
MULS: A General Framework of Providing
Multilevel Service Quality in Sequential

Data Broadcasting
Hao-Ping Hung and Ming-Syan Chen, Fellow, IEEE

Abstract—In recent years, data broadcasting has become a promising technique to design a mobile information system with power

conservation, high scalability, and high bandwidth utilization. In many applications, the query issued by a mobile client corresponds to

multiple items that should be accessed in a sequential order. In this paper, we study the scheduling approach in such a sequential data

broadcasting environment. Explicitly, we propose a general framework referred to as MULS (standing for MUltiLevel Service) for an

information system. There are two primary stages in MULS: online scheduling (OLS) and optimization procedure. In the first stage, we

propose an OLS algorithm to allocate the data items into multiple channels. As for the second stage, we devise an optimization

procedure, called Sampling with Controlled Iteration (SCI), to enhance the quality of broadcast programs generated by algorithm OLS.

Procedure SCI is able to strike a compromise between effectiveness and efficiency by tuning the control parameters. According to the

experimental results, we show that algorithm OLS with procedure SCI outperforms the approaches in prior works prominently in both

effectiveness (that is, the average access time of mobile users) and efficiency (that is, the complexity of the scheduling algorithm).

Therefore, by cooperating algorithm OLS with procedure SCI, the proposed MULS framework is able to generate broadcast programs

with the flexibility of providing different service qualities under different requirements of effectiveness and efficiency: in the dynamic

environment in which the access patterns and information contents change rapidly, the parameters used in SCI will perform OLS with

satisfactory service quality. As for the static environment in which the query profile and the database are updated infrequently, larger

values of parameters are helpful to generate an optimized broadcast program, indicating the advantageous feature of MULS.

Index Terms—Mobile computing, sequential data broadcasting, ordered dependency, multilevel service quality, data broadcasting.

Ç

1 INTRODUCTION

AMONG various aspects in mobile computing technol-
ogies, data broadcasting has received the most

attention in prior research. The broadcasting technique
is a scalable way to disseminate the data such as stock
prices, weather forecast, and traffic information from an
information system to interested mobile clients. The
physical bandwidth is partitioned into several logical
channels. The server generates a broadcast program and
broadcasts data items periodically. To retrieve the data on
the air, mobile users should wait until items of interest
appear in the channel. Such a technique is proposed in
[2] and extended by Peng and Chen [25], Hsu et al. [11],
Yee et al. [28], and so forth. Several advanced research
topics such as the variant-bandwidth environment [29]
and broadcasting heterogeneous items [14], [29] are
discussed. Also, the concept of on-demand broadcasting
is proposed in [5], [7] to dynamically disseminate the
items without collecting the access patterns a priori.

Under many circumstances in a data broadcasting
environment, a mobile user may be interested in multiple
items simultaneously. For example, a mobile user interested
in the stock information of one company may also request
for the information of another relevant company. Therefore,
the data items in a query (that is, the request sent from
clients to the server for information services) are considered
dependent on one another. To generate a broadcast program
in such a dependent data broadcasting environment, the server
should allocate the data items into single or multiple
channels by collecting the query profile (that is, a table
storing the dependency among the items for each query
items) and the access probabilities. To provide better
scheduling policies, a significant amount of research effort
has been elaborated upon this aspect [9], [17], [19], [22], [26].

However, most of the prior works in dependent data
broadcasting are based on an assumption that mobile users
can access the items of interest in an arbitrary order. In fact,
for many applications in the dependent data broadcasting
environment, the data items should be accessed in a
sequential order. For example, in the comics-by-phone
services provided by Sony [1], a mobile user can read the
comics in his/her mobile device. It is noted that each frame of
the comics should be retrieved sequentially. As mentioned in
[27], the SQL query sent by mobile users corresponds to a set
of items with ordered dependency. Moreover, in [13], when
hypertext objects are broadcast, since each object may
contain text, graphics, video, and audio simultaneously, a
request to one object will be transformed to a sequence of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007 1433

. H.-P. Hung is with the Graduate Institute of Communication Engineering,
National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei,
Taiwan, ROC. E-mail: hphung@arbor.ee.ntu.edu.tw.

. M.-S. Chen is with the Department of Electrical Engineering and the
Graduate Institute of Communication Engineering, National Taiwan
University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan, ROC.
E-mail: mschen@cc.ee.ntu.edu.tw.

Manuscript received 24 Mar. 2006; revised 17 Aug. 2006; accepted 9 Apr.
2007; published online 25 May 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0135-0306.
Digital Object Identifier no. 10.1109/TKDE.2007.1067.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

subqueries. Therefore, these subqueries are also with
ordered dependency. We discuss in this paper the schedul-
ing algorithms of broadcasting items with ordered dependency.
For simplicity, we use the term sequential data broadcasting to
mean data broadcasting with ordered dependency.

1.1 Problem Formulation

The architecture of an information system for sequential data
broadcasting is depicted in Fig. 1. Each query corresponds to
a sequence of items. All of the queries are collected in the
query profile at the server side. With the query profile and
the database as the input, the information system will
generate a broadcast program and broadcast the items
periodically.1 Due to the effect of periodicity, each item will
appear repeatedly on the air. To identify the order of
appearance, the items that appear simultaneously are
conceptually located in the same placement of the broadcast
program. The placement of a data item is defined as the
identifier of the relative time slot at which this item is
broadcast. When the server disseminates the items, the
index structure will also be broadcast simultaneously. The
index structure [8], [16] lies between time slots of broad-
casting two consecutive items.2 Once the index structure is
downloaded, the client will be aware of the channel and the
placement of each item. Therefore, he or she can switch
from one channel to another to download all the items of
interest. Moreover, to save the power of listening to the
channel, if no item of interest is broadcast at a specific time
slot, the client will enter doze mode until the next item of
interest is broadcast.

To retrieve the items, a mobile user should wait until all
the items of interest are downloaded sequentially. Since the

items are broadcast via multiple channels, it is possible that
more than one item of interest appears in different channels
simultaneously. As shown in Fig. 1, since d3 and d6 are
located in the same placement, they appear in different
channels simultaneously. It is noted that the conventional
data broadcasting schemes are based on the assumption that
the data items are independent to each other. Therefore, the
scheduling policy is only based on access probability.
However, in sequential data broadcasting environments, in
addition to access probabilities, the dependencies should be
taken into account. For example, for mobile users issuing the
query q3, they should wait for one more cycle to retrieve d6

after d3 is downloaded. How to avoid these situations
becomes an important issue in the sequential data broad-
casting environments. By taking the features mentioned
above into account, we should generate the broadcast
program sophisticatedly so as to minimize the average
access time of mobile users.

Theorem 1. The problem of broadcasting data items with
sequential relationship via multiple channels is NP-hard.

Proof. We first introduce a similar problem of index
allocation introduced in [21]. Consider an index tree
structure in which the internal nodes I ¼ fI1; I2; . . . ; Img
are viewed as the index nodes, whereas the leaf nodes
D ¼ fD1; D2; . . . ; Dng are viewed as the data nodes.
When the index nodes and data nodes are broadcast via
K channels, the data node should be received before all
the index nodes are traversed from the root to the leaf. If
the index nodes and the data nodes are allocated to the
broadcast program, the quality of the broadcast program
can be evaluated by

wait ¼
P

Di2DW ðDiÞT ðDiÞP
Di2DWðDiÞ

;

where WðDiÞ represents the weighting factor at each
data node, and T ðDiÞ denotes the offset in terms of time
slots between the root node and the leaf node in the
broadcast program. The index allocation problem is to
find a broadcast program in such a way that the value of
wait can be minimized. Note that this problem has been
proved to be NP-hard in [21].

In our sequential data broadcasting problem, we aim
at minimizing the average waiting time according to the
sequential relationship in the query profile. Consider a
special case in which the sequential relationship of the
data items in the query profile forms a tree structure,3

that is, all of the queries have some prefix items in
common. Under this circumstance, our sequential data
broadcasting problem can be reduced to the index
allocation problem. Therefore, the problem of sequential
data broadcasting can also be viewed as an NP-hard
problem. tu

1.2 Our Solution

We propose in this paper a general framework of the
scheduler named MULS (standing for MUltiLevel Service)
for an information system to provide multilevel service

1434 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007

1. Although on-demand broadcasting is also a practical solution to
disseminating data, under several circumstances (for example, low-power
status), the users would like to receive the data from periodically
broadcasting channels without sending the requests. Therefore, we consider
in this paper a general environment that the data items are broadcast
periodically.

2. Typically, an index structure can be viewed as a list in which each
element is a mapping from the item identifier to the channel identifier. The
length of the list is equal to the number of broadcast items. Note that this list
can also be divided into several sublists, which are broadcast between
different time slots so as to reduce the traffic load in the channel. If the effect
of index broadcasting is considered, the average access time will be offset
by a small value since the size of identifier is much smaller than that of item
content.

Fig. 1. The architecture of the information system for sequential data

broadcasting.

