IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007 149

Bottom-Up Extraction and Trust-Based
Refinement of Ontology Metadata

Paolo Ceravolo, Ernesto Damiani, Member, IEEE, and Marco Viviani

Abstract—We present a way of building ontologies that proceeds in a bottom-up fashion, defining concepts as clusters of concrete
XML objects. Our rough bottom-up ontologies are based on simple relations like association and inheritance, as well as on value
restrictions, and can be used to enrich and update existing upper ontologies. Then, we show how automatically generated assertions
based on our bottom-up ontologies can be associated with a flexible degree of trust by nonintrusively collecting user feedback in the
form of implicit and explicit votes. Dynamic trust-based views on assertions automatically filter out imprecisions and substantially

improve metadata quality in the long run.

Index Terms—Semantic Web, bottom-up ontology, ad hoc conceptualization, metadata extraction and maintenance, fuzzy clustering

techniques, trusted assertions.

1 INTRODUCTION

IN the scenario of knowledge-based organizations, virtual
communities are emerging as a new organizational form
supporting knowledge sharing, diffusion, and application
processes. Such communities do not operate in a vacuum;
rather, they have to coexist with a huge amount of digital
information, such as text or semistructured documents in
the form of Web pages, reports, papers, and e-mails.
Heterogeneous information sources often contain valuable
information that can increase community members shared
knowledge, acting as high-bandwidth information ex-
change channels." Experience has shown that exchanging
knowledge extracted from heterogeneous sources can
improve community-wide understanding of a domain
and, hence, facilitate cooperative building and maintenance
of shared domain models such as domain ontologies [2]. On
today’s global information infrastructure, manual knowl-
edge extraction is often not an option due to the sheer size
and the high rate of change of available information. In this
paper, we describe a bottom-up method for ontology
extraction and maintenance aimed at seamlessly comple-
menting current ontology design practice, where, as a rule,
ontologies are designed top-down. Also, we show how
metadata based on our bottom-up ontologies can be
associated with a flexible degree of trust by nonintrusively
collecting user feedback. Dynamic trust is then used to filter
out unreliable metadata, improving the overall value of
extracted knowledge. The paper is organized as follows:
Section 2 gives an overview of related research, while

1. For instance, manual inspection of thousands of posts at
comp.security.firewalls newsgroup showed their potential of
creating and maintaining shared competence [1].

o The authors are with the Universita degli Studi di Milano, Dipartimento di
Tecnologie dell’ Informazione, Via Bramante, 65-26013 Crema (CR), Italy.
E-mail: {ceravolo, damiani, viviani)@dti.unimi.it.

Manuscript received 3 Oct. 2005; revised 14 Apr. 2006; accepted 18 Aug.
2006; published online 19 Dec. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDESI-0461-1005.

1041-4347/07/$20.00 © 2007 IEEE

Section 3 outlines our application of fuzzy techniques to
efficient structure-based encoding and clustering of XML
data. Section 3.4 describes how content-based clustering can
be coupled with structure-based techniques to produce a
finer-grained classification. Section 4 contains a worked-out
example of XML clustering, while Section 5 describes how
clusters can be used as a basis for generating ontology
metadata suitable for enriching and updating an existing
ontology. Section 6 illustrates how our automatically
generated metadata can be given a trustworthiness value
by collecting explicit and implicit user votes. Trustworthi-
ness supports computing custom views on assertions,
reflecting the views of the user community and improving
the overall quality of metadata. Finally, Section 7 draws the
conclusion.

2 REeLATED WORK

Traditionally, the approach to community-oriented ontology
building has been a collaborative one aimed at valorizing the
contribution of each community member in the knowledge
creation activity. Metadata extraction and merging is carried
out manually by individual users as a part of their everyday
activities, possibly taking sample data items into account. A
well-known example is Ontolingua Server [3], a Web space
where members of a community of ontology developers can
access ontologies, browse them, edit them, and propose
modifications. This process enables an interdisciplinary
vision as each member of the community contributes to
the ontology with her own background. More importantly,
cooperatively built ontologies can quickly incorporate new
“operative knowledge” derived from job experience into
existing domain models. However, some drawbacks do
exist. Cooperatively building and maintaining an ontology
takes a substantial amount of time, even in the presence of a
careful process management. For this reason, recent research
turned once again to automatic and semiautomatic (as
opposed to cooperative) metadata construction and main-
tenance. Automatic techniques for building and integrating

Published by the IEEE Computer Society

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

150 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

metadata have been studied for many years by the database
community, especially in the area of federated databases and
object-oriented systems, where extracting and merging
inheritance hierarchies [4] is a time-honored problem. More
recently, several techniques specifically aimed at learning
ontologies from text corpora or database repositories were
proposed [5]. Well-known research approaches to ontology
learning [6] include:

o Pattern-based extraction: Concepts and relations are
detected when corresponding word patterns are
recognized [7], [8].

o Conceptual clustering: Concepts are grouped accord-
ing to a semantic distance [9] between each other to
make up hierarchies. Semantic distances for Web
data are described in [10].

e Association rules mining: The frequency of an associa-
tion of terms is computed in the information base. If
the frequency of the association is close to the
occurrence of individual terms, the association is
transformed in an ontological relation. This techni-
que was first introduced for text documents [11] and
later generalized to data objects [12].

e Ontology extraction and merging: Ontologies extracted
from heterogeneous data sources are concsolidated
and merged [13].

In this paper, we shall focus on quick-and-dirty ontology
extraction and merging with existing ontologies. Several
graph-theoretical approaches exist to ontology merging,
most of them relying on suitable graph algebras. The Onion
system [14] was born as an attempt to reconcile ontologies
underlying different biological information systems. It
heuristically identifies semantic correspondences between
ontologies and then uses a graph algebra based on these
correspondences for ontology composition. However, Onion
is aimed at merging fully fledged, competing ontologies
rather than at enriching and developing an initial ontology
based on emerging domain knowledge. The FCAMERGE
technique [15] is much closer to ours, inasmuch it follows a
bottom-up approach, extracting instances from a given set of
domain-specific text documents by applying natural lan-
guage processing techniques. Based on the extracted
instances, classical mathematical techniques like Formal
Concept Analysis (FCA) are then applied to derive a lattice
of concepts [16] to be later manually transformed into an
ontology.

The extraction of ontology classes from data items such
as documents is a crucial step of all bottom-up procedures.
It bypasses a typical problem of top-down ontology design,
where, often at design time, there are no real objects which
can be used as a basis for identifying and defining concepts.
Historically, automatic knowledge extraction from text
documents started by indexing documents via vectors of
(normalized) keyword occurrences. This encoding gives rise
to a vector space where every document is seen as a vector in
the term space (i.e., the set of document words). Documents
are then clustered into (approximations of) concepts by
means of a suitable distance function computed on vectors,
e.g., Euclidean or scalar-product-based ones. Traditional
approaches to content-based clustering [17] can be classified
as follows:

e Hierarchical Algorithms, creating a tree of node
subsets by successively subdividing or merging the
graph’s nodes. Typical examples are k-Nearest-
Neighbor (k-NN), linkage, or Ward methods.

o [terative Algorithms. The simplest and most wide-
spread algorithm is k-Means, resembling a self-
organizing Kohonen network whose neighborhood
function is set to size 1.

o Metasearch Algorithms, treating clustering as an
optimization problem where a given goal is to be
minimized or maximized (genetic algorithms, simu-
lated annealing, two-phase greedy strategy, etc.).

k-Nearest-Neighbor [18], [19] is one of the most used
techniques for text categorization. It is a supervised
classification method: Given a set of labeled prototypes
(i.e., categories) and a test document, the k-NN method
finds its k nearest neighbors among the training documents.
The categories of the k neighbors are used to select the
nearest category for the test document: Each category gets
the sum of votes of all the neighbors belonging to it and the
one with the highest score is chosen. Other strategies
calculate these scores taking into account the distances
between the k neighbors and the test document or,
alternatively, using a similarity measure like the scalar
product. On the other hand, the k-Means [18] algorithm is
an unsupervised technique often used in document
clustering applications. Hierarchical clustering algorithms
(including k-Nearest-Neighbor) are generally considered
better, although slower, than k-Means [20], [21]. For this
reason, hybrid approaches involving both k-Means and
hierarchical methods have been proposed. Research work
on Web document analysis [18] has shown that applying
text-based classification algorithms to Web data involves
three major problems. First, text-oriented techniques re-
quire a high number of documents (typically, many
thousand) to work properly. Second, they hardly take into
account document structure and are therefore unsuitable
for semistructured document formats used on the Web,
such as HTML or the eXtensible Markup Language (XML).
Third, the final step of identifying document clusters with
concepts often gives raw results that contrast with human
intuition. The conceptualization step can be significantly
improved only through the effort of a domain expert, which
introduces a delay not compatible with community-style
Web interaction. Some research approaches tried to address
these problems by defining ad hoc feature spaces for
heterogeneous resources classification, independently of
any specific data model. Focusing on feature taxonomies,
Gupta et al. [22] recently proposed a bottom-up learning
procedure called TAXIND for learning taxonomies;
TAXIND operates on a matrix of asymmetric similarity
values. Fuhr and Weikum’s CLASSIX project [23] used a
feature-based technique for constructing personal or do-
main-specific ontologies guiding users and XML search
engines in refining queries. An important contribution
toward bridging the gap between conventional text-retrie-
val and structure-aware techniques was given by Bordogna
and Pasi [24], whose work, however, does not specifically
address Web and XML data. “Pure” structure-based
techniques were initially proposed by one of us as the

