
1

On Modularity Clustering
Ulrik Brandes1, Daniel Delling2, Marco Gaertler2, Robert Görke2,

Martin Hoefer1, Zoran Nikoloski3, Dorothea Wagner2

Abstract— Modularity is a recently introduced quality measure
for graph clusterings. It has immediately received considerable
attention in several disciplines, and in particular in the complex
systems literature, although its properties are not well under-
stood. We study the problem of finding clusterings with maximum
modularity, thus providing theoretical foundations for past and
present work based on this measure. More precisely, we prove
the conjectured hardness of maximizing modularity both in the
general case and with the restriction to cuts, and give an Integer
Linear Programming formulation. This is complemented by first
insights into the behavior and performance of the commonly
applied greedy agglomerative approach.

Index Terms— Graph Clustering, Graph Partitioning, Modu-
larity, Community Structure, Greedy Algorithm

I. INTRODUCTION

Graph clustering is a fundamental problem in the analysis of
relational data. Studied for decades and applied to many settings,
it is now popularly referred to as the problem of partitioning
networks into communities. In this line of research, a novel graph
clustering index called modularity has been proposed recently [1].
The rapidly growing interest in this measure prompted a series
of follow-up studies on various applications and possible adjust-
ments (see, e.g., [2], [3], [4], [5], [6]). Moreover, an array of
heuristic algorithms has been proposed to optimize modularity.
These are based on a greedy agglomeration [7], [8], on spectral
division [9], [10], simulated annealing [11], [12], or extremal
optimization [13] to name but a few prominent examples. While
these studies often provide plausibility arguments in favor of the
resulting partitions, we know of only one attempt to characterize
properties of clusterings with maximum modularity [2]. In partic-
ular, none of the proposed algorithms has been shown to produce
optimal partitions with respect to modularity.

In this paper we study the problem of finding clusterings with
maximum modularity, thus providing theoretical foundations for
past and present work based on this measure. More precisely,
we proof the conjectured hardness of maximizing modularity
both in the general case and the restriction to cuts, and give an
integer linear programming formulation to facilitate optimization
without enumeration of all clusterings. Since the most commonly
employed heuristic to optimize modularity is based on greedy
agglomeration, we investigate its worst-case behavior. In fact, we
give a graph family for which the greedy approach yields an

This work was partially supported by the DFG under grants BR 2158/2-
3, WA 654/14-3, Research Training Group 1042 ”Explorative Analysis and
Visualization of Large Information Spaces” and by EU under grant DELIS
(contract no. 001907).

1 Department of Computer & Information Science, University of Konstanz,
{brandes,hoefer}@inf.uni-konstanz.de

2 Faculty of Informatics, Universität Karlsruhe (TH),
{delling,gaertler,rgoerke,wagner}@ira.uka.de

3 Max-Planck Institute for Molecular Plant Physiology, Bioinformatics
Group, nikoloski@mpimp-golm.mpg.de

approximation factor no better than two. In addition, our examples
indicate that the quality of greedy clusterings may heavily depend
on the tie-breaking strategy utilized. In fact, in the worst case,
no approximation factor can be provided. These performance
studies are concluded by partitioning some previously considered
networks optimally, which does yield further insight.

This paper is organized as follows. Section II shortly introduces
preliminaries, formulations of modularity, an ILP formulation of
the problem. Basic and counterintuitive properties of modularity
are observed in Sect. III. Our NP-completeness proofs are given
in Section IV, followed by an analysis of the greedy approach
in Section V. The theoretical investigation is extended by char-
acterizations of the optimum clusterings for cliques and cycles
in Section VI. Our work is concluded by revisiting examples
from previous work in Section VII and a brief discussion in
Section VIII.

II. PRELIMINARIES

Throughout this paper, we will use the notation of [14]. More
precisely, we assume that G = (V, E) is an undirected connected
graph with n := |V | vertices, m := |E| edges. Denote by C =

{C1, . . . , Ck} a partition of V . We call C a clustering of G and
the Ci, which are required to be non-empty, clusters; C is called
trivial if either k = 1 or k = n. We denote the set of all possible
clusterings of a graph G with A (G). In the following, we often
identify a cluster Ci with the induced subgraph of G, i. e., the
graph G[Ci] := (Ci, E(Ci)), where E(Ci) := {{v, w} ∈ E :

v, w ∈ Ci}. Then E(C) :=
⋃k

i=1 E(Ci) is the set of intra-cluster
edges and E \E(C) the set of inter-cluster edges. The number of
intra-cluster edges is denoted by m(C) and the number of inter-
cluster edges by m(C). The set of edges that have one end-node
in Ci and the other end-node in Cj is denoted by E(Ci, Cj).

A. Definition of Modularity

Modularity is a quality index for clusterings. Given a simple
graph G = (V, E), we follow [1] and define the modularity q (C)
of a clustering C as

q (C) :=∑
C∈C

 |E(C)|
m

−

(
|E(C)|+

∑
C′∈C |E(C, C′)|
2m

)2
 . (1)

Note that C′ ranges over all clusters, so that edges in E(C)

are counted twice in the squared expression. This is to adjust
proportions, since edges in E(C, C′), C 6= C′, are counted twice
as well, once for each ordering of the arguments. Note that we
can rewrite Equation (1) into the more convenient form

q (C) =
∑
C∈C

[
|E(C)|

m
−
(∑

v∈C deg(v)

2m

)2
]

. (2)

http://www2.computer.org/portal/web/csdl/transactions/tkde#2
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-71790
http://kops.ub.uni-konstanz.de/volltexte/2009/7179/

2

This reveals an inherent trade-off: To maximize the first term,
many edges should be contained in clusters, whereas the mini-
mization of the second term is achieved by splitting the graph
into many clusters with small total degrees each. Note that the
first term |E(C)|/m is also known as coverage [14].

B. Maximizing Modularity via Integer Linear Programming

The problem of maximizing modularity can be cast into a
very simple and intuitive integer linear program (ILP). Given a
graph G = (V, E) with n := |V | nodes, we define n2 decision
variables Xuv ∈ {0, 1}, one for every pair of nodes u, v ∈ V .
The key idea is that these variables can be interpreted as an
equivalence relation (over V) and thus form a clustering. In order
to ensure consistency, we need the following constraints, which
guarantee

reflexivity ∀ u : Xuu = 1 ,

symmetry ∀ u, v : Xuv = Xvu , and

transitivity ∀ u, v, w :

Xuv + Xvw − 2 ·Xuw ≤ 1

Xuw + Xuv − 2 ·Xvw ≤ 1

Xvw + Xuw − 2 ·Xuv ≤ 1

.

The objective function of modularity then becomes

1

2m

∑
(u,v)∈V 2

(
Euv −

deg(u) deg(v)

2m

)
Xuv ,

with Euv =

{
1 , if (u, v) ∈ E

0 , otherwise
.

Note that this ILP can be simplified by pruning redundant
variables and constraints, leaving only

(n
2

)
variables and

(n
3

)
constraints.

III. FUNDAMENTAL OBSERVATIONS

In the following, we identify basic structural properties that
clusterings with maximum modularity fulfill. We first focus on
the range of modularity, for which Lemma 3.1 gives the lower
and upper bound.

Lemma 3.1: Let G be an undirected and unweighted graph
and C ∈ A (G). Then −1/2 ≤ q (C) ≤ 1 holds.

Proof: Let mi = |E(C)| be the number of edges inside
cluster C and me =

∑
C 6=C′∈C

∣∣E(C, C′)
∣∣ be the number of

edges having exactly one end-node in C. Then the contribution
of C to q (C) is:

mi

m
−
(mi

m
+

me

2m

)2
.

This expression is strictly decreasing in me and, when varying mi,
the only maximum point is at mi = (m−me)/2. The contribution
of a cluster is minimized when mi is zero and me is as large as
possible. Suppose now mi = 0, using the inequality (a + b)2 ≥
a2 + b2 for all non-negative numbers a and b, modularity has a
minimum score for two clusters where all edges are inter-cluster
edges. The upper bound is obvious from our reformulation in
Equation (2), and has been observed previously [2], [3], [15]. It
can only be actually attained in the specific case of a graph with
no edges, where coverage is defined to be 1.
As a result, any bipartite graph Ka,b with the canonic clustering
C = {Ca, Cb} yields the minimum modularity of −1/2. The
following four results characterize the structure of a clustering
with maximum modularity.

Corollary 3.2: Isolated nodes have no impact on modularity.
Corollary 3.2 directly follows from the fact that modularity
depends on edges and degrees, thus, an isolated node does not
contribute, regardless of its association to a cluster. Therefore, we
exclude isolated nodes from further consideration in this work,
i. e., all nodes are assumed to be of degree greater than zero.

Lemma 3.3: A clustering with maximum modularity has no
cluster that consists of a single node with degree 1.

Proof: Suppose for contradiction that there is a clustering C
with a cluster Cv = {v} and deg(v) = 1. Consider a cluster
Cu that contains the neighbor node u. Suppose there are a
number of mi intra-cluster edges in Cu and me inter-cluster edges
connecting Cu to other clusters. Together these clusters add

mi

m
− (2mi + me)2 + 1

4m2

to q (C). Merging Cv with Cu results in a new contribution of

mi + 1

m
− (2mi + me + 1)2

4m2

The merge yields an increase of
1

m
− 2mi + me

2m2
> 0

in modularity, because mi + me ≤ m and me ≥ 1. This proves
the lemma.

Lemma 3.4: There is always a clustering with maximum mod-
ularity, in which each cluster consists of a connected subgraph.