3. In fact, the sequential relationship in a general query profile may form
any directed graph.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

quality in the sequential data broadcasting environment. MULS
contains two primary stages. The first stage is the online
scheduling (OLS), whereas the second stage is the optimiza-
tion procedure. In the first stage, we propose an OLS
algorithm to allocate the data items into multiple channels.
As for the second stage, we devise an optimization
procedure, called Sampling with Controlled Iteration (SCI),
to enhance the quality of broadcast programs generated by
algorithm OLS. By tuning the control parameters of
procedure SCI, the MULS framework is able to provide
different service qualities by compromising the effectiveness
and efficiency in different dissemination environments.

Explicitly, with the database and the query profile as the
input, the MULS framework can first efficiently generate a
broadcast program with satisfactory quality using algo-
rithm OLS. Algorithm OLS is designed from the viewpoint
of placement. Given two consecutive items in a query,
algorithm OLS will schedule the data in either forward
direction or backward direction so that the distance from the
placement of one item to that of the other is minimized.
Physically, in a specific broadcast program, the distance
represents the number of items that a mobile user has to
probe before the next item of interest appears on the air.
Therefore, the time that a mobile user spends probing the
items should be in proportion to the amount of distance.
Algorithm OLS is very efficient in performing OLS by
updating the broadcast program dynamically.

In order to optimize the broadcast program generated by
algorithm OLS, we devise procedure SCI in the MULS
framework to enhance the quality and provide flexibility.
We first propose procedure BASIC for optimization, which
will be used for comparison purposes with SCI. Procedure
BASIC can be executed iteratively. In each iteration, BASIC
searches all possible exchanging operations of two items
located in different placements and determines the best
choice. At the end of the iteration, the broadcast program
will be updated according to the best exchanging operation.
Procedure BASIC continues until the local optimum is
reached, where no exchanging operation causes the reduc-
tion of the average access time. Based on the concept of
procedure BASIC, three variants, that is, sample-based
optimization (SAMPLE), iteration-based optimization
(ITERATION), and SCI, can be used to enhance the overall
flexibility. Instead of inspecting all possible exchanging
operations, procedure SAMPLE, only selects a predeter-
mined number of samples to reduce the average access
time. It is noted that SAMPLE can also reach the local
optimum. On the other hand, ITERATION is a parameter-
ized algorithm extended from BASIC. With a parameter
controlling the number of iterations, procedure ITERA-
TION can provide a significant enhancement. The final
procedure SCI, which integrates the advantageous features
of SAMPLE and ITERATION, is designed to attain the
flexibility required in various environments.

In fact, the broadcast program generated by the MULS
framework can be compatible with the conventional
dependent data broadcasting environment in which the
items are retrieved in an arbitrary order since the sequential
data broadcasting environment has stricter scheduling
rules. In order to validate the proposed MULS framework,

several experiments are conducted. The experimental
results show that algorithm OLS outperforms the conven-
tional approaches and achieves satisfactory quality, and the
proposed optimization procedures can further enhance the
broadcast program significantly. Moreover, from the per-
formance analysis among all optimization procedures, SCI
is shown to be the most scalable so that it can still perform
well for broadcasting a large-scale database. Therefore, to
provide multilevel service quality for different require-
ments, the MULS framework, which combines the benefits
of OLS and SCI, emerges as a general and powerful
framework. In the dynamic environment in which the
access patterns and information contents change rapidly,
the information system should regenerate the broadcast
program frequently once the current broadcast program
cannot satisfy the requirements of mobile users. Under this
circumstance, the parameters x and y used in SCI can be
tuned small for OLS. As for the static environment in which
the query profile and the database are updated infre-
quently, the broadcast program will remain the same over
time. Larger values of x and y are helpful to generate an
offline broadcast program, which indicates the advanta-
geous feature of MULS.

1.3 Outline

The rest of this paper is outlined as follows: In Section 2,
preliminaries will be given. In Section 3, we will present the
design of the MULS framework. The experimental results
will be shown in Section 4 and, finally, this paper concludes
in Section 5.

2 PRELIMINARIES

2.1 Related Works

In the dependent data broadcasting environment, unlike the
conventional data broadcasting, the information system is
able to deal with the queries that may contain multiple
items simultaneously. There is no restriction on the order of
downloading the dependent data. To schedule the items,
several algorithms are also developed. Chung and Kim [9],
[10] used the QueryDistance to measure the degree of
coherence for the data set accessed by a query. Physically,
the QueryDistance represents the minimal number of items
that a user should probe since the first item of interest is
accessed until the last item is downloaded. The Query
Expansion Method (QEM) algorithm can be viewed as a
greedy algorithm since it will choose the most profitable
position to append the items in a query. According to Chung
and Kim’s analytical model, Lee and Lo [19] enhanced the
performance of algorithm QEM by loosening the restric-
tions in [9], [10]. The major contributions of Lee and Lo’s
work [19] are listed as follows: 1) The query selection problem
(that is, choosing the most profitable queries to broadcast) is
proved to be NP-hard. 2) An extended algorithm named
Modified Query Expansion Method (MQEM) is proposed to
enhance algorithm QEM. 3) A new data-oriented approach to
compete with MQEM was designed according to the data
access graph, which is an undirected graph to identify the
dependent relationship among the data items in different
queries. Recently, Hung et al. [15] also proposed a greedy
algorithm, Placement-Based Allocation (PBA), in schedul-
ing dependent items via multiple channels. Algorithm PBA

HUNG AND CHEN: MULS: A GENERAL FRAMEWORK OF PROVIDING MULTILEVEL SERVICE QUALITY IN SEQUENTIAL DATA... 1435

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

generates a broadcast program from the viewpoint of the
placement. Since each query may contain multiple items in a
dependent data broadcasting environment, the scheduling
policy of PBA is to avoid the occurrence of conflicting items,
defined as the situation that multiple items in a query are
located in the same placement. Moreover, algorithm PBA
allows the query with higher access probability to have a
higher priority to schedule its items. Such provision can
effectively reduce the impact of conflicting items.

In sequential data broadcasting, also known as broad-
casting with ordered dependency, the access to items should
follow a sequential order. In [12], Hu and Chen addressed
the issue of scheduling sequential items in an infinite time
horizon via a single channel and transformed the scheduling
problem as a problem of finding a solution in solving the
algebraic problem. As for broadcasting sequential items via
multiple channels, in [13], Huang and Chen formulated the
analytical model for sequential data broadcasting and pro-
posed a solution, which is based on the genetic algorithm
(GA). Initially, a set of broadcast programs are generated
randomly and encoded as chromosomes. Each chromosome
contains a numerical attribute called fitness. The larger value
of fitness indicates that the corresponding broadcast
program can achieve the shorter average access time. In
each generation, the chromosomes evolve via several
operations such as crossover and mutation. The evolution
procedure continues until either all chromosomes in the
population have the same performance or a predetermined
bound that restricts the number of generations is reached.
Recently, in [20], Liu and Lin claimed that the sequential
relationship of items throughout the query profile can be
modeled as a directed graph and proposed two algorithms:
Revised Topological Sort (RTS) and Minimum Offset
Algorithm (MOA). Algorithm RTS assigns a higher schedul-
ing priority to the edge with a higher aggregated weight. On
the other hand, algorithm MOS schedules the items based on
two steps: 1) assigning level and 2) partitioning with
minimum offset. In step 1, each vertex corresponding to a
broadcast item will be assigned a level number according to
the sequential relationship. In step 2, the final placement of
an item will be determined according to the level number of
the corresponding vertex.

2.2 Analytical Models of Sequential Data
Broadcasting

Without loss of generality, we consider that the database D
with size jDj ¼ N contains all the data items that mobile

clients may query.4 Let the query profile Q represent the

collection of all distinct queries that mobile users may issue.

Each query qi 2 Q is regarded as a request for multiple

items that should be retrieved in a sequential order. Given

the fixed number of channels K, all the items in D are

distributed evenly into K channels in a broadcast program.

Therefore, each channel has the same broadcast cycle L.

That is, L ¼ N
K

� �
. L is also viewed as the number of

placements in the broadcast program. For each di 2 D, its

placement is denoted by pi. Table 1 lists the related symbols

and the corresponding descriptions. Moreover, Table 2 also

lists the acronyms throughout this paper. To facilitate the

description of the MULS framework, we employ the same

notation and definitions as in [13].

Definition 1. Consider two consecutive items di and dj in a

specific query. To measure the waiting time of downloading the

two items in a broadcast program, the function dstði; jÞ is

defined as the distance from the placement of di to the

placement of dj. That is,

dstði; jÞ ¼
pj � pi � 1; if i 6¼ j and pj > pi;
L� pi þ pj � 1; if i 6¼ j and pj � pi;
0 if i ¼ j:

8<
:

Definition 2. The average access time of a query qi, denoted by

TAðqiÞ, is defined as the average time that a mobile user should

spend accessing all the items in query qi.