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

CERAVOLO ET AL.: BOTTOM-UP EXTRACTION AND TRUST-BASED REFINEMENT OF ONTOLOGY METADATA 151

basis for approximate XML queries [25]; more recently, they
were applied by Carchiolo et al. to semantic partitioning of
individual Web documents. The schema extraction algo-
rithm described by [26] groups the contents of a single Web
page into collections which represent logical partitions of
the Web page. Carchiolo et al.’s technique takes into
account subtree similarity and primary tags in the XML
tree for identifying these collections, using the relative and
absolute depth of primary tags from the root of the tree for
calculating the similarity between them. However, these
techniques are aimed at partitioning single Web pages
rather than at large-scale resource classification. Also, they
do not address clustering inside each partition. In this
paper, we develop our previous work on structure mining
and knowledge extraction [27], [28] to present a way of
building the specification of a shared conceptualization [29]
defining concepts as clusters of concrete objects. A major
aspect of our approach [30] is trust-based enhancement of
the extracted classifications. Most current approaches use a
different technique; namely, they try to adapt ontology
merge algorithms to support alignment as well. For
instance, the seminal PROMPT system [31] used an
incremental merge algorithm to detect inconsistencies in
the state of the ontology due to user updates and suggested
ways to remedy these inconsistencies. In principle, a
PROMPT-style approach could be adopted in conjunction
with ours; however, PROMPT admittedly requires sub-
stantial user intervention and, therefore, it is not likely to
scale well. We follow a different line of research, consider-
ing that metadata can be generated by different sources
other than automatic extraction (the data owner, other
users) and may or may not be digitally signed. As a
consequence, they have nonuniform trustworthiness [32]. In
order to take full advantage of automatically extracted
metadata, it is therefore fundamental that their trustworthi-
ness be continuously checked, e.g., based on the reported
view of the user community. Trustworthiness assessment is
even more important when the original source of metadata
is an automatic metadata generator whose error rate,
though hopefully low, is in general not negligible. Tradi-
tionally [33], [34] research approaches distinguish between
two main types of trust management systems, namely,
Centralized Reputation Systems and Distributed Reputation
Systems.” In centralized reputation systems, trust informa-
tion is collected from members in the community in the
form of ratings on resources. The central authority collects
all the ratings and derives a score for each resource. In a
distributed reputation system, there is no central location
for submitting ratings and obtaining resources’ reputation
scores; instead, there are distributed stores where ratings
can be submitted. In a “pure” peer-to-peer setting, each
peer has its own repository of trust values. In both cases,
initial trust values can be modified based on users’
navigation activity. Information on user behavior can be
captured and transformed in a metadata layer expressing
the trust degree related to the single assertion.

2. There is a clear distinction between trust and reputation. In general, the
trust T of a source can be computed based on its reputation R, that is,
T = ¢(R,t), where t is the time elapsed since when the reputation was last
modified [35].

Axml A.Xmi- Legenda

<restaurant>
<name>
Lions Head, The
<\name>
<address>
<address>
46 Norwich Rd Ipswich IP1 2NJ Suffolk

<location> = b
<owner> = d

<name> = ¢

<\address>
<tel>

01473 232266
A.Xmi- Tree

<tel> = e
representation

Frontier

Fig. 1. The tree representation of an XML fragment.

me>
Albert Martin
<\name>
<address>
7 St Helens St Ipswich IP4 1HE Suffolk
<\address>
<\owner>
<\restaurant>

3 A Bottom-Up Fuzzy KNOWLEDGE EXTRACTION
ENGINE

The eXtensible Markup Language (XML) [36] is today the most
widespread format for exchanging and representing data-
in-transit. While not all available information items can be
expected to be in XML format, we extensively rely on
software wrappers [37], a well-understood technique for
mapping foreign data-types to the XML data model.
Therefore, without loss of generality, here we assume data
items to be represented by XML instances. We use a
simplified, abstract representation of the XML Infoset data
model [38] as a multilabeled, multisorted directed graph, where,
for the sake of simplicity, only two types of nodes (element
and attributes) are considered. Labels correspond to
element and attribute names. This simplified Infoset can
be easily extended to coincide with the standard one simply
by increasing the number of sorts and adding some
additional constraints [38]. Also, in our representation of
the XML Infoset, the subgraph representing (element and
attribute) containment is always a tree (Fig. 1), where leaf
nodes represent content and values, while nonleaf nodes
correspond to tags.’ Similarity between XML documents
has been defined in many different ways, taking into
consideration only documents’ structure, their content, or
both [39]. In this paper, we shall adopt a structure-based
approach [38] based on a fuzzy representation of XML
documents’ structure. Our encoding allows us to compute
similarity values between XML document structures and
use them to create classes representing the domain of
competence. Depending on the specific domain, our
structure-based clustering will be carried out in a coordi-
nated fashion with a content-based clustering, both based
on an hybrid k-Means and NN-family algorithm. For
instance, content-based clustering can be applied within
each structure-based similarity class (Fig. 2).

3.1 The ClassBuilder

Our approach to the architecture illustrated in Fig. 2 is a
suite of software tools aimed at domain analysis experts
and end users alike. In particular, our ClassBuilder cluster-
ing tool uses fuzzy techniques in order to compare items in
an incoming XML data flow, clustering them in a

3. Note that our XML data items are well-behaved: Only the frontier of
the tree contains data. While nonleaf XML nodes can, in principle, hold
content, this behavior is now deprecated for all Infoset-based data
representation [36].

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

152 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

Data flow

oD Cm) - G (7D
I = OO0 o @ @

3 BE e

Clustering based
on structure

Fig. 2. Clustering an heterogeneous data flow based on structure and

content information.

Clustering refining

based on content

semiautomatic way. As we shall see, our ClassBuilder can
be coupled with an auxiliary layer, called OntoExtractor, in
order to build/update ontologies using Semantic-Web-style
metadata formats. In the next sections, we will illustrate the
ideas and the algorithms behind our tools.

3.2 Fuzzy Representation of XML Data

The first step of our metadata extraction process is encoding
XML documents (i.e., instances of our simplified Infoset) as
fuzzy multisets, i.e., fuzzy bags. A bag is simply a collection
of elements which may contain duplicates. As we shall see,
bags provide a good flat encoding for XML documents since
they can express the fact that the same tag can be repeated
at different levels and/or with different cardinalities at the
same level. Set-based flat encodings for XML documents
were first proposed in our previous work on approximate
XML querying [25] as a way of avoiding carrying out
computations on XML trees since tree matching problems
have computational complexities ranging from polynomial
to NP-complete [40]. Intuition tells us that adopting a model
based on bags rather than sets will make our technique
more sensitive to differences in cardinality between tags of
the same name. Again, intuitively, the similarity between
bags will decrease when differences in elements’ cardinal-
ities increase, but the amount of this decrease may
selectively depend on the specific tags involved, fine-tuning
similarity values. Our encoding of an XML tree as a fuzzy
bag is computed as follows: Supposing that every tag x; has
an associated membership degree p(z;), initially equal to 1
(u(z;) = 1), we divide every membership degree by its
nesting level L (where L, =1), obtaining a “lossy”
representation of the XML tree that only takes into
consideration the original nesting level of tags.* Our flat
encoding is also sensitive to structural differences between
XML documents containing the same group of tags in
different positions. Applying our encoding to the tree
representation of the XML document A.xml (Fig. 1), we
obtain the fuzzy bag:

A ={1/R,0.5/a,0.5/¢,0.5/d,0.33/a,
0.33/a,0.33/b,0.33/c,0.33/e}.

We use the following representation to indicate the
presence of content information connected to leaf nodes:

4. The content of leaf tags is contextually saved independently from the
fuzzy bag representation.

A ={1/R,0.5/a,0.5/c[data],0.5/d, (0.33,0.33) /a[data],
0.33/b[data),0.33/c|datal,0.33/e[data]}.

