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Abstract—Data cubes have become important components in most data warehouse systems and decision support systems. In such

systems, users usually pose very complex queries to the Online Analytical Processing (OLAP) system, and systems usually have to

deal with a huge amount of data because of the large dimensionality of the sets; thus, approximating query processing has emerged as

a viable solution. Specifically, the applications of cube streams handle multidimensional data sets in a continuous manner in contrast to

the traditional cube approximation. Such an application collects data events for cube streams online, generates snapshots with limited

resources, and keeps the approximated information in a synopsis memory for further analysis. Compared to the OLAP applications,

applications of cube streams are subject to many more resource constraints on both the processing time and the memory and cannot

be dealt with by existing methods due to the limited resources. In this paper, we propose the DAWA algorithm, which is a hybrid

algorithm of Discrete Cosine Transform (DCT) for Data and the discrete wavelet transform (DWT), to approximate cube streams. Our

algorithm combines the advantages of the high compression rate of DWT and the low memory cost of DCT. Consequently, DAWA

requires much smaller working buffer and outperforms both DWT-based and DCT-based methods in execution efficiency. Also, it is

shown that DAWA provides a good solution for an approximate query processing of cube streams with a small working buffer and a

short execution time. The optimality of the DAWA algorithm is theoretically proved and empirically demonstrated by our experiments.

Index Terms—Cube streams, OLAP, data cubes, data streams.

Ç

1 INTRODUCTION

Alarge number of data warehouses and data cubes have
been constructed and deployed in applications since

the concepts of Online Analytical Processing (OLAP)
techniques and data cubes were introduced in [1]. In
addition, data cubes have become important components in
most data warehouse systems and decision support
systems. Answering range queries is one of the primary
tasks of the OLAP applications. For example, when
exploring marketing databases, users may be interested in
discovering the total purchases of several products at all
branches of a company in California during the last three
days. In such systems, users usually pose very complex
queries to the OLAP system, which requires complex
operations over gigabytes of data and takes a very long
time to produce exact answers. Therefore, approximate
query processing has recently emerged as a viable solution
for dealing with the huge amount of data.

In addition, some applications such as phone call analysis

by cellular phone companies or sales volume monitoring in

retailers need a faster mechanism for processing continu-

ously incoming information. Such applications handle

stream data in a multidimensional form rather than the

static form used in traditional OLAP applications. The basics

of data streams on approximating frequency counts [2],
temporal aggregations [3], maintaining statistics [4], and
further analyzing techniques [5], [6] are explored in previous
works. However, for those multidimensional data streams
or cube streams, OLAP queries require complex operations
over gigabytes of data and take a very long time to produce
exact answers. Thus, an approximate query processing over
cube streams is a viable solution. Also, the volume of data is
usually too huge to be stored in permanent devices or be
scanned thoroughly more than once. It is recognized,
therefore, that both approximation and adaptability are the
key requirements for executing queries over rapid multi-
dimensional data streams. Such applications collect data
events for multidimensional data sets (MDSs) online,
generate snapshots with limited resources, and keep the
approximated information in a synopsis memory for further
analysis. In other words, the applications generate snapshots
of cube streams (SCSs). Like the OLAP applications, the SCS
ones have a number of options such as a user may request a
snapshot in a few seconds rather than wait for the exact
answer, which could take tens of minutes to compute [7].
However, the SCS applications differ from the traditional
OLAP applications in two important aspects. First, the
resources for both the processing time and the memory are
much more constrained than in offline cube construction;
that is, cube streams must be processed efficiently with a
small working buffer to deal with the rapid growth of data
events. Second, the data events are time relevant in nature;
thus, it is appropriate to model them as brown noise [8]. As a
result, an efficient algorithm that can compress multi-
dimensional data streams within a small working buffer in
one data scan is required to address such a problem.

In this paper, we explore both the generation of snap-
shots for cube streams in a small working buffer with one
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data scan and also the storage of the snapshots in synopsis
memory. Since the original data sets grow continuously,
snapshots should be captured periodically for each given
time slot and processed rapidly. Fig. 1 shows an extension
of the computational model proposed in [9].

In SCS applications, the data events are collected
progressively and are processed in the working buffer until
the predefined time limit is reached. The subblock segmen-
ted in the time interval of a cube stream is called a processing
block (PB). Note that the synopsis memory is designed to
store the snapshots over a long period; therefore, the
processed data in the working buffer should be compressed
further to keep as many snapshots of PBs as possible. Hence,
the size of the working buffer, denoted asB, is usually much
smaller than the size of a PB, denoted as N , so the size of the
snapshot of each PB, denoted as b, should be much smaller
than B. For each PB, the data set can be regarded as a set of
static OLAP data cubes, so the techniques for maintaining
the aggregations of OLAP cubes can be applied. It is noted
that the traditional OLAP approaches suffer from several
critical problems such as requiring long processing time and
large working buffer to process a PB and cannot comply with
the requirements of the SCS applications.

1.1 Related Works

To deal with the applications of cube streams, we devise an
algorithm to approximate PBs. For static OLAP cubes,
several approaches have been developed to compress data
efficiently in order to solve the problems of selectivity
estimation [10], [11] and approximating query processing
[7]. Most of these works are based on either the Discrete
Wavelet Transform (DWT) or the Discrete Cosine Trans-
form (DCT). The DWT-based approaches use the Haar
wavelets, which is a mathematical tool for hierarchical
decomposition of functions with several successful applica-
tions in signal and image processing [12], [13]. Meanwhile,
the DCT-based approaches have been widely used in image
and signal processing in 2D domains, since they can take
advantage of the unequal frequency distribution of natural
signals and provide acceptable compression efficiency. It
has been shown empirically that these two approaches can
compress original data sets into a small number of
coefficients and provide answers of acceptable quality for
range-sum queries. However, several limitations, which we
will describe later, prevent their use in SCS applications.

It has been shown that Haar wavelets can provide
answers of acceptable quality for range-sum queries with a
high compression rate, as long as the working buffer is large
enough. The problem of applying wavelets to SCS applica-
tions is that the corresponding memory cost, which is as

high as the cardinality of a PB, limits the volume of data to
less than or equal to the size of the working buffer.
Consequently, one can only segment the original cube
stream into small PBs for processing in the limited working
buffer, at the cost of degrading the quality of the answers.
An alternative approach adopts a thresholding technique to
accommodate larger PBs [11]. By dropping small coeffi-
cients between each round of decomposition, this technique
reduces the memory required to the size of a working
buffer. However, the quality of answers is also degraded
significantly. Vitter and Wang [7] take the advantage of the
sparseness of real-world data sets and store temporal
results in a secondary storage to avoid the shortcomings
of thresholding. However, the intensive I/O between the
working buffer and the secondary storage makes this
approach impractical for SCS applications. Moreover, all
the DWT-based approaches suffer from the problems of
dimension ordering and the unnecessary decomposition of
null cells (zeros). The disadvantages of DWT, including the
problems of small PBs and coefficient thresholding, will be
discussed further in Section 2.