Note that TAðqiÞ can be decomposed into three parts:

the start-up time, the waiting time, and the retrieval time.

The start-up time TSðqiÞ represents the duration since a

mobile user issues query qi until the first item of interest

appears in one of the channels. The waiting time TW ðqiÞ is

defined as the summation of the time intervals between

the moment that the mobile user completes the retrieval

of the current item in qi and the moment that the mobile

device starts to retrieve the next item in qi. TW ðqiÞ can be

viewed as the aggregated time of probing the items,

which reflect the waiting time of probing until the item of

interest appears. The retrieval time TRðqiÞ is the aggre-

gated time, whereas the mobile device indeed reads data

items from broadcast channels. Therefore, TAðqiÞ can be

formulated as TAðqiÞ ¼ TSðqiÞ þ TW ðqiÞ þ TRðqiÞ, where

1436 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007

TABLE 1
Description of the Symbols

TABLE 2
Description of the Acronyms

4. In a large-scale dissemination system, the items that mobile users are
interested in may not be immediately available. Such a data-staging problem
can be resolved according to the approaches proposed in [6].

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

TSðqiÞ ¼ L

2
� s

B
; TRðqiÞ ¼ jqij �

s

B
;

TW ðqiÞ ¼
Xjqij�1

k¼1

dstðqiðkÞ; qiðkþ 1ÞÞ
" #

� s

B
:

Note that qiðkÞ identifies the kth item in qi; s and B

denote the item size and channel bandwidth, respectively.5

Definition 3. Let PrðqiÞ represent the access probability of the

query qi. The average access time of a query profileQ, denoted by

TAðQÞ, is defined as the average time that a mobile user should

spend accessing a query in Q. TAðQÞ can be formulated as

TAðQÞ

¼
XjQj
i¼1

½TAðqiÞ � PrðqiÞ�

¼
XjQj
i¼1

TSðqiÞPrðqiÞ þ
XjQj
i¼1

TW ðqiÞPrðqiÞ þ
XjQj
i¼1

TRðqiÞPrðqiÞ:

ð1Þ

If we define

TSðQÞ ¼
XjQj
i¼1

TSðqiÞPrðqiÞ;

TRðQÞ ¼
XjQj
i¼1

TRðqiÞPrðqiÞ; and

TW ðQÞ ¼
XjQj
i¼1

TW ðqiÞPrðqiÞ;

(1) can be rewritten as

TAðQÞ ¼ TSðQÞ þ TRðQÞ þ TW ðQÞ; ð2Þ

where

TSðQÞ ¼ L

2
� s

B
; TRðQÞ ¼

XjQj
i¼1

jqij � PrðqiÞ
()

� s

B
;

TW ðQÞ ¼
XjQj
i¼1

Xjqij�1

j¼1

½dstðqiðjÞ; qiðjþ 1ÞÞ � PrðqiÞ� �
s

B
:

ð3Þ

Definition 4. An auxiliary table (referred to as table a) of a query

profile Q is a jDj by jDj array, where each entry aðx; yÞ is

defined as

XjQj
i¼1

½number of occurrences of the pair ðdx ! dyÞ in qi�

� PrðqiÞ:

With the table a of the query profile Q, TW ðQÞ can further
be rewritten as

TW ðQÞ ¼
XjDj
j¼1

XjDj
k¼1

½aðj; kÞ � dstðj; kÞ� � s

B
: ð4Þ

3 DESIGN OF THE MULS FRAMEWORK FOR

MULTILEVEL SERVICE QUALITY

In this section, we will present the design of the MULS
framework. In Section 3.1, an overview of the MULS
framework will be given. In Section 3.2, an OLS algorithm
will be proposed. We will describe the optimization
procedure SCI in Section 3.3. Finally, several implementa-
tion issues will be discussed in Section 3.4.

3.1 Overview

Fig. 2 depicts the architecture of the proposed MULS
framework for multilevel service quality in the sequential
data broadcasting environment. The framework of the
scheduler contains two primary stages. With the database
and the query profile as the input,6 the first stage can
efficiently generate a broadcast program with satisfactory
quality. After that, the broadcast program will be optimized
in the second stage. The optimization procedure allows
single or multiple parameters to strike a compromise
between effectiveness and efficiency. The information
system can thus provide multiple levels of service quality
by tuning the control parameters. In the MULS framework,
there are two primary factors: x and y. The value of x, which
determines the number of samples, depends on the
capability of the information system. Usually when the
information system has high computing power, we will use
a larger x to enhance the service quality. On the other hand,
the value of y, which determines the number of iterations,
depends on the dynamics in the access patterns. In the
dynamic environment, in which the distribution of access
patterns varies rapidly, we will use a smaller y to speed up
the update frequency of the broadcast program.

3.2 Online Scheduling

The OLS algorithm is designed in such a way that all the
data items in D can be effectively allocated in the broadcast
program within an almost linear complexity. To achieve
this goal, we design algorithm OLS. The algorithmic form of
algorithm OLS and the relevant functions are outlined in
Fig. 3 and Fig. 4, respectively.

HUNG AND CHEN: MULS: A GENERAL FRAMEWORK OF PROVIDING MULTILEVEL SERVICE QUALITY IN SEQUENTIAL DATA... 1437

5. We focus in this paper on improving the service quality of the existing
approach based on the assumption of constant bandwidth. However, our
work (that is, the proposed scheduling algorithms) can also be suitable for
the model of variant bandwidth. It is recognized that in a real mobile
computing environment, the bandwidth is likely to be shared among all
available channels. In [29], the authors derive the analytical model of
broadcasting nonsequential items in a variant-bandwidth environment. To
broadcast sequential items in a variant-bandwidth environment, the
analytical model and the MULS framework can be extended from [29].

6. The query profile and the broadcast database may change dynami-
cally. The query profile will be updated once a new query is received.
Moreover, a sliding window will be employed so as to maintain the most
recent access patterns of mobile clients.

Fig. 2. Architecture of the MULS framework.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

According to (2), we observe that TSðQÞ and TRðQÞ are
irrelevant to the broadcast program generation since B and
s are constants and L, jqij, and PrðqiÞ are determined
regardless of the scheduling policy. That is, the quality of a
broadcast program only influences the amount of TW ðQÞ.
Therefore, given a query qi, algorithm OLS aims to
minimize TW ðQÞ by reducing the distance between qiðjÞ
and qiðjþ 1Þ for each j < jqij. There are two basic intuitions
in algorithm OLS: 1) the items appearing in popular queries
deserve a higher priority to be scheduled, and 2) the items
with a higher priority have better chances to minimize the
distance. To schedule the items in D, a broadcast program
P , which contains L empty sets fDl; 1 � l � Lg, is first
created. Note that each set Dl corresponds to the items
located in placement l. The scheduling procedure can be
viewed as filling all items into L sets in such a way that each
set should contain no more than K items. When the items in
each query qi are processed, we use dqiðjÞ and dqiðjþ1Þ to
identify the jth and the ðjþ 1Þth item in qi. According to the
status of dqiðjÞ and dqiðjþ1Þ, there are three scenarios for
algorithm OLS to allocate dqiðjÞ and dqiðjþ1Þ into P :

1. dqiðjÞ is scheduled, but dqiðjþ1Þ is unscheduled. We
devise a procedure FSchedule, standing for forward
scheduling, to determine the placement where dqiðjþ1Þ
should be put according to the placement of dqiðjÞ.

2. dqiðjÞ is unscheduled, but dqiðjþ1Þ is scheduled. We use
procedure BSchedule, standing for backward schedul-
ing, to determine the item set in which dqiðjÞ should
be put according to the placement of dqiðjþ1Þ.

3. Both dqiðjÞ and dqiðjþ1Þ are unscheduled. We use
procedure FBSchedule. The item dqiðjÞ will be put in
the set with fewest items. After that, we use
procedure FSchedule to determine the placement
of dqiðjþ1Þ. In FBSchedule, exchanging the scheduling
order of dðjÞ and dðjþ 1Þ will not affect the access
time of the current query. However, it may change
the access time of the successive queries that contain
dðjÞ or dðjþ 1Þ. Since algorithm OLS is greedy in
nature and should be executed within almost linear
time, we will ignore the effect of successive queries.

During the execution of algorithm OLS, we employ three
procedures FSchedule, BSchedule, and FBSchedule to

allocate an item into a placement so as to minimize the

distance between two consecutive items in a query. Since

FBSchedule is based on FSchedule. We only discuss

FSchedule and BSchedule. Given two consecutive items

di ! dj, FSchedule (respectively, BSchedule) will put dj
(respectively, di) in a legal placement so that dstði; jÞ is

minimized. Note that a placement l is legal iff jDlj < K. For

popular queries, the items have better chances to be

scheduled in the placement where dstði; jÞ is minimized.

On the other hand, when the items of unpopular queries are

processed, the placement with the minimum dstði; jÞ may

conflict with legality. The two procedures will put the items

into inferior but legal placements.