3.3 Structure-Based Document Classification

A major feature of our flat encoding technique is that,
unlike XML trees, fuzzy bags lend themselves to fast and
efficient clustering. When comparing fuzzy bags represent-
ing XML documents several measures of object similarity
can be used [41], some of them aimed at specific domains
[42]. Choosing the “right” similarity usually depends on
domain and even data-set-dependent criteria.” Also,
applying the extension principle, it is possible to extend
to fuzzy bags most object comparison measures originally
defined for fuzzy sets [44]. When performing this exten-
sion, it is important to note that, while the (single)
occurrence of an element x in a fuzzy set has a fuzzy
membership value 0 < p <1, the (possibly multiple)
occurrences of an element z in a fuzzy bag A [45]
constitute a fuzzy set whose fuzzy cardinality is not a
single value, but a fuzzy number of occurrences denoted
Qa(zx) [46]. The cardinality |A| of an ordinary fuzzy set A
is defined by

VYn € IN, ,ulAl(n) =sup{a: |A4| > n}.

By the extension principle, the cardinality of a bag is the
arithmetic sum of the occurrences of its elements, including
those which appear multiple times. The cardinality of a
fuzzy bag A is defined as follows:

A= 3" Qu(a).

reX
For example, for elements a and b in the bag
A ={(1,0.1,0.1)/a, (0.5)/b}, we get:
a) = {1/0,1/1,0.1/2,0.1/3},
b) = {1/0,0.5/1},
|A| = Qu(a) + Qu(b)

= {1/0,1/1,0.5/2,0.1/3,0.1/4}.

Qa(
Qa(

As far as structural similarity is concerned, we need one
that is monotonic with respect to element addition and
removal [41], such as the Jaccard norm:

_l4nB

S(A.B) = o

Bags are clustered using S as a similarity by means of a
hybrid k-Means and NN clustering algorithm. Specifically,
our ClassBuilder uses a tunable a threshold for the
clustering process, in order to avoid suggesting an initial
number of clusters (k). This way, some well-known
problems of the k-Means algorithm are entirely avoided.
Our clustering algorithm compares all items with the
centroid of each cluster, considering only the top similarity
value. If this value is bigger than «, the data item is inserted
in the cluster; otherwise, a new empty cluster is generated

5. A data-dependent technique for choosing between nonsymmetrical or
symmetrical similarities can be found in [43].

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

CERAVOLO ET AL.: BOTTOM-UP EXTRACTION AND TRUST-BASED REFINEMENT OF ONTOLOGY METADATA 153

& Iillil@ﬁi’_[%ﬂi

A.xml B.xml
I°|I°| I°|I°I

o

Exml

Fig. 3. Representation of XML documents in a cluster.

and the item is inserted into it. ClassBuilder offers two
different ways to calculate the centroid of each cluster, called
clusterhead. The former method chooses the items repre-
sented by the smallest fuzzy bag so that a cluster centroid
always corresponds to a real data item. The latter generates
a new fuzzy bag as the union of all fuzzy bags in the cluster.
This way, a clusterhead does not necessarily coincide with a
real data item since each tag is taken with the cardinality
and membership degree it has in the bag where it appears
with the highest cardinality. Fig. 3 shows the XML trees
corresponding to the following encodings:

A={1/R,0.5/a,0.5/b},
B={1/R,0.5/a,0.5/b,0.5/c},
C={1/R,0.5/a,0.5/b,0.3/c,0.3/c},
D = {1/R,0.5/a,0.5/b,0.3/c,0.3/c},
E = {1/R,0.5/a,0.5/b,0.3/c}.

The clusterhead is:®

CH = {1/R,0,5/a,0.5/b,0.5/c,0.3/c}.

3.4 Content-Based Document Classification

While traditional content-based clustering operates on
document-centric data, our content-based clustering tech-
nique must work on a collection of semistructured tagged
documents. So, we start by computing content-based
similarity at the tag level, comparing contents of the same
tag in two different documents. Content-based similarity at
the document level can then be obtained by aggregating tag-
level similarity values. Since XML documents are encoded
as fuzzy bags, our comparison works on content data
attached to bag elements, whose original nesting level (in
the XML tree structure) is encoded by the membership
degree. Fig. 4 shows the tree representations of two
structurally identical fuzzy sets A and B. Since we are
evaluating content similarity, we limit our interest to
subsets containing leaf nodes only (i.e., nodes where
content information can be found). With {xz[datal},, we
designate content data delimited by tag « in document D. In
order to evaluate content similarity, we combine two
different functions. The first one is a tag-level similarity f
comparing data belonging to tags with the same name in
different documents:

fr({z|datal}p,, {z[datal}p,).

6. After this clustering process, if new documents join the same data
flow, in order to cluster them, it is sufficient to compare their distance with
respect to final centroids obtained previously and insert them in the cluster
represented by its closest centroid. This is the behavior of NN-family
algorithms.

A.xml B.xml :l_: |

[a][6][ec] La][o]le]
[| [

aldata], b[data], cldata], aldata], bldata], cldata],

Fig. 4. Aggregation between data belonging to the same tag in different
documents.

Referring to Fig. 4, we compute:

fa{aldatal} 4, {a[datal} p),
fy({bldatal} 5, {b[datal} p),
fe({c[datal} 5, {c[data]} p).

Since terms may have different informative value de-
pending on the tag they belong to, we also take into
account the membership value p(z;) associated to the
ith tag. When dealing with text data, we represent the
content of each tag by the well-known Vector Space Model
(VSM), which represents natural language documents as
vectors in a multidimensional space: Every document d is
considered to be a vector d in the term space (set of
document words). Each document is represented by the
(TF) vector dy = (fy, fi,--., fr,), where f, is the fre-
quency of the ith term in the document. Then, we can
use a standard cosine distance—expressed by the equation
cos(dy,dy) = (dy @ dg)/||d1] - ||d2]], where e denotes the
scalar product and ||d|| is the Euclidean Length. However,
text comparison hardly captures the real similarity
between typed values such as dates and numerical types.
Our XML content can belong to one of the basic XML
Schema data-types (URLs, numbers, dates, etc.) or be a
text blob. In the first case, it is useful to apply type-driven
matching, ie., compute data similarity by taking into
account their estimated XML Schema type T. When type
information is available, we use ad hoc measures for
computing similarity between basic datatypes, as illu-
strated in Example 1. ClassBuilder supports a number of
string distances [47] like the Levenshtein (or edit) distance
L, defined for two strings s and r of arbitrary length as
the minimum number of character inserts, deletes, and
changes needed to convert r into s.”

The second function F' aggregates the individual f,
values, F(f,, fy, f.) and expresses the overall similarity
between two XML documents. Using F' as a comparison
measure, we can perform content-based clustering using
the same algorithm used for structural clustering in
Section 3.3. When choosing F, we need to take into
consideration the tags’ different semantic relevance. At
one extreme, there is the situation in which all tag-level
similarity values contribute to the overall similarity via a
conjunction of their individual values. Here, F' will belong

7. For string and URI/date distances, more details are given in [47]
and [48].

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

154 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

A.xml ;

Bl 2] [5][e]
I I | | | |
— — | az J— J— J—

a[data], c/[data], | — a,[data], b,[data], c,[data],

a,[data],

Fig. 5. Computing similarity between documents featuring multiple tags
with the same name and in different positions.

to the t-norm [49], [50] class of operators. At the other
extreme lies the situation in which the overall result
considers exactly one of the individual similarity values,
operating a disjunction via a t-conorm. The aggregation
depicted in Fig. 4 represents the simplest possible situation,
when two documents have exactly the same tags (with no
duplicates) and the same membership degrees (the same
positions). In order to deal with the general case, we need to
answer two additional questions not addressed by classical
techniques of information clustering and retrieval (see
Fig. 5). Namely, 1) what happens when a tag is present in
one of the documents being compared and not in the other
and 2) what are the “right” tag-pairs to be compared?®
When a tag appears in a document (with single or multiple
cardinality) and not in the other, we simply consider tag-
level similarity to be zero. Referring to Fig. 5:

fo(null, bldata]z) = 0.

Question 2 is a bit more tricky, because tag may appear
at different nesting levels in the two documents. In this case,
we consider the maximum value resulting from the
comparison of all pairs of content data connected to it within
the two documents under comparison. Namely, we get:

fo = max—— £, ({a,[data]} ., {wi[data]}).

pk 1+ Ap,k

where p ranges over the occurrences of tag = in D; while k
ranges over the occurrences of x in D, in any suitable order.
A represents the difference between the tag’s occurrences
membership degrees, that is, A = |u(z,) — p(zg)|. In this
way, in the case of multiple tags with the same name at the
same level, we take into consideration the maximum value
of f resulting from all comparisons, while, when the same
tag is repeated multiple times in the two documents but at
different levels, we weight f by the difference between
membership values. In other words, we take into account
the intuitive fact that two identical data items located at
different nesting levels are less likely to have the same
meaning.

