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A Thin-Plate Spline Calibration Model for
Fingerprint Sensor Interoperability

Arun Ross, Member, IEEE, and Rohan Nadgir

Abstract—Biometric sensor interoperability refers to the ability of a system to compensate for the variability introduced in the biometric
data of an individual due to the deployment of different sensors. Poor intersensor performance has been reported in different biometric
domains including fingerprint, face, iris, and speech. In the context of fingerprint technology, variations are observed in the acquired
images of a fingerprint due to differences in sensor resolution, scanning area, sensing technology, etc., which subsequently impact the
feature set extracted from these images. The inability of a fingerprint matcher to compensate for these variations introduced by
different sensors results in inferior intersensor matching performance. In this work, a nonlinear calibration scheme based on the Thin-
Plate Spline (TPS) model is used to register a pair of fingerprint sensors. The proposed calibration technique relies on the evidence of
a few image pairs acquired using the two sensors to generate an average deformation model that defines the spatial relationship
between the two sensors. This assists in the systematic perturbation of images/features pertaining to one sensor in order to make them
compatible with images/features originating from the other sensor. Experimental results using multiple fingerprint data sets confirm the
efficacy of the proposed method in addressing intersensor geometric variations.

Index Terms—Biometrics, fingerprint, interoperability, calibration, splines, deformation.

1 INTRODUCTION

BIOMETRICS refers to the use of distinctive physical (for
example, fingerprints, face, iris, hand geometry, and
palmprint) or behavioral (for example, gait, signature, and
keystroke dynamics) characteristics for automatically re-
cognizing individuals [1]. Among all biometric traits,
fingerprints have been extensively used for human recogni-
tion and have been studied by both the biometric and the
forensic research communities [2]. Fingerprint-based bio-
metric systems are being used in a variety of applications
including the US-VISIT' program instituted by the Depart-
ment of Homeland Security (DHS) and the IAFIS? service
developed by the Federal Bureau of Investigation (FBI).
Fingerprints are oriented texture patterns consisting of
ridges and valleys present on the surface of an individual’s
fingertip. The fingerprint impressions of an individual can
be imaged by rolling the inked finger surface on paper or by
placing the fingertip on the platen of an electronic sensor.
Based on the acquisition methodology, the fingerprint
impression acquired from a fingertip may be categorized
as being a rolled, dab, swipe, or latent print (Fig. 1).
Historically, fingerprints have been acquired by smearing
ink on the fingertip and creating an inked impression of the
finger on paper. The rolled print shown in Fig. 1a is acquired
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by rolling the finger “nail-to-nail” in order to obtain the
“unwrapped” image [1]. Advances in sensor technology
now permit the online acquisition of fingerprints using
scanners based on optical, capacitive, piezoelectric, thermal,
or ultrasonic principles [1], [4]. The sensing area of these
scanners can vary from a few square millimeters to a few
square inches. The resolution of the acquired image can vary
between 250 dpi (for example, Authentec’s AF-S2 FingerLoc)
and 512 dpi (for example, Digital Persona’s U.are.U 4000);
scanners that acquire 1,000-dpi images of the fingerprint (for
example, Aprilis’ HoloSensor) are also available in the
market. The fingerprint images acquired using different
sensing methods can exhibit significant variations in their
geometric dimensions, as well as their photometric compo-
sition. This inherent variation in the acquired images is
illustrated in Fig. 2, where five different scanners were used
to capture impressions of the same fingerprint.

The variations introduced in the acquired images due to
differences in resolution, scanning area, sensing technology,
etc., impact the features extracted from the images (for
example, minutiae points) and, consequently, the templates
stored in the database. Most fingerprint matchers are
restricted in their ability to compare fingerprints originating
from two different sensors resulting in poor intersensor
performance [4]. Inferior intersensor performance has been
reported not only in the fingerprint domain but also in other
domains such as speech, iris, and face. Martin et al. [5]
report a significant drop in the matching performance of
speech-based biometric systems when the input device is
switched from a carbon-button microphone to an electret
microphone (and vice versa). The results of the iris
recognition test conducted by the International Biometric
Group (IBG) [6] suggest that intersensor matching perfor-
mance is lower than intrasensor performance. In the face
domain, the variations introduced due to different cameras
are expected to affect the performance of face recognition
algorithms as severely as the variations introduced due to
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Fig. 1. Four different schemes for fingerprint acquisition. (a) Rolled print (from the NIST Special Database 4). (b) Dab print (from the FVC 2002 DB1
Database). (c) Swiped sensor print (from the FVC 2004 DB3 Database). (d) Latent print (from [3]).

differing illumination patterns [7]. A study conducted by
Faltemier and Bowyer [8] reports degradation in the
matching performance of intersensor 3D face recognition.
Their study concludes that intersensor 3D face matching
may be facilitated under certain limited conditions by
compensating for variations in the sampling densities,
resolution accuracies, and noise characteristics.