Lemma 1. The complexity of algorithm OLS is OðjQj log jQjÞ þ
OðN logNÞ when N data items should be scheduled.

Proof.

1. Initially, it costs OðjQj log jQjÞ to sort the queries
according to the access probabilities.

2. Next, consider the cost of scanning. Since the
scheduler does not allow each data item to appear
more than once in the broadcast program, the
items already existing in the broadcast program
will be skipped during the scan. Therefore, the
complexity of scanning the broadcast profile will
be OðNÞ.

3. To allocate each item, we consider FBSchedule,

which causes the highest complexity in schedul-

ing the items. Before all the items are scheduled,

we can build a heap to store all the placements.

The placements are sorted according to the

number of items contained. When FBSchedule

is executed, the heap will return the placement in

the front for allocating the items. After that, it

costs OðlogLÞ to update the heap. Since L ¼ N=K,

it costs OðlogNÞ to allocate each item.

1438 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007

Fig. 3. Algorithm OLS.

Fig. 4. Relevant functions in algorithm OLS.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

4. According to items 1, 2, and 3 of this proof,

Lemma 1 can thus be proved. tu

Lemma 2. Algorithm OLS is ðjQj � 1Þ-competitive compared to
the optimal solution.

Proof. We consider the worst case in which the access

probability of each query is the same (that is, PrðqiÞ ¼ 1
jQj

for 1 � i � jQj), and K ¼ 1. Moreover, in the worst case,

we have q1 ¼ fd1 ! d2 ! d3 ! . . .! dNg and qi ¼ fdN !
dN�1 ! dN�2 ! . . .! d1g for 2 � i � jQj.7 The broadcast

program generated by algorithm OLS, denoted by POLS ,

will be POLS ¼ ffd1g; fd2g; fd3g; . . . ; fdNgg, whereas the

optimal broadcast program, denoted by POPT , will be

POLS ¼ ffdNg; fdN�1g; fdN�2g; . . . ; fd1gg. Note that opti-

mal broadcasting refers to the broadcast program that

leads to the minimum average access time among all

possibilities for this profile. To evaluate the quality of the

broadcast program, we only consider TW ðQÞ, since TAðQÞ
and TSðQÞ remain the same regardless of the broadcast

programs. Let T
ðOLSÞ
W and T

ðOPT Þ
W be the average waiting

time of the broadcast program generated by algorithm

OLS and the optimal broadcast program, respectively.

According to (3), T
ðOLSÞ
W and T

ðOPT Þ
W can be formulated as

T
ðOLSÞ
W ¼ 0þ ðjQj � 1Þ � ðN � 2Þ � 1

jQj �
s

B
;

T
ðOPT Þ
W ¼ ðjDj � 2Þ � 1

jQj �
s

B
þ ðjQj � 1Þ � 0:

In the worst case, we can obtain

T
ðOLSÞ
W =T

ðOPT Þ
W ¼ ðjQj � 1Þ:

Therefore, algorithm OLS is ðjQj � 1Þ-competitive com-
pared to the optimal solution. tu
We can simply compare algorithm OLS to the conven-

tional RTS [20] approach in this worst case. It is noted that
in algorithm RTS, the sequential pattern x� > y can be
viewed as the edge from x to y, and the weight of this edge
can be obtained by aggregating the occurrence probability
of x� > y in the query profile. When RTS is executed, all of
the edges will be sorted according to the weight. The edge
with a higher weight will have a higher priority to be
processed. Compared to algorithm OLS, since at most
N2 edges have been sorted, the complexity of RTS will be at
least OðN2 logNÞ, which is larger than the scheduling cost
of algorithm OLS. As for the quality of the broadcast
program, as will be shown in the experimental results, in
general data broadcasting environments in the presence of
highly skewed access patterns, algorithm OLS will have a
better performance than RTS.

Example 1. An execution scenario of algorithm OLS is
presented in Fig. 5. The query profile is shown in Fig. 5a.
Consider eight queries sorted according to the access
probability in descending order. Algorithm OLS will
generate a broadcast program to schedule 12 data items
into three channels. Initially, OLS generates an empty
broadcast program with cycle length L ¼ 4. Thus, we use
1 � 4 to label the placements. The notation Dl, 1 � l � 4,
is used to represent the set of items put in the
lth placement. Since q1 has the highest access probability,
the items in q1 have the highest priority to be scheduled.
During the execution of algorithm OLS, we use the
subscripts to identify which scheduling scheme is
employed. Moreover, the numbers in brackets will
indicate the order of scheduling items. Fig. 5b shows
the result of scheduling items in q1. Each item is
scheduled so that dstði; jÞ for each di, dj in q1 can be

HUNG AND CHEN: MULS: A GENERAL FRAMEWORK OF PROVIDING MULTILEVEL SERVICE QUALITY IN SEQUENTIAL DATA... 1439

Fig. 5. Example of algorithm OLS. (a) Query profile of the example. (b) Scheduling items in q1. (c) Scheduling items in q2. (d) Scheduling items in q5.

(e) Scheduling items in q6. (f) Scheduling items in q7. (g) Broadcast program of OLS.

7. It is noted that in our OLS algorithm, the query with the highest access
probability will have the highest priority to be processed. Therefore, in the
worst case, the priorities of the queries are ambiguous, that is, each query
has the same access probability. Moreover, in the worst case, the scheduling
result of a query will be the inverse of its sequential relationship. Therefore,
our example is the worst case of scheduling N items in jQj queries.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

minimized. To determine the placement in which the
first item d6 should be put, algorithm OLS will select the
placement corresponding to the set with fewest items.
Note that only the procedure FSchedule is used when
the items in q1 are scheduled. In Fig. 5c, the items in q2

are put in the broadcast program P according to the
scheduling result in Fig. 5b. Note that the procedure
BSchedule is executed to determine the placement of d3

since its next queried item, d6, appears in D1. As shown
in Fig. 5e, when algorithm OLS proceeds to determine
the placement of d1, procedure BSchedule only selects a
legal placement, that is, placement 3, since the best
placement, that is, placement 4, is occupied with three
items. Once all the data items are scheduled, as shown in
Fig. 5f, algorithm OLS will complete the scheduling
procedure and return the broadcast program P , as
shown in Fig. 5g.

3.3 Sampling with Controlled Iteration

Although algorithm OLS can be executed very efficiently, it
only achieves a satisfactory but not optimal solution. The
reason is explained as follows: When algorithm OLS tries to
determine the placement of a specific item, the most
popular query containing the item is considered and the
effect of other unpopular queries is neglected. To optimize
the broadcast program generated by algorithm OLS, we
should take the effect contributed by all queries into
account. The following theorem and corollaries are listed
to facilitate the description.

Definition 5. The operator �	 is defined as the modulus
operator, indicating that x�	 y ¼ x� ny, where n is the floor
value of x=y if y 6¼ 0. For example, 6�	 5 ¼ 1; ð�1Þ�	 5 ¼ 4.8

Lemma 3. dstði; jÞ ¼ �½ðpi � pjÞ�	 L� þ L� 1 for i 6¼ j.
Proof. First, consider pj > pi. We have

dstði; jÞ ¼ pj � pi � 1

¼ � ðpi � pj þ LÞ þ L� 1

¼ � ½ðpi � pjÞ�	 L� þ L� 1:

As for pj � pi, we have

dstði; jÞ ¼ pj � pi þ L� 1

¼ � ðpi � pjÞ þ L� 1

¼ � ½ðpi � pjÞ�	 L� þ L� 1:

tu
Corollary 3.1.

dstði1; j1Þ � dstði2; j2Þ ¼ ðpi2 � pj2
Þ�	 L� ðpi1 � pj1Þ�	 L:

Corollary 3.2. dstði; jÞ � dstðj; iÞ ¼ 2½ðpj � piÞ�	 L� � L for
pi 6¼ pj.

As presented in Section 3.2, the quality of a broadcast
program only influences the amount of TW ðQÞ. In (4), since
s and B are constants, we use a cost function to simplify
TW ðQÞ. The cost is defined as C ¼

PjDj
i¼1

PjDj
j¼1 aði; jÞdstði; jÞ.