Example 1. For the sake of simplicity, in this example, we
assume data connected to leaf tags to be of string type,
and we use the N-gram distance N [51], that compares the
N-grams from the first word with the N-grams for the

8. Due to the semistructured nature of XML data, there may be multiple
tags with the same name within both documents at the same or at a
different nesting level.

second word. An N-gram is a vector representation
including all of the N-letter combinations in a string. The
N-grams comparison function generates the set of all
substrings of length n for each string. Referring to Fig. 5,
supposing

ai[data] ; = dedededede, as[data] ; = dedededh,
cildata) ; = OV MMM, a;[data] ; = O,
bi[data] ; = GOOOC, arldatal ; = POV MM,

and using 3-grams, we obtain:

fu, ({an[data]} 4, {ar [data]}) = N (dedhdododh, (> db)

=0.44,

Jar,({az[datal} 4, {a1[datal} g) = N(dededode, o)
= 0.85,

fbnull,l (nu”: {Cl [data]}B) =0,

fo (erldatal} 4, {er[datal} 5) = N(QOARS, DO0MM)
= 0.89.

It follows that

o A 085 = 44, 0.
f maX(O 17033 — 05 085> max(0.44,0.73)

=0.73, fy =0 and f. = 0.89.

In order to obtain the final similarity value between
documents, we apply the aggregator F' to the individual
fs. Using the arithmetic average, we get:

_0.73+0+0.89

F(fa, fos fe) = 3 =0.54.

4 MEeTADATA EXTRACTION: A WORKED-OUT
EXAMPLE

In this section, we apply our technique to a set of
documents taken from a real application about restaurants.
As we have seen, our clustering method consists of two
independent phases: a structural and a content-based one.
While there is no preset order for executing them, in this
example, content analysis follows the structural one.

4.1 Structure Analysis

We rely on the educated guess that categories of restaurants
may be identified based on the number and the type of
menus they propose (and, consequently, on their different
cardinality and/or structure). Let us examine the cluster-
heads obtained by the procedure explained in Section 3.3."°
The “typical” structure referring to a Fast Food is character-
ized by a “high” number of different Menus more or less
with the same structure. Fig. 6a shows the structure of this
clusterhead with our ClassBuilder’s layout. Much in the
same way, a Tourist Restaurant usually offers one or a

9. It is important to underline that, had we used traditional text-based
encoding, we would have obtained a much lower similarity value, namely,
N(Sdhddd COMMD S&Ohd, A0S COOOO VOVAM) = 0.21.

10. Of course, the names for the clusterheads have been picked manually.
Our ClassBuilder does not attempt to give names to clusters automatically.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

CERAVOLO ET AL.:

-4 Opening-hour
Places

()

=@ Parking
~o @ Places

(b)

(=@ Restaurant
ol Name
=-g» Address
=3 Address
(=@ Restaurant ol Giesn
& Name o Town
= Address # Zipcode
=% address ol
% Strest r # Location
= 5 Owner
L I Lo# Address
" T‘I Zipcode: -3 Menu
& = Menu
Location > # Starter
= 5 Owner ‘o First-dish = > Restaurant
® Address # Second-dish i@ Name
=@ Menu ® Side =@ Address
=g Menu L..# Dessert =g Address
Name = Menu @ Strest
Sandwich oo Starter o Town
French-fries # First-dish Lo Zipcode
-# Beverage @ Second-dish ® Tel
Dessert i@ Side # Location
=9 Menu #® Dessert =)@ Owner
® MName =@ Menu L@ Address
Salad @ Appetizers -3 Menu
Salad-dressing i Entrees = S- Menu
Beverage - # Beef-and-Chops # Appetizers
#® Dessert i==® seafood # Entrees
55 Menu - ® Grlleddishes » Sous
Co® Name - # Sides-and-Sauces * Salads
@ Sandwich A > MQEnEesserts # Desserts
French-fries F ® Fizzas =g Menu
-~# Beverage L..# Desserts & Appetizers
Dessert L. # Beverages # Entrees
-3 Menu L& Cusine - @ Beef-and-Chops
@ Menu @ Places # Seafood
- Menu -S> Services # Griled-dishes
Cuisine =3 Playground # Sides-and-Sauces
Places - # Opening-hour # Desserts
=g Playground L# Places # Beverages

& Cuisine
Places

(c)

Fig. 6. The clusterheads: (a) fast food, (b) tourist restaurant, and (c) fine
restaurant.

couple of predefined Special Menus with the same structure,
{Starter, First course, Second course, Side, Dessert}, plus the
possibility of choosing among the dishes of a classic 4 Ia
carte Menu or a simple Pizza Menu (Fig. 6b). Finally, a Fine
Restaurant shares with a Tourist Restaurant the same
structure for the 4 la carte Menu, characterized by the
structure {Appetizers, Entrees, Steaks-and-Chops, Seafood,
Grilled-dishes, Sides-and-Sauces, Desserts}; it usually does not
contain predefined menus, except when we can recognize
in the {Appetizers, Entrees, Soups, Salads, Desserts} structure a
classical Vegetarian Menu (Fig. 6c).

4.2 Content Analysis

After the structural analysis phase, we run ClassBuilder
again to subdivide each structure cluster in terms of one or
more elements’ content. Depending on the type of the
chosen element(s), it is necessary to choose a suitable
distance. Finer-grained clustering leads to the subdivision
of each structural cluster in a number of content-based
clusters, each containing documents where designated
elements take values in a given value range; once again,
depending on the type of the chosen feature, ClassBuilder
will extract a cluster descriptor encoding the value range for
each content-based cluster. Our tool will express content-
based cluster descriptors in the form of XML Complex-
Types, later to be used as a basis for defining Semantic-
Web-style metadata. This is rather straightforward in the
case of numeric values (for example, the number of places
in a restaurant expressed by the tag <Places>), where the
standard XML Schema range type restriction can be used.
Extracting a concise descriptor for a content-based cluster

BOTTOM-UP EXTRACTION AND TRUST-BASED REFINEMENT OF ONTOLOGY METADATA 155

whose feature type can assume several values (e.g., the tag
<Cuisine>) or a zipcode type (the tag <Zipcode>) is far
less simple. In the first case, we can solve the problem using
an enum type restriction as descriptor in the second case,
the descriptor is obtained as an instance of Semantic-Web-
style metadata formats by querying a suitable remote agent
[52]. These techniques will be described in detail in
Section 5.2.

5 ONTOLOGY CONSTRUCTION PROCESS

We are now ready to organize extracted information in a
standard knowledge representation format. OntoExtractor is
an additional layer of our system, fully integrated with the
ClassBuilder tool. It takes as inputs the clusterheads
resulting from the overall clustering process and organizes
them into an ontology using a standard Semantic Web
format. This ontology is then used to complement and
develop an existing upper-level domain ontology. While
traditional ontology learning approaches focus on hyper-
onymic and association relations,!' our technique takes
advantage of structural information, including the ele-
ments” cardinality. In particular, our approach is aimed at
detecting four ontological relations:

subclass-of,

value restriction,
cardinality restriction, and
4. associated-to.

w =

These relations are typical of a number of knowledge
representation languages, and are usually denoted via
Description Logic (DL) formalism used for setting up the
Semantic Web knowledge representation standards. In DL,
the semantics of ontological relations is defined by means of
an extensional definition, i.e., evaluating instances member-
ship of classes. For instance, a class A is a subclass of a class
B if all the instances belonging to A also belong to B. In our
application, individual documents” membership cannot be
used because no document can be classified under different
clusters (Section 3). For this reason, the notion of subsump-
tion used here is intentional: The way for checking relations
among classes is to compare clusterheads.'” Let us give an
informal description of our procedure before illustrating it
in detail. The basic idea we rely on for identifying candidate
classes is organizing clusterheads (such as, in our example,
Tourist Restaurant or Fine Restaurant) in a hierarchy. A
classic technique used to build the lattice of binary relations
over a pair of sets is Formal Concept Analysis (FCA). Starting
from the structure of our clusterheads in terms of attributes,
our OntoExtractor works in three steps:

1. First, it uses an extension of the classic FCA
algorithm to build the lattice of clusterheads inter-
sections; in turn, these intersections give rise to

11. This is due to the fact that available techniques for knowledge
acquisition are mainly based on semantic distances.

12. Of course, here we once again use our representation of clusterheads
in terms of fuzzy bags for performing comparisons and matching
operations. For the sake of conciseness, we shall loosely use the term
“clusterhead” rather than “fuzzy bag encoding of a clusterhead” whenever
no confusion may arise.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

ontology classes connected by subclass-of rela-
tions.

2. Second, class attributes are used in order to generate
part-of relations, whose data type is defined on
the basis of the content-based clustering results.

3. Third, value restriction relations are added to
the hierarchy, on the basis of the blocks composing
the content-based partition of each cluster.™

The final phase of our process is generating standard
metadata assertions linking resources and concepts. XML
documents belonging to the same cluster are associated to
the corresponding ontology class and to all its superclasses,
according to the subclass-of hierarchy. This association
is not a Boolean predicate; rather, it is a matter of degree
inasmuch as in computing a similarity matching among the
fuzzy bags representation of documents and concepts, we
obtain a measure of the level of fulfillment between a class
and a document. This value can be interpreted as a degree
of reliability of our document classification and is used for
setting an initial trust value for our Trust Layer (Section 6).