The problem of sensor interoperability, as defined in
this paper, cannot be solved by adopting a common
biometric data exchange format [9]. Such a format merely
aids in the exchange of feature sets between systems/
vendors [10]. However, it does not provide a method to
match feature sets obtained from different sensors. Simi-
larly, the Electronic Fingerprint Transmission Specification
(EFTS) [11] defines requirements on fingerprint scanner
systems and printers that supply fingerprint data to the
Integrated Automated Fingerprint Identification System

2500

NN \~\__/,24 100AX
Secugen Hamster Digital Persona
1l U.are.U 4000

Fig. 2. Visual difference between impressions of the same finger
acquired using five different sensors. Crossmatch Verifier 300 (CM),
Secugen Hamster Il (SG), and Digital Persona U.are.U 4000 are
optical sensors; Hamster lll is based on a SEIR technology, whereas
U.are.U 4000 uses a FTIR technology. Ethenticator USB 2500 is a
polymer-based sensor, and Precise 100 AX (PC) is a capacitive
sensor.

(IAFIS). The EFTS provides objective criteria for ensuring
image quality while maintaining the geometric and spatial
integrity of the supplied fingerprint images. However, it
does not define a method to compare fingerprint images
demonstrating significant differences in geometric and
photometric characteristics.

In order to motivate the problem of fingerprint sensor
interoperability, we consider the US-VISIT program that
obtains fingerprint (and face) information of certain
travelers arriving at the nation’s airports and seaports. A
500-dpi optical scanner with a sensing area of 1.2” x 1.2” is
currently being used during the enrollment phase to
procure fingerprint images. The introduction of a different
sensor during the verification stage might render the
current data unusable. The cost of reenrolling individuals
every time the sensor is changed will be tremendous. In
applications like these, the need for sensor interoperability
is paramount and will significantly impact the usability of
the system. Thus, the problem addressed in this paper has
direct applications in fingerprint-based security systems
that employ different types of sensors for fingerprint image
acquisition.

Besides changes in sensing technology, the fingerprint
acquisition and matching methodology may also vary
across systems. Contact-based sensors can obtain rolled,
flat, or slap prints of a finger (Fig. 3). The ability to
successfully compare rolled prints against, for instance, the
associated slap prints is indeed a challenging problem. In
this work, we concern ourselves with the interoperability
between different sensing technologies (for example, optical
versus capacitive) and not between the modes of acquisition
(for example, rolled versus flat). In particular, we demon-
strate that a simple nonlinear calibration scheme is
sufficient to facilitate sensor interoperability. In the pro-
posed framework, the difference between the images
acquired using two different sensors is modeled using
nonlinear distortions represented using Thin-Plate Splines
(TPSs). The use of a nonlinear distortion model that
accounts for local warping is appropriate for the following
reasons: 1) the physics of the sensing process can introduce
distortions unique to each sensor technology; even a
versatile matcher may fail to account for such types of
distortions, and 2) the nature of the distortion may vary
across the sensor due to the arrangement of the sensing
elements within the device; thus, a linear global transfor-
mation may be unsuitable.

The remainder of the paper is organized as follows: In
Section 2, some of the commonly encountered fingerprint
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Fig. 3. Different fingerprint acquisition methods. (a) Rolled print (from the NIST Special Database 4). (b) Flat print (from the FVC 2002 DB1

Database). (c) Slap print [12].

sensing technologies are enumerated. Section 3 discusses
two possible approaches to reconcile images originating
from multiple sensors. Section 4 presents the average
deformation model used in this paper to model intersensor
distortions. Section 5 discusses experimental results on the
Michigan State University (MSU) and West Virginia
University (WVU) database suggesting the efficacy as well
as the limitations of the proposed scheme. Section 6
concludes the paper with a discussion on the merits and
demerits of our approach.

2 FINGERPRINT SENSING TECHNOLOGY

A variety of fingerprint sensing technologies employing
different operational principles are currently available.
These include optical (Frustrated Total Internal Reflection
(FTIR) and Surface Enhanced Irregular Reflection (SEIR)),
capacitive, piezoelectric, temperature differential, ultra-
sound, touchless, and multispectral sensors (see Table 1).
Since optical and capacitive sensors were utilized in this
research, a brief description of these two technologies has
been included below.