Proof: Consider for contradiction a clustering C with a
cluster C of mi intra- and me inter-cluster edges that consists
of a set of more than one connected subgraph. The subgraphs in
C do not have to be disconnected in G, they are only disconnected
when we consider the edges E(C). Cluster C adds

mi

m
− (2mi + me)2

4m2

to q (C). Now suppose we create a new clustering C′ by splitting C

into two new clusters. Let one cluster Cv consist of the component
including node v, i.e. all nodes, which can be reached from a
node v with a path running only through nodes of C, i.e. Cv =⋃∞

i=1 Ci
v , where Ci

v = {w | ∃(w, wi) ∈ E(C) with wi ∈ Ci−1
v }

and C0
v = {v}. The other nonempty cluster is given by C − Cv .

Let Cv have mv
i intra- and mv

e inter-cluster edges. Together the
new clusters add

mi

m
− (2mv

i + mv
e)2 + (2(m−mv

i) + m−mv
e)2

4m2

to q
(
C′
)
. For a, b ≥ 0 obviously a2 + b2 ≤ (a + b)2, and hence

q
(
C′
)
≥ q (C).

Corollary 3.5: A clustering of maximum modularity does not
include disconnected clusters.
Corollary 3.5 directly follows from Lemma 3.4 and from the
exclusion of isolated nodes. Thus, the search for an optimum
can be restricted to clusterings, in which clusters are connected
subgraphs and there are no clusters consisting of nodes with
degree 1.

A. Counterintuitive Behavior

In the last section, we listed some intuitive properties like
connectivity within clusters for clusterings of maximum modular-
ity. However, due to the enforced balance between coverage and
the sums of squared cluster degrees, counter-intuitive situations

3

(a) (b)

(c) (d)

Fig. 1. (a,b) Non-local behavior; (c) a clique K3 with leaves; (d) scaling
behavior. Clusters are represented by colours.

arise. These are non-locality, scaling behavior, and sensitivity to
satellites.

a) Non-Locality.: At first view, modularity seems to be
a local quality measure. Recalling Equation (2), each cluster
contributes separately. However, the example presented in Fig-
ures 1(a) and 1(b) exhibit a typical non-local behavior. In these
figures, clusters are represented by color. By adding an additional
node connected to the leftmost node, the optimal clustering is
altered completely. According to Lemma 3.3 the additional node
has to be clustered together with the leftmost node. This leads to
a shift of the rightmost black node from the black cluster to the
white cluster, although locally its neighborhood structure has not
changed.

b) Sensitivity to Satellites.: A clique with leaves is a graph
of 2n nodes that consists of a clique Kn and n leaf nodes of
degree one, such that each node of the clique is connected to
exactly one leaf node. For a clique we show in Section VI that
the trivial clustering with k = 1 has maximum modularity. For
a clique with leaves, however, the optimal clustering changes to
k = n clusters, in which each cluster consists of a connected pair
of leaf and clique nodes. Figure 1(c) shows an example.

c) Scaling Behavior.: Figures 1(c) and 1(d) display the
scaling behavior of modularity. By simply doubling the graph pre-
sented in Figure 1(c), the optimal clustering is altered completely.
While in Figure 1(c) we obtain three clusters each consisting of
the minor K2, the clustering with maximum modularity of the
graph in Figure 1(d) consists of two clusters, each being a graph
equal to the one in Figure 1(c).

This behavior is in line with the previous observations in [2],
[4] that size and structure of clusters in the optimum clustering
depend on the total number of links in the network. Hence,
clusters that are identified in smaller graphs might be combined
to a larger cluster in a optimum clustering of a larger graph.
The formulation of Equation 2 mathematically explains this
observation as modularity optimization strives to optimize the
trade-off between coverage and degree sums. This provides a
rigorous understanding of the observations made in [2], [4].

IV. NP -COMPLETENESS

It has been conjectured that maximizing modularity is hard [8],
but no formal proof was provided to date. We next show that
that decision version of modularity maximization is indeed NP-
complete.

Fig. 2. An example graph G(A) for the instance A = {2, 2, 2, 2, 3, 3} of
3-PARTITION. Node labels indicate the corresponding numbers ai ∈ A.

Problem 1 (MODULARITY): Given a graph G and a number
K, is there a clustering C of G, for which q (C) ≥ K?
Note that we may ignore the fact that, in principle, K could
be a real number in the range [−1/2, 1], because 4m2 · q (C) is
integer for every partition C of G and polynomially bounded in
the size of G. Our hardness result for MODULARITY is based on
a transformation from the following decision problem.

Problem 2 (3-PARTITION): Given 3k positive integer numbers
a1, . . . , a3k such that the sum

∑3k
i=1 ai = kb and b/4 < ai < b/2

for an integer b and for all i = 1, . . . , 3k, is there a partition of
these numbers into k sets, such that the numbers in each set sum
up to b?
We show that an instance A = {a1, . . . , a3k} of 3-PARTITION can
be transformed into an instance (G(A), K(A)) of MODULARITY,
such that G(A) has a clustering with modularity at least K(A),
if and only if a1, . . . , a3k can be partitioned into k sets of sum
b = 1/k ·

∑k
i=1 ai each.

It is crucial that 3-PARTITION is strongly NP-complete [16],
i.e. the problem remains NP-complete even if the input is
represented in unary coding. This implies that no algorithm can
decide the problem in time polynomial even in the sum of the
input values, unless P = NP . More importantly, it implies that
our transformation need only be pseudo-polynomial.

The reduction is defined as follows. Given an instance A of 3-
PARTITION, construct a graph G(A) with k cliques (completely
connected subgraphs) H1, . . . , Hk of size a =

∑3k
i=1 ai each. For

each element ai ∈ A we introduce a single element node, and
connect it to ai nodes in each of the k cliques in such a way that
each clique member is connected to exactly one element node.
It is easy to see that each clique node then has degree a and
the element node corresponding to element ai ∈ A has degree
kai. The number of edges in G(A) is m = k/2 · a(a + 1). See
Figure 2 for an example. Note that the size of G(A) is polynomial
in the unary coding size of A, so that our transformation is indeed
pseudo-polynomial.

Before specifying bound K(A) for the instance of MODULAR-
ITY, we will show three properties of maximum modularity clus-
terings of G(A). Together these properties establish the desired
characterization of solutions for 3-PARTITION by solutions for
MODULARITY.

4

Lemma 4.1: In a maximum modularity clustering of G(A),
none of the cliques H1, . . . , Hk is split.

We prove the lemma by showing that every clustering that violates
the above condition can be modified in order to strictly improve
modularity.

Proof: We consider a clustering C that splits a clique
H ∈ {H1, . . . , Hk} into different clusters and then show how
to obtain a clustering with strictly higher modularity. Suppose
that C1, . . . , Cr ∈ C, r > 1, are the clusters that contain nodes of
H . For i = 1, . . . , r we denote by ni the number of nodes of H

contained in cluster Ci, mi = |E(Ci)| the number edges between
nodes in Ci, fi the number of edges between nodes of H in Ci

and element nodes in Ci, di be the sum of degrees of all nodes
in Ci. The contribution of C1, . . . , Cr to q (C) is

1

m

r∑
i=1

mi −
1

4m2

r∑
i=1

d2
i .

Now suppose we create a clustering C′ by rearranging the nodes
in C1, . . . , Cr into clusters C′, C′1, . . . , C′r , such that C′ contains
exactly the nodes of clique H , and each C′i, 1 ≤ i ≤ r, the
remaining elements of Ci (if any). In this new clustering the
number of covered edges reduces by

∑r
i=1 fi, because all nodes

from H are removed from the clusters C′i. This labels the edges
connecting the clique nodes to other non-clique nodes of Ci as
inter-cluster edges. For H itself there are

∑r
i=1

∑r
j=i+1 ninj

edges that are now additionally covered due to the creation of
cluster C′. In terms of degrees the new cluster C′ contains a

nodes of degree a. The sums for the remaining clusters C′i are
reduced by the degrees of the clique nodes, as these nodes are
now in C′. So the contribution of these clusters to q

(
C′
)

is given
by

1

m

r∑
i=1

mi +

r∑
j=i+1

ninj − fi

− 1

4m2

(
a4 +

r∑
i=1

(di − nia)2
)

.

Setting ∆ := q
(
C′
)
− q (C), we obtain

∆ =
1

m

 r∑
i=1

r∑
j=i+1

ninj − fi

+

1

4m2

((
r∑

i=1

2dinia− n2
i a2

)
− a4

)

=
1

4m2

(
(4m

r∑
i=1

r∑
j=i+1

ninj − 4m

r∑
i=1

fi

+

(
r∑

i=1

ni

(
2dia− nia

2
))
− a4

)
.

Using the equation that 2
∑r

i=1

∑r
j=i+1 ninj =∑r

i=1

∑
j 6=i ninj , substituting m = k

2a(a + 1) and rearranging

terms we get

∆ =
a

4m2

(
− a3 − 2k(a + 1)

r∑
i=1

fi

+

r∑
i=1

ni

(
2di − nia + k(a + 1)

∑
j 6=i

nj

))

≥ a

4m2

(
− a3 − 2k(a + 1)

r∑
i=1

fi

+

r∑
i=1

ni

(
nia + 2kfi + k(a + 1)

r∑
j 6=i

nj

))
.

For the last inequality we use the fact that di ≥ nia + kfi. This
inequality holds because Ci contains at least the ni nodes of
degree a from the clique H . In addition, it contains both the
clique and element nodes for each edge counted in fi. For each
such edge there are k − 1 other edges connecting the element
node to the k − 1 other cliques. Hence, we get a contribution of
kfi in the degrees of the element nodes. Combining the terms ni

and one of the terms
∑

j 6=i nj we obtain

∆ ≥ a

4m2

(
− a3 − 2k(a + 1)

r∑
i=1

fi

)

+
a

4m2

(
r∑

i=1

ni

(
a

r∑
j=1

nj + 2kfi

+((k − 1)a + k)

r∑
j 6=i

nj

))

=
a

4m2

(
− 2k(a + 1)

r∑
i=1

fi

+

r∑
i=1

ni

(
2kfi + ((k − 1)a + k)

r∑
j 6=i

nj

))

=
a

4m2

(
r∑

i=1

2kfi(ni − a− 1))

+((k − 1)a + k)

r∑
i=1

r∑
j 6=i

ninj

)

≥ a

4m2

(
r∑

i=1

2kni(ni − a− 1)

+((k − 1)a + k)

r∑
i=1

r∑
j 6=i

ninj

)
,

For the last step we note that ni ≤ a − 1 and ni − a − 1 < 0

for all i = 1, . . . , r. So increasing fi decreases the modularity
difference. For each node of H there is at most one edge to a
node not in H , and thus fi ≤ ni.