A Fuzzy Extension to FCA. FCA is a time-honored
mathematical theory designed for identifying conceptual
structures based on data sets [16]. FCA techniques are based
on the notion of a formal context K, defined as a triple
(D,A,R), where D represents the data items (called
documents in the FCA terminology), A the attributes, and
R is a binary relation R C D x A. A concept lattice can be
obtained evaluating two functions: f and g. Function f
maps a set of documents into the set of common attributes,
whereas g does the same for attribute sets. If X and Y are,
respectively, sets of documents and attributes, a formal
concept is a couple (X,Y), where X = g(Y) and Y = f(X). X
is called the extent and Y the intent of the concept. These
definitions allow us to build a lattice organizing, in a partial
order, all formal concepts belonging to a formal context.
Here, we extend FCA to handle our encoding of XML
documents as fuzzy bags. Our extended notion of formal
context is a triple K., = (D, A, R.,), where D and A are sets
and R, is a fuzzy bag on domain D x 4, where each
relation (d, a) € R, is a fuzzy integer Q;(a). In classic FCA,
the codomain of the function f, i.e., the set of attributes
common to a given set of documents X, is equivalent to the
intersection of the documents in X and identifies a set of
common attributes Y. In our extended FCA, the function f,,
returns the intersection among the fuzzy bags associated to
the documents in X. The fuzzy bag obtained by this
intersection must be included in all the fuzzy bags of X.
According to [53], (1) gives us the definition of intersection
among two fuzzy bags using fuzzy integers

Qunp(z) = min(Qy(z), Qp(z)). (1)

Because min is an associative operator, we can apply it to
a set of attributes. In other words, function f,, maps a set of
documents to the fuzzy bag generated by the intersection of
all the fuzzy bags of X. For each attribute a € Y, the fuzzy
integer of a is computed according to (2):

13. Note that, taking advantage of our representation expressed in terms
of fuzzy bags, cardinality restriction relations are also generated if
clusterheads members of the same candidate class show relevant
differences in cardinality.

TABLE 1
The Context of Our Clusterheads

“ R A M o P M AM SM PM VM

CH; 171 0711 0.71 0.7/1 0.711 0.58/6 0 0 0 0
CHay 171 071 0.7/1 0.58/1 0.58/1 0 0.58/1 0.58/2 0.58/1 0
CHs 11 071 0.7/1 0.7/1 0 0 0.58/1 0 0 0.58/1
Qf,.(x)(a) = min Q(a). (2)
eX

Similarly, function g., maps a fuzzy number € ()
generated by the intersection of the fuzzy bags composed of
a set of attributes Y to all the documents described by a
fuzzy bag including €, (v,

. (v)(a) = minQi(a). (3)

5.1 Constructing the Concept Hierarchy

We are now ready to generate our bottom-up ontology and
to use it to complement an existing one built in the usual
top-down fashion. As a reference, we will use the well-
known upper-level restaurant ontology developed by the
Imperial College (UK) [54]. Our examples refer to the
clusterheads in Fig. 6 that can be linked to the upper-level
ontology as subclass of the generic class Restaurant. Of
course, terminological differences can be among some
classes or properties of the upper-level ontology and the
tags in our XML files. For instance, in the restaurant
ontology, we have a class BabyLaundry where, in our
documents, we have a property Playground. These differ-
ences must be consolidated using well-known conceptual
distance methods [55]. To illustrate what happens when our
OntoExtractor is used after ClassBuilder with no human
intervention, here we use machine-attributed cluster names
like CH; for Fast Food, CH, for Tourist Restaurant, and
CHs for Fine Restaurant and the fuzzy bag encoding
explained in Section 3.2, with the difference that, in this
case, we divide every tag’s initial membership degree
(equal to 1) by VL, i.e., the square root of its nesting level.

CH, = {1/R,0.7/Address, 0.7/ Menu,
0.7/Owner, 0.7/ Playground,
(0.58,0.58,0.58,0.58,0.58,0.58) / Fast- food-Menu},
CH,; ={1/R,0.7/Address, 0.7/ Menu, 0.58/ Owner,
0.58/ Playground, (0.58,0.58) / Set-meal-Menu,
0.58/ A-la-carte-Menu, 0.58/ Pizza-Menu},
CH; = {1/R,0.7/Address, 0.7/ Menu, 0.7 /Owner,
0.58/ A-la-carte-Menu, 0.58/Vegetarian-Menu}.

Table 1 shows the context formed by our clusterheads.
For the sake of conciseness, fuzzy bags’ elements are
denoted only by the initial letters of the element name; also,
some attributes are omitted.

Applying f., and g., to our clusterheads, we obtain the
hierarchy shown in Fig. 7. This hierarchy identifies a concept
c; as the subset of attributes common to all the clusterheads,
while ¢, groups restaurants having playground facilities.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

CERAVOLO ET AL.: BOTTOM-UP EXTRACTION AND TRUST-BASED REFINEMENT OF ONTOLOGY METADATA

CH1, CH2, CH3 {1MY'R, {7TMY*A, {.7T1}'M, {58/1}"0

)

CH1,CH2 {1APR, {71YA, {THFM, {58/1}°0, {58/1]'P

€3
CH2,CH3 ' {1/)'R, {7I}'A, {7/1}'M, {7/1}*O, {58/1}'AM

c5
CHz © {1/AF'R, {7MPA, {7H}FM, {7110, {5811}'AM, {58/1}"P, {.58/2}*SM, {.58/1}"PM
s

CH1 o (MR, {TIPA, {THFM, {TH)'O, {TH}'P, {58/6)'FM

CHa I:é {1MYR, {7TMYA, {.THPM, {71}*O, {.58/1}*AM, {.58/1}"VM

Fig. 7. Classes organized in a hierarchy.

Also, c3 includes restaurants allowing ordering “a la carte,”
while ¢4, ¢5, and ¢ are formal concepts associated to a single
clusterhead. While this hierarchy could have been obtained
by standard FCA, our extension enriches it with additional
information about the relevance and cardinality of attributes
by means of fuzzy integers. This information will support
generating metadata assertions that associate hierarchy
concepts to XML documents according to a trust degree, as
explained in Section 5.4.

5.2 Generating the Ontology

In order to translate our hierarchy into OWL standard
knowledge representation format, we start by taking each
concept as a candidate class connected by a subclass-of
relation to all concepts included in it. Then, our translation
algorithm visits the hierarchy top-down, adding to each
class the properties it has not inherited from its super
classes. Properties’ data types are decided based on the
results of content-based clustering. Namely, whenever the
content of a tag allows it, our algorithm defines a value
range restriction on the corresponding property by declar-
ing an XML ComplexType and using it as a basis for a class
declaration in the OWL code.

157

In the case of our example, we obtain different range
classes for describing values of the <Places> tag in the
different documents of a cluster. Each time the algorithm
generates a Places, attribute it will set its type to the
appropriate range class. In Fig. 8, two code fragments are
shown: (a) an example of an interval type defined by means
of XML and (b) an OWL property defined using this data
type. In other cases, the data type can be defined using a
standard knowledge representation, such as the ISO 3166
geographical taxonomy [56].

When the content of a tag does not readily generate
range subdivisions, e.g., because of high heterogeneity of
data values, we simply set a data type property accepting
any type of character data. Fig. 8 shows some examples of
OWL classes and properties generated by our OntoExtrac-
tor. These class and property names used by our tool are
taken from the original restaurant ontology [54], making
integration and comparison straightforward.

5.3 Cardinality Restrictions

A major feature of our approach is taking advantage of
cardinality information in order to define cardinality
restrictions on the ontology. For instance, let us consider a
clusterhead with the form:

CH, ={1/R,{0.7,0.7,0.7,0.7,0.7) / Address, 0.7/ Menu,
0.7/Owner,(0.7,0.7,0.7) / Playground,
(0.58,0.58,0.58, 0.58, 0.58, 0.58, 0.58,
0.58,0.58,0.58) / Fast- food-Menu}.