The work in [10] propose a DCT-based approach that
compresses information from a large number of small-sized
histogram buckets by using the DCT. A mechanism for
selecting the best set of theoretical DCT coefficients for
answering range-sum queries is also proposed. The
transformation of each DCT coefficient is independent, so
this approach is able to work in a small amount of main
memory. However, its time complexity, estimated as
OðnBÞ, is too high for SCS applications to process PBs
online.

1.2 Our Contributions

In this paper, we propose the DAWA algorithm, which is an
integrated algorithm of DCT for Data and DWT, for
approximating the cube streams. The algorithm compresses
PBs in two phases. The first phase, called the DCT phase,
partitions a PB into several subblocks and then applies DCT
on each of them by reciprocal zonal sampling. The second
phase, called the DWT phase, retrieves the DCT coefficients
located at the same position of all the subblocks and joins
them into several series. The series shown to be optimal are
decomposed by the Haar wavelets to further reduce the
space required in order to save the information to the
synopsis memory. Also, several heuristics are applied to
improve the accuracy of reconstruction. The superiority of
the DAWA algorithm over other approaches lies in its
ability to integrate the high compression rate of DWT and
the low memory cost of DCT, thus enabling DAWA to
provide answers of good quality for SCS applications with a
small working buffer and execution time. The optimality of
the algorithm is first proved theoretically and empirically
demonstrated by our experiments.

The contributions of this paper are manifold. We address
the problem of approximating cube streams. Today’s DSS
applications require faster techniques to handle continu-
ously growing data cubes. The problem of handling those
multidimensional data streams is formulated in this paper.
We propose an efficient algorithm and several heuristics to
approximate cube streams with very restricted resources. In
addition, the proposed algorithm improves traditional
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OLAP applications to obtain faster and more accurate
results.

The remainder of this paper is organized as follows:
Preliminaries are presented in Section 2. The theoretical

basis and detailed steps of the DAWA algorithm are

introduced in Section 3. Empirical studies are conducted in
Section 4. Finally, in Section 5, we present our conclusions.

2 PRELIMINARIES

In this section, we discuss several techniques for solving the
problems of approximating cube streams under a limited

working buffer and synopsis memory. An MDS consists of

categorical attributes, for example, Site_type and Site_

Region, which may serve as the dimensions, and numeric
attributes, for example, number of errors, which serve as the

measures. Also, an MDS constructed with multidimen-

sional data streams is usually partitioned into blocks with a
predefined time period T . It is then processed individually

for snapshot generation, since the working buffer is

constrained. Partitioned blocks, regarded as OLAP cubes,

are referred to as PBs.
In general, the above measures are aggregated to the

combination of dimension attributes using functions like

sum, average, count, and variance. An important class of

aggregation query is the range-sum query, which applies
SUM operations over a set of continuous data cells [7]. For

range-sum queries of the cube stream, the answers can be

estimated by summing up the measures of all cells at each

PB. Without loss of generality, we focus on the problem of
estimating the subtotal of a PB. The Haar wavelets and its

extension to MDSs are described in Section 2.1. The basics of

DCT, including the reciprocal zonal sampling and integral
techniques for answering range-sum queries, are intro-

duced in Section 2.2.

2.1 The Haar Wavelets

The wavelet represents a function in terms of a coarse

overall approximation and a series of detailed coefficients

that revise the function from coarse to fine. Wavelets are
constructed in various forms such as orthonormal [14] and

nonorthogonal [15]. In the modern wavelet theory, the Haar

filter is the foundation of wavelets. This technique is
advantageous because of its linear computational complex-

ity of OðNÞ, which is ideal for data streams.

2.1.1 Wavelet Decomposition and Thresholding

The concept of wavelet transform can be best understood by

the following example:

Example 1. Suppose there are eight values collected at

some moment that form a numerical time series

S ¼ f64; 48; 16; 32; 56; 56; 48; 24g. For a multiresolution

analysis, the values are pairwisely averaged to get a
low-resolution signal first. Therefore, we have {56, 24,

56, 36}, where the first two values in the original

signal, that is, 64 and 48, are averaged to 56, the
second two values 16 and 32 are averaged to 24, and

so on. To avoid losing any information in this

averaging process, the difference values, which are

f8ð¼ 64� 56Þ;�8ð¼ 16� 24Þ; 0ð¼ 56� 56Þ; 12ð¼ 48� 36Þg;

should also be stored. As such, the original values can be
reconstructed from these average and difference values.

Consequently, the original signal is successfully
decomposed into a low-resolution version of half the
number of values with a corresponding set of difference
values. By performing this process recursively, the full
decomposition can be obtained, as shown in Table 1.

Note that wavelet coefficients, which correspond to
different resolution scales, are generated recursively. The
decomposed wavelet coefficients for original series are

bS ¼ f43;�3; 16; 10; 8;�8; 0; 12g:

The Haar wavelets decomposition can be extended to
multidimensional data arrays by performing a series of one-
dimensional decomposition. For example, in the 2D case,
we first apply one-dimensional decomposition to each row
of data. Next, the transformed rows are treated as the
original data set, and the decomposition to each column is
performed. The detailed steps of multidimensional decom-
positions can be found in [7], [11].

Also, the Haar wavelet has been proven to be efficient for
dealing with MDSs, as long as the working buffer is large
enough to accommodate the entire data cube. Clearly, a
trade-off between quality and space cost has to be
considered. For SCS applications, the available space for
the working buffer is usually much smaller than the size of
the PB, that is, B� N . Thus, only some of the coefficients,
being representative in general, can be kept, and the rest
must be pruned. This technique, called thresholding, selects
the top-k coefficients with the largest absolute values and
yields the minimum L2-norm error [16], [17]. This approach
is widely adopted for thresholding.

2.1.2 Approximating Processing Blocks

Thresholding provides a high compression rate and quality
answers if it is applied after the decomposition along all
dimensions is finished. However, the requirement for the
working buffer is infeasible. Instead, thresholding is per-
formed between two successive decompositions. This,
however, compromises the optimality of global threshold-
ing. As a result, the quality of the reconstruction is affected
significantly. Moreover, the results of decomposition depend
on the dimension order. Hence, the best selection of the
dimension order needs to be evaluated empirically. This
problem can be best understood by the following example:

Example 2. Consider the 2D data set in Fig. 2a. The size of
each dimension is 8. By applying multidimensional
wavelet decomposition techniques [7] to this data set,
decompositions along both dimensions are performed
iteratively. The reconstruction results are shown in Fig. 2,
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Fig. 2b is the result decomposed along the x-axis first
from Fig. 2a, and Fig. 2c is that decomposed along the
y-axis first. The percentage of coefficients to be retained
in each step is set at 25 percent.

If a range-sum query Qs ¼ Sumð3 : 3; 1 : 6Þ requesting
the summation of the cells with bold numbers is
submitted, the answer calculated in Fig. 2b will be very
different from that in Fig. 2c. The former gives 245, and
the latter gives 436, whereas the correct answer is
115þ 19þ 19þ 72þ 21þ 68 ¼ 314, showing that wave-
let decomposition is degraded by the order dependency
imposed on the corresponding reconstruction results.