Next, we consider the cost reduction of exchanging two

items in different placements. The cost before exchanging
the placements of two items du and dv, denoted by CBðu; vÞ,
is formulated as follows:

CBðu; vÞ

¼
XjDj
i¼1

XjDj
j¼1

aði; jÞdstði; jÞ

¼
XjDj
i¼1
i 6¼u;v

XjDj
j¼1;
j 6¼u;v

aði; jÞdstði; jÞ þ
XjDj
j¼1;
j 6¼u;v

aðu; jÞdstðu; jÞ þ

XjDj
j¼1;
j 6¼u;v

aðv; jÞdstðv; jÞ þ
XjDj
i¼1;
i 6¼u;v

aði; uÞdstði; uÞ þ

XjDj
i¼1;
i 6¼u;v

aði; vÞdstði; vÞ þ aðu; vÞdstðu; vÞ þ aðv; uÞdstðv; uÞ:

ð5Þ

We also formulate CAðu; vÞ, that is, the cost after
exchanging the placements of du and dv, as

CAðu; vÞ

¼
XjDj
i¼1;
i 6¼u;v

XjDj
j¼1;
j 6¼u;v

aði; jÞdstði; jÞ þ
XjDj
j¼1;
j 6¼u;v

aðu; jÞdstðv; jÞ þ

XjDj
j¼1;
j 6¼u;v

aðv; jÞdstðu; jÞ þ
XjDj
i¼1;
j 6¼u;v

aði; uÞdstði; vÞ þ

XjDj
i¼1;
j 6¼u;v

aði; vÞdstði; uÞ þ aðu; vÞdstðv; uÞ þ aðv; uÞdstðu; vÞ:

ð6Þ

Defining the cost reduction �Cðu; vÞ as

�Cðu; vÞ ¼ CB � CA;

we can derive the cost reduction according to (5) and (6):

�Cðu; vÞ

¼
XjDj

j¼1;j6¼u;v
aðu; jÞ½ðpv � pjÞ�	 L� ðpu � pjÞ�	 L� þ

XjDj
j¼1;j6¼u;v

aðv; jÞ½ðpu � pjÞ�	 L� ðpv � pjÞ�	 L� þ

XjDj
i¼1;j6¼u;v

aði; uÞ½ðpi � pvÞ�	 L� ðpi � puÞ�	 L� þ

XjDj
i¼1;i6¼u;v

aði; vÞ½ðpi � puÞ�	 L� ðpi � pvÞ�	 L� þ

aðu; vÞf2½ðpv � puÞ�	 L� � Lg þ
aðv; uÞf2½ðpu � pvÞ�	 L� � Lg:

ð7Þ

To obtain the cost reduction of an exchanging operation,
an exhaustive way is to calculate CBðu; vÞ and CAðu; vÞ by
definition. This approach requires OðN2Þ complexity. Since
there are redundant calculations in the exhaustive approach,

1440 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007

8. The modulus definition in this paper is different from the operator %
in C and Java language but the same as the function modðx; yÞ in Matlab.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

we reduce the complexity by reformulating �Cðu; vÞ. As
shown in (7), the nested summation is decomposed into
exactly four simple summations. Therefore, it only requires
OðNÞ to derive the cost reduction after the reformulation.

According to the cost reduction of exchanging two
items in different placements, we first design procedure
BASIC to optimize the broadcast program generated by
algorithm OLS. The algorithmic form of procedure BASIC
is outlined in Fig. 6a. Procedure BASIC will be executed
iteratively. In each iteration, it will reduce the cost as
much as possible. More specifically, procedure BASIC
aims to find out the best exchanging operation that
achieves the maximum cost reduction. To achieve the
maximum cost reduction, procedure BASIC will search
the exchanging operations of any two items. If the two
items i1 and i2 are located in different placements, the
cost reduction �Cði1; i2Þ will be calculated according to
(7). Notice that algorithm BASIC also allows more than
two items to exchange their positions. However, calculat-
ing the cost reduction of exchanging more than two items
requires much higher complexity. It is thus inefficient and
impractical for procedure BASIC to exchange more than
two items. At the end of the iteration, the exchanging
operation with the maximum cost reduction will be
chosen to update the broadcast program. In the next
iteration, the updated broadcast program will be con-
sidered. Procedure BASIC continues until the local optimal
state is reached, where no exchanging operation can
result in the cost reduction. In each iteration, the
searching complexity is OðN2Þ, whereas the complexity
of calculating the cost reduction is OðNÞ. It requires
OðN3Þ complexity to determine the exchanging operation
with the maximum cost reduction.

In order to enhance the flexibility of procedure BASIC,
we design two extended procedures from BASIC. The first
procedure, SAMPLE, is designed to achieve the local
optimum more efficiently with a control parameter x. The
algorithmic form of procedure SAMPLE is outlined in
Fig. 6b. Unlike procedure BASIC, which examines all
possible exchanging operations, procedure SAMPLE only
examines part of them. In each iteration, procedure
SAMPLE first creates a set S, which stores all possible
exchanging pairs. Next, procedure SAMPLE will randomly

select x samples capable of reducing the cost. At the end of
the iteration, the exchanging pair that induces the max-
imum cost reduction will be chosen to update the broadcast
program. In the next iteration, procedure SAMPLE will be
executed according to the updated broadcast program. Like
procedure BASIC, procedure SAMPLE terminates its ex-
ecution once no exchanging operation can reduce the cost.
Although procedure SAMPLE can also return a local optimal
solution, different values of x will result in different
qualities of the broadcast program. When the parameter x
is large, the SAMPLE procedure will perform similarly to
the BASIC procedure at the end of the iteration. The
advantage of the SAMPLE procedure over the BASIC
procedure will be more distinguishable at a smaller x.

It is noted that the sampling techniques are widely used
in efficiently processing large numbers of data items. For
example, in clustering analysis, the Clustering Large
Applications (CLARA) method [18] can be viewed as the
sampling-based algorithm. Like CLARA, the number of
selected candidates is much smaller than the size of the
search space, which is helpful in reducing the execution
time. On the other hand, the major difference between our
SAMPLE procedure and CLARA is that given the para-
meter x, CLARA will examine exactly x samples. However,
SAMPLE may examine more than x samples. The reason is
that SAMPLE selects x samples that contribute to the
reduction of the access time. Since not all of the candidates
lead to the reduction, some of the examined samples may
not be selected. Due to this feature, although it takes more
execution time in selecting x effective samples, it can be
guaranteed that the SAMPLE algorithm stops its execution
only when no exchanging operation can result in cost
reduction.

Another extended procedure is named ITERATION.
With parameter y, which determines the number of
iterations, procedure ITERATION can compromise between
effectiveness and efficiency. The algorithmic form is out-
lined in Fig. 6c. Although BASIC and SAMPLE can reach
the local optimum, there is no guarantee of execution time
since the number of iterations cannot be estimated. To
remedy this unpredictably, procedure ITERATION is
allowed to be iterated at most y times. Once the procedure
iterates itself for y times, it is forced to be terminated. The

HUNG AND CHEN: MULS: A GENERAL FRAMEWORK OF PROVIDING MULTILEVEL SERVICE QUALITY IN SEQUENTIAL DATA... 1441

Fig. 6. The proposed optimization procedures in sequential data broadcasting. (a) Algorithmic form of procedure BASIC. (b) Algorithmic form of

procedure SAMPLE. (c) Algorithmic form of procedure ITERATION. (d) Algorithmic form of procedure SCI.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

most advantageous feature of ITERATION is that the
optimization complexity is OðN3Þ, which enables ITERA-
TION to be executed in polynomial time. Moreover,
ITERATION also performs well in approximating the
quality of procedure BASIC. The reason is as follows:
Although it requires hundreds or even thousands of
iterations for BASIC to reach the local optimum, the
preceding iterations provide a much higher marginal effect
on reducing the cost than succeeding ones.

Since the two extended procedures, SAMPLE and
ITERATION, enhance the efficiency of BASIC in different
aspects, we can further design another optimization
procedure by integrating the advantageous features of
SAMPLE and ITERATION. The proposed procedure is
named SCI. The algorithmic form is outlined in Fig. 6d. In
SCI with control parameters ðx; yÞ, the parameter x is to
determine the number of samples in each iteration, whereas
the parameter y is to limit the number of iterations. It is
clear that SCI provides more flexibility compared to
SAMPLE and ITERATION. More specifically, three extreme
cases, SCIðx;1Þ, SCIð1; yÞ, and SCIð1;1Þ, are exactly
identical to SAMPLE, ITERATION, and BASIC, respec-
tively. Therefore, we suggest that procedure SCI should be
employed for optimization in the MULS framework to
provide multilevel service quality in the sequential data
broadcasting environment.

3.4 Implementation Issues of the MULS Framework

The proposed MULS framework is based on a simplified
model in the mobile computing environment. In practice,
the query profile and the broadcast database may be more
complicated. With several extensions employed, our work
can also be suitable for some complicated environments. In
the following, we will discuss several practical issues of the
MULS framework.

3.4.1 Consistency Maintenance

In the sequential data broadcasting environment, the
contents of the items will be updated unpredictably. When
the content of one item is updated, those clients who keep
the item before the session is completed should download
the item again to avoid the inconsistency. In order to
support the consistency maintenance, several extensions
should be made on the MULS framework. First, the
invalidation message [3] should be broadcast so as to notify
the clients that data items have been updated. Since the
invalidation message is of small size, it can be disseminated
between the time slots of broadcasting two consecutive
items without affecting the service quality.