Optical sensors. Optical sensors based on FTIR consist of
a glass prism, a light source, and a focusing lens along with
a CMOS or a CCD camera. The light is directed onto the
surface of the prism, which acts as a platen for the finger to
be placed, and the reflected light is focused by the lens onto
the camera, which captures the fingerprint image. Light
rays are totally reflected from the valleys, giving them a
lighter appearance, whereas light rays are not reflected
from the ridges, giving them a darker appearance. The focal
length of the lens is a deciding factor in the size of the
sensor. If a lens having small focal length is selected, optical
distortion could be observed in the captured images. Hence,
there is a trade-off between the sensor size and optical
distortion. Optical sensors are normally bulky because of
this setup.

Some optical sensors use a SEIR technique to capture
fingerprints. SEIR is based on scattering principles in which
light is scattered and reflected from the ridges and not from
the valleys. Most of the scattered light is collected, giving
the ridges a brighter appearance than the valleys.

Capacitive sensors. These sensors are composed of a
number of small capacitive plates placed under the sensor

platen. Air acts as the dielectric medium, and the electric
field strength is a function of the distance of the fingerprint
ridges and valleys from the capacitive plates. The electric
field drops off as the inverse of the distance of the plate to
the object, that is, the skin [15]. To achieve a certain
resolution, a compromise between the size of the capacitive
plates and the distance between capacitive plates has to be
obtained. Capacitive sensors may suffer from static dis-
charge, which could possibly damage the plates; hence,
proper grounding is required.

Each sensing technology introduces its own type of
distortions while acquiring the fingerprint image. Thus,
deformation in fingerprint images is not only a consequence
of the elastic skin interacting with a solid platen/surface
during the image acquisition process but also a character-
istic of the sensor. Distortions may result in parts of the
image being stretched, compressed, or out of focus with
respect to the rest of the image. Blurred edges are some-
times observed in images captured using optical scanners.
This is due to the relatively larger size of the fingerprint
area compared to the first lens in the lens assembly, leading
to nonparallel light paths toward the edge of the image [13].
In some acquisition systems, the path lengths of reflected
light differ across the length and width of the fingertip.
Differences in path lengths can cause part of the image to be
wider than the rest of the image—a principle known as
Trapezoidal Distortion [13], [16], [17]. In Fig. 2, the image
captured using Digital Persona’s U.are.U 4000 exhibits this
type of distortion. Varying path lengths also generate
defocused areas within the captured image. The curvature
of the lens assembly can lead to a curved or out-of-focus
appearance along the outer edges of the image. Capacitive
sensors are prone to noisy artifacts, including noise from the
60-Hz power line and electrical noise from within the
sensor. The semiconductor-sensing chips are also sensitive
to electrostatic discharge, salt from sweat, and other
contaminants, as well as physical wear. Grid artifacts are
possible in capacitive sensors. Hence, intrinsic sensor
properties introduce distortions in the resulting images.

3 SENSOR INTEROPERABILITY

Biometric sensor interoperability refers to the ability of a
system to compensate for the variability introduced in the
raw biometric data (for example, images) of an individual
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TABLE 1
Fingerprint Sensing Technologies

No. | Sensing Working Principle Products
Technology

1 Optical FTIR is based on total internal reflection. Digital Persona
(FTIR - Light is reflected from valleys and not from | U.are.U 4000
Frustrated ridges. Lens focuses the reflected light
Total Internal rays onto the camera. Valleys appear
Reflection) bright while ridges appear dark. [4], [13]

2 Optical SEIR is based on scattering principles. Secugen
(SEIR - Surface | Light is reflected and scattered from ridges Hamster 111
Enhanced and not from valleys. Most of the scattered
Irregular light is collected, hence ridges appear
Reflection) bright while valleys appear dark. [13]

3 Capacitive Air acts as dielectric medium. Capacitance Fujitsu MBF200
is a function of the distance of ridges and Precise 100AX
valleys from the capacitive plates. [4]

4 Piezoelectric Current is generated as a function of varying | Fidelica
pressure applied by ridges and valleys Microsystems
on a dielectric material. [4] FIS 3002

5 Temperature Current is generated as a function of varying | Atmel

Differential temperature differentials observed across AT77C101B
ridges and valleys. [4] Swipe sensor

6 Ultrasound Image generated on basis of the response Ultra-Scan
of the acoustic wave bounced off the UltraTouch
fingertip. No skin contact. [4] Model 203

7 Touchless 3-D image generated by integrating images TBS 3-D sensor.
captured by different cameras. Surround Imaging(tm)

technology
Light reflected by ridges is converted into TST group
electrical signals to generate a image. BiRDIIi
Contact-less.