Example 2 shows that the results of decomposition
depend on the dimension order. The best dimension order
cannot be decided, unless all possible sequences are
evaluated. However, there are N! possible sequences for
an N-dimensional data cube. Clearly, evaluating all results
for possible dimension order is not practical for real-world
applications. In addition, the computational complexity is
proportional to the cardinality N of the PB. For real-world
data sets, the number of nonzero data points, denoted as
n, is much smaller than N [18], [19]. Therefore, it is
inefficient to perform the Haar wavelets decomposition on
sparse data sets.

2.1.3 The Effect of Small Blocks

To avoid interlaced decomposition and thresholding, the
size of a PB block must be reduced to fit the working buffer.
However, it takes much more time to compute the answers
for range-sum queries from many small blocks. Moreover,
the selection of snapshot coefficients may not be optimal
due to the uneven distribution of different partitions; that is,
the size for a snapshot may be too large or too small for
different PBs. Example 3 explains the problem caused by
small PBs.

Example 3. Fig. 3a shows the data sequence for a real data
set consisting of stock indices during 512 successive
trading days. If only 25 percent of the coefficients can be
retained for each block, the multiresolution decomposi-
tion will cause the 0.8 percent error.

It is shown in Fig. 3b that the average absolute relative
error1 increases as the number of split segments
increases.

Due to the shortcomings of thresholding and small
blocks, DWT is not appropriate for approximating cube
streams directly. To remedy this, we describe a new
approach to compress a PB into a more compact form in
Section 3.

2.2 The DCT for Data

The DCT has been widely used in the image and signal
processing because of its capability of compressing informa-
tion. Recent works have extended the technique to compress
multidimensional histogram [10] and OLAP cubes. For a
series of data f

!¼ ðfð0Þ; fð1Þ; . . . fðN � 1ÞÞ, DCT coeffi-
cients F

!¼ ðF ð0Þ; F ð1Þ; . . .F ðN � 1ÞÞ are defined as

F ðuÞ ¼
ffiffiffiffiffi
2

N

r
cu
XN�1

n¼0
fðnÞ cos

ð2nþ 1Þu�
2N

� �
;

where u is the frequency index, and

cu ¼
1ffiffi
2
p for u ¼ 0

1 for u 6¼ 0:

�
f
!

is recovered by the inverse DCT as

fðnÞ ¼
ffiffiffiffiffi
2

N

r XN�1

u¼0

cuF ðuÞ cos
ð2nþ 1Þu�

2N

� �
:

The process of computing the inverse is referred to as
reconstruction.

We can generalize the above to the d-dimensional DCT
recursively. Let f be N1 �N2 � . . .�Nd d-dimensional
data, and F is the corresponding transformed coefficient
set. The d-dimensional DCT for a coefficient F

u! located at
ðu1; u2; . . .udÞ is defined as

F u! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dQd
i¼1 Ni

s XN1�1

m1¼0

XN2�1

m2¼0

. . .
XNd�1

md¼0

bF;
where bF ¼ fðm1;m2...;mdÞ �

Qd
j¼1 cuj cosðð2mjþ1Þuj�

2Nj
Þ, and the in-

verse DCT for the data point fm! located at ðm1;m2; . . .mdÞ
is defined as
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Fig. 2. An example of an 8 � 8 data set and the reconstruction results.

(a) An example of an S� S data set. (b) Along x-axis first. (c) Along

y-axis first.

Fig. 3. (a) The indices chart. (b) The average absolute relative error for

various segments, where 25 percent of the coefficients (128) are

retained.

1. The average absolute relative error is defined as 1
n

Pn
i¼1

mi�bmij j
mi

, where

mi denotes the accurate value for the ith data point, and cmi denotes the

approximate value.
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f
m! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dQd
i¼1 Ni

s XN1�1

u1¼0

XN2�1

u2¼0

. . .
XNd�1

ud¼0

bf;
where bf ¼ Fðu1;u2...;udÞ �

Qd
j¼1 cmj

cosðð2mjþ1Þuj�
2Nj

Þ
h i

.

2.2.1 Coefficient Selection

The number of DCT coefficients increases exponentially as
the dimensionality increases. Clearly, computing all coeffi-
cients for possible selection is computationally prohibitive.
Therefore, the DCT-based approaches choose and compute
only the coefficients that are deemed the most representa-
tive. In practical OLAP systems, the data distribution
should have a correlation among data items; that is, the
frequency spectrum of the distribution should show large
values in its low frequency coefficients and small values in
its high frequency coefficients [8], [10]. In general, high-
frequency coefficients are usually of less interest in OLAP,
whereas low-frequency coefficients are of high interest,
since they correspond to range-aggregation queries [20].

To select representative coefficients, several geometrical

zonal sampling techniques such as triangular, spherical,

rectangular, and reciprocal sampling have been proposed

[21]. Lee et al. [10] extends the techniques to MDSs and

shows that the reciprocal zonal sampling technique is able to

select the most representative coefficients of DCT under the

brown noise assumption. This sampling technique selects

coefficients by the constraint fk u!j
Qd

i¼1ðui þ 1Þ � bg, where

k
u! is a DCT coefficient located at ðu1; u2; . . .udÞ, and ui is the

frequency index in the ith dimension.
Since only the most efficient coefficients need to be

transformed, the execution time of DCT for data is reduced
to OðnkÞ, where k is the number of selected coefficients.
Thus, the reciprocal zonal sampling technique improves the
execution efficiency significantly.

2.2.2 Answering Range-Sum Queries

For range-sum queries, it is expensive to estimate the value
of individual data points and then compute the aggrega-
tion. Lee et al. [10] introduced the integral approach to
compute the aggregation efficiently. For a d-dimensional
range-sum query, it costs OðkdÞ to compute the aggregation
if k coefficients are used. For example, the answer of the
range-sum query requesting the sum of those cells located
at a < u1 < b and c < u2 < d in an M �N 2D data cube can
be estimated as S ¼

R d
c

R b
a
bfðu1; u2Þdu1du2; , where bf is

defined in Section 2.2.
Though not proper for estimating single data point [22],

the DCT-based approaches are able to provide high-quality
answers for range-sum queries due to the compensation of
errors of some cell pairs. Because it does not require extra
storage space for coefficient transforming, the DCT works
well with small working space. However, the time complex-
ity, estimated as OðnBÞ, is deemed too high for the SCS
applications to process the MDS blocks online.

3 THE DAWA ALGORITHM

To resolve the issues of the space cost in DWT and the time
cost in DCT, we propose the DAWA algorithm, which
stands for an integrated algorithm of DCT for Data and
DWT, to approximate the SCS. The DAWA algorithm is
able to generate a snapshot from a PB in a small working

buffer via one data scan, with a computational complexity
of only OðnBffiffiffi

N
p þB log

ffiffiffiffiffi
N
p
Þ, which we discuss further in

Sections 3.2 and 3.3. The DAWA framework comprises two
phases for generating snapshots. The first phase, called the
DCT phase, partitions a PB into several subblocks, called
DAWA cells, and then applies DCT to each DAWA cell
based on the optimal set of coefficients selected by the
reciprocal zonal sampling. The second phase, called the
DWT phase, groups the DCT coefficients from each DAWA
cell, whose time-to-frequency transformations are close to
each other, into several isofrequency MDSs, denoted as
IMS. As it will be shown in Section 3.1, the variance of data
points in the same IMS is small, and the IMS can thus be
further compressed by DWT efficiently. Also, several
techniques, including null map, IMS smoothing, and global
thresholding, have been developed based on the character-
istics of IMS to improve the accuracy of the DAWA
algorithm.