When a user receives the invalidation message, he or

she will check the current state of receiving items. If some

of the received items are invalid, the user will stop the

receiving session. After that, the original query will be

refined by the client and resent to the server. Note that the

objective of generating a refined query is to make sure that

all of the invalid items should be downloaded again before

the residual items are downloaded. The residual items

stand for the items that appear in the original query but

were not downloaded due to the breach of the receiving

procedure. Specifically, the original query qi will be refined

as q
ðIÞ
i þ q

ðRÞ
i , where q

ðIÞ
i represents the query for updated

items in the original order, and q
ðRÞ
i denotes the query for

residual items. Finally, the new broadcast program

generated by the server will be based on the refined query

submitted by the clients. For example, let the original

query be qi ¼ fd1� > d2� > d3� > d4� > d5g. When the

user detects the invalidation of d1 and d3 after down-

loading fd1; d2; d3g, the current downloading session will

be stopped, and a new query q0i ¼ fd1� > d3� > d4� > d5g
will be issued. Another alternative is a lazy approach by

which the clients just discard the invalidated data items.

3.4.2 Dealing with Repeated Data in a Query

Although the design of the MULS framework is based on the
assumption that each item will appear at most once in one
query, in practice, the items may be repeated in a query. It is
noted that for repeated items in a query, the users will use the
local cache to answer the probing to the same item within the
same query. Therefore, in the design of the scheduling
algorithms, we should take the effect of repeated items into
account. Under the circumstance that one item will appear
more than once, the server will refine the query by keeping
the first item and removing the repeating items. For example,
consider a query qi ¼ fd2� > d1� > d3� > d1� > d2g. When
the server receives qi, this query will be refined as
q0i ¼ fd2� > d1� > d3g. The broadcast program will be
generated according to q0i instead of qi. Also, notice that once
one client starts to retrieve the items in qi, d2 and d1 will be
kept in the cache at the client side after their first retrieval.
After d3 is retrieved from the broadcast database, the cache
will return d1 and d2 so as to satisfy the access of the
sequential query.

3.4.3 Broadcasting Heterogeneous Items

In the proposed MULS framework, our analytical model
and scheduling algorithms are based on the assumptions
that the items are of the same size. In practice, the size of
one item may be different from the other. When the items
are of different sizes (that is, heterogeneous data [4] are
broadcast), a practical solution is to divide each item into
several pieces in such a way that each piece is of the same
size and employ the proposed scheduling algorithm in
generating the broadcast program. Due to the sequential
property of retrieving the data, all the pieces of the same
item will be downloaded consecutively. Since the client will
complete the retrieval of all pieces of the current item before
the first piece of the next item is accessed, only a small cache
at the client side is required.

4 EXPERIMENTAL EVALUATION

To inspect the performance of the MULS framework,
several experiments are conducted. We evaluate the issue
of effectiveness and efficiency by varying the number of
items, the number of channels, and the control parameters
ðx; yÞ. In the beginning, the analytical model in this paper
will be validated using the event-driven simulation. We will
describe the simulation environment in Section 4.2. In

1442 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

Section 4.3, the effectiveness issue will be analyzed with the

major parameters varied. In Section 4.4, the efficiency study

will be presented. In Section 4.5, we will discuss the effect of

parameters x and y of procedure SCI. In Section 4.6, the

adaptiveness of the SCI algorithm will be analyzed. Finally,

remarks will be made in Section 4.7.

4.1 Simulation Environment

Table 3 summarizes the definitions for primary simulation

parameters. To reflect the access skew in the database

system, the access probabilities of queries are generated by

the Zipf distribution [30] fi ¼ ð1iÞ
�=
PN

j¼1ð1jÞ
�, where � is a

skewness parameter, and 1 � i � N . Note that a large �

indicates highly skewed access patterns in the mobile

computing environment. When � ¼ 0, the access probabil-

ities of the queries are uniformly distributed. By default, the

value of � is set to be 1 since it is observed in [24] that � is

usually larger than 1 for busy Web sites. The default value

of N is based on the number of Web pages stored in a

regular server. We also set the default value of the average

query length l to be 10. The reason is that if l is smaller than
N
K

� �
, most mobile users can retrieve all the items of interest

in one broadcast cycle with a well-designed scheduling

algorithm employed. The query profile is generated based

on the approach mentioned in [23], in which the inter-

relationship among the items can be modeled as a

dependency graph. From the experimental results, we

observe that the number of the queries is viewed as a

minor factor affecting the performance. Therefore, in the

following experiments, the number of queries is fixed to be

100. In addition to generating the query profile syntheti-

cally, we also use real data sets to validate the proposed

approaches. The real data sets, regarded as alarm queries, are

issued by the base stations and collected by a major

telecommunication company.
We implement the relevant approaches using Java

language9 and execute the programs on an IBM compatible

PC with a Pentium IV 3.2-GHz processor and 1 Gbyte of

RAM. The statistics have been collected by averaging the

values in 10 experiments with different query profiles.

During the experiments, we inspect the performance of the

following approaches:

1. OLS, indicating that the broadcast program is
generated by algorithm OLS without optimization,

2. BASIC, indicating that the broadcast program is
generated by OLS and optimized by BASIC,

3. SAMPLE, in which the optimization procedure
SAMPLE is employed with parameter x ¼ 1 (de-
noted by SAM),

4. ITERATION, in which ITERATION is employed
with parameter y ¼ 20 (denoted by ITER), and

5. SCI, in which SCI is employed with parameters x ¼
1 and y ¼ 20.

For comparison purposes, we also implement GA [13],

MQEM [19], the RTS method [20], and the greedy algorithm

(denoted by GRE) proposed by Yee et. al. [28]. Since the

design of GRE is based on the assumption that each user

query contains only one item, we divided the behavior of

accessing the sequential data into a sequence of sessions. In

each session, only one item will be accessed.

4.2 Accuracy of Analytical Model

In the first experiment, we validate our analytical model

used in Section 2.2. Although TAðQÞ derived in (2)

enables us to evaluate the quality of a broadcast program,

however, this analytical model only provides an approx-

imation of the average access time. To validate the

approximation accuracy, we implement an event-driven

simulation. We consider that the broadcast program is

updated every minute. The current query profile is

generated by collecting the statistics of the queries using

a sliding window with 1-minute window size. We discuss

the effect of three parameters: the arrival rates of the

queries, the size of query profile ðjQjÞ, and the skewness

parameter �. The approximation error is defined as

Err ¼ ðjT ðApproxÞA � T ðRealÞA jÞ=T ðRealÞA , where T
ðApproxÞ
A denotes

the average access time obtained by (2), and T
ðRealÞ
A

represents the real average access time measured in the

experiment. As mentioned earlier, the query profile is

generated according to the statistics in the last minute.

Since the current access pattern may not exactly be the

same as that in the query profile, there will be some

approximation errors using our analytical model. On the

other hand, in the real world, each mobile user may start

to listen to the broadcast channel at different time points,

which also influences his or her access time. As shown in

Fig. 7, our analytical model can mostly lead to less than

1 percent approximation error. Moreover, under some

special cases such as high arrival rates of queries, highly

skewed access patterns, and large numbers of queries, the

analytical model in (2) will have outstanding approxima-

tion accuracy. From the experimental results, we can

simply use (2) to evaluate the quality of a broadcast

program instead of measuring the waiting time of each

mobile user.

HUNG AND CHEN: MULS: A GENERAL FRAMEWORK OF PROVIDING MULTILEVEL SERVICE QUALITY IN SEQUENTIAL DATA... 1443

TABLE 3
Values of the Simulation Parameters

9. In the experimental study, we focus on comparing the relative
performances among different algorithms. Therefore, using the Java
language will not affect the relative merit of the methods evaluated.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

4.3 Effectiveness Analysis

Next, we discuss the effectiveness issue with major

parameters varied. We discuss the effect of the number of

broadcast items ðNÞ, the number of broadcast channels ðKÞ,
the skewness parameter ð�Þ, and the average length of each

query ðlÞ. The amount of TAðQÞ is used to assess the quality

of broadcast programs generated by different algorithms.10

In Fig. 8a, we observe that the access time goes up as the

number of items increases. This phenomenon can be

explained as follows: When more items need to be broad-

cast, each channel requires a longer broadcast cycle to

deliver the items. The increase of broadcast cycle will raise

the access time of mobile users. In Fig. 8b, at a large value of

�, since the access distribution is highly skewed, the

generated broadcast program will tend to satisfy most of

the clients, which is also helpful to reduce the average

access time. As for Figs. 8c and 8d, we show the effect of

parameter K on both synthetic and real data sets. The

clients will spend less time to download all the items of

interest when more channels are available, which agrees

with our intuition since the increase of the network

bandwidth causes the access time to decrease.
Throughout Fig. 8, it can be observed that among all

optimization procedures, BASIC can in general achieve the

lowest access time. On the other hand, although SAM-

PLE(1) only selects one sample in each iteration, the quality

is still very close to that of BASIC. It is because SAMPLE(1)

also iterates itself until the local optimum is reached. As for

ITERATION(20), we can observe that the preceding 20 itera-

tions contribute over 50 percent of improvement from OLS

to BASIC. During the experiments, there are approximately

350 iterations before BASIC reaches the local optimum. This

phenomenon shows that the marginal effect of the preced-

ing iterations is definitely more significant than that of the

succeeding iterations. The integration of SAMPLE(1) and

ITERATION(20), that is, SCI(1, 20), achieves inferior quality

compared to SAMPLE(1) and ITERATION(20). The reason

is that unlike ITERATION(20), which searches all possible

moving operations, SCI(1, 20) only selects one sample

capable of reducing the cost. The marginal effect of the
preceding iterations is thus insignificant.