8 Multispectral Multispectral data is collected under Lumidigm
different illumination angles and polarizing LightPrint
conditions as well as different wavelengths. Technology
Fingerprint information below the surface
of the skin is captured easily. [14]

due to the deployment of different sensors. In the context of
fingerprints, interoperability may be accomplished by two
different approaches, as shown in Fig. 4:

L.

Distortion compensation model. In this approach,
the goal would be to determine and model the
physics of the distortion process when a user places
her finger on a particular scanner. This distortion
would be based on the sensing technology of that
scanner, as well as the process employed to convert
the sensed data into a raw image. As shown in
Fig. 4a, knowledge of the distortion process will
permit us to compute the original “undistorted”
fingerprint (canonical image). The canonical image
may then be used for matching purposes [18].

Intersensor distortion model. In the second ap-
proach, the relative distortion between images ac-
quired using two different sensors can be computed
(Fig. 4b). Modeling the intersensor distortion may be

viewed as a calibration problem, and can be
accomplished by inheriting the knowledge of corre-
sponding points on the two sensors. This is similar
to the camera calibration problem in computer
vision wherein the knowledge of corresponding
points on a chessboard plane is used for appro-
priately registering two different cameras, as well as
computing the intrinsic parameters for a camera [19],
[20], [21], [22]. The intersensor distortion model is
similar to camera calibration and is a combination of
affine and elastic distortions.

In this work, the second approach indicated above is
used to address the problem of interoperability. A TPS
model is employed to characterize the intersensor distor-
tion since such a model can account for the affine and the
nonlinear aspects of the deformation. The parameters of
the intersensor distortion model are estimated based on
the evidence of correspondence between the control points
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Fig. 4. Two different ways of facilitating interoperability. (a) Distortion compensation model. (b) Intersensor distortion model. The numbers within the

circles denote the sequence of steps.

present on the two sensors. In our approach, correspond-
ing points (control points) are obtained by manually
locating minutiae points from a small set of representative
fingerprint image pairs (Fig. 5). The control points are
selected manually to approximately cover the whole area
within the smaller fingerprint image in order to model the
distortions occurring in different areas of the representa-
tive image. These control points are then used to derive a
deformation model that represents the relative distortion

Fig. 5. Minutiae correspondence (manually selected) across represen-
tative image pairs serve as inputs to the TPS model.

between the two images (Fig. 6). A procrustes analysis of
the control points assists in the computation (and
subsequent removal) of translation and rotational para-
meters relating the two representative images. Procrustes
analysis is a rigid shape analysis that uses isomorphic
scaling, translation, and rotation to find the “best” fit
between two shapes defined by some control (landmark)
points. In our methodology, a procrustes analysis is used
to determine only the translation and rotation parameters.
The translation parameters are obtained by aligning
the centroids of both sets of control points. If P =
{(w1,v), (ug,v2), -+, (un,vy)} is the set of n control points
in sensor 1 and P = {(u},v}), (uy,vh),-- -, (u),,v,)} is the
corresponding set of n control points in sensor 2, then the
centroids are given by (a=)" %, v=3% " %) and
(w =", 1 , v =Y, 1), respectively. The control points
are next zero-centered based on their centroids. The zero-
centered P and P’ are symbolized as Py and Pj;. The
optimal rotation between the two point clouds is
computed by estimating the orthogonal matrix @) such that
the expression m = || Py — QP},|| is minimized. In order to
maximize the correlation between the two sets of land-
mark points, the optimal @ is calculated by the singular
value decomposition (SVD) of PLPj, that is, SVD
(PLP;,,) — UDV?T, and Q = VUT (where T is the matrix
transpose operator).
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Fig. 6. Manually selected control points from representative image pairs are provided as inputs to the TPS model. The affine and nonlinear
parameters derived from the average deformation model are used for image and minutiae calibration during the authentication stage.
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| [ Inter-sensor | f
, 7 Distortion -
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Fig. 7. Minutiae calibration. The intersensor distortion compensation block can be introduced between the minutiae extraction and matching modules

to handle intersensor distortions.

The rotation and translation factors are due to variation
in finger placement across different acquisitions and do not
contribute toward the intersensor distortions. The TPS
model, described in the next section, is used to compute
the affine and the nonlinear parameters from the transla-
tion- and rotation-corrected control points. Having first
compensated for the translation and rotation parameters,
the TPS deformation parameters can be computed inde-
pendent of these effects. The TPS parameters are estimated
for several representative image pairs based on manually
established control points. Multiple sets of TPS parameters
aid in generating an average deformation model [23], which
defines the perturbation at every pixel (point) on one sensor
with respect to the other.

The resulting average deformation model may be used
for minutiae, as well as image, calibration. If only the
minutiae templates of a sensor are available, then the
location and orientation of the minutiae points may be
modified. On the other hand, if the fingerprint image itself
is available as a template in the database, then the pixel
locations of the image can be modified, resulting in a
“deformed” image, which is then subjected to the process of
feature extraction and matching.