3.1 Brown Noise

The essence of DCT or DWT is based on the effectiveness of
power concentration of the transformations. Basically,
brown noise and random walks are the prevalent formats
in real signals [23]. For brown noise, the energy is
concentrated more in low frequencies, since the data points
are more related to each other than those in white noise
generated by the pure random process. Note that real signals
have a skewed energy spectrum [8]. For example, stock
movements and exchange rates can be successfully modeled
as brown noise, which exhibit an energy spectrum Oðf�2Þ.
Therefore, the DCT coefficients of such data, referred to as
the amplitudes of the signals, can be modeled as Oðf�1Þ [8];
that is, the amplitude is inversely proportional to the
frequency. A scenario of the brown noise assumption for
cube streams is shown in Fig. 4, where it can be seen that the
amplitudes are inversely approximately proportional to the
frequencies.

Also, the relationship between power density and
frequencies can be explored mathematically to provide a
theoretical foundation for zonal sampling. Consequently,
we have the following lemma.

Lemma 1. For a data series generated by a random walk process
fXn; 0 � n < Ng and the corresponding DCT coefficients
fF ðkÞ; 0 � k < Ng, the squared values of the coefficients
SðkÞ, regarded as the spectral densities of XðnÞ, are
reciprocally proportional to the squared frequency indices of
the coefficients, that is, SðkÞ / 1

k2 .

Proof. Brown noise is a random process XðtÞ with Gaussian
increments, and

varðXðn2Þ �Xðn1ÞÞ / jn2 � n1j:
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Fig. 4. (a) The sequence for Dow Jones indices during 500 trading days.
(b) The corresponding energy spectrum.
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Also, for a statistically self-similar data sequence
XðnÞ with the Hurst parameter H [24], the relation-
ship between data points can be formulated as
varðXðn2Þ �Xðn1ÞÞ / jn2 � n1j2H . It follows that

Xðn0 þ nÞ �Xðn0Þ ¼d
1

rH
ðXðno þ rnÞ �Xðn0ÞÞ ð1Þ

for any n0 and r > 0, where ¼d denotes equality in

distribution.

The Hurst parameter for Brownian motion is 1
2 . For

the case where n0 ¼ 0, and Xðn0Þ ¼ 0; , the two

random functions XðnÞ and 1
rH
XðrnÞ are statistically

indistinguishable.
For DCT, if the data sequence is very long,

the transformation can be represented in a continuos

form [10]. Thus, we reformulate DCT by the integral

expression:

F ðk;NÞ ¼
Z N

0

cos
ð2nþ 1Þ�k

2N

� �
dn

and the power spectral density of Xðk; T Þ is

Sðk;NÞ ¼ 1

N
jF ðk;NÞj2:

The spectral density of X is then calculated as
N !1:

SðkÞ ¼ lim
N!1

1

N
jF ðk;NÞj2:

From (1), we can rewrite the original data series as a

function of index and length:

Y ðn;NÞ ¼
�
Y ðnÞ ¼ 1

rH
XðrnÞ if 0 < n < N

0 otherwise:

By adopting the notations

Fxðn;NÞ; FY ðn;NÞ DCT of Xðn;NÞ; Y ðn;NÞ;
Sxðn;NÞ; SY ðn;NÞ spectral densities of Xðn;NÞ; Y ðn;NÞ;

SxðkÞ; SY ðfÞ spectral densities of XðnÞ; Y ðnÞ;

we have FY ðk;NÞ ¼ 1
rH

RN
0 Y ðnÞ cos ð2nþ1Þ�k

2N

� �
dn.

After substituting 2sþ1
2r � 1

2 for n, and ds
r for dn, we get

FY ðk;NÞ ¼
1

rH

Z rN

0

XðsÞ cos
ð2sþ 1Þ� k

r

2N

� �
ds

r

¼ 1

rHþ1
FX

k

r
; rN

� �
:

Now, it follows that for the spectral density of Y ðn;NÞ

SY ðk;NÞ ¼
1

r2Hþ1

1

rN
FX

k

r
; rN

� ����� ����2;
and in the limit, as rN !1, we conclude that

SY ðkÞ ¼
1

r2Hþ1
SX

k

r

� �
¼> SXð1Þ ¼

1

r2Hþ1
SX

1

r

� �
:

By substituting k for 1
r , we get

SXðkÞ ¼
1

k2Hþ1
SXð1Þ that is; SXðkÞ /

1

k2

for a brown noise. tu
Lemma 1 shows the advantage over the information

concentration of DCT. Also, note that the frequency of a
coefficient depends on its location in the transformed PB. It
is shown by Parseval’s Theorem [25] that the energy of a
signal conserves in both time and frequency domains. In
addition, the Mean Squared Error (MSE) in the recovered
data is the same as the MSE in the compressed coefficients.
That is, the quality of recovered data reconstructed by the
selected coefficients can be evaluated by the sum of the
squared values of those coefficients. Thus, with a selected
coefficient set T ¼ fku11;...;u1d

; ku21;...;u2d
; . . . ; kun1;...;undg in a

d-dimensional data cube, the quality of T can be defined
as HðT ; nÞ ¼

Pn�1
i¼0 ðkui1;...;uidÞ

2, where n is the size of T , and
uij is the index of the ith coefficient for dimension j.

Consequently, we formally prove by the following
lemma that based on the assumption of brown noise
distribution, reciprocal zonal sampling is, in fact, the most
efficient method for coefficient selection.

Lemma 2. For a symmetric d-dimensional data cube with brown
noise distribution, the selection of coefficients with the best
quality is T ¼ fkpi j

Qd
j¼1ðuij þ 1Þ � bg, where b is a constant.

Proof. Without loss of generality, we assume that the data
cube is 2D. Therefore, the DCT coefficients can be
modeled as kðm;nÞ ¼ K

ðmþ1Þðnþ1Þ , where K is a positive
constant, and m and n represent the frequencies of the
x-axis and y-axis, respectively. Given that

kðx;yÞ 2 T ¼ fkðm;nÞjðmþ 1Þðnþ 1Þ � bg;

it follows that ðxþ 1Þðyþ 1Þ ¼ b holds for the smallest
coefficient. If there exists another selection of coefficients
T 0, which causes HðT 0; nÞ > HðT; nÞ, there must exist a
coefficient kðx;y0Þ 2 T 0, where K

ðxþ1Þðy0þ1Þ >
K

ðxþ1Þðyþ1Þ . This
implies that ðxþ 1Þðy0 þ 1Þ < b, which is a contradiction.
Therefore, the lemma follows. tu
Moreover, the statement of Lemma 2 can be extended to

the case of asymmetric dimensions under the brown noise

assumption of data distribution. In the case of an asym-

metric data cube, we can multiply the index for each

dimension of a DCT coefficient by a scaling factor in order

to make all the indices proportional to the corresponding

frequencies. The relationship between the frequency and

cell index can be expressed as fij ¼ uijþ1
jDjj . Asymmetric

reciprocal zonal sampling is defined as follows:

Corollary 2.1. For an asymmetric d-dimensional data cube with
brown noise distribution, the selection of coefficients with the
best quality of the data cube is fkpi j

Qd
j¼1ðuij þ 1Þ � b0 g,

where b0 is a constant.