This clusterhead has the same attributes as C H; and the
FCA algorithm will group both in the same formal
concept. On the other hand, CH; shows some differences
in the cardinality of the attributes Playground and Address.
For this reason, we generate a specific cardinality
restriction, expressing this difference quantitatively by
means of fuzzy integers. In ordinary arithmetics, two
numbers are equal if, by dividing one by the other, we get

<?xmi version="1.0" encoding="UTF-8" ?>
- <xs:schema
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins="http:/ /example.com/crema/Places.xsd/">
- <xs:simpleType name="Big">
- <xs:restriction base="xs:double">
<xs:minlnclusive value="100" />
<xs:maxInclusive value="300" />
</xs:restriction>
</xs:simpleType>
</xs:schema>

(@)

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlins:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmins:ont="http:/ /OntoExtractor.crema.unimi.it/onto/Resto.owl#"
xmins:indi="http:/ /kiwi.crema.unimi.it/kiwi-schema#"
xmins:owl="http:/ /www.w3.org/2002/07 fowl#">
<owl:Class rdf:ID="Restaurant” />

- <owl:Class rdf:ID="TouristRestaurant">

</owl:Class>
- <owl:Class rdf:ID="BigTouristRestaurant">
- =<rdfs:subClassOf>

</owl:Class>
</rdf:RDF>

<rdfs:subClassOf rdf:resource="#Restaurant" />

- <owl:Restriction>
- <owl:onProperty >
<owl:DatatypeProperty rdf:resource="#palces" />
</owl:onProperty >
<owl:allValuesFrom rdf:resource="http://example.com/
crema/Palces.xsd#Big" />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#TouristRestaurant” />

(b)

Fig. 8. (a) A customized data type and (b) an OWL property defined using the same data type.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF
xmlins:rdf="http:/ /www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlins:ont="http://OntoExtractor.crema.unimi.it/onto/Resto.owl#"
xmlins:indi="http:/ /kiwi.crema.unimi.it/kiwi-schema#"
xmlins:owl="http:/ /www.w3.0rg/2002/07 /owl#">
- <owl:Class rdf:ID="FastFoodChain">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty >
<owl:DatatypeProperty rdf:resource="#address" />
</owl:onProperty >
<owl:minCardinality >5</owl:minCardinality >
</owl:Restriction>
</rdfs:subClassOf >
<rdfs:subClassOf rdf:resource="#FastFoodRestaurant" />
</owl:Class>
</rdf:RDF>

Fig. 9. An example of cardinality restriction.

a result equal to 1. The same principle can be applied to
fuzzy integers: By dividing a fuzzy integer by another [57],
we obtain a quotient that is again a fuzzy quantity. By the
extension principle, the result of a division among fuzzy
integers is a rational fuzzy number. This fuzzy quantity
can be represented by a scalar number applying a o-count
function [58]. Comparing this scalar result to 1, we obtain
a measure of the difference between two fuzzy integers as
the complement of the division result obtained in the
division. Formally, we have:

1-— U—coum‘(2), (4)
Q. x)

where ¢ is a document belonging to a given formal concept:
i € fer(X). In our example, the formal concept ¢, has an
extent composed by the documents CH; and CH,. Dividing
the intent of ¢, by the intent of C'H,, we obtain the following
result:

Q2 1/1,0.7/5,0.58/11
1 fa—count(& > -1 fa—count({ / / / })

Qcn, {1/1,0.7/11,0.58/21}
=1—o-count({1/1,0.7/0.4,0.58/0.52})
=1-0.64 =0.36.

In other words, CH, cardinality difference has a degree
of 0.36 with respect to c4. Based on this value, OntoExtractor
suggests the generation of a cardinality restriction.
Fig. 9 shows a cardinality restriction produced by our
system.

5.4 Generating Metadata Assertions

After the ontology has been extracted, we generate other
assertions that are essentially links between XML docu-
ments classified in a clusterhead and the corresponding
ontology class. For instance, a document D belonging to the
CH, will be associated to the class ¢; and, therefore, to ¢, c3,
and c;. Note that the fulfillment degree of these associations
is not uniform. In general, membership values of fuzzy bags
associated to classes at the top of the hierarchy are lower
than in the ones at the bottom. This is due to the fact that the
intersection among fuzzy bags is computed by means of the
min operator. For instance, documents D; and D, belong-
ing to C'H,, are encoded by the following fuzzy bags:

TABLE 2
Class/Document Matching

H Cs Cc2 C3 (&1

D; || 082 083 0.83 0.75
D, || 088 0.77 0.71 0.71

D, ={1/R,0.7/ Address, 0.7/ Menu, 0.58/ Owner,
0.58/ Playground, 0.58 / Set-meal-Menu,
0.58/ A-la-carte-Menu},

Dy = {1/R,0.7/Address, 0.7/ Menu, 0.58/ Owner,
0.58/ Playground, (0.58,0.58) / Set-meal-Menu,
0.58/ Pizza-Menu}.

Using the similarity described in Section 3.3, we can
evaluate how much the encoding of each document
matches the encoding of each class, as follows:

D H.
o-count (S(Dl, CH,) = #EHQ
1 2

~ {1/1,0.7/3,0.58/7}
- {1/1,0.7/3,0.58/9}

D H.
o-count (S(DQ7 CH,) = #S'HQ
2 2

- Eﬁgigggzg _ /1,0.7/1,0.58/0.8}) 0.8,

- {1/1,0.7/1,0.58/0.7}) =0.82,

These values are computed for all the classes connected
to Dy and D», as shown in Table 2.

Each rdf:Description element in Fig. 10 refers to a
resource by means of the rdf :about property, as well as
to a class present in the domain ontology.

6 INCORPORATING TRUST-BASED FEEDBACK

For validating automatically generated assertions, we do
not rely on human inspection as it would require an effort
comparable to manually writing metadata from scratch.
Rather, we leave it to community members to express their
views on the trustworthiness of each assertion. While
interacting with documents, users can provide important
feedback on metadata trustworthiness. This information is
captured and transformed in a new metadata layer
composed of trust assertions expressing the level of trust of
the assertions of the first layer."* This second layer can be
computed by a central server or by distributed clients; in
both cases, the trust degree specified by each trust assertion
must be aggregated and the result provided to all interested
clients. On the basis of this aggregated trust degree, clients
can compute their custom views on the original metadata
base using a movable threshold to discard untrusted
assertions.

14. Although we shall not deal with digital signatures in this paper, it is
important to remark that meta-assertions could be enriched with a digital
signature, providing a way of indicating clearly and unambiguously their
author.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

CERAVOLO ET AL.: BOTTOM-UP EXTRACTION AND TRUST-BASED REFINEMENT OF ONTOLOGY METADATA 159

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
ttp:/ /OntoExtractor.crema.unimi.it/onto/Resto.owi#"
:indi="http:/ /kiwi.crema.unimi.it/kiwi-schema#"
xmins: ="http://www.w3.0rg/2002/07 /owl#">
- <rdf:Description rdf:about="http://MV.crema.unimi.it/file/
Statement.rdf#ST_65">
- <rdf:subject>
- <rdf:Description rdf:about="http://MV.crema.unimi.it/file/
D2.xml">
<indi:assert rdf:resource="http://
OntoExtractor.crema.unimi.it/onto/
Resto#PlaygroundRestaurant” />
</rdf:Description>
</rdf:subject>
<rdf:predicate rdf:resource="http://OntoExtractor.crema.unimi.it/
indi-schema#have-trust" />
<rdf:object>0.77</rdf:object>
</rdf:Description>
- <rdf:Description rdf:about="http://MV.crema.unimi.it/file/
Statement.rdf#ST_5">
- <rdf:subject>
- <rdf:Description rdf:about="http://MV.crema.unimi.it/file/
D2.xml">
<indi:assert rdf:resource="http://
OntoExtractor.crema.unimi.it/onto/
Resto#AlacarteRestaurant” />
</rdf:Description>
</rdf:subject>
<rdf:predicate rdf:resource="http://OntoExtractor.crema.unimi.it/
indi~schema#have-trust" />
<rdf:object>0.71</rdf:object>
</rdf:Description>
</rdf:RDF>

Fig. 10. The metadata format.

The architecture of our Trust Layer (Fig. 11) is composed
of a centralized Publication Center that collects and displays
metadata assertions manually added by the ontology
engineer or produced by the OntoExtractor.””> Clients
interact with assertions by navigating them and providing
implicitly (with their behavior) or explicitly (by means of an
explicit vote) an evaluation about their trustworthiness.
Trust-related information is passed by the Publication
Center on to the Trust Manager in the form of new assertions
of a special type. Trust assertions are built using the well-
known technique of reification.'® Then, trust values are
made available to all interested parties and clients can use
them to custom compute views on the original metadata
(e.g., filtering out all metadata whose trust value lies below
a threshold). Our trust ratings are computed either by
collecting and aggregating the users’ explicit votes or by
nonintrusively inferring users preferences from their
behavior (e.g., by monitoring the time spent by each user
working on a document). Here, we focus on the former
technique, where users can cast a vote on each assertion’s
trustworthiness. We assume that only a small subset of the
users will vote, depending on their role or their expertise.
For aggregating these votes, it is necessary to take into
account the level of anonymity provided by the system. If
all users are anonymous, all votes contribute in the same
way to the overall trust value on metadata assertions about
a resource. When users have an identity, ratings have to be
aggregated at the level of the individual user first, and then
globally.

15. Of course, our Center will assign different trust values to assertions
depending on their origin: Assertions written by a domain expert are much
more reliable than the automatically generated ones submitted by
OntoExtractor.