The proposed intersensor distortion model can be
incorporated into a minutiae-based matcher for the

successful comparison of templates originating from
different sensors, as shown in Fig. 7.

4 THIN-PLATE SPLINE MODEL

For a spatial rearrangement of points, the TPS succinctly
expresses the dependence of the physical bending energy of
a thin metal plate on point constraints [24]. TPS has been
used in many 2D [25], [26], [27], [28] and 3D [26], [27], [28],
[29] medical imaging applications for appropriate registra-
tion. Recently, TPS has been used to model the nonlinear
deformations in fingerprints [23], [30], [31], [32], [33], [34].

4.1 Bending Energy of TPS

Given a list of corresponding points, the TPS model
interpolates the corresponding grid points while maintain-
ing smoothness as defined by the bending energy of the thin
metal plate. The smoothness is maintained by minimizing
the bending energy at a point (z, y):

022\’ P2\ [(022\*
— | 2 —= — | |dzd
/A((@ﬂ) i (axay) *(&ﬂ) o
where z can be defined in the (z,y) plane as an in-plane
interpolant or orthogonal to the (z,y) plane.
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The following derivation is based on the work of
Bookstein [24] Let G1 = (U],U]), GQ = (UQ, Uz), HEIN Gn =
(un,v,) be the control points in sensor 1 and G} =
(uy, v)), Gy = (uh, 1), -+, G, = (u),,v),) be the correspond-
ing control points in sensor 2. The basis function is given by
Ul(rij) = r3log(r};), where r;; = |G; — G|, and U(r) satisfies
the equation for minimizing the bending energy at a point.
Then, matrices K and P can be defined as

0 Ul(riz2) U(rin)
K — U(rsy) 0 U(ran) 7
:U(Tnl) Ulrn2) - 0 nxn (1)
1w v
P 1 uy v
L1 up wvnl, .3

Let 7 be the matrix transpose operator and O be a
3 x 3 matrix of zeros. Then, L is given as

K P
L= .
P o (n+3)x (n+3)
Define Y as
wpouy, Ul 0 00
Y = 1 2 n ‘ :| .
|:UI1 v,2 e v;z 000 2x(n+3)

The affine and nonlinear deformation parameters can be
estimated as

LyT = win)’,

where
Wiy W2y Wny
w :[ } ,
Wiy W2y Wny 1 oxp
b= |:h1u, h?u h3u:|
hh; h21; h311 2%x3

The h;s, hos, and hss are the parameters of the affine
transformation, whereas the w;s represent the weights for
the nonlinear transformation.

If a list of corresponding points between the
kth representative image pair is defined, the TPS function
F), calculates the transformed coordinates (z/,4y') as a
function of the original coordinates (x,y). Here, the
(z,y) points are in sensor 1, and the (2/,y’) points are the
corresponding transformed points in sensor 1. The
function Fj, is defined for each pixel (x,y) on sensor 1
and can be written as

hlu h‘Zu hSu
/o — F . —
(x’y) k(.T’y) |:h1'uj|+|:h2v:|x+|:h3v:|y

3] ue - .

Wiy

(2)

where G;, i = 1..n, are the control points corresponding to
sensor 1. The affine parameters and the nonlinear weights
can be derived in a closed-form solution according to the
bending energy constraint that minimizes the curvature at
every point in the grid.

1103

Fig. 8. Minutiae orientation is modified on the basis of the transformed
minutiae location (after average deformation). P is the original minutiae
point location, whereas Q is the corresponding “angle point.” P’ and Q'
are the corresponding locations of P and Q after average deformation.

4.2 Determining the Average Pixel Deformation

If there are m representative image pairs, then the applica-
tion of the procedure described above will result in the
generation of m TPS functions, Fy, Fs,...F,,. The average
deformation of an arbitrary pixel (z,y) on sensor 1, denoted
by F(z,y), is computed from these m functions as

=

The function F(z,y) defines the new location for each point
(z,y) in sensor 1.

When (3) is used to modify the location of a minutia
point (in the case of minutiae calibration), then the
orientation of each minutia has to be modified also. This
is accomplished by the procedure described below (also
see Fig. 8).