Proof. From the definition of asymmetric cubes and

Lemma 2, the selection of coefficients with the best

quality can be defined as T ¼ fkpi j
Qd

j¼1ð
uijþ1
jDjj Þ � bg,

where jDjj is the size of dimension Dj. Since
Qd

j¼1 jDjj
is a constant for a given cube, T can be rewritten as
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T ¼ kpi j
Yd
j¼1

ðuij þ 1Þ � b �
Yd
j¼1

jDjj
( )

¼ kpi j
Yd
j¼1

ðuij þ 1Þ � b0
( )

:

From Lemma 2, it is shown that the reciprocal zonal
sampling is optimal for information conservation.

3.2 The DCT Phase

In the DCT phase, both the PB and the working buffer are
first partitioned into k subblocks and then perform DCT to
each subblock of the PB, called the DAWA cell, to obtain
B
k coefficients with the reciprocal zonal sampling. The
transformed coefficients of DCT are stored in one subblock,
called T-DAWA cell, in the working buffer. In other words,
a DAWA cell is transformed by DCT and is stored in the
corresponding T-DAWA cell. The flow of the DCT phase is
given as follows:

1. Partition PB into k DAWA cells.
2. Find a multidimensional data point and translate its

coordinate, which corresponds to the PB, into that
corresponding to DAWA cell.

3. Perform DCT on the incoming data point and store
the B

k coefficients in the corresponding T-DAWA cell.
4. Repeat steps 2 and 3 until all data points in the PB

have been processed.

Note that the DCTs over the DAWA cells are symmetric,
thus avoiding the problem of dimension order. Also, the
number of resultant coefficients is equal to the size of the
working buffer. For ease of presentation, the symbols used
in the following sections are summarized in Table 2.

The transformation TDW is defined to transform the
coordinate p of the data point Mp in the PB to a new
coordinate fq; rg of the data point Eq

r in the DAWA cell Dq.
The concept of the transformation of the PB into 18 sub-
blocks is shown in Fig. 5. For the original data point located
at ðX;Y;ZÞ ¼ ð8; 1; 0Þ in the PB, the corresponding DAWA
cell is Dð2;0;0Þ, and the coordinate of Eq

r is ð2; 1; 0Þ. After
performing TDW , each data point is related to one DAWA cell
only. Since only the contribution of a data point to the
corresponding T-DAWA cell, rather than its contribution to
the entire working buffer, needs to be calculated, the
execution efficiency is improved significantly.

Intuitively, the time for performing DCT on k DAWA

cells is 1=k of that for performing DCT on the entire PB with

the same working buffer. However, partitioning too many

DAWA cells will degrade the efficiency of the DWT phase.

The more DAWA cells a PB has, the larger the sequence that

the Haar wavelets have to decompose in this phase. In an

extreme case, where the number of DAWA cells is the same

as the number of data points of the PB, we have a pure

DWT-based approach. On the other hand, the process

becomes a DCT-based approach if the volume of a DAWA

cell is the same as that of the PB. The strategy for optimizing

this trade-off is to partition each dimension to an appro-

priate size that is close to the square root of the dimension

size, which reduces the computational complexity from

OðnBÞ to OðnBffiffiffi
N
p Þ, by transforming a PB to B coefficients. In

general, the value of N is large; thus, the execution

efficiency is improved significantly.
In addition to reducing the overall computational com-

plexity of performing DCT, the effectiveness of the recipro-

cal zonal sampling is another factor that affects the quality of

compression. To show that the efficiency is not compro-

mised by partitioning a PB into DAWA cells, we now discuss

the data distribution of data series in a DAWA cell.

Lemma 3. For a data series generated by the random walk process
fXt; 0 � t < Tg, the subset ofXt, fXt0 ; 0 < t1 � t0 � t2 < Tg,
is also a brown noise.

Proof. For a data series generated by the random walk
process, it can be written as

Xt ¼ Xt�1 þ Zt ¼ X0 þ
Xt

i¼1
Zi:

Since Zt is a purely random process, Xt0 can be rewritten
as Xt0 ¼ X0 þ

Pt0

i¼1 Zi ¼ ðX0 þ
Pt1

i¼1 ZiÞ þ
Pt0

i¼t1þ1 Zi.

Without loss of generality, we denote ðX0 þ
Pt1

i¼1 ZiÞ
as X

0
0, with some manipulation. The reindexed series

can then be formulated as Xt00 ¼ X
0

0 þ
Pt0�t1

j¼0 Z
0

j. Since

fZ 0jg is also a white noise, the subset fXt0 ; 0 < t1 � t0 �
t2 < Tg is thus a brown noise. tu
From Lemma 3, the data series along each dimension in a

DAWA cell is shown to be a brown noise, so the power

density can be estimated as SðkÞ / 1
k2 according to Lemma 1.

Therefore, performing the reciprocal zonal sampling on a
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TABLE 2
Notations of the DAWA Algorithm

Fig. 5. The concept of TD
W : ð8; 1; 0Þ ! fð2; 0; 0Þ; ð2; 1; 0Þg.
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single DAWA cell is as effective as performing it on the

whole PB from a local perspective; that is, the local optimal

selection of coefficients can be achieved. For global

optimization, the correlations between the DAWA cells

can be further utilized by performing DWT on the DCT

coefficients located in different T-DAWA cells.

3.3 The DWT Phase

The task of the DWT phase is to collect coefficient sets from

different T-DAWA cells to be further compressed by DWT

in order to take the advantage of the similarity between the

distributions of each T-DAWA cell. Intuitively, the smaller

the degree of entropy that this set has, the higher the

compression rate that DWT can achieve. Consequently,

DWT prefers coefficients whose absolute values are close

to each other. In light of this, DCT coefficients located at

the same coordinate u in each T-DAWA cell are collected

as an IMS Iu to be decomposed by DWT. In a T-DAWA

cell, the absolute value of a DCT coefficient is inversely

proportional to
Q
ðui þ 1Þ, where ui is the frequency index

in the ith dimension. For example, the coefficient Er
ð0;1Þ is

expected to be twice as large as Er
ð1;1Þ in magnitude.2 Here,

the coefficient whose index of each dimension is equal to 0

is called the DC coefficient, and the corresponding IMS is

denoted as I0.3 For each T-DAWA cell Di, if all coefficients

in Di are adjusted by a scaling factor, where the scaling

factor is the ratio of the DC coefficient of D0 to that of Di,

the collected IMS will be much smoother. This technique,

called scaling, converts a T-DAWA cell to a scaled T-

DAWA cell and smoothes the magnitude of the coeffi-

cients. Note that these factors can be calculated from I0;

thus, no extra storage space is needed. As a result, the

decomposed IMS, called D-IMS, has the same structure as

that of an IMS, but it is much more representative of the

original information.