5

By rearranging terms and using the inequality a ≥ 3k we get

∆ ≥ a

4m2

r∑
i=1

ni

(
2k(ni − a− 1)

+((k − 1)a + k)

r∑
j 6=i

nj

)

=
a

4m2

r∑
i=1

ni

−2k + ((k − 1)a− k)

r∑
j 6=i

nj

≥ a

4m2
((k − 1)a− 3k)

r∑
i=1

r∑
j 6=i

ninj

≥ 3k2

4m2
(3k − 6)

r∑
i=1

r∑
j 6=i

ninj .

As we can assume k > 2 for all relevant instances of 3-
PARTITION, we obtain ∆ > 0. This shows that any clustering can
be improved by merging each clique completely into a cluster.
Next, we observe that the optimum clustering places at most one
clique completely into a single cluster.

Lemma 4.2: In a maximum modularity clustering of G(A),
every cluster contains at most one of the cliques H1, . . . , Hk.

Proof: Consider a maximum modularity clustering.
Lemma 4.1 shows that each of the k cliques H1, . . . , Hk is
entirely contained in one cluster. Assume that there is a cluster
C which contains at least two of the cliques. If C does not
contain any element nodes, then the cliques form disconnected
components in the cluster. In this case it is easy to see that the
clustering can be improved by splitting C into distinct clusters,
one for each clique. In this way we keep the number of edges
within clusters the same, however, we reduce the squared degree
sums of clusters.
Otherwise, we assume C contains l > 1 cliques completely and
in addition some element nodes of elements aj with j ∈ J ⊆
{1, . . . , k}. Note that inside the l cliques la(a − 1)/2 edges are
covered. In addition, for every element node corresponding to an
element aj there are laj edges included. The degree sum of the
cluster is given by the la clique nodes of degree a and some
number of element nodes of degree kaj . The contribution of C

to q (C) is thus given by

1

m

 l

2
a(a− 1) + l

∑
j∈J

aj

− 1

4m2

la2 + k
∑
j∈J

aj

2

.

Now suppose we create C′ by splitting C into C′1 and C′2 such
that C′1 completely contains a single clique H . This leaves the
number of edges covered within the cliques the same, however,
all edges from H to the included element nodes eventually drop
out. The degree sum of C′1 is exactly a2, and so the contribution
of C′1 and C′2 to q

(
C′
)

is given by

1

m

 l

2
a(a− 1) + (l − 1)

∑
j∈J

aj

− 1

4m2

(l − 1)a2 + k

∑
j∈J

aj

2

+ a4

 .

Considering the difference we note that

q
(
C′
)
− q (C) = − 1

m

∑
j∈J

aj

+
1

4m2

(
(2l − 1)a4 + 2ka2

∑
j∈J

aj − a4
)

=
2(l − 1)a4 + 2ka2∑

j∈J aj

4m2

−
4m
∑

j∈J aj

4m2

=
2(l − 1)a4 − 2ka

∑
j∈J aj

4m2

≥ 9k3

2m2
(9k − 1)

> 0,

as k > 0 for all instances of 3-PARTITION.
Since the clustering is improved in every case, it is not optimal.

This is a contradiction.
The previous two lemmas show that any clustering can be

strictly improved to a clustering that contains k clique clusters,
such that each one completely contains one of the cliques
H1, . . . , Hk (possibly plus some additional element nodes). In
particular, this must hold for the optimum clustering as well. Now
that we know how the cliques are clustered we turn to the element
nodes.
As they are not directly connected, it is never optimal to create a
cluster consisting only of element nodes. Splitting such a cluster
into singleton clusters, one for each element node, reduces the
squared degree sums but keeps the edge coverage at the same
value. Hence, such a split yields a clustering with strictly higher
modularity. The next lemma shows that we can further strictly
improve the modularity of a clustering with a singleton cluster of
an element node by joining it with one of the clique clusters.

Lemma 4.3: In a maximum modularity clustering of G(A),
there is no cluster composed of element nodes only.

Proof: Consider a clustering C of maximum modularity and
suppose that there is an element node vi corresponding to the
element ai, which is not part of any clique cluster. As argued
above we can improve such a clustering by creating a singleton
cluster C = {vi}. Suppose Cmin is the clique cluster, for which
the sum of degrees is minimal. We know that Cmin contains all
nodes from a clique H and eventually some other element nodes
for elements aj with j ∈ J for some index set J . The cluster
Cmin covers all a(a− 1)/2 edges within H and

∑
j∈J aj edges

to element nodes. The degree sum is a2 for clique nodes and
k
∑

j∈J aj for element nodes. As C is a singleton cluster, it covers
no edges and the degree sum is kai. This yields a contribution
of C and Cmin to q (C) of

1

m

(
a(a− 1)

2
+
∑
j∈J

aj

)
− 1

4m2

((
a2 + k

∑
j∈J

aj

)2

+ k2a2
i

)
.

Again, we create a different clustering C′ by joining C and Cmin

to a new cluster C′. This increases the edge coverage by ai. The
new cluster C′ has the sum of degrees of both previous clusters.
The contribution of C′ to q

(
C′
)

is given by

1

m

(
a(a− 1)

2
+ ai +

∑
j∈J

aj

)
− 1

4m2

(
a2 + kai + k

∑
j∈J

aj

)2

,

6

so that

q
(
C′
)
− q (C) =

ai

m
− 1

4m2

(
2ka2ai + 2k2ai

∑
j∈J

aj

)

=
1

4m2

(
2ka(a + 1)ai − 2ka2ai

−2k2ai

∑
j∈J

aj

)

=
ai

4m2

2ka− 2k2
∑
j∈J

aj

 .

At this point recall that Cmin is the clique cluster with the
minimum degree sum. For this cluster the elements corresponding
to included element nodes can never sum to more than a/k. In
particular, as vi is not part of any clique cluster, the elements of
nodes in Cmin can never sum to more than (a− ai)/k. Thus,∑

j∈J

aj ≤
1

k
(a− ai) <

1

k
a ,

and so q
(
C′
)
−q (C) > 0. This contradicts the assumption that C

is optimal.
We have shown that for the graphs G(A) the clustering of

maximum modularity consists of exactly k clique clusters, and
each element node belongs to exactly one of the clique clusters.
Combining the above results, we now state our main result:

Theorem 4.4: MODULARITY is strongly NP-complete.
Proof: For a given clustering C of G(A) we can check in

polynomial time whether q (C) ≥ K(A), so clearly MODULAR-
ITY ∈ NP .

For NP-completeness we transform an instance A =

{a1, . . . , a3k} of 3-PARTITION into an instance (G(A), K(A)) of
MODULARITY. We have already outlined the construction of the
graph G(A) above. For the correct parameter K(A) we consider
a clustering in G(A) with the properties derived in the previous
lemmas, i. e., a clustering with exactly k clique clusters. Any such
clustering yields exactly (k− 1)a inter-cluster edges, so the edge
coverage is given by∑

C∈C

|E(C)|
m

=
m− (k − 1)a

m

= 1− 2(k − 1)a

ka(a + 1)
= 1− 2k − 2

k(a + 1)
.

Hence, the clustering C = (C1, . . . , Ck) with maximum modular-
ity must minimize deg(C1)2 + deg(C2)2 + . . . + deg(Ck)2. This
requires a distribution of the element nodes between the clusters
which is as even as possible with respect to the sum of degrees
per cluster. In the optimum case we can assign to each cluster
element nodes corresponding to elements that sum to b = 1/k ·a.
In this case the sum up of degrees of element nodes in each clique
cluster is equal to k · 1/k · a = a. This yields deg(Ci) = a2 + a

for each clique cluster Ci, i = 1, . . . , k, and gives

deg(C1)2 + . . . + deg(Ck)2 ≥ k(a2 + a)2 = ka2(a + 1)2.

Equality holds only in the case, in which an assignment of b to
each cluster is possible. Hence, if there is a clustering C with
q (C) of at least

K(A) = 1− 2k − 2

k(a + 1)
− ka2(a + 1)2

k2a2(a + 1)2
=

(k − 1)(a− 1)

k(a + 1)

then we know that this clustering must split the element nodes
perfectly to the k clique clusters. As each element node is
contained in exactly one cluster, this yields a solution for the
instance of 3-PARTITION. With this choice of K(A) the instance
(G(A), K(A)) of MODULARITY is satisfiable only if the instance
A of 3-PARTITION is satisfiable.

Otherwise, suppose the instance for 3-PARTITION is satisfiable.
Then there is a partition into k sets such that the sum over each
set is 1/k · a. If we cluster the corresponding graph by joining
the element nodes of each set with a different clique, we get
a clustering of modularity K(A). This shows that the instance
(G(A), K(A)) of MODULARITY is satisfiable if the instance A

of 3-PARTITION is satisfiable. This completes the reduction and
proves the theorem.

This result naturally holds also for the straightforward gen-
eralization of maximizing modularity in weighted graphs [17].
Instead of using the numbers of edges the definition of modularity
employs the sum of edge weights for edges within clusters,
between clusters and in the total graph.