Let P(a,b) be the location of a minutia and 6 be its
orientation. The “angle point” Q(c, d) can then be computed
at a distance r from P as

c=a+rcosd, d="b+rsind. (4)

Upon applying the average deformation model, the points
P(a,b) and Q(c,d) are altered as P'(d/,b') and Q'(¢,d'),
respectively. The new orientation ¢ can now be com-
puted as

d-v

d—a

tan @ = (5)
4.3 Derivation of Scaling Parameters

The linear terms obtained from TPS are collected in a
matrix:

_ h?u h311,
H= |:h2u h3’l/‘:| ' (6)

The hj, and hy, terms can be ignored as they are the
translation parameters. The singular decomposition of
H results in H = O1 D05, where O; and O, are the rotation
parameters, and D is a diagonal matrix of singular values
that correspond to the scaling parameters in the
horizontal S, and vertical S, directions. The optimal scaling
parameters Si; and Sy are obtained by averaging the scaling
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parameters across m different pairs of representative
images:

m Suk
=3 (7)

SUzii‘j:', Sy =

k=1 k=1

5 EXPERIMENTAL RESULTS

As stated earlier, the average deformation model derived
in the previous section may be used for minutiae
calibration or image calibration. In the case of minutiae
calibration, the location and orientation of each minutia
point in the fingerprint template corresponding to
sensor 1 is recomputed based on the average deforma-
tion model so that it is commensurate with the minutiae
template resulting from sensor 2. In image calibration, on
the other hand, the location of each pixel in the original
fingerprint image obtained using sensor 1 is perturbed
according to the deformation function indicated in (3).
Minutiae points are then extracted from this calibrated
image and later utilized when matching it with images
from sensor 2.

In order to test the efficacy of the proposed calibration
model, two distinct data sets were considered. The
composition of these data sets and the performance of
the proposed model on these data sets are reported
below.

5.1 MSU Data Set

The MSU data set comprises of fingerprint images
obtained using two different sensor technologies: an
optical Digital Biometrics (DBI) sensor and a solid-state
capacitive VERIDICOM (VERI) sensor [35]. The 500-dpi
DBI sensor has a platen area of 1" x1” and outputs
images of size 480 x 508. The 500-dpi VERI sensor has a
sensing area of 0.6” x 0.6” and outputs images of size 300
x 300. Sample images from each sensor can be seen in
Fig. 5. We observe that the two images, although obtained
using sensors of similar resolution, have very different
spatial and photometric characteristics.

The fingerprint data of 128 different nonhabituated
cooperative subjects were made available.’> All subjects
provided four impressions each of four distinct fingers
using both the sensors. Thus, 2,048 fingerprint impressions
(four impressions each of 512 different fingers) correspond-
ing to each sensor were available. Two different minutiae-
based matchers—the BOZORTH3 matcher developed by
NIST* and the VeriFinger matcher developed by Neuro-
technologija®—were used in our experiments.

Precalibration minutiae matching results using the
VeriFinger matcher are shown in Fig. 9. The matching
minutiae points, as estimated by this matcher, are high-
lighted in this figure. Fig. 10 illustrates the difference in the
minutiae count between the partial prints from VERI and
the more elaborate prints from DBI. It can be observed that
the DBI images contain more minutiae compared to the
VERI images. This can be further confirmed in Figs. 9c and
9f, where the number of overlapping minutiae is observed
to be relatively more in the DBI image pair. Further, we
observe that during intersensor matching (Fig. 9i), the

3. Although data from a greater number of users were collected, only 128
of these users had data pertaining to both the sensors. For the remaining
users, the corresponding images could not be determined.

4. http:/ /fingerprint.nist.gov/NFIS/.

5. http:/ /www .neurotechnologija.com/.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.20, NO.8, AUGUST 2008

VeriFinger matcher is unsuccessful in correctly detecting
corresponding minutiae pairs.

To facilitate interoperability, the calibration model was
computed using eight different representative image pairs
obtained from the two sensors. In our experiments, the
VERI sensor was calibrated with respect to the DBI sensor.
An illustration of the calibration process using mesh-grid
plots can be seen in Fig. 11. Here, each mesh-grid represents
the spatial geometry of individual images.

Five different matching experiments were conducted
using each of the two matchers in order to demonstrate the
benefit of the calibration model:

1. DBI versus DBI. The genuine and impostor match
scores were generated by comparing minutiae sets
within the DBI database.

2. VERI versus VERI. The genuine and impostor match
scores were generated by comparing minutiae sets
within the VERI database.

3. VERI versus DBI (before calibration). The genuine and
impostor match scores were generated by comparing
the VERI minutiae sets with the DBI minutiae sets.

4. VERI versus DBI (after minutiae calibration). The
minutiae sets extracted from the VERI images were
subjected to the average deformation computed
using our calibration model before matching them
against the minutiae sets of the DBI images. An
illustration of the original minutiae set of a VERI
image along with the calibrated minutiae is pro-
vided in Figs. 12a and 12b. In the current formula-
tion, both the location and the orientation of
individual minutia points are perturbed.