The processes of the DWT phase are given as follows:

1) For each T-DAWA cell Di, multiply all the coefficients,

except the DC coefficient of Di, by the corresponding

scaling factor, 2) collect the IMSs from the T-DAWA cells

and perform DWT on each of them, and 3) sort all the

decomposed coefficients in each D-IMS, perform the

heuristics, and select the coefficients to store in the synopsis

memory. Since the coefficients in an IMS are collected from

each T-DAWA cell, the working buffer B, which is

partitioned into k parts, is able to accommodate B
k D-IMSs.

The process of collecting the IMSs from the T-DAWA cells

is illustrated in Fig. 6. It shows that the data points in the

middle right of each T-DAWA cell are collected to an IMS.
To prove the optimality of IMSs for wavelets decom-

position, the relationship between an IMS and a recon-
structed IMS needs to be explored further. For brevity, we
employ the case of a four-point series to illustrate the nature
of an IMS.

Lemma 4. For two four-point IMSs of IMS1 ¼ fX1
0 ; X

1
1 ; X

1
2 ; X

1
3g

and IMS2 ¼ fX2
0 ; X

2
1 ; X

2
2 ; X

2
3g, the L2 error4 of DWT will

increase if X1
j and X2

j are exchanged, and the hard-threshold
pruning drops the coefficient with the minimum magnitude.

Proof. By performing DWT, we can estimate the decom-
posed coefficients as

Wi ¼
(
Xi

0 þXi
1 þXi

2 þXi
3

2
;
Xi

0 þXi
1 �Xi

2 �Xi
3

2
;
Xi

0 �Xi
1ffiffiffi

2
p ;

and
Xi

2 �Xi
3ffiffiffi

2
p

)
;

where i ¼ 1; 2. In [16], it is shown that pruning the
coefficient with the smallest magnitude achieves the best
reconstruction result under the thresholding scheme.
Also, Garofalakis and Gibbons [26] show that the
expected value of the overall L2 error of reconstructing
the IMS, denoted as E½L2�, is

P
ijci V arðciÞ, where ci is the

normalized coefficient. Thus, the efficiency of DWT with
one-coefficient pruning can be evaluated by the squared
value of the smallest decomposed coefficient.

Let Wi
j be the jth item of Wi and eij be the error

estimator corresponding to Wi
j . By the definition of IMS

proposed in Section 3, the absolute values of Xi
0, Xi

1, Xi
2,

and Xi
3 should be close to each other, and the constraint

Xi
nj j

Xj
nj j ¼

j
i should be held. Without loss of generality, the

two IMSs can be rewritten as

I1 ¼ fl10ðC þ�1Þ; l11ðC þ�2Þ; l1CC; l13ðC þ�3Þg;

I2 ¼
�
l20ðC þ�1Þ

r
;
l21ðC þ�2Þ

r
;
l2CC

r
;
l23ðC þ�3Þ

r

	
;

where lij 2 f�1; 1g, �i � C, and r > 1.
If these two coefficients l13ðC þ�3Þ and

l13ðCþ�3Þ
r are

exchanged, we have

I3 ¼ l10ðC þ�1Þ; l11ðC þ�2Þ; l1CC;
l23ðC þ�3Þ

r

� 	
;

I4 ¼ l20ðC þ�1Þ
r

;
l21ðC þ�2Þ

r
;
l2CC

r
; l13ðC þ�3Þ

� 	
:
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Fig. 6. The process of collecting the IMSs from the T-DAWA cells.

2 . T h e r a t i o o f e x p e c t e d v a l u e s o f Er
ð0;1Þ t o Er

ð1;1Þ a r e
1

ð0þ1Þ�ð1þ1Þ =
1

ð1þ1Þ�ð1þ1Þ ¼ 2.

3. The value of the DC coefficient is equal to the product of the average of

all data points in the same DAWA cell and a constant
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dQd�1

i¼0
jdi j

r
.

4. The L2-error is defined as 1
n

Pn
i¼1 mi � cmij j2; , where mi denotes the

accurate value for the ith data point, and cmi denotes the approximate value.
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Also, ErrD represents the overall L2 error of perform-
ing DWT on I1 and I2 by dropping one coefficient for
each D-IMS, and Errx denotes the errors of performing
DWT on I3 and I4. To prove the optimality of IMSs
selected by the DAWA algorithm, it must be shown that
ErrD is smaller than Errx.

For the case of li1 ¼ �li0, the best (smallest) error
would be ei2. However, since it is irrelevant to the
analysis of exchanging coefficients, this case is ignored.
For other cases, since all the absolute values of the
coefficients of I1 are close to C, it follows that there
should be at least one W 1

i whose absolute value is
Oð�jÞ. For the cases of li1 ¼ li0, or liC ¼ li3, it follows that
W 1

2 ¼ 0, or W 1
3 ¼ 0. For the case of li1 6¼ li0, and liC 6¼ li3,

either W 1
0 ¼ 0 or W 1

1 ¼ 0 holds. Thus, the minimum
errors of W 1 and W 2 can be estimated as Oð�2Þ and
Oð�r

2Þ respectively, that is, ErrD � Oð�2Þ.
On the other hand, at least one of the W 3

i s will be

OðC � C
rÞ if l11 6¼ l10. As mentioned before, either l11 6¼ l10 or

l21 6¼ l20 must be true, so we have Errx � OððC � C
rÞ

2Þ.
Since the L2 error will not improve after exchanging

two coefficients of the IMSs, the selection of coefficients
in IMSs results in an optimal L2 error for wavelets
decomposition. tu

From Lemma 4, the IMS is shown to be the optimal
selection for performing DWT. Since all the data sources for
the DWT phase, which are generated from the DCT phase,
are already in the working buffer, the DWT phase can be
processed without performing thresholding during multi-
dimensional decomposition. Therefore, the optimality of
performing thresholding can be maximized.

Fig. 7 shows an example of the process for transforming a
4 � 4 PB to a D-IMSs, where the PB is partitioned into four
DAWA cells. The four T-DAWA cells are first scaled, and the
coefficients at the same coordinates in each scaled T-DAWA
cell are collected to construct an IMS.

For the DWT-based approaches, it costs OðkÞ to decom-
pose a data sequence of size k. Thus, the computational
complexity of the DWT phase can be deduced as
OðBk � kÞ ¼ OðBÞ. To store a large number of PBs in the
synopsis memory, the size of each D-IMS must be as small
as possible. Based on the theory of thresholding in DWT,
only the most representative coefficients of D-IMSs are
selected as the snapshot and stored in the synopsis memory.
Instead of selecting the DWT coefficient set that is good for
each individual IMS, three techniques, called null map, IMS

smoothing, and global thresholding, have been developed
to improve the overall accuracy of the DAWA algorithm.