It is noted that algorithm OLS indicates the worst case of
the average access time since no optimization procedures
are performed. Compared to other competitive approaches,
algorithm OLS still achieves outstanding performances.
Due to the ignorance of the ordered dependency among
broadcast items, algorithm MQEM results in the poorest
performance. As for GA, since the results of the stochastic
search may be bound by a false optimal solution, the quality
of the broadcast program cannot be guaranteed. On the
other hand, since algorithm GRE is designed for the
situations in which only one item is contained in each
query, the performance of GRE will get worse as the value
of l increases. Among all competitive methods, algorithm
RTS achieves the most acceptable solutions since the
characteristics of sequential relationship is explored via a
directed graph. However, the performance of RTS is still
inferior to that of algorithm OLS.

4.4 Efficiency Analysis

In this experiment, we inspect the efficiency of relevant
approaches. We report the execution time of the server on
executing the relevant algorithms. We use millisecond as
the unit of execution time. Fig. 9a indicates that as the
number of broadcast items grows, the execution time of the
simulators goes up. It is effortless to explain this phenom-
enon since the increase of N will enlarge the search space
for either a deterministic search such as the proposed
optimization procedures or a stochastic search like GA.
With the performance of GA as the yardstick, we can
observe that procedure SCI(1, 20) and algorithm MQEM are
much more efficient, whereas procedure BASIC takes more
execution time. As for procedure ITERATION(20), the
performance is very close to GA. As shown in Fig. 9b, it is
observed that the execution time of BASIC and SAMPLE(1)
decreases as K increases. The reason is that the number of
iterations for BASIC and SAMPLE(1) to reach the local
optimum is larger when K is small. Also, the decrease of K
will raise the length of the broadcast cycle L. Since at a
larger L, there will be a larger number of choices to put the
items, it will thus require more iterations to determine the
suitable placements for items to be allocated.

4.5 Effect of Control Parameters

We discuss the effect of the parameters x and y empirically.
We only inspect procedure SCI since the other optimization
procedures are regarded as special cases of SCI. During the
experiment, x is varied from 1 to 50, whereas y is varied from
0 to 80. Fig. 10a depicts the improvement of the access time
as the increase of x and y. We can observe that the curve
SCI(1, y) goes down as y increases. Compared to SCI(1, y),
the curve SCI(5, y) has a much significant improvement
when y is smaller (for example, y ¼ 10). However, when y is
larger, the improvement saturates. This phenomenon
illustrates that the marginal effect of the preceding iterations
is more significant than that of succeeding iterations.
According to SCI(10, y) and SCI(50, y), we can also observe
that the increase of x is not always helpful to result in a
distinguishable improvement due to the saturation of the
performance. Fig. 10b shows the execution time in the

1444 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007

10. In this paper, we do not rely on the specific assumptions of mobile
devices. Instead, our analytical models and algorithms can be suitable for
the devices for general purposes. Therefore, in our experiments, instead of
comparing the data processing schemes in different devices, we focus on
observing the average access time for users before the data items are
downloaded.

Fig. 7. Error of the analytical model. (a) Error of analytical model at

different sizes of query profile. (b) Error of analytical model at different

skewness parameters.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

exponential scale as different x and y are set in procedure
SCI. It is noted that the increase of y will raise the execution
time linearly, whereas the increase of x will raise the
execution time drastically. This phenomenon can be ex-
plained by taking SCI(1, y) and SCI(5, y), for example. Since
SCI(5, y) has better quality than SCI(1, y), it will take much
more time for SCI(5, y) to find out five samples capable of
reducing the access time because many exchanging opera-
tions cannot contribute to the improvement.

4.6 Adaptiveness of the MULS Framework

In the final experiment, we discuss the adaptiveness of the
MULS framework in both dynamic and static environments.
During the experiment, we vary the skewness parameter � at
different time points so as to reflect the change of the access
patterns. We inspect the performances of four parameter

settings: OLS (that is, SCI(0, 0)), SCI(10, 20), SCI(50, 50), and
BASIC (that is, SCIð1;1Þ). In addition, two adjusting
approaches, OFFLINE and NoAdjust, are also implemented
for comparison purposes. The OFFLINE approach will
generate the broadcast program in the offline manner,
whereas the NoAdjust approach will always adopt the
original schedule no matter how the access patterns are
varied. Note that OFFLINE indicates the lower bound for
each approach to generate the broadcast program in
response to the dynamics of access patterns. Fig. 11
(respectively, Fig. 12) shows the variance of � and the
corresponding performances in the static (respectively,
dynamic) environment. From the experimental results, it
can be seen that in the static environment in which the access
patterns change tardily, the MULS framework with larger
parameters is capable of generating the broadcast programs

HUNG AND CHEN: MULS: A GENERAL FRAMEWORK OF PROVIDING MULTILEVEL SERVICE QUALITY IN SEQUENTIAL DATA... 1445

Fig. 8. Effectiveness of the MULS framework. (a) The average access time with N varied (synthetic data set). (b) The average access time

with � varied (synthetic data set). (c) The average access time with K varied (synthetic data set). (d) The average access time with K varied

(real data set).

Fig. 9. The efficiency analysis of relevant algorithms. (a) Execution time with N varied. (b) Execution time with K varied.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

of high quality. On the other hand, in the dynamic
environment in which the access patterns change rapidly,
since it takes a high execution time for BASIC, the broadcast
program would be updated infrequently, which will affect
the service quality for users to access data. On the other
hand, the MULS framework with small parameters can
respond well and achieve high adaptivity.

4.7 Remarks

From the above experiments, we observe that the broad-
cast program generated by OLS can result in better quality
than GA, MQEM, RTS, and GRE. Moreover, algorithm
OLS costs only OðjQj log jQjÞ þOðN logNÞ to schedule the
items in sequential data broadcasting. These advantageous
features make algorithm OLS very suitable for online data
broadcasting. In order to optimize the broadcast program
generated by algorithm OLS, it is suggested that procedure
SCI should be employed in our MULS framework. The
reasons are as follows: First, procedure SCI is more flexible
than others. By tuning the parameters x and y, SCI can
achieve the same quality as BASIC, SAMPLE, and
ITERATION. Second, SCI can provide much more differ-
ent levels of service quality than other optimization
procedures. Therefore, SCI can more easily strike a
compromise between efficiency and effectiveness require-
ments for information systems. Moreover, from the
efficiency analysis in Section 4.2, SCI is more scalable so
that it can still perform well for broadcasting a large-scale
database. In the dynamic environment in which the access
patterns and information contents change rapidly, the
broadcast program should be regenerated frequently.
Under this circumstance, the parameters x and y can be

tuned small so as to generate an online broadcast program.
As for the static environment in which the query profile
and the database are updated infrequently, an optimized
broadcast program can remain the same for a long while.
We can thus adopt larger values of x and y to generate an
offline broadcast program with enhanced quality.

5 CONCLUSION

In this paper, we focus on generating broadcast programs in
the sequential data broadcasting environment. To provide
multilevel service quality for different effectiveness and
efficiency requirements, we propose a general framework

named MULS, which contains algorithm OLS and an
optimization procedure, SCI. According to the experimental
results, algorithm OLS can generate broadcast programs
with satisfactory quality. As for the optimization procedure,

SCI performs well in its scalability and is very suitable to
broadcast items within a larger database. By tuning the
parameters x and y, the proposed framework is able to

generate broadcast programs with multilevel service quality
for different effectiveness and efficiency requirements in
static and dynamic environments. In our future research,
we will focus on two important issues. The first one is the

real-time data broadcasting in which the users may specify
that the items of interest should be downloaded within a
specific time constraint. The second one is the skewed data
broadcasting. As mentioned Section 2, although the skewed

data broadcasting will achieve better performances than the
flat broadcasting, due to the unpredictable average access
time, we do not consider the skewed broadcasting in this
paper. We plan to develop the scheduling approaches via

skewed broadcasting for some specialized broadcast profile.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Council of Taiwan, ROC, under Contracts NSC93-2752-E-
002-006-PAE.

REFERENCES

[1] Sony Corp., http://www.sony.co.jp/, 2006.
[2] S. Acharya, R. Alonso, M.J. Franklin, and S.B. Zdonik, “Broadcast

Disks: Data Management for Asymmetric Communications
Environments,” Proc. ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’95), pp. 199-210, May 1995.

1446 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007

Fig. 10. The access time and the execution time of SCIðx; yÞ with

different control parameters. (a) Average access time of SCI with

parameters x and y varied. (b) Execution time of SCI with parameters x

and y varied.