5. VERI versus DBI (after image calibration). The calibra-
tion model suggested here was also used to calibrate
the images acquired using the VERI scanner before
extracting the minutiae from them. However, the
application of a nonlinear transformation to indivi-
dual image pixels will generate subpixel information
that can confound the minutiae detection process. In
some cases, there could be a substantial perturbation
of ridge information, leading to erroneous minutiae
detection. One way to address this issue would be to
subject the image to a simple affine transformation
(predominantly scaling along the 2- and y-directions)
before extracting minutiae points. In this work, these
scaling factors were calculated as the average of the
corresponding affine parameters generated by the
calibration model based on the eight representative
image pairs (refer to Section 4.3). The mesh-grid plot,
along with the minutiae obtained after image
calibration, is shown in Fig. 12c. As the minutiae
are extracted from the “deformed” images obtained
after calibration, the minutiae count might be
altered.

A total of 3,072 (512 * (;)) genuine scores and 523,264 im-
postor scores were generated for each of the five matching
scenarios.

The Receiver Operating Characteristic (ROC) curves
summarizing the performance of these five experiments
using both the matchers are shown in Fig. 13. It is observed
that the proposed calibration model results in improved
intersensor matching performance. For example, in the
matching scenario involving VERI versus DBI (minutiae
calibration), the Genuine Accept Rate (GAR) is observed to
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Fig. 9. Fingerprints in the first two columns are compared and the corresponding minutiae matching results are shown in the third column. The
highlighted minutiae represent the minutiae that have been matched (as estimated by the VeriFinger matcher). The first row illustrates DBI versus
DBI matching, the second, VERI versus VERI matching, and the third, VERI versus DBI matching. (a) DBI Fingerprint 1. (b) DBI Fingerprint 2.
(c) DBI versus DBI matching. (d) VERI Fingerprint 1. (e) VERI Fingerprint 2. (f) VERI versus VERI matching (g) VERI Fingerprint 1. (h) DBI

Fingerprint 2. (i) VERI versus DBl matching.

increase from ~ 35 percent to ~ 75 percent at a False Accept
Rate (FAR) of 0.01 percent when the VeriFinger matcher is
used. Similarly, when the BOZORTH3 matcher is used,
GAR increases from ~ 35 percent to ~ 70 percent at the
same FAR. Similar observations can be made in the case of
image calibration. Fig. 14 indicates the improved minutiae
matching as a result of calibration.

5.2 WVU Data Set
The proposed model was also tested on the WVU data set®
comprising of images collected from the Crossmatch

6. The WVU data set is currently being collected at West Virginia
University and is not publicly available as yet.

Verifier 300 (CM), Secugen Hamster III (SG), and Precise
100 AX fingerprint sensors (PC). CM is an optical sensor
operating on the FTIR principle discussed earlier. SG is also
an optical sensor but operates on the SEIR principle. PC is a
capacitive sensor. The CM 500-dpi sensor has a platen area
of 1.2” x 1.2” and outputs images of size 480 x 640. The SG
500-dpi sensor has a platen area of 0.5” x 0.6” and outputs
images of size 260 x 300. The PC capacitive sensor with an
in-built Silicon sensing material from AuthenTec Inc.
(AES4000) captures images at a resolution of 250 dpi and
outputs images of size 200 x 200.

Data were collected from 71 different nonhabituated
cooperative subjects over multiple sessions. In each session,
three impressions from two distinct fingers were collected
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No of minutiae points - DBI & VERIDICOM 4. CM versus SG, and

25 T T T T
5. SG versus PC.
= = = VERIDICOM . K .
Fig. 17 summarizes the intersensor performance on the

! | WVU data set using the VeriFinger matcher. The following
observations can be made upon viewing these ROC curves:

201

@

1
1
1 4
1
] 1. The proposed calibration model improves the inter-
! | sensor matching accuracy when CM images are
f matched against SG images. Although both the CM
| and SG sensors are optical based, their operating
s | ] principles are different. The calibration scheme is
) k able to handle the geometric transformation between
% % e ® W m T Tw the two sets of images.
Number of Minutiae Points 2. The proposed calibration model does not improve
Fig. 10. The histogram of minutiae points extracted from the DBI and the }ntersensor maffchlng accuracy When the
VERI images SG images (500 dpi) are matched against the
ges. PC images (250 dpi). We conjecture that the reason
. . L . for the lack of improvement is related to the fewer
using all three sensors. Thus, 426 fingerprint impressions R . . . .
- . . number of minutiae points available in the images
from 142 distinct fingers were collected using each sensor L .
duri el ion (Fie. 15). S ided d from the PC sensor. This is substantiated by the
uring a single session (Fig. 15). Some users provided data hist fminut ints sh i Fie 16. Th
over multiple sessions, resulting in a total of 622 fingerprint 1}51 ogrﬁm of minutiae p c(l)'m S SHOWn In Fig. 16. ) s,
impressions for each sensor. when there is significant isparity in sensor resolution
The aforementioned data permitted us to generate and, subsequently, a large difference in image
1,898 genuine scores and 45,074 impostor scores for each dimensions, the geometric correction algorithm
of the following matching experiments: proposed here cannot address the interoperability
problem. This is not entirely surprising since the