3.3.1 Null Map

The null map is a heuristic that keeps track of empty
DAWA cells. Since cube streams in several real applications
are very sparse [18], [19], many of the DAWA cells are
usually empty. Consequently, the corresponding T-DAWA
cells will also be empty. Intuitively, empty DAWA cells do
not contribute to the answers of range-sum queries. If the
queries involve data points located in empty DAWA cells,
the answers contributed by those data points should be
estimated as zeros in order to improve both the execution
efficiency and the answer quality. Therefore, the null map
selectively skips the calculation of answers. It is noted that
only one null map is needed for one PB, since all IMSs in the
same coordinate have zero values with respect to empty
T-DAWA cells.

For ½Bk � D-IMSs, that is, k T-DAWA cells, stored in the
working buffer B, it costs Oðk � eÞ storage space to keep
track of those empty cells, where e is the probability of
empty T-DAWA cells. The parameter e would be small,
whereas the cube stream is sparse. In the worst case ðe ¼ 1Þ,
the space cost of the null map is equal to that of one D-IMS.
For a range-sum query whose selectivity5 is s, the null map
is able to reduce Oðs � kÞ number of times to perform
reconstruction of DWT and inverse DCT for answering this
query.

3.3.2 IMS Smoothing

The DWT applications require more coefficients for rugged
data series than for smooth data series to achieve the same
reconstruction quality. As mentioned in Section 3.3.1, the
sparseness of data sets makes the IMSs rugged. In light of
this, those data points tracked by the null map in each IMS
can be replaced with new values to smooth the correspond-
ing IMSs. Hence, we employ a heuristic, called IMS
smoothing, to replace the zeros in IMSs with appropriate
values in order to reduce the entropy of IMSs. Thus, the
quality of reconstruction can be improved by using the
same compression rate. The new values of the original zero-
value data points can be calculated from the average of the
neighborhoods. Note that the smoothing technique is not
beneficial for the traditional DWT applications, since the
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5. The selectivity of a range-sum query is defined as the ratio of the
number of cells involved in the query to the total number of cells in the
cube.

Fig. 7. The process for transforming a PB to D-IMSs.
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storage space required to keep the coordinates of the
replaced data points for a single data series could be larger
than that for keeping the original information. Instead, the
data points with zero values of different IMSs can be
tracked from the same null map so that the storage space
required to smooth IMSs is very low. For d-dimensional PB
with k T-DAWA cells stored in the working buffer B,
calculating the average for each empty cells in a D-IMS costs
OðdÞ in time complexity. Thus, the total time cost of IMS
smoothing can be estimated as Oð½Bk� dÞ, showing that the
time cost for performing the IMS smoothing is relatively
small compared to the processes of the DCT phase and
DWT phase.

The concepts of null map and IMS smoothing can be best
understood by the following example.

Example 4. Fig. 8 shows the concepts of null map and IMS
smoothing. The 6 � 6 PB is partitioned into nine DAWA
cells, and the coordinates of the empty DAWA cells {(1, 1),
(2, 2)} are added in the null map. After performing DCT,
scaling, and collecting, four IMSs have been generated,
and each of them has two empty cells. After performing
the IMS smoothing, those empty cells are replaced by the
averages of their neighborhoods. It is noted that only one
null map is needed to track the empty cells in the original
PB and those IMSs.

3.3.3 Global Thresholding

The third heuristic that is used to improve the performance
of the DWT phase performs hard thresholding on all the
coefficients in the working buffer together rather than
performing it for each D-IMS individually. Assuming that
the size of the available synopsis memory for a PB is limited
to b, one should select the most b representative coefficients.
The DWT phase adopts global thresholding to select the
top-b coefficients from all D-IMSs. Note that D-IMSs with
too few coefficients after global thresholding will degrade

the quality significantly. Thus, the threshold, denoted as
Tnoc, is set to filter out low-quality D-IMSs.

The process of global thresholding is given as follows:

1. Sort the coefficients of the D-IMSs.
2. Mark the top-b coefficients.
3. Drop those D-IMSs that do not meet the constraints

imposed by Tnoc and unmark the corresponding
coefficients.

4. Mark more coefficients that have large absolute
values from the remaining D-IMSs until the number
of marked coefficients reaches the memory limit b.

The marked coefficients are then stored in the synopsis
memory.

For ½Bk � D-IMSs, that is, k T-DAWA cells, stored in the
working buffer B, sorting for each D-IMS costs Oðk log kÞ in
time complexity, whereas the step that merges ½Bk� sorted
series to mark the top-b coefficients is of the complexity
Oðk � ½Bk �Þ. Therefore, the computational complexity for the
global thresholding is Oð½Bk � � k � log kþ k � ½Bk �Þ, and that of
algorithm DAWA, which can be analyzed from the
operations on the DCT phase, and the DWT phase and
heuristics is Oð nBffiffiffi

N
p þB log

ffiffiffiffiffi
N
p
Þ.

3.4 Answering Range-Sum Queries

For the range-sum queries over a PB, the answers can be
estimated in the inverse order of the DCT and DWT phases.
The steps of this process are 1) estimate the range of
involved DAWA cells, 2) reconstruct the coefficients of
IMSs related to T-DAWA cells, and 3) apply the integral
techniques to estimate the contribution of each DAWA cell
and return the summed results.

As mentioned before, the null map ignores the effect of
empty DAWA cells when answering queries. For fully
involved DAWA cells, that is, DAWA cells that are totally
involved in a range-sum query, their contributions can be
estimated directly from the values of the DC coefficients.
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Intuitively, the I0, which keeps the DC coefficient for each
T-DAWA cell, should be kept accurately.

By performing the efficient partitioning technique and
applying DCT in the DCT phase, the DAWA algorithm
transforms the original PBs into highly representative
coefficients efficiently. In the DWT phase, the transformed
DCT coefficients are organized into IMSs, which has been
shown to be the most efficient method for decomposition.
DWT is then applied to each IMS to obtain more
representative coefficients. Finally, the null map, IMS
smoothing, and global thresholding are applied to select
the best coefficient set as the snapshot to be retained in
the synopsis memory. For range-sum queries, the me-
chanisms integrating DCT and DWT are proposed to
return answers quickly. Moreover, the heuristics for fully
involved and empty DAWA cells enable the DAWA
algorithm to achieve better execution efficiency, resulting
in answers of good quality. An algorithmic form of
DAWA is given in Fig. 9.

4 EXPERIMENTAL RESULTS

To evaluate the DAWA algorithm, we conducted three sets
of empirical studies on both synthetic and real data sets. In
Section 4.1, the scalability of the DAWA algorithm with
various settings of working buffer and synopsis memory for
a PB is evaluated. In Section 4.2, DAWA’s performance
generating snapshots of PBs is compared to that of the
wavelet-based approach [11]. The quality of the answers of
range-sum queries for both DAWA and the wavelet-based
approach is then evaluated in Section 4.3.

The synthetic data set, denoted as D-TPC, which is taken
from the decision support benchmark, TPC-H [27], consists

of eight relations. Since the SCS applications on MDSs, a
derived table consisting of six dimensions (Suppliers,
Nationkey, Orderstatus, Mkesegment, Mfgr, and Brand) is
joined by six relations to compose a cube with 169,665 tuples
and 2,250,000 cells. Also, a real-world cube stream, denoted
as D-TEL, is obtained from the error log of a large cellular
phone company. Four common dimensions are considered,
where 1,258,368 cells and 120,478 tuples are involved in this
cube. The sizes of the PBs and the DAWA cells for both data
sets are listed in Table 3.