A. Special Case: Modularity with Bounded Number of Clusters

A common clustering approach is based on iteratively identi-
fying cuts with respect to some quality measures, see for exam-
ple [18], [19], [20]. The general problem being NP-complete, we
now complete our hardness results by proving that the restricted
optimization problem is hard as well. More precisely, we consider
the two problems of computing the clustering with maximum
modularity that splits the graph into exactly or at most two
clusters. Although these are two different problems, our hardness
result will hold for both versions, hence, we define the problem
cumulatively.

Problem 3 (k-MODULARITY): Given a graph G and a number
K, is there a clustering C of G into exactly/at most k clusters,
for which q (C) ≥ K?
We provide a proof using a reduction that is similar to the one
given recently for showing the hardness of the MinDisAgree[2]
problem of correlation clustering [21]. We use the problem MIN-
IMUM BISECTION FOR CUBIC GRAPHS (MB3) for the reduction:

Problem 4 (MINIMUM BISECTION FOR CUBIC GRAPHS):
Given a 3-regular graph G with n nodes and an integer c, is
there a clustering into two clusters of n/2 nodes each such that
it cuts at most c edges?
This problem has been shown to be strongly NP-complete in [22].
We construct an instance of 2-MODULARITY from an instance of
MB3 as follows. For each node v from the graph G = (V, E) we
attach n−1 new nodes and construct an n-clique. We denote these
cliques as cliq(v) and refer to them as node clique for v ∈ V .
Hence, in total we construct n different new cliques, and after
this transformation each node from the original graph has degree
n+2. Note that a cubic graph with n nodes has exactly 1.5n edges.
In our adjusted graph there are exactly m = (n(n − 1) + 3)n/2

edges.
We will show that an optimum clustering which is denoted

as C∗ of 2-MODULARITY in the adjusted graph has exactly
two clusters. Furthermore, such a clustering corresponds to a
minimum bisection of the underlying MB3 instance. In particular,
we give a bound K such that the MB3 instance has a bisection
cut of size at most c if and only if the corresponding graph has
2-modularity at least K.

7

We begin by noting that there is always a clustering C with
q (C) > 0. Hence, C∗ must have exactly two clusters, as no more
than two clusters are allowed. This serves to show that our proof
works for both versions of 2-modularity, in which at most or
exactly two clusters must be found.

Lemma 4.5: For every graph constructed from a MB3 instance,
there exists a clustering C = {C1, C2} such that q (C) > 0. In
particular, the clustering C∗ has two clusters.

Proof: Consider the following partition into two clusters.
We pick the nodes of cliq(v) for some v ∈ V as C1 and the
remaining graph as C2. Then

q (C) = 1− 3

m

− (n(n− 1) + 3)2 + ((n− 1)(n(n− 1) + 3))2

4m2

=
2n− 2

n2
− 3

m
=

2

n
− 2

n2
− 3

m
> 0 ,

as n ≥ 4 for every cubic graph. Hence q (C) > 0 and the lemma
follows.

Next, we show that in an optimum clustering, all the nodes of
one node clique cliq(v) are located in one cluster:

Lemma 4.6: For every node v ∈ V there exists a cluster C ∈
C∗ such that cliq(v) ⊆ C.

Proof: For contradiction we assume a node clique cliq(v)

for some v ∈ V is split in two clusters C1 and C2 of the
clustering C = {C1, C2}. Let ki := |Ci ∩ cliq(v)| be the number
of nodes located in the corresponding clusters, with 1 ≤ ki ≤
n− 1. Note that k2 = n− k1. In addition, we denote the sum of
node degrees in both clusters excluding nodes from cliq(v) by d1

and d2:

di =
∑

u∈Ci,u 6∈cliq(v)

deg(u).

Without loss of generality assume that d1 ≥ d2. Finally, we denote
by m′ the number of edges covered by the clusters C1 and C2.

We define a new clustering C′ as {C1 \ cliq(v), C2 ∪ cliq(v)}
and denote the difference of the modularity as ∆ := q

(
C′
)
−q (C).

We distinguish two cases depending in which cluster the node v

was located with respect to C: In the first case v ∈ C2 and we
obtain:

q (C) =
m′

m
− (d1 + k1(n− 1))2

4m2

+
(d2 + (n− k1)(n− 1) + 3)2

4m2
,

q
(
C′
)

=
m′ + k1(n− k1)

m

−d2
1 + (d2 + n(n− 1) + 3)2

4m2
and

∆ =
k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2

+
(d1 + k1(n− 1))2

4m2

+
(d2 + (n− k1)(n− 1) + 3)2

4m2
.

We simplify expression of ∆ as follows:

∆ =
1

4m2

(
4mk1(n− k1)− d2

1 − (d2 + n(n− 1) + 3)2

+(d1 + k1(n− 1))2

+(d2 + (n− k1)(n− 1) + 3)2
)

=
1

4m2

(
4mk1(n− k1) + (2k2

1 − 2nk1)(n− 1)2

−6k1(n− 1) + 2(d1 − d2)k1(n− 1)
)

≥ k1

4m2

(
4m(n− k1)

−2(n− k1)(n− 1)2 − 6(n− 1)
)

.

We can bound the expression in the bracket in the following way
by using the assumption that d1 ≥ d2 and 1 ≤ k1 ≤ n− 1:

(n− k1)
(

4m− 2(n− 1)2
)
− 6(n− 1)

≥ (n− k1)
(

4m− 2(n− 1)2 − 6(n− 1)︸ ︷︷ ︸
=:B

)
(3)

and, thus, it remains to show that B > 0. By filling in the value
of m and using the facts that 2n2(n− 1) > 2(n− 1)2 and 6n >

6(n − 1) for all n ≥ 4, we obtain B > 0 and thus modularity
strictly improves if all nodes are moved from cliq(v) to C2.

In the second case the node v ∈ C1 and we get the following
equations:

q (C) =
m′

m
− (d1 + k1(n− 1) + 3)2

4m2

+
(d2 + (n− k1)(n− 1))2

4m2
,

q
(
C′
)

=
m′ + k1(n− k1)

m

−d2
1 + (d2 + n(n− 1) + 3)2

4m2
, and

∆ =
k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2

+
(d1 + k1(n− 1) + 3)2

4m2

+
(d2 + (n− k1)(n− 1))2

4m2
.

We simplify expression of ∆ as follows:

4m2∆ = 4mk1(n− k1) + (2k2
1 − 2nk1)(n− 1)2

−6(n− k1)(n− 1)

+2(d1 − d2)(k1(n− 1) + 3)

≥ 4mk1(n− k1)− 2k1(n− k1)(n− 1)2

−6(n− k1)(n− 1))

Recall 1 ≤ k1 ≤ n− 1, and filling in the value of m, we obtain

4mk1 − 2k1(n− 1)2 − 6(n− 1)

= 2k1(n2(n− 1)− (n− 1)2) + 6nk1 − 6(n− 1) > 0 ,

which holds for all k1 ≥ 1 and n ≥ 4. Also in this case,
modularity strictly improves if all nodes are moved from cliq(v)

to C2.
The final lemma before defining the appropriate input param-

eter K for the 2-MODULARITY and thus proving the correspon-
dence between the two problems shows that the clusters in the
optimum clusterings have the same size.

8

Lemma 4.7: In C∗, each cluster contains exactly n/2 complete
node cliques.

Proof: Suppose for contradiction that one cluster C1 has
l1 < n/2 cliques. For completeness of presentation we use m′

to denote the unknown (and irrelevant) number of edges covered
by the clusters. For the modularity of the clustering is given in
Equation (4).

q
(
C∗
)

=
m′

m
− l21(n(n− 1) + 3)2

4m2
(4)

− (n− l1)2(n(n− 1) + 3)2

4m2

We create a new clustering C′ by transferring a complete node
clique from cluster C2 to cluster C1. As the graph G is 3-regular,
we lose at most 3 edges in the coverage part of modularity:

q
(
C′
)
≥ m′ − 3

m
− (l1 + 1)2(n(n− 1) + 3)2

4m2
(5)

+
(n− l1 − 1)2(n(n− 1) + 3)2

4m2
.

We can bound the difference in the following way:

q
(
C′
)
− q (C) ≥ − 3

m
+

(l21 + (n− l1)2

4m2

− (n− l1 − 1)2)(n(n− 1) + 3)2

4m2

= − 3

m
+

(2n− 4l1 − 2)

n2

≥ − 3

m
+

2

n2
=

2

n2
− 6

n3 − n2 + 3n
> 0 ,

for all n ≥ 4. The analysis uses the fact that we can assume n to
be an even number, so l1 ≤ n

2 − 1 and thus 4l1 ≤ 2n− 4.
This shows that we can improve every clustering by balancing

the number of complete node cliques in the clusters – independent
of the loss in edge coverage.
Finally, we can state theorem about the complexity of 2-
MODULARITY:

Theorem 4.8: 2-MODULARITY is strongly NP-complete.
Proof: Let (G, c) be an instance of MINIMUM BISECTION

FOR CUBIC GRAPHS, then we construct a new graph G′ as stated
above and define K := 1/2− c/m.

As we have shown in Lemma 4.7 that each cluster of C∗ that
is an optimum clustering of G′ with respect to 2-MODULARITY

has exactly n/2 complete node cliques, the sum of degrees in
the clusters is exactly m. Thus, it is easy to see that if the
clustering C∗ meets the following inequality

q
(
C∗
)
≥ 1− c

m
− 2m2

4m2
=

1

2
− c

m
= K ,

then the number of inter-cluster edges can be at most c. Thus
the clustering C∗ induces a balanced cut in G with at most c cut
edges.

This proof is particularly interesting as it highlights that max-
imizing modularity in general is hard due to the hardness of
minimizing the squared degree sums on the one hand, whereas in
the case of two clusters this is due to the hardness of minimizing
the edge cut.