16. This choice allows our Trust Layer to interact with other sources of
metadata than OntoExtractor because the Trust Metadata syntax is not
dependent on the format of the original assertions.

Clients
B2 Standard
&2 E Metadata ‘D D Trust votes
=y
Y Metadata W & -~
in different I
[— 2
e — ;
Trust |
Metadata Production ESay
Systems
Reified Metadata
Metadata Publication Trust Manager
Center
Different views on metadata based on
client requests
o= b 9
& & ims

Fig. 11. The Trust Layer architecture.

6.1 The Reputation Computation Problem

In the last few years, several techniques for computing
reputation and trust measures in nonanonymous environ-
ments have been proposed [34]:

e Summation or average of ratings, computing the sum of
positive and negative ratings separately. The total
score is obtained by subtracting negative votes from
positive ones.

e Bayesian Systems, taking binary ratings as input and
computing reputation scores by statistically updat-
ing beta probability density functions. They are parti-
culary used in recommender systems[59].

e Discrete Trust Models, relying on human verbal
statements to rate assertions (e.g., Very Trustworthy,
Trustworthy, Untrustworthy, Very Untrustworthy).

e Belief Models. Belief theory is a framework related to
probability theory, but where the sum of beliefs over
all possible outcomes does not necessarily add up to
1. The missing part is interpreted as uncertainty.

e Fuzzy Models, where linguistic variables are used to
represent trust; in this case, membership functions
describe to what degree an assertion can be
described as trustworthy or not trustworthy.

e Flow Models, computing trust by transitive iteration
through looped or arbitrarily long chains.

Our approach computes the level of trust of an assertion, that
we indicate with py;, as the aggregation of multiple fuzzy
values py;, representing human interactions with metadata
assertions. Namely, we set py; = A(pa;), where A is an
aggregation operator [60]. The initial value of each py;, is
assigned automatically or semiautomatically during the
process of metadata creation.” Once assertions have been
generated, users may cast 1) explicit or 2) implicit votes on
them, as follows:

1) par, = (par,)’ and 2) pas, = (pay,),
where 0.1 <6 < 1 (a smaller value of § produces a higher
difference between explicit and implicit votes and vice
versa). Obviously, the value of explicit and implicit votes
can also be statically defined a priori.

17. When OntoExtractor is used to generate assertions semiautomati-
cally, it is reasonable to assign a higher trustworthiness than when
assertions are generated without human intervention.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

6.2 Aggregating Trust Values

The choice of the operator used to aggregate votes is, of
course, a crucial and difficult one.'® Our solution, based on
a compensatory notion of aggregation, is an alternative to
probabilistic approaches (e.g., Bayesian Systems or Belief
Methods).!? Several aggregation functions are available; for
instance, plain Weighted Mean [63] aggregates votes from
different sources, taking into account the reliability of each
source. The Ordered Weighted Averaging (OWA) operator
[50], [64], [65] weights votes in relation to their value,
without taking into account which users have cast them. In
nonanonymous environments, however, different cate-
gories of users can cast their votes on an assertion;
therefore, it is important to weight each vote according to
the reliability of the user who cast it (e.g., based on her role).
Furthermore, votes can be aggregated depending on a
number of other criteria (e.g., user location, connection
medium, etc.). For this reason, we adopt a Weighted OWA
(WOWA) [66] aggregation function combining the advan-
tages of the OWA and WM operators. WOWA uses two sets
of weights: p corresponding to the relevance of the sources
and w to the relevance of the values.

Definition 1. Let p and w be weight vectors of dimension n
(p=[pip2-..0n], W= [wiwy...wy]) such that 1) p; € [0,1]
and Yy, pi = land 2) w; € [0,1] and >, w; = 1. In this case a
mapping fwowa : IR" — IR is a Weighted Ordered
Weighted Averaging (WOWA) operator of dimension n if

fwowa(ar,az, ..., an) =Y wia(),
7

where {c(1),0(2),...,0(n)} is a permutation of {1,2,...,n}
such that asi—1y > ao() for all i =2,...,n. With a,;, we
indicate the ith largest element in the collection {a1, as, . .., ay}

and the weight w; is defined as

wi =w’ (Z Po(j)) —w’ (Z Pa(j)) (5)

J<i J<i

with w* a monotonic function (e.g., a polynomial) that
interpolates the points (i/n, ;. w;) together with the point
(0,0).%° w is used to represent the set of weights {w;}:
w={wr,wa,...,wpy}.

Example 2. For the sake of simplicity, we initially assume the
array w to be composed of values in the form w; = £.*'
Intuition suggests that the impact of an explicit vote on an
assertion must be much higher than the impact of an
implicit vote. The difference between explicit and implicit
votes was already taken into account when defining
them, but the WOWA operator and a proper w vector can

18. Experience has shown that, when votes are cast on data (see [61])
rather than on assertions, data semantics may not be sulfficiently clear to
suggest the correct aggregation operator to use.

19. Here, we describe our aggregation technique without evaluating it; in
[35], we showed that the global convergence speed of our technique is faster
than the EigenTrust algorithm described in [62].

20. It is adequate for any method that defines a bounded monotone
function from monotone data and bounded in the unit interval.

21. In [67], a first case is illustrated, called diffident approach, where

k=1,2,...,n, and a second one, the confident approach, where
k=mn,n—1,...,1. Considering the fact that the WOWA operator is applied
to a permutation of data values a; (Where a,(;_1) > a,(;),Vi = 2,...,n), it is

easy to understand why the first approach is called “diffident:” It lessens
the impact of high trust values. On the contrary, with the “confident”
approach, we increase the impact of higher values.

further increase it when needed. Much in the same way,
weights in vector p can give higher importance to an
explicit vote coming from a reputable source with respect
to one whose source is unknown.

Let us suppose a= [P, par, Pag, Pr,] = [9.9.5.5],
where k represents a known and reputable voter and u
an unknown one. In order to privilege explicit votes with
respect to implicit ones, the vector w is expressed as
w=[44.11] = 2,2, L]. The function w* interpolating
the points ((},2), (3,3), (3,5), (1,1)) with the point (0,0)
is w(z) =22t — Yo +38a2? +2a

Now, in order to assign an higher impact to reputable
voters, we assume p = [4.1.4.1] = [}, 2 L], obtaining

510051
(2\ 2,102
w=wl=1=
! 5) 3,125’
ot (B o (2 2 398
“=W3) Y \5) T 3125
/9 (1 362
wy=w—) —w(=z) =———,
10 2) ~ 3,125
. (9 263
w(l)—w (10) 3,125

The final trust value is py; = A(.9, .9, .5, .5), where, in this
case, A = fivowa. Therefore, we get:

S
iy
Il

4
Pm = fVVOVVA(-97 .9, .5, 5) = Zwiai =0.82.
i=1

6.3 Trust-Based Evaluation: A Worked-Out Example
In this section, we show the result of a simulation executed
with our Trust Layer tool, based on metadata produced by
the OntoExtractor and described in Section 5.4. Our sample
population is composed of three user categories, 1) Senior
Specialist, 2) Junior Specialist, and 3) Employee, interacts with
metadata produced semiautomatically and each group of
users modifies over the time metadata visibility voting on
them according to its expertise level. According to Example 2
in Section 6.2, here we assign a high expertise value to the
first group of users and a low expertise level to the last one.
Expertise level is encoded as the relevance of the sources
vector p, according to Definition 1.

The vector a containing users (explicit/implicit) votes is
generated at every iteration, based on the users’ skills,
regarded as an estimator of the probability that they will
vote correctly on an assertion. The values of the votes are
linked to the initial trust value given to the metadata,
according to the method described at the end of Section 6.1.
In this example, we will take into consideration the initial
trust values connected to metadata describing document D,
showing how much (the encoding of) D, matches (the
encodings of) classes ¢; and ¢3, namely, 0.77 and 0.71, as
shown in Table 2 in Section 5.4.

Finally, vector w (the relevance of the values vector)
contains values generated directly from a, depending on the
attitude (“diffident” or “confident”) adopted by the user
aggregating the votes. We show the results of two different
simulations, differing in the population composition only:

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

CERAVOLO ET AL.: BOTTOM-UP EXTRACTION AND TRUST-BASED REFINEMENT OF ONTOLOGY METADATA 161

L lLocal Trust

M=)

BEX]

& Total Trust

Local Assertion Trust

Local Trust

Total Assertion Trust

75

Start

— A1[GOOD] — AZ(BAD]

Fig. 12. The result of Simulation 1: The left graph shows the result of the WOWA aggregation for each iteration and the right one shows the global

level of trust for each assertion.

& Local Trust

M=)

< Total Trust

(=X

Local Assertion Trust

118

om |

S T ‘ \ —
Wt A o b e

Local Trust

— AT[GO0D] — A2BAD]

Start

Total Assertion Trust

s
0
75
a0
w5

300

Total Trust
\

— A1[G00D] — AZ(BAD]

Fig. 13. Increasing the number of Senior Specialists rapidly increases the difference between the level of trust between assertions.

