuples divided by the total
number of tuples, is deemed as the level of effectiveness of
sampling for clustering. We show the clustering accuracy of
each sample size as the average over 50 runs.

Fig. 10c shows the results of various sample rates. As can
be seen, PAS obviously outperforms other sampling
algorithms in the clustering task. It is because PAS can
excellently preserve the relative proportion consistency of
multivariate statistics. Note that clustering algorithms
usually find the group knowledge from correlations
between different dimensions. As such, it is clear that PAS
will have excellent effectiveness for clustering.

Furthermore, the most attractive strength of algorithms
PAS and EQAS lies in the sequential generation of samples,
which is particularly important to incremental mining
applications. Algorithm EASE indeed cannot be applied in
such environments since it generates a pilot sample from
the whole database in advance. We employ algorithm SWF,
a sliding window-based mining approach [4] and study the
model accuracy obtained by incrementally mining frequent
itemsets on samples. The results are shown in Fig. 11 with
various sample rates and various minimum supports in the
AlarmLog data set. We set the sliding window size equal to
three days in this experiment (the time granularity of a
window is specified as one day). Clearly, algorithms PAS
and EQAS result in the prominent accuracy of frequent
itemsets in each sliding window as compared to that
obtained by random sampling, demonstrating the applic-
ability of algorithms PAS and EQAS to be the prominent
means for sequentially generating high-quality samples.

5 CONCLUSIONS

This paper has introduced algorithm PAS, which is a
sampling algorithm to sequentially generate samples in

which the relative proportion error of each measured pattern
can be minimized toward the specified error threshold.
Another algorithm, called EQAS, was also proposed to
integrate PAS and random sampling to provide the
flexibility of striking a compromise between sampling
quality and sampling efficiency. As validated in experi-
mental results on real and synthetic data sets, both
proposed algorithms have the prominent advantage of
being an effective quality-aware sampling means for
incremental mining applications.

APPENDIX

Proof of Theorem 1. Suppose that
s NkðajÞ
NkðajÞ ¼ pþ �j, for

every attribute value aj. Assume that the maximum

absolute value of �j, i.e., �max, can be bounded below
"

2þ" p, i.e.,
s NkðajÞ
NkðajÞ � p
��� ��� � "

2þ" p, 8aj. We have

XjAj
j¼1

s NkðajÞ ¼
XjAj
j¼1

ððpþ �jÞ �NkðajÞÞ;

where jAj denotes the number of distinct attribute values
in the database. Furthermore, we have h attributes in the
tabular database, which yields that

XjAj
j¼1

s NkðajÞ ¼ h� jSkj;

and
PjAj

j¼1 N
kðajÞ ¼ h� jWkj. Therefore, we havePjAj

j¼1 s N
kðajÞ �

PjAj
j¼1ðpþ �maxÞNkðajÞ, yielding that

h� jSkj � ðpþ �maxÞ � h� jWkj;
jSkj
jWkj

� 1þ "

2þ "

� �
� p:

Similarly, we have jSkj
jWkj � 1� "

2þ"

� �
� p, yielding that

1� "
2þ"

� �
� p � jSkj

jWkj � 1þ "
2þ"

� �
� p. In addition, note

that s NkðajÞ ¼ ðpþ �jÞNkðajÞ for every attribute value

aj and 1� "
2þ"

� �
pjWkj � jSkj � 1þ "

2þ"

� �
pjWkj. Without

loss of generality, we have 1� "
2þ"

� �
> 0 because " will

be set as a small value (in our experiments, " is set below

0.1 in general). Therefore,
s NkðajÞ
jSkj �

ðpþ�jÞ�NkðajÞ
1þ "

2þ"ð Þ�p�jWkj
, indicat-

ing that supðaj; SkÞ �
ð1� "

2þ"Þp
ð1þ "

2þ"Þp
supðaj;WkÞ ð :: : �j � � "

2þ" pÞ.
Since

ð1� "
2þ"Þp

ð1þ "
2þ"Þp
¼ 1

1þ" , we have supðaj; SkÞ � 1
1þ" supðaj;WkÞ.
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Fig. 11. The sampling effectiveness for incremental frequent-itemset mining (AlarmLog data set). (a) Accuracy with p ¼ 0:01, minimum support = 0.5

percent. (b) Accuracy with p ¼ 0:1, minimum support = 0.5 percent (c) Accuracy with p ¼ 0:01, minimum support = 0.1 percent.
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Note that ð1� "Þð1þ "Þ < 1, indicating 1
1þ" > 1� ",

and supðaj; SkÞ � ð1� "Þ supðaj;WkÞ. Similarly, we can
derive supðaj; SkÞ � ð1þ "Þ supðaj;WkÞ. Finally, we have
j supðaj;WkÞ � supðaj; SkÞj � "� supðaj;WkÞ. tu

Proof of Theorem 2. Note that

h� jSkj ¼
XjAj
j¼1

s NkðajÞ ¼
XjAj
j¼1

ð1þ �jÞ � p�NkðajÞ

¼ p�
XjAj
j¼1

NkðajÞ
" #

þ p�
XjAj
j¼1

�j �NkðajÞ
" #

:

Moreover, h� jWkj ¼
PjAj

j¼1 N
kðajÞ, which yields that

jSkj
jWkj

¼ p� 1þ
PjAj

j¼1 �j �NkðajÞPjAj
j¼1 N

kðajÞ

 !
¼ p� ð1þ �Þ:

Furthermore, we will have

supðaj; SkÞ ¼
ð1þ �jÞ � p�NkðajÞ

�� p� jWkj
¼ ð1þ �jÞ

1þ �
� supðaj;WkÞ;

indicating that
j supðaj;WkÞ�supðaj;SkÞj

supðaj;WkÞ ¼ 1� ð1þ�jÞ1þ�

��� ���. tu
Proof of Theorem 3.

bprðtiÞ ¼ arg min
0�prðtiÞ�1

XjVij
i¼1

1� prðtiÞ
Nk
i�1ðajÞ þ 1

þ s Nk
i�1ðajÞ

Nk
i�1ðajÞ þ 1

� p
� �� �2

¼ arg min
0�prðtiÞ�1

a� prðtiÞ þ
b

a

� �2

þ�
" #

;

where � denotes these terms without prðtiÞ. Since a � 0, it

implies that a� prðtiÞ þ b
a

	 
2þ� is a convex. The mini-

m u m o f a� prðtiÞ þ b
a

	 
2þ�
h i

w i l l o c c u r w h e n

prðtiÞ ¼ � b
a . In addition, bprðtÞ must locate in [0, 1] since

it must comply with the probability axiom. Hence, if

� b
a > 1, bprðtiÞ ¼ 1. If � b

a < 0, bprðtiÞ ¼ 0. Therefore,bprðtÞ ¼ � b
a , subject to 1 � bprðtÞ � 0. tu

Proof of Lemma 1. For the attribute value aj 2 ti, there are

two possibilities of its sample proportion after ti is

selected or discarded: 1)
s Nk

i�1ðajÞþ1

jSk;i�1jþ1 or 2)
s Nk

i�1ðajÞ
jSk;i�1j . Note

that supiðaj;WkÞ ¼ Nk
i�1ðajÞþ1

jWk;i�1jþ1 . Therefore, while

s Nk
i�1ðajÞ þ 1

jSk;i�1j þ 1
�N

k
i�1ðajÞ þ 1

jWk;i�1j þ 1

���� ���� � "�Nk
i�1ðajÞ þ 1

jWk;i�1j þ 1

and
s Nk

i�1ðajÞ
jSk;i�1j �

Nk
i�1ðajÞþ1

jWk;i�1jþ1

��� ��� � "� Nk
i�1ðajÞþ1

jWk;i�1jþ1 , we will have the

relative proportion difference of aj after the arrival of ti

being bounded below " whatever ti is sampled or not,

indicating aj is a proportion-preserved value of ti. tu
Proof of Theorem 4. Without loss of generality, we first

analyze the case of two-dimensional variables. At first, we

define s NkðaiÞ
NkðaiÞ ¼ ð1þ �iÞ � p for every attribute value ai in

the window Wk, i.e., s NkðaiÞ ¼ ð1þ �iÞ � p�NkðaiÞ.
Moreover, let fb1; . . . ; bj; . . . ; bmg denote the set of

distinct values in another attribute B, and let
s Nkðaib‘Þ
Nkðaib‘Þ ¼ ð1þ �‘Þ � p, where 1 � ‘ � m. Since Theorem 1

says that jSkj � pjWkj, we have the relative proportion

inconsistency of a two-dimensional variable aibj equal to

s NkðaibjÞ
jSkj � NkðaibjÞ

jWkj

��� ���
NkðaibjÞ
jWkj

¼
1þ�jð Þ�p�NkðaibjÞ

pjWkj � NkðaibjÞ
jWkj

NkðaibjÞ
jWkj

¼ j�jj:

Clearly, s NkðaiÞ ¼
Pm

‘¼1 s N
kðaib‘Þ, indicating that

s NkðaiÞ ¼ p�
Xm
‘¼1

Nkðaib‘Þ þ p� �i �
Xm
‘¼1

Nkðaib‘Þ:

As such, we also have

p�
Xm
‘¼1

�‘ �Nkðaib‘Þ ¼ p� �i �
Xm
‘¼1

Nkðaib‘Þ:

Note that the goal of PAS is to minimize �2
i (recall

Theorem 2), implying that PAS minimizes

Xm
‘¼1

�‘ �Nkðaib‘Þ
" #2

:

While the next tuple containing aibj arrives, minimizing

Xm
‘¼1;‘6¼1

�‘ �Nkðaib‘Þ
 !

þ �j �NkðaibjÞ
" #2

leads to minimize �2
j since

Pm
‘¼1;‘6¼1 �‘ �Nkðaib‘Þ

� �
and

NkðaibjÞ cannot be minimized at the time. Note that the

proof can be easily extended to analyze the multivariate

statistic with more than two variables. As such, we prove

that the relative proportion inconsistency of multivariate

statistics can be minimized by PAS. tu
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