V. THE GREEDY ALGORITHM

In contrast to the abovementioned iterative cutting strategy,
another commonly used approach to find clusterings with good

quality scores is based on greedy agglomeration [14], [23]. In the
case of modularity, this approach is particularly widespread [7],
[8].

Algorithm 1: GREEDY ALGORITHM FOR MAXIMIZING

MODULARITY

Input: graph G = (V, E)

Output: clustering C of G

C ← singletons
initialize matrix ∆

while |C| > 1 do
find {i, j} with ∆i,j is the maximum entry in the matrix
∆

merge clusters i and j

update ∆

return clustering with highest modularity

The greedy algorithm starts with the singleton clustering and
iteratively merges those two clusters that yield a clustering with
the best modularity, i. e., the largest increase or the smallest
decrease is chosen. After n−1 merges the clustering that achieved
the highest modularity is returned. The algorithm maintains a
symmetric matrix ∆ with entries ∆i,j := q

(
Ci,j
)
− q (C),

where C is the current clustering and Ci,j is obtained from C
by merging clusters Ci and Cj . Note that there can be several
pairs i and j such that ∆i,j is the maximum, in these cases the
algorithm selects an arbitrary pair. The pseudo-code for the greedy
algorithm is given in Algorithm 1. An efficient implementation
using sophisticated data-structures requires O

(
n2 log n

)
runtime.

Note that, n−1 iterations is an upper bound and one can terminate
the algorithms when the matrix ∆ contains only non-positive
entries. We call this property single-peakedness, it is proven in [8].
Since it is NP-hard to maximize modularity in general graphs,
it is unlikely that this greedy algorithm is optimal. In fact, we
sketch a graph family, where the above greedy algorithm has
an approximation factor of 2, asymptotically. In order to prove
this statement, we introduce a general construction scheme given
in Definition 5.2. Furthermore, we point out instances where a
specific way of breaking ties of merges yield a clustering with
modularity of 0, while the optimum clustering has a strictly
positive score.

Modularity is defined such that it takes values in the interval
[−1/2, 1] for any graph and any clustering. In particular the
modularity of a trivial clustering placing all vertices into a single
cluster has a value of 0. We use this technical peculiarity to show
that the greedy algorithm has an unbounded approximation ratio.

Theorem 5.1: There is no finite approximation factor for the
greedy algorithm for finding clusterings with maximum modular-
ity.

Proof: We present a class of graphs, on which the algorithm
obtains a clustering of value 0, but for which the optimum
clustering has value close to 1/2. A graph G of this class is given
by two cliques (V1, E1) and (V2, E2) of size |V1| = |V2| = n/2,
and n/2 matching edges Em connecting each vertex from V1

to exactly one vertex in V2 and vice versa. See Figure 3 for an
example with n = 14. Note that we can define modularity by
associating weights w(u, v) with every existing and non-existing
edge in G as follows:

w(u, v) =
Euv

2m
− deg(u) deg(v)

4m2
,

9

(a) (b)

Fig. 3. (a) Clustering with modularity 0; (b) Clustering with modularity
close to 1

2

where Euv = 1 if (u, v) ∈ E and 0 otherwise. The modularity of
a clustering C is then derived by the summing the weights of the
edges covered by C

q (C) =
∑
C∈C

∑
u,v∈C

w(u, v)

Note that in this formula we have to count twice the weight for
each edge between different vertices u and v (once for every
ordering) and once the weight for a non-existing self-loop for
every vertex u. Thus, the change of modularity by merging two
clusters is given by twice the sum of weights between the clusters.

Now consider a run of the greedy algorithm on the graph of
Figure 3. Note that the graph is n/2-regular, and thus has m =

n2/4 edges. Each existing edge gets a weight of 2/n2 − 1/n2 =

1/n2, while every non-existing edge receives a weight of −1/n2.
As the self-loop is counted by every clustering, the initial trivial
singleton clustering has modularity value of −1/n. In the first
step each cluster merge along any existing edge results in an
increase of 2/n2. Of all these equivalent possibilities we suppose
the algorithm chooses to merge along an edge from Em to create
a cluster C′. In the second step merging a vertex with C′ results
in change of 0, because one existing and one non-existing edge
would be included. Every other merge along an existing edge
still has value 2/n2. We suppose the algorithm again chooses to
merge two singleton clusters along an edge from Em creating a
cluster C′′. Afterwards observe that merging clusters C′ and C′′

yields a change of 0, because two existing and two non-existing
edges would be included. Thus, it is again optimal to merge
two singleton clusters along an existing edge. If the algorithm
continues to merge singleton clusters along the edges from Em,
it will in each iteration make an optimal merge resulting in strictly
positive increase in modularity. After n/2 steps it has constructed
a clustering C of the type depicted in Figure 3(a). C consists of one
cluster for the vertices of each edge of Em and has a modularity
value of

q (C) =
2

n
− n

2
· 4n2

n4
= 0.

Due to the single-peakedness of the problem [8] all following
cluster merges can never increase this value, hence the algorithm
will return a clustering of value 0.

On the other hand consider a clustering C∗ = {C1, C2} with
two clusters, one for each clique C1 = V1 and C2 = V2 (see
Figure 3(b)). This clustering has a modularity of

q
(
C∗
)

=
n(n− 2)

n2
− 2

4n2

16n2
=

1

2
− 2

n
.

This shows that the approximation ratio of the greedy algorithm
can be infinitely large, because no finite approximation factor can
outweigh a value of 0 with one strictly greater than 0.

The key observation is, that the proof considers a worst-case
scenario in the sense that greedy is in each iteration supposed
to pick exactly the ”worst” merge choice of several equivalently
attractive alternatives. If greedy chooses in an early iteration to
merge along an edge from E1 or E2, the resulting clustering will
be significantly better. As mentioned earlier, this negative result
is due to formulation of modularity, which yields values from the
interval [−1/2, 1]. For instance, a linear remapping of the range
of modularity to the interval [0, 1], the greedy algorithm yields a
value of 1/3 compared to the new optimum score of 2/3. In this
case the approximation factor would be 2.

Next, we provide a decreased lower bound for a different class
of graphs and no assumptions on the random choices of the
algorithm.

Definition 5.2: Let G = (V, E) and H = (V ′, E′) be two non-
empty, simple, undirected, and unweighted graphs and let u ∈ V ′

be a node. The product G ?u H is defined as the graph (V ′′, E′′)
with the nodeset V ′′ := V ∪ V × V ′ and the edgeset E′′ :=

E ∪ E′′c ∪ E′′H where

E′′c :=
{
{v, (v, u)} | v ∈ V

}
and

E′′H :=
{
{(v, v′), (v, w′)}
| v ∈ V, v′, w′ ∈ V ′′, {v′, w′} ∈ E

}
.

Fig. 4. The graph K4 ?u P1.

An example is given in Fig-
ure 4. The product G ?u H is a
graph that contains G and for each
node v of G a copy Hv of H . For
each copy the node in Hv corre-
sponding to u ∈ H is connected
to v. We use the notation (v, w′)
to refer to the copy of node w′ of H , which is located in Hv . In
the following we consider only a special case: Let n ≥ 2 be an
integer, H = (V ′, E′) be an undirected and connected graph with
at least two nodes, and u ∈ V ′ an arbitrary but fixed node. We
denote by Cg

k the clustering obtained with the greedy algorithm
applied to Kn ?u H starting from singletons and performing at
most k steps that all have a positive increase in modularity.
Furthermore, let m be the number of edges in Kn ?u H . Based on
the merging policy of the greedy algorithm we can characterize
the final clustering Cg

n. It has n clusters, each of which includes
a vertex v of G and his copy of H .

Theorem 5.3: Let n ≥ 2 be an integer and H = (V ′, E′) be a
undirected and connected graph with at least two nodes. If 2|E′|+
1 < n then the greedy algorithm returns the clustering Cg :={
{v} ∪ {v} × V ′ | v ∈ V

}
for Kn ?u H (for any fixed u ∈ H).

This clustering has a modularity score of

4m2 · q
(
Cg) = 4m

(
(|E′|+ 1) · n

)
− n

(
2|E′|+ 1 + n

)2
.

The proof of Theorem 5.3, which relies on the graph construction
described above, is available from the authors or can alternatively
be found in an associated technical report [24]. The next corollary
reveals that the clustering, in which G and each copy of H

form individual clusters, has a greater modularity score. We first
observe an explicit expression for modularity.

Corollary 5.4: The clustering Cs is defined as Cs := {V } ∪{
{v} × V ′ | v ∈ V

}
and, according to Equation (2), its modular-

10

ity is

4m2 · q
(
Cs) = 4m

(
|E′|n +

(
n

2

))
− n

(
2|E′|+ 1

)2
− (n · (n− 1 + 1))2 .

If n ≥ 2 and 2|E′| + 1 < n, then clustering Cs has higher
modularity than Cg .

Theorem 5.5: The approximation factor of the greedy algo-
rithm for finding clusterings with maximum modularity is at least
2.
The quotient q (Cs) /q (Cg) asymptotically approaches 2 for n

going to infinity on Kn ?u H with H a path of length 1/2
√

n.
The full proof of Theorem 5.5 is also available in [24].

VI. OPTIMALITY RESULTS

A. Characterization of Cliques and Cycles

In this section, we provide several results on the structure of
clusterings with maximum modularity for cliques and cycles. This
extends previous work, in particular [2], in which cycles and
cycles of cliques were used to reason about global properties of
modularity.

A first observation is that modularity can be simplified for
general d-regular graphs as follows.

Corollary 6.1: Let G = (V, E) be an unweighted d-regular
graph and C = {C1, . . . , Ck} ∈ A (G). Then the following
equality holds:

q (C) =
|E(C)|
dn/2

− 1

n2

k∑
i=1

|Ci|2 . (6)

The correctness of the corollary can be read off the definition
given in Equation (2) and the fact that |E| = d|V |/2. Thus,
for regular graphs modularity only depends on cluster sizes and
coverage.