Fig. 11. The adaptiveness of the MULS framework in the static

environment. (a) Variance of � over time. (b) Performance of

SCI(10, 20) and BASIC.

Fig. 12. The adaptiveness of the MULS framework in the dynamic

environment. (a) Variance of � over time. (b) Performance of SCI(10, 20)

and BASIC.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

[3] S. Acharya, M.J. Franklin, and S.B. Zdonik, “Disseminating
Updates on Broadcast Disks,” Proc. 22nd Int’l Conf. Very Large
Data Bases (VLDB ’96), pp. 354-365, Sept. 1996.

[4] S. Acharya and S. Muthukrishnan, “Scheduling On-Demand
Broadcasts: New Metrics and Algorithms,” Proc. MobiCom ’98,
pp. 43-54, 1998.

[5] D. Aksoy and M. Franklin, “RxW: A Scheduling Approach for
Large-Scale On-Demand Data Broadcast,” IEEE/ACM Trans.
Networking, vol. 7, no. 6, pp. 846-860, 1999.

[6] D. Aksoy, M.J. Franklin, and S. Zdonik, “Data Staging for On-
Demand Broadcast,” Proc. 27th Int’l Conf. Very Large Data Bases
(VLDB ’01), pp. 571-580, Sept. 2001.

[7] D. Aksoy and M.S. Leung, “Pull vs. Push: A Quantitative
Comparison for Data Broadcast,” Proc. IEEE Global Telecomm.
Conf. (GLOBECOM ’04), 2004.

[8] M.-S. Chen, P.S. Yu, and K.-L. Wu, “Optimizing Index Allocation
for Sequential Data Broadcasting in Wireless Mobile Computing,”
IEEE Trans. Knowledge and Data Eng., vol. 15, no. 1, Jan./Feb. 2003.

[9] Y. Chung and M. Kim, “Efficient Data Placement for Wireless
Broadcast,” Distributed and Parallel Database, vol. 9, no. 2, Mar.
2001.

[10] Y.D. Chung and M.H. Kim, “QEM: A Scheduling Method for
Wireless Broadcast Data,” Proc. Sixth Int’l Conf. Database Systems
for Advanced Applications (DASFAA ’99), 1999.

[11] C.-H. Hsu, G. Lee, and A.L.P. Chen, “A Near Optimal Algorithm
for Generating Broadcast Programs on Multiple Channels,” Proc.
10th ACM Int’l Conf. Information and Knowledge Management (CIKM
’01), pp. 303-309, Nov. 2001.

[12] C.L. Hu and M.S. Chen, “On-Line Scheduling Sequential Objects
for Dynamic Information Dissemination,” Proc. IEEE Global
Telecomm. Conf. (GLOBECOM ’05), 2005.

[13] J.-L. Huang and M.-S. Chen, “Broadcasting Dependent Data for
Ordered Queries without Replication in a Multi-Channel Mobile
Environment,” Proc. 19th IEEE Int’l Conf. Data Eng. (ICDE ’03),
Mar. 2003.

[14] H.P. Hung and M.S. Chen, “On Exploring Channel Allocation in
the Diverse Data Broadcasting Environment,” Proc. 25th IEEE Int’l
Conf. Distributed Computing Systems (ICDCS ’05), 2005.

[15] H.P. Hung, J.W. Huang, J.L. Huang, and M.S. Chen, “Scheduling
Dependent Items in Data Broadcasting Environments,” Proc. 21st
Ann. ACM Symp. Applied Computing (SAC ’06), 2006.

[16] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on Air:
Organization and Access,” IEEE Trans. Knowledge and Data Eng.,
vol. 9, no. 3, pp. 353-372, May/June 1997.

[17] J.-L. Huang and M.-S. Chen, “Dependent Data Broadcasting for
Unordered Queries in a Multiple Channel Mobile Environment,”
IEEE Trans. Knowledge and Data Eng., vol. 16, no. 6, June 2004.

[18] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[19] G. Lee and S.C. Lo, “Broadcast Data Allocation for Efficient Access
of Multiple Data Items in Mobile Environments,” Mobile Networks
and Applications, vol. 8, no. 4, 2003.

[20] C.M. Liu and K.F. Lin, “Efficient Scheduling Algorithms for
Disseminating Dependent Data in Wireless Mobile Environ-
ments,” Proc. IEEE Int’l Conf. Wireless Networks, Comm., and Mobile
Computing (WIRELESSCOM ’05), 2005.

[21] S.-C. Lo and A.L. Chen, “Optimal Index and Data Allocation in
Multiple Broadcast Channels,” Proc. 16th IEEE Int’l Conf. Data Eng.
(ICDE ’00), pp. 293-302, 2000.

[22] F. Martinez, J. Gonzalez, and I. Stojmenovic, “A Parallel Hill
Climbing Algorithm for Pushing Dependent Data in Clients-
Providers-Servers Systems,” Proc. Seventh Int’l Symp. Computer and
Comm. (ISCC ’02), 2002.

[23] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “Effective
Prediction of Web-User Accesses: A Data Mining Approach,”
Proc. 12th ACM SIGKDD Workshop Web Mining and Web Usage
Analysis (WebKDD ’01), 2001.

[24] V. Padmanabhan and L. Qiu, “The Content and Access Dynamics
of a Busy Web Site: Findings and Implications,” Proc. ACM Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM ’00), 2000.

[25] W.-C. Peng and M.-S. Chen, “Efficient Channel Allocation Tree
Generation for Data Broadcasting in a Mobile Computing
Environment,” Wireless Networks, vol. 9, no. 2, pp. 117-129, 2003.

[26] N. Prabhu and V. Kumar, “Data Scheduling for Multi-Item and
Transactional Requests in On-Demand Broadcast,” Proc. Sixth Int’l
Conf. Mobile Data Management (MDM ’05), 2005.

[27] A. Si and H.V. Leong, “Query Optimization for Broadcast
Database,” Data and Knowledge Eng., vol. 23, no. 9, 1999.

[28] W.-G. Yee, S.B. Navathe, E. Omiecinski, and C. Jermaine,
“Efficient Data Allocation over Multiple Channels at Broadcast
Servers,” IEEE Trans. Computers, vol. 51, no. 10, pp. 1231-1236, Oct.
2002.

[29] B. Zheng, X. Wu, X. Jin, and D.L. Lee, “TOSA: A Near-Optimal
Scheduling Algorithm for Multi-Channel Data Broadcast,” Proc.
Sixth Int’l Conf. Mobile Data Management (MDM ’05), 2005.

[30] G.K. Zipf, Human Behaviour and the Principle of Least Effort.
Addison-Wesley, 1949.

Hao-Ping Hung received the BS degree from
the Department of Electrical Engineering, Na-
tional Taiwan University, Taipei, in 2001, and the
PhD degree from the Graduate Institute of
Communication Engineering, National Taiwan
University, in January 2007. Now, he serves as a
senior engineer at CyberLink Corp. His research
interests include mobile computing, resource
allocation in the wireless environment, multi-
media networking, and data streams.

Ming-Syan Chen received the BS degree in
electrical engineering from the National Taiwan
University, Taipei, and the MS and PhD degrees
in computer, information, and control engineer-
ing from the University of Michigan, Ann Arbor,
in 1985 and 1988, respectively. He is now a
distinguished professor jointly appointed by the
Department of Electrical Engineering, the De-
partment of Computer Science and Information
Engineering Department, and also the Graduate

Institute of Communication Engineering, National Taiwan University. He
was a research staff member at IBM T.J. Watson Research Center,
Yorktown Heights, New York, from 1988 to 1996. He has published
more than 240 papers in his research areas. In addition to serving as
program chairs/vice-chairs and keynote/tutorial speakers in many
international conferences, he was an associate editor of the IEEE
Transactions on Knowledge and Data Engineering and the Journal of
Information Science and Engineering, is currently on the editorial board
of the Very Large Data Base Journal, the Knowledge and Information
Systems Journal, and the International Journal of Electrical Engineer-
ing), and is a distinguished visitor of the IEEE Computer Society for
Asia-Pacific from 1998 to 2000 and 2005 to 2007. He holds or has
applied for 18 US patents and seven ROC patents in his research areas.
His research interests include database systems, data mining, mobile
computing systems, and multimedia networking. He is a recipient of the
National Science Council (NSC) Distinguished Research Award, Pan
Wen Yuan Distinguished Research Award, Teco Award, Honorary
Medal of Information, and K.-T. Li Research Breakthrough Award for his
research work and the Outstanding Innovation Award from IBM
Corporate for his contribution to a major database product. He also
received numerous awards for his research, teaching, inventions, and
patent applications. He is a fellow of the ACM and the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUNG AND CHEN: MULS: A GENERAL FRAMEWORK OF PROVIDING MULTILEVEL SERVICE QUALITY IN SEQUENTIAL DATA... 1447

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:43 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