Percentage (%)

=)

1 -

1. CM versus CM, number of matching minutiae between two sets of
2. SG versus SG, points, whose cardinality is very different, will be
3. PC versus PC, less.

i 300 — - i i
50 100 150 200 250 0 50 100 150 200 250 300 350

(c) (d)

Fig. 11. Demonstration of the calibration process using mesh-grid plots. (a) and (b) The deformation of two VERI images with respect to their
corresponding DBI images as estimated by the TPS model. (c) A precalibrated VERI image. (d) The postcalibrated VERI image based on the
deformation of eight representative image pairs. The dashed rectangle in (d) indicates the dimensions of the original VERI image.
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Fig. 14. Improved intersensor minutiae matching after calibration. In (a), the matching minutiae before calibration is indicated. In (b) and (c), the
matching minutiae after image and minutiae calibration, respectively, are shown. Matching minutiae pairs are highlighted to distinguish them from the
other minutiae points. Match scores as assessed by the VeriFinger matcher for (a), (b) and (c) are 35, 193, and 202, respectively. (a) VERI versus
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5.3 Computational Complexity
The incorporation of the calibration model in a generic

fingerprint system to facilitate interoperability requires two

primary steps: 1) estimating the calibration parameters using

a small subset of image pairs (~ 8-10) and 2) perturbing the

minutiae set (or images) associated with one of the sensors

using the calibration parameters. Step 1 has to be executed

only once for a pair of sensors. Step 2 has to be executed for
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Fig. 15. Sample images from the WVU data set. Images of the same finger were acquired using three different sensors. (a) CM. (b) SG. (c) PC.

each minutiae set (or image) associated with one of the
sensors. Below, we analyze the complexity of these two steps.

Let n denote the number of minutiae extracted from a
single fingerprint image. The computational complexity of
step 1 depends on the complexity of estimating the TPS
parameters and evaluating the TPS function (Section 4). The
complexity of the former is O(n?), and that of the latter is
O(n?). These operations can be accelerated as shown in [36]
and [37]. Estimating the TPS parameters and the average
deformation model is an offline process that is conducted
prior to fingerprint matching and does not affect the speed
of the matching algorithm employed in real time.

During step 2, the average deformation model is applied
to each minutiae point (or to each pixel) present in the
minutiae set of one of the sensors. On a computer equipped
with a dual processor (Intel Xeon CPUs of 2.4 GHz and
2.39 GHz) and 512 Mbytes of RAM, the time required to
compute the transformed coordinates (z’, y') as a function of
the original coordinates (z,y) is about 6.6 sec.”

6 DiscussiON AND FUTURE WORK

In this paper, we have demonstrated that a simple
nonlinear calibration scheme based on the TPS model is
useful to handle variations in minutiae distributions across
multiple sensors. The parameters of the model (average
deformation) are computed based on a small representative
set of image pairs containing control points (landmarks)
whose correspondences are manually established. The
average deformation model is used to distort the minutiae
points of images acquired using one sensor before compar-
ing them with the minutiae points of images corresponding
to another sensor. A significant performance improvement
is observed when the proposed scheme is utilized to
compare fingerprint images originating from two different
sensors. Only a few representative image pairs are needed
for the successful implementation of the proposed method.
In the future, we plan to use more sophisticated calibration
grids by imaging rigid fingerlike synthetic material with
preestablished control points. This would avoid issues
related to the user-dependent elasticity of the skin.

7. This is for a minutiae set containing 28 points.

An inherent limitation of the proposed scheme is the
inability to compensate for variations introduced in finger-
print images acquired using sensors with significant differ-
ences in resolution and local geometric distortions. A simple
nonlinear transformation may not be sufficient to register
such disparate images. Also, the proposed approach is not
designed to handle photometric variations across sensors.
This important consideration will be a topic for future
research.

The proposed model assumes that the intersensor distor-
tion can be approximated using TPSs. It may be instructive to
evaluate alternate models based on nonparametric local
perturbations (such as optical flow) to describe these
deformations. We also plan to extend our approach toward
addressing compatibility between slap and rolled prints.
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