1) Cliques: We first deal with the case of complete graphs.
Corollary 6.2 provides a simplified formulation for modularity.
From this rewriting, the clustering with maximum modularity can
directly be obtained.

Corollary 6.2: Let Kn be a complete graph on n nodes
and C := {C1, . . . , Ck} ∈ A (Kn). Then the following equality
holds:

q (C) = − 1

n− 1
+

1

n2(n− 1)

k∑
i=1

|Ci|2 . (7)

The simple proof of 6.2 can be found in the appendix. Thus,
maximizing modularity is equivalent to maximizing the squares
of cluster sizes. Using the general inequality (a + b)2 ≥ a2 +

b2 for non-negative real numbers, the clustering with maximum
modularity is the 1–clustering. More precisely:

Theorem 6.3: Let k and n be integers, Kkn be the complete
graph on k · n nodes and C a clustering such that each cluster
contains exactly n elements. Then the following equality holds:

q (C) =

(
−1 +

1

k

)
· 1

kn− 1
.

For fixed k > 1 and as n tends to infinity, modularity is always
strictly negative, but tends to zero. Only for k = 1 modularity is
zero and thus is the global maximum.
As Theorem 6.3 deals with one clique, the following corollary
provides the optimal result for k disjoint cliques.

Corollary 6.4: The maximum modularity of a graph consisting
of k disjoint cliques of size n is 1− 1/k.

The corollary follows from the definition of modularity in
Equation (2). Corollary 6.4 gives a glimpse on how previous
approaches have succeeded to upper bound modularity as it was
pointed out in the context of Lemma 3.1.

2) Cycles: Next, we focus on simple cycles, i. e., connected
2-regular graphs. According to Equation (6), modularity can be
expressed as given in Equation (8), if each cluster is connected
which may safely be assumed (see Corollary 3.5).

q (C) =
n− k

n
− 1

n2

k∑
i=1

|Ci|2 . (8)

In the following, we prove that clusterings with maximum mod-
ularity are balanced with respect to the number and the sizes of
clusters. First we characterize the distribution of cluster sizes for
clusterings with maximum modularity, fixing the number k of
clusters. For convenience, we minimize F := 1 − q (C), where
the argument of F is the distribution of the cluster sizes.

Proposition 6.5: Let k and n be integers, the set D(k) :={
x ∈ Nk

∣∣∣∑k
i=1 xi = n

}
, and the function F : D(k) → R de-

fined as

F (x) :=
k

n
+

1

n2

k∑
i=1

x2
i for x ∈ D(k) .

Then, F has a global minimum at x∗ with x∗i =
⌊

n
k

⌋
for i =

1, . . . , k − r and x∗i =
⌈

n
k

⌉
for i = k − r + 1, . . . , k, where 0 ≤

r < k and r ≡ n mod k.
Proposition 6.5 is based on the fact, that, roughly speaking,
evening out cluster sizes decreases F . We refer the reader to the
appendix for the full proof. Due to the special structure of simple
cycles, we can swap neighboring clusters without changing the
modularity. Thus, we can safely assume that clusters are sorted
according to their sizes, starting with the smallest element. Then
x∗ is the only optimum. Evaluating F at x∗ leads to a term
that only depends on k and n. Hence, we can characterize the
clusterings with maximum modularity only with respect to the
number of clusters. The function to be minimized is given in
Lemma 6.6:

Lemma 6.6: Let Cn be a simple cycle with n

nodes, h : [1, . . . , n]→ R a function defined as

h(x) := x · n + n +
⌊n

x

⌋(
2n− x ·

(
1 +

⌊n

x

⌋))
,

and k∗ be the argument of the global minimum of h. Then every
clustering of Cn with maximum modularity has k∗ clusters.
The proof of Lemma 6.6 builds upon Proposition 6.5, it can be
found in the appendix. Finally we obtain the characterization for
clusterings with maximum modularity for simple cycles.

Theorem 6.7: Let n be an integer and Cn a simple cycle with n

nodes. Then every clustering C with maximum modularity has k

cluster of almost equal size, where

k ∈

[
n√

n +
√

n
− 1,

1

2
+

√
1

4
+ n

]
.

Furthermore, there are only 3 possible values for k for sufficiently
large n.
The rather technical proof of Theorem 6.7 is based on the
monotonicity of h. This proof can also be found in the appendix.

11

VII. EXAMPLES REVISITED

Applying our results about maximizing modularity gained so
far, we revisit three example networks that were used in related
work [25], [26], [9]. More precisely, we compare published
greedy solutions with respective optima, thus revealing two pecu-
liarities of modularity. First, we illustrate a behavioral pattern of
the greedy merge strategy and, second, we relativize the quality
of the greedy approach.

The first instance is the karate club network of Zachary
originally introduced in [25] and used for demonstration in [26].
The network models social interactions between members of a
karate club. More precisely, friendship between the members is
presented before the club split up due to an internal dispute. A
representation of the network is given in Figure 5. The partition
that has resulted from the split is given by the shape of the nodes,
while the colors indicate the clustering calculated by the greedy
algorithm and blocks refer to a optimum clustering maximizing
modularity, that has been obtained by solving its associated ILP.
The corresponding scores of modularity are 0.431 for the opti-

Fig. 5. Karate club network of Zachary [25]. The different clusterings are
coded as follows: blocks represent the optimum clustering (with respect to
modularity), colors correspond to the greedy clustering, and shapes code the
split that occurred in reality.

mum clustering, 0.397 for the greedy clustering, and 0.383 for the
clustering given by the split. Even though this is another example
in which the greedy algorithm does not perform optimally, its
score is comparatively good. Furthermore, the example shows
one of the potential pitfalls the greedy algorithm can encounter:
Due to the attempt to balance the squared sum of degrees (over
the clusters), a node with large degree (white square) and one
with small degree (white circle) are merged at an early stage.
However, using the same argument, such a cluster will unlikely
be merged with another one. Thus, small clusters with skewed
degree distributions occur.

The second instance is a network of books on politics, compiled
by V. Krebs and used for demonstration in [9]. The nodes
represent books on American politics bought from Amazon.com
and edges join pairs of books that are frequently purchased
together. A representation of the network is given in Figure 6. The
optimum clustering maximizing modularity is given by the shapes
of nodes, the colors of nodes indicate a clustering calculated by
the greedy algorithm and the blocks show a clustering calculated
by Geometric MST Clustering (GMC) which is introduced in [27]
using the geometric mean of coverage and performance, both
of which are quality indices discussed in the same paper. The
corresponding scores of modularity are 0.527 for the optimum

Fig. 6. The networks of books on politics compiled by V. Krebs. The different
clusterings are coded as follows: blocks represent the clustering calculated
with GMC, colors correspond to the greedy clustering, and shapes code the
optimum clustering (with respect to modularity).

clustering, 0.502 for the greedy clustering, and 0.510 for the GMC
clustering. Similar to the first example, the greedy algorithm is
suboptimal, but relatively close to the optimum. Interestingly,
GMC outperforms the greedy algorithm although it does not
consider modularity in its calculations. This illustrates the fact that
there probably are many intuitive clusterings close to the optimum
clustering that all have relatively similar values of modularity. In
analogy to the first example, we observe the same merge-artifact,
namely the two nodes represented as dark-grey triangles.

Fig. 7. Social network of bottlenose dolphins introduced in [28] and clustered
in [29]. The different clusterings are coded as follows: blocks represent
the clustering with maximum modularity, colors represent the result of the
greedy clustering, and shapes code the community structure identified with
the iterative conductance cut algorithm presented in [20].

As a last example, Figure 7 reflects the social structure of
a family of bottlenose dolphins off the coast of New Zealand,
observed by Lusseau et al. [28], who logged frequent associations
between dolphins over a period of seven years. The clustering
with optimum modularity (blocks) achieves a modularity score
of 0.529 and, again, the greedy algorithm (colors) approaches
this value with 0.496. However, structurally the two clusterings
disagree on the two small clusters, whereas a clustering based
on iterative conductance cutting [20] (shapes) achieves the same
quality (0.492), but disagrees with the optimum only on the
smallest cluster and on the refinement of the leftmost cluster.

Summarizing, the three examples illustrated several interesting

12

facts. First of all, an artifical pattern in the optimization process of
the greedy algorithm is revealed: The early merge of two nodes,
one with a high and one with a low degree, results in a cluster
which will not be merged with another one later on. In general,
this can prevent finding the optimum clustering. Nevertheless,
it performs relatively well on the given instances and is at most
10% off the optimum. However, applying other algorithms that do
not optimize modularity, we observe that the obtained clusterings
have similar scores. Thus, achieving good scores of modularity
does not seem to be too hard on these instances. On the one hand,
these clusterings roughly agree in terms of the overall structure, on
the other hand, they differ in numbers of clusters and even feature
artifacts such as small clusters of size one or two. Considering
that all three examples exhibit significant community structure,
we thus predict that there are many intuitive clusterings being
structurally close (with respect to lattice structure) and that most
suitable clustering algorithms probably identify one of them.

VIII. CONCLUSION

This paper represents the first formal assessment to optimiza-
tion of a popular clustering index known as modularity. We have
settled the open question about the complexity status of modular-
ity maximization by proving its NP-hardness, in particular, by
proving NP-completeness in the strong sense for the underlying
decision problem. We show that this even holds for the restricted
version with a bound of two on the number of clusters. This
justifies the further investigation of approximation algorithms and
heuristics, such as the widespread greedy approach. For the latter
we prove a first lower bound on the approximation factor. Our
analysis of the greedy algorithm also includes a brief comparison
with the optimum clustering which is calculated via ILP on
some real-world instances, thus encouraging a reconsideration of
previous results. Following is a list of the main results derived in
this paper.