To simulate range-sum queries, the range in each
dimension of a query is randomly decided based on the
criterion that the product of all ranges is close to the query
selectivity 0.1. Also, the working buffer size is controlled by
the parameter rw, which is defined as rw ¼ B

N . The size of the
available synopsis memory is controlled by rs ¼ b

B .

4.1 Scalability of DAWA

To verify the scalability of the DAWA algorithm, both
D-TPC and D-TEL are compressed by DAWA, with various
settings of rw and rs. The execution times for generating the
snapshots for the PBs are shown in Fig. 10.

It can be seen in Fig. 10 that the execution time of DAWA
is proportional to the size of the working buffer and that the
performance is not degraded as the size of the snapshots
increases. This shows that the inclusion of the heuristics
proposed in Section 3 does not affect the execution
efficiency and that the DAWA algorithm scales well with
different sized snapshots.

To evaluate the sensitivity of error relative to rw, the
average absolute relative error (1-norm error) in answering
100 queries by DAWA for both DTEL and DTPC are
measured with various settings of rw. It can be seen in
Fig. 11 that the error rate decreases as the size of the
working buffer increases, showing that a compromise
between execution time and accuracy can be achieved.
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Fig. 9. The DAWA algorithm.

TABLE 3
Sizes of PBs and DAWA Cells

Fig. 10. Execution times for DAWA under (a) a constant rs ¼ 0:1 and

various values of rw and (b) a constant rw ¼ 0:2 and various values of rs.

Fig. 11. Absolute relative (1-norm) error rates with, various settings of rw.
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To show the good scalability of DAWA in dealing with
different sizes of data sets, five small data sets of different
sizes are sampled from both D-TPC and D-TEL. Fig. 12
shows the linear relationship between the execution time
and the size of data set. That is, the execution time is
proportional to the number of tuples of the original data set.
This conforms to the computational complexity OðBnÞ,
where B is the size of the working buffer, and n is the
number of nonnull tuples in the original data set.

Note that the rw and rs in this experiment are set over a

wide range in order to evaluate the scalability of DAWA.

The following experiments are performed with small rw and

rs to evaluate the performance of the DAWA algorithm in

severely constrained environments.

4.2 Performance of Snapshot Generation

To assess the performance of the DAWA algorithm, the
wavelet-based approach with a hard-thresholding mechan-
ism [11], abbreviated as DWT, is implemented for compar-
ison purposes. The execution times for generating
snapshots of both the DAWA algorithm and DWT are
measured for D-TPC and D-TEL, with various settings of rs.
To compare the performance of both algorithms fairly, the
I/O times for scan data are excluded, but the time cost of
decomposition, transformation, and heuristics is consid-
ered. As shown in Fig. 10a, the execution time for the
DAWA algorithm is almost linear to the size of the working
buffer. Therefore, rw is set to a constant (0.05), and the
execution time for different sizes of the working buffer can
be estimated proportionally.

Fig. 13 indicates that the DAWA algorithm outperforms
the DWT algorithm in execution efficiency by a margin of
3.5 times for the D-TEL data set. Furthermore, in a large
D-TPC data set, the DAWA algorithm is eight times more
efficient than the DWT algorithm. Consequently, the
computational complexity of DWT, estimated as OðNÞ in
Section 2, is much larger than that of the DAWA algorithm.

Note that the execution times for the DCT-based
approaches [10] are not included, since the computational
complexity is too high to be used for the SCS applications.
For the case of rs ¼ 0:01, the DCT-based approaches take
more than 8,500 seconds to finish the experiment, which
means that the time cost is 1,400 times greater than that of
DAWA.

4.3 Quality of Answers

To evaluate the quality of answers for range-sum queries,
100 queries for both DTEL and DTPC are generated. The
settings of rw and rs are the same as those in Section 4.2.

As shown in Fig. 14, the quality of answers from the
DAWA algorithm is much better than that from DWT. The
error rates of the answers from DAWA are all below
5 percent for both D-TPC and D-TEL, showing that DAWA
works well under a small working buffer and is able to
generate very small snapshots for the original data sets,
with acceptable error rates. In contrast, the DWT error rates
are as high as 14 percent and 58 percent for D-TEL and
D-TPC, respectively, because the working buffer is insuffi-
cient. Furthermore, DWT needs to perform hard threshold-
ing and drops coefficients after the decomposition of each
dimension so that its thresholding mechanism degrades the
quality of answers significantly. Moreover, the quality of
answers may not improve if more storage space for the
synopsis memory is supplied.

4.4 Experimental Studies of the Heuristics

To evaluate the improvement in the quality of answers and
the execution performance contributed by null map and
IMS smoothing, the range-sum queries in Section 4.3 for
both DTEL and DTPC are used. The quality of answers are
evaluated in three different cases. The first is by using the
original DAWA algorithm while both null map and IMS
smoothing are active. The second one, denoted as NoN-
ullMap, deactivates the null map, whereas the third,
denoted as NoIMS, uses the DAWA algorithm without
performing the IMS smoothing. Since the IMS smoothing is
performed during the DWT phase, there will be no
difference between the DAWA algorithm and NoIMS in
the execution performance of answering queries. Thus, only
the execution performance of the DAWA algorithm and
NoNullMap are compared. The performance of the three
settings are measured for D-TPC and D-TEL, with various
settings of rw and a fixed setting of rs ¼ 0:1.

Fig. 15 indicates that the execution performance of the
DAWA algorithm is improved while the null map is
activating. It can be seen that the percentages of the reduced
execution time from different settings of rw are close to each

1568 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 11, NOVEMBER 2007

Fig. 12. Execution times of different sizes of data sets.

Fig. 13. Execution times of generating snapshots, with various values

of rs.

Fig. 14. Relative (1-norm) error rates of answers, with various

settings of rs.
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other, showing that the execution times reduced by
performing null map is proportional to the number of
DAWA cells and independent of the size of working buffer.

As shown in Fig. 16, the quality of answers from the
DAWA algorithm is better than that from both NoIMS and
NoNullMap. The error rates reduced by those two heur-
istics vary in the range from 0.5 percent to 1 percent; that is,
the quality of answers are improved by a margin of
3 percent to 30 percent. Also, Fig. 16 shows that the
improvement from the IMS smoothing is slightly better
than that from null map. It is noted that the quality of
answers of all those three settings are better than that of
DWT in Section 4.3.

5 CONCLUSIONS

In this paper, we have addressed the problem of
generating snapshots for cube streams and proposed an
efficient approach, called DAWA, for PBs. By utilizing the
techniques of partitioning and selecting IMSs, DAWA is
able to compress a PB into highly representative coeffi-
cients efficiently during the DCT phase and the DWT
phase. In addition, three heuristics have been developed to
generate the final results for storage in the synopsis
memory and improve the quality of answers. As shown by
our experimental results, as it combines the merits of DCT
and DWT, DAWA not only generates snapshots for PBs
very rapidly but also delivers high-quality answers for
range-sum queries.
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