• Modularity can be defined as a normalized tradeoff between
edges covered by clusters and squared cluster degree sums.
(see Equation (1))

• There is a formulation of modularity maximization as integer
linear program. (Section II-B)

• There is a clustering with maximum modularity without sin-
gleton clusters of degree 1 and without clusters representing
disconnected subgraphs. Isolated nodes have no impact on
modularity. (Corollary 3.2, Lemmata 3.3, 3.4)

• The clustering of maximum modularity changes in a global,
non-trivial fashion even for simplest graph perturbation.
(Section III-A)

• For any clustering C of any graph G the modularity value
1
2 ≤ q (C) < 1. (Lemma 3.1)

• Finding a clustering with maximum modularity is NP-hard,
both for the general case and when restricted to clusterings
with exactly or at most two clusters. (Theorems 4.4 and 4.8)

• With a worst tie-breaking strategy the greedy agglomeration
algorithm has no worst-case approximation factor (Theo-
rem 5.1), with an arbitrary tie-breaking strategy the worst-
case factor is at least 2. (Theorem 5.5)

• A clustering of maximum modularity for cliques of size
n consists of a single cluster (Theorem 6.3), for cycles
of size n of approximately

√
n clusters of size

√
n each.

(Theorem 6.7)

For the future we plan an extended analysis and the development
of a clustering algorithm with provable performance guarantees.
The special properties of the measure, its popularity in application
domains and the absence of fundamental theoretical insights
hitherto, render further mathematically rigorous treatment of
modularity necessary.

REFERENCES

[1] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 026113, 2004.
[Online]. Available: http://link.aps.org/abstract/PRE/v69/e026113

[2] S. Fortunato and M. Barthelemy, “Resolution Limit in Community
Detection.” Proceedings of the National Academy of Sciences, vol. 104,
no. 1, pp. 36–41, 2007.

[3] E. Ziv, M. Middendorf, and C. Wiggins, “Information-Theoretic Ap-
proach to Network Modularity.” Physical Review E, vol. 71, no. 046117,
2005.

[4] S. Muff, F. Rao, and A. Caflisch, “Local Modularity Measure for
Network Clusterizations.” Physical Review E, vol. 72, no. 056107, 2005.

[5] P. Fine, E. D. Paolo, and A. Philippides, “Spatially Constrained Net-
works and the Evolution of Modular Control Systems.” in 9th Intl.
Conference on the Simulation of Adaptive Behavior (SAB), 2006.

[6] M. Gaertler, R. Görke, and D. Wagner, “Significance-Driven Graph
Clustering,” in Proceedings of the 3rd International Conference on
Algorithmic Aspects in Information and Management (AAIM’07), ser.
Lecture Notes in Computer Science. Springer-Verlag, June 2007, pp.
11–26.

[7] M. E. J. Newman, “Fast Algorithm for Detecting Community Structure
in Networks,” Physical Review E, vol. 69, no. 066133, 2004.

[8] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, no.
066111, 2004. [Online]. Available: http://link.aps.org/abstract/PRE/v70/
e066111

[9] M. Newman, “Modularity and Community Structure in Networks.” in
Proceedings of the National Academy of Sciences, 2005, pp. 8577–8582.

[10] S. White and P. Smyth, “A Spectral Clustering Approach to Finding
Communities in Graph.” in SIAM Data Mining Conference, 2005.

[11] R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, “Modularity from
Fluctuations in Random Graphs and Complex Networks.” Physical
Review E, vol. 70, no. 025101, 2004.

[12] J. Reichardt and S. Bornholdt, “Statistical Mechanics of Community
Detection.” Physical Review E, vol. 74, no. 016110, 2006.

[13] J. Duch and A. Arenas, “Community Detection in Complex Networks
using Extremal Optimization.” Physical Review E, vol. 72, no. 027104,
2005.

[14] M. Gaertler, “Clustering,” in Network Analysis: Methodological
Foundations, ser. Lecture Notes in Computer Science, U. Brandes
and T. Erlebach, Eds. Springer-Verlag, February 2005, vol. 3418,
pp. 178–215. [Online]. Available: http://springerlink.metapress.com/
openurl.asp?genre=article&issn=0302-9743&volume=3418&spage=178

[15] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of Statistical Mechanics,
2005.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

[17] M. Newman, “Analysis of Weighted Networks,” Cornell University,
Santa Fe Institute, University of Michigan, Tech. Rep., jul 2004.

[18] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning:
A Survey,” Integration: The VLSI Journal, vol. 19, no. 1-2, pp. 1–81,
1995. [Online]. Available: http://vlsicad.cs.ucla.edu/∼cheese/survey.html

[19] E. Hartuv and R. Shamir, “A Clustering Algorithm based on
Graph Connectivity,” Information Processing Letters, vol. 76, no.
4-6, pp. 175–181, 2000. [Online]. Available: http://citeseer.nj.nec.com/
hartuv99clustering.html

[20] S. Vempala, R. Kannan, and A. Vetta, “On Clusterings - Good, Bad
and Spectral,” in Proceedings of the 41st Annual IEEE Symposium on
Foundations of Computer Science (FOCS’00), 2000, pp. 367–378.

[21] I. Giotis and V. Guruswami, “Correlation Clustering with a Fixed
Number of Clusters,” in Proceedings of the 17th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA’06), New York, NY, USA,
2006, pp. 1167–1176. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1109557.1109686#

13

[22] T. Bui, S. Chaudhuri, F. Leighton, and M. Sipser, “Graph bisection
algorithms with good average case behavior.” Combinatorica, vol. 7,
no. 2, pp. 171–191, 1987.

[23] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[24] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “On Modularity - NP-Completeness and Beyond,” ITI
Wagner, Faculty of Informatics, Universität Karlsruhe (TH), Tech. Rep.
2006-19, 2006.

[25] W. W. Zachary, “An Information Flow Model for Conflict and Fission
in Small Groups,” Journal of Anthropological Research, vol. 33, pp.
452–473, 1977.

[26] M. E. J. Newman and M. Girvan, “Mixing Patterns and Community
Structure in Networks,” in Statistical Mechanics of Complex Networks,
ser. Lecture Notes in Physics, R. Pastor-Satorras, M. Rubi, and A. Diaz-
Guilera, Eds. Springer-Verlag, 2003, vol. 625, pp. 66–87.

[27] D. Delling, M. Gaertler, R. Görke, and D. Wagner, “Experiments on
Comparing Graph Clusterings,” ITI Wagner, Faculty of Informatics,
Universität Karlsruhe (TH), Tech. Rep. 2006-16, 2006.

[28] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.
Dawson, “The bottlenose dolphin community of Doubtful Sound features
a large proportion of long-lasting associations,” Behavioral Ecology and
Sociobiology, vol. 54, no. 4, pp. 396–405, 2003.

[29] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” August 2003. [Online]. Available:
http://arxiv.org/abs/cond-mat/0308217

APPENDIX

Proof: [of Corollary 6.2] Coverage of C can be expressed in
terms of cluster sizes as follows:

|E(C)| =

(
n

2

)
−

k∑
i=1

∏
j>i

|Ci| · |Cj |

=

(
n

2

)
− 1

2

k∑
i=1

∏
j 6=i

|Ci| · |Cj |

=

(
n

2

)
− 1

2

k∑
i=1

|Ci| ·
∑
j 6=i

|Cj |

=

(
n

2

)
− 1

2

k∑
i=1

|Ci| · (n− |Ci|)

=

(
n

2

)
− 1

2

(
n2 −

k∑
i=1

|Ci|2
)

= −n

2
+

1

2

k∑
i=1

|Ci|2 .

Thus, we obtain

q (C) = − 1

n− 1
+

1

n(n− 1)

k∑
i=1

|Ci|2 −
1

n2

k∑
i=1

|Ci|2

= − 1

n− 1
+

1

n2 · (n− 1)

k∑
i=1

|Ci|2 ,

which proves the equation.
Proof: [of Proposition 6.5] Since k and n are given, mini-

mizing F is equivalent to minimizing
∑

i x2
i . Thus let us rewrite

this term:
k∑

i=1

(
xi −

n

k

)2
=

k∑
i=1

x2
i − 2

n

k

k∑
i=1

xi + k ·
(n

k

)2

=

k∑
i=1

x2
i − 2

n2

k
+

n2

k

⇐⇒
k∑

i=1

x2
i =

k∑
i=1

(
xi −

n

k

)2

︸ ︷︷ ︸
=:h(x)

+
n2

k

Thus minimizing F is equivalent to minimizing h. If r is 0,
then h(x∗) = 0. For every other vector y the function h is strictly
positive, since at least one summand is positive. Thus x∗ is a
global optimum.

Let r > 0. First, we show that every vector x ∈ D(k) that is
close to (n

k , . . . , n
k) has (in principle) the form of x∗. Let x ∈

D ∩ [
⌊

n
k

⌋
,
⌈

n
k

⌉
]k, then it is easy to verify that there are k − r

entries that have value
⌊

n
k

⌋
and the remaining r entries have

value
⌈

n
k

⌉
. Any ‘shift of one unit’ between two variables having

the same value, increases the corresponding cost: Let ε :=
⌈

n
k

⌉
−

n
k and xi = xj =

⌈
n
k

⌉
. Replacing xi with

⌊
n
k

⌋
and xj with

⌈
n
k

⌉
+

1, causes an increase of h by 5 + 2ε > 0. Similarly, in the case
of xi = xj =

⌊
n
k

⌋
and the reassignment xi =

⌈
n
k

⌉
and xj =⌊

n
k

⌋
− 1, causes an increase of h by 2 > 0.

Finally, we show that any vector of D(k) can be reach from x∗

by ‘shifting one unit’ between variables. Let x ∈ D(k) and with
loss of generality, we assume that xi ≤ xi+1 for all i. We define
a sequence of elements in D(k) as follows:

1) x(0) := x∗

2) if x(i) 6= x, define x(i+1) as follows

x
(i+1)
j :=

x
(i)
j − 1 if j = min{` | x(i)

` > x`} =: L

x
(i)
j + 1 if j = max{` | x(i)

` < x`} =: L′

x
(i)
j otherwise

Note that all obtained vectors x(i) are elements of D(k) and meet
the condition of x

(i)
j ≤ x

(i)
j+1. Furthermore, we gain the following

formula for the cost:∑
j

(
x
(i+1)
j

)2
=
∑

j

(
x
(i)
j

)2
+ 2

(
x
(i)
L′ − x

(i)
L + 1

)
.

Since L < L′, one obtains x
(i)
L′ ≥ x

(i)
L . Thus x∗ is a global

optimum in D(k).
Proof: [of Lemma 6.6] Note, that h(k) = F (x∗), where F

is the function of Proposition 6.5 with the given k. Consider first
the following equations:

k∑
i=1

(x∗i)2 = (k − r) ·
⌊n

k

⌋2
+ r ·

⌈n

k

⌉2
= (k − r)

(n− r)2

k2
+ r

(
(n− r)

k
+ 1

)2

=
n− r

k
((n− r) + 2r) + r =

n2 − r2

k
+ r

=
1

k

(
n2 −

(
n−

⌊n

k

⌋
k
)2
)

+ n−
⌊n

k

⌋
k

= 2n
⌊n

k

⌋
− k

⌊n

k

⌋2
+ n−

⌊n

k

⌋
k

= n +
⌊n

k

⌋(
2n− k

(⌊n

k

⌋
+ 1
))

14

Since maximizing modularity is equivalent to minimize the ex-
pression k/n+1/n2∑

i x2
i for (xi) ∈

⋃n
j=1 D(j). Note that every

vector (xi) can be realized as clustering with connected clusters.
Since we have characterized the global minima for fixed k, it is
sufficient to find the global minima by varying k.

Proof: [of Theorem 6.7] First, we show that the function h

can be bounded by the inequalities given in (9) and is monoton-
ically increasing (decreasing) for certain choices of k.

kn +
n2

k
≤ h(k) ≤ kn +

n2

k
+

k

4
. (9)

In order to verify the Inequalities (9), let εk be defined as n/k−
bn/kc (≥ 0). Then the definition of h can be rewritten as follows:

h(k) = kn + n +
⌊n

k

⌋(
2n−

(
1 +

⌊n

k

⌋)
k
)

= kn + n +
(n

k
− εk

)(
2n−

(
1 +

n

k
− εk

)
k
)

= kn + n +
2n2

k
− (1− εk)n

−n2

k
− 2nεk + (1− εk)kεk + nεk

= kn +
n2

k
+ (1− εk)εkk .

Replacing the term (1 − εk)εkk by a lower (upper) bound of 0
(k/4) proves the given statements.

Second, the function h is monotonically increasing for k ≥
1/2 +

√
1/4 + n and monotonically decreasing for k ≤

n/
√

n +
√

n − 1. In order to prove the first part, it is sufficient
to show that h(k) ≤ h(k + 1) for every suitable k.

h(k + 1)− h(k)

= (k + 1)n + n +

⌊
n

k + 1

⌋
(

2n−
(

1 +

⌊
n

k + 1

⌋)
(k + 1)

)
− kn− n−

⌊n

k

⌋(
2n−

(
1 +

⌊n

k

⌋)
k
)

= n + 2n

(⌊
n

k + 1

⌋
−
⌊n

k

⌋)
−
(

1 +

⌊
n

k + 1

⌋)⌊
n

k + 1

⌋
+ k

((
1 +

⌊n

k

⌋) ⌊n

k

⌋
−

(
1 +

⌊
n

k + 1

⌋)⌊
n

k + 1

⌋)
Since b·c is discrete and |bxc − bx− 1c| ≤ 1, one obtains:

h(k + 1)− h(k)

=

n−

⌊n

k

⌋2
−
⌊n

k

⌋
if
⌊

n
k

⌋
=
⌊

n
k−1

⌋
3n−

⌊n

k

⌋2
−
⌊n

k

⌋
+ 2k

⌊n

k

⌋
otherwise

(10)

Since 3n−bn/kc2−bn/kc+2k bn/kc > n−bn/kc2−bn/kc, it is
sufficient to show that n−bn/kc2−bn/kc ≥ 0. This inequality is
fulfilled if n− (n/k)2−n/k ≥ 0. Solving the quadratic equations
leads to k ≥ 1/2 +

√
1/4 + n.

Using the above bound, for the second part, it is sufficient to
show that

kn +
n2

k
− (k + 1)n− n2

k + 1
− k + 1

4
≥ 0 , (11)

since this implies that the upper bound of h(k + 1) is smaller
than (the lower bound of) h(k). One can rewrite the left side of

Inequality (11) as:

kn+
n2

k
− (k +1)n− n2

k + 1
− k + 1

4
= −n+

n2

k(k + 1)
− k + 1

4
.

Since h(k)−h(k+1) is monotonically decreasing for 0 ≤ k ≤
√

n,
it is sufficient to show that h(k)−h(k+1) is non-negative for the
maximum value of k. We show that the lower bound h−(k) :=

−n + n2/(k + 1)2 − (k + 1)/4 is non-negative.

h−

(
n√

n +
√

n
− 1

)
= −n− n

4
√

n +
√

n

+
n2(n +

√
n)

n2

=
√

n− n

4
√

n +
√

n︸ ︷︷ ︸
≤ 1

4
√

n

≥ 0

Summarizing, the number of clusters k (of an optimum clustering)
can only be contained in the given interval, since outside the
function h is either monotonically increasing or decreasing. The
length of the interval is less than

1

2
+

√
1

4
+ n− n√

n +
√

n︸ ︷︷ ︸
=:`(n)

+1 .

The function `(n) can be rewritten as follows:

`(n) =

√(
1
4 + n

) (√
n +
√

n
)
− n√

n +
√

n

≤
(
n + 1+ε

2

√
n
)
− n√

n +
√

n
(12)

≤ 1 + ε

2

√
n

n +
√

n
,

for every positive ε. Inequality (12) is due to the fact that(
1

4
+ n

)(√
n +
√

n

)
≤ n2 + n

√
n +

1

4

(
n +
√

n
)

≤ n2 + 2
1 + ε

2
n
√

n

+
(1 + ε)2

4
n

=

(
n +

1 + ε

2

√
n

)2

,

for sufficiently large n.

Ulrik Brandes is a full professor of computer
science at the University of Konstanz. He graduated
from RWTH Aachen in 1994, obtained his PhD and
Habilitation from the University of Konstanz in 1999
and 2002, and was an associate professor at the Uni-
versity of Passau until 2003. His research interests
include algorithmic graph theory, graph drawing,
social network analysis, information visualization,
and algorithm engineering.

15

Daniel Delling studied computer science at Univer-
sität Karlsruhe, Germany, and received his Diplom
in 2006. Since then he is a Ph.D. student at the
chair of Algorithmics I of the Faculty of Informatics
in Karlsruhe. His research focuses are computations
of shortest paths in large, dynamic, time-dependent
graphs and graph clustering.

Marco Gaertler studied mathematics at Universität
Konstanz, Germany, and received his Diplom in
2002. In 2007 he received his Ph.D. in computer
science at the chair of Algorithmics I of the Faculty
of Informatics in Karlsruhe. His research focuses as
a postdoc are the clustering of graphs both in a static
and in an evolving environment and the analytic
visualization of networks.

Robert Görke studied technical mathematics at
Universität Karlsruhe, Germany, and received his
Diplom in 2005. Since then he is a Ph.D. student
at the chair of Algorithmics I of the Faculty of
Informatics in Karlsruhe. His research focuses are
the clustering of graphs both in a static and in an
evolving environment and the analytic visualization
of networks.

Martin Hoefer studied computer science at Tech-
nische Universität Clausthal, Germany, and received
his Diplom in 2004. Since then he is a Ph.D.
student at the chair of Algorithmics at University
of Konstanz. His research centers around efficient
graph algorithms, graph theory, algorithmic game
theory, and combinatorial optimization.

Zoran Nikoloski received a B.S. Degree in Com-
puter Science from Graceland University. Lamoni,
IA. USA in 2001, and a Ph.D. Degree in Computer
Science from University of Central Florida, Orlando,
FL, USA in 2005. He worked as a postdoctoral re-
searcher at the Department of Applied Mathematics,
Faculty of Mathematics and Physics, Charles Uni-
versity, Prague, Czech Republic from 2004 to 2007.
He is currently a postdoctoral researcher at the Max-
Planck Institute for Molecular Plant Physiology,
Potsdam-Golm and the Institute for Biochemistry

and Biology, University of Potsdam, Potsdam, Germany.

Dorothea Wagner received the Diplom and
Ph.D. degrees in mathematics from the Rheinisch-
Westfälische Technische Hochschule at Aachen,
Germany, in 1983 and 1986, respectively. In 1992,
she received the Habilitation degree from the De-
partment for Mathematics of the Technische Uni-
versität Berlin. Until 2003 she was a full professor
of computer science at the University of Konstanz,
and since then holds this position at Universität
Karlsruhe. Her research interests include discrete
optimization, graph algorithms, and algorithm engi-

neering. Alongside numerous positions in editorial boards she is vice president
of the German research association (DFG) since 2007.

	Text6: First publ. in: IEEE Transactions on Knowledge and Data Engineering 20 (2008), 2, pp. 172-188
	Text7: Konstanzer Online-Publikations-System (KOPS) - URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-71790 - URL: http://kops.ub.uni-konstanz.de/volltexte/2009/7179/