1) Senior = 20%
2) Senior = 60%

Junior = 30%
Junior = 20%

Employee = 50%,
Employee = 20%.

POPULATION: 100 users =~ NUMBER OF ITERATIONS: 500

ASSERTIONS: Al1—Trust Initial Value = 0.77
A2—Trust Initial Value = 0.71

p VECTOR: p; = 0.9 for Senior
p; = 0.5 for Junior
p; = 0.3 for Employee
w VECTOR: w; = 0.8 if a; > 0.5
w; =02ifa; <0501<q; <1
a VECTORAl @ (explicit) = 077[S
1
Qj(implicit) = 0.77
6=04
a VECTORAD: Gj(explicit) = 0.71°
Qj(implicit) = 071%
6=0.5
SKILLS: 0.9 for Senior

0.5 for Junior
0.3 for Employee

This simple simulation shows the efficiency of our
method in rapidly aggregating trust values connected to
metadata and its sensitivity in parameter changing. Fig. 12
and Fig. 13 show, over 500 iterations, the result of the WOWA
aggregation for each iteration (left-hand side) and the global
level of trust for each assertion (right-hand side). Comparing
Fig. 12 with Fig. 13, we see that the level of trustworthiness of
the two different assertions visibly increases or decreases
depending on the population composition. Note that, for the
sake of conciseness, here we kept the composition of the
voters at any given time consistent with the one of the
community. This simplifying assumption allowed using a
system without memory, i.e., taking into account only votes
cast at the time of aggregation. It is possible to avoid this
assumption by choosing, at every iteration, explicit and
implicit votes depending on the last obtained local trust
value for a resource, for example, as @;(expiicit)(t + 1)1:
(local_trust(t))é and a;(impiicit) (t + 1) = (Local_trust(t))’.

7 CONCLUSIONS

Although a huge literature on knowledge extraction is
available, developing and maintaining ontology-based
metadata is still more an art than a science. Rapid evolution
of available information is difficult to control and often
potentially useful, emerging concepts remain unnoticed.
This paper addressed this problem by a bottom-up,
semiautomatic fuzzy technique for generating ontologies

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

162

from semistructured data flows. We consider trust-based
validation of extracted metadata based on user community’s
feedback as the only viable alternative to both semiauto-
matic and fully automatic merging of ontology updates, the
former being, in our opinion, still too cumbersome for
practical applications, and the latter being too error prone for
large-scale adoption. Of course, our community-based
validation will require careful tuning and research on
suitable voting algorithms [68]. Future developments of
our work include a complete framework for community-
based representation and update of trust-related assertions
expressing a community’s view over an automatically
constructed ontology.

ACKNOWLEDGMENTS

This work was partly funded by the Italian Ministry of
Research Fund for Basic Research (FIRB) under project
“Knowledge Management for the Web Infrastructure”
(KIWI).

REFERENCES

[1] G. Burnett, M.-H. Dickey, M.M. Kazmer, and K.M. Chudoba,
“Inscription and Interpretation of Text: A Cultural Hermeneutic
Examination of Virtual Community,” Information Research, vol. 9,
no. 1, 2003.

[2] E. Lesser and K. Everest, “Using Communities of Practice to
Manage Intellectual Capital,” Ivey Business J., vol. 65, no. 4, pp. 37-
41, 2001.

[3] A.Farquhar, R. Fikes, and J. Rice, “The Ontolingua Server: A Tool
for Collaborative Ontology Construction,” Int’l . Human-Computer
Studies, vol. 46, no. 6, pp. 707-727, 1997.

[4] E. Damiani, M.G. Fugini, and C. Bellettini, “A Hierarchy-Aware
Approach to Faceted Classification of Objected-Oriented Compo-
nents,” ACM Trans. Software Eng. Methodologies, vol. 8, no. 3,
pp- 215-262, 1999.

[5] B. Omelayenko, “Learning of Ontologies for the Web: The
Analysis of Existent Approaches,” citeseer.ist.psu.edu/omelayen
koOllearning.html, 2001.

[6] M. Cristani and R. Cuel, “A Survey on Ontology Creation
Methodologies,” Int’l |. Semantic Web and Information Systems,
vol. 1, no. 2, pp. 49-69, 2005.

[71 E. Morin, “Using Lexico-Syntactic Patterns to Extract Semantic
Relations between Terms from Technical Corpus,” Proc. Fifth Int’l
Congress on Terminology and Knowledge Eng. (TKE '99), pp. 268-278,
1999.

[8] P. Cimiano, A. Pivk, L. Schmidt-Thieme, and S. Staab, “Learning
Taxonomic Relations from Heterogeneous Sources of Evidence,”
Ontology Learning from Text: Methods, Applications, Evaluation, 2005,
http:/ /www.uni-koblenz.de/~staab/Research/Publications/
2005/OL-book-chapter-cimiano.pdf.

[9] A.Budanitsky, “Semantic Distance in Wordnet: An Experimental,

Application-Oriented Evaluation of Five Measures,” 2001,

citeseer.ist.psu.edu/budanitsky0lsemantic.html.

M.T. Pazienza, M. Pennacchiotti, and F.M. Zanzotto, “Identifying

Relational Concept Lexicalisations by Using General Linguistic

Knowledge.” Proc. 16th Eureopean Conf. Artificial Intelligence (ECAI

'04), pp. 1071-1072, Aug. 2004.

P. Adriaans and D. Zantinge, Data Mining. Addison-Wesley

Longman, 1997.

A. Maedche and S. Staab, “Ontology Learning for the Semantic

Web,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 72-79, 2001.

R. Volz, R. Studer, A. Maedche, and B. Lauser, “Pruning-Based

Identification of Domain Ontologies,” . Universal Computer

Science, vol. 9, no. 6, pp. 520-529, 2003.

P. Mitra and G. Wiederhold, “An Algebra for Semantic Interoper-

ability of Information Sources,” Proc. IEEE Int’l Conf. Bioinformatics

and Biomedical Eng., pp. 174-182, 2001.

L. Schmitt and G. Saake, “Merging Inheritance Hierarchies for

Database Integration,” Proc. Third IFCIS Int’l Conf. Cooperative

Information Systems, pp. 322-331, 1998.

(10]

(1]
[12]

(13]

(14]

[15]

(16]

(17

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[30]

(371

(38]

(39]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

R. Wille, “Restructuring Lattice Theory: An Approach Based on
Hierarchies of Concepts,” Ordered Sets, pp. 445-470, 1982.

B. Stein and S. Meyerzu Eifien, “Document Categorization with
MAJORCLUST,” Proc. 12th Workshop Information Technology and
Systems (WITS '02), pp. 91-96, 2002.

M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of
Document Clustering Techniques,” 2000, citeseer.ist.psu.edu/
steinbachOOcomparison.html.

E.-H. Han, G. Karypis, and V. Kumar, “Text Categorization Using
Weight Adjusted K-Nearest Neighbor Classification,” Proc. Fifth
Pacific-Asia Conf. Knowledge Discovery and Data Mining, pp. 53-65,
2001.

A K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice-
Hall, 1988.

G. Hamerly and C. Elkan, “Alternatives to the K-Means
Algorithm that Find Better Clusterings,” Proc. 11th Int'l Conf.
Information and Knowledge Management, pp. 600-607, 2002.

KM. Gupta, DW. Aha, and P. Moore, “Learning Feature
Taxonomies for Case Indexing Advances in Case-Based Reason-
ing,” Proc. Seventh European Conf., 2004.

N. Fuhr and G. Weikum, “Classification and Intelligent Search on
Information in XML,” IEEE Data Eng. Bull., vol. 25, no. 1, pp. 51-
58, 2002.

G. Bordogna and G. Pasi, “A User-Adaptive Indexing Model of
Structured Documents,” Proc. 10th Int’l Conf. Fuzzy Systems,
pp- 984-989, 2001.

E. Damiani, L. Tanca, and F. Arcelli Fontana, “Fuzzy XML Queries
via Context-Based Choice of Aggregations,” Kybernetika, vol. 36,
no. 6, pp. 605-616, 2000.

V. Carchiolo, A. Longheu, and M. Malgeri, “Hidden Schema
Extraction in Web Documents,” Proc. Third Int’l Workshop
Databases in Networked Information Systems (DNIS '03), pp. 42-52,
2003.

P. Ceravolo and E. Damiani, “Fuzzy Mining Class Hierarchies
from XML-Based Authentication Data,” Ontology Learning from
Text: Methods, Applications, Evaluation, Sept. 2004.

P. Ceravolo, A. Corallo, E. Damiani, G. Elia, M. Viviani, and A.
Zilli, “Bottom-Up Extraction and Maintenance of Ontology-Based
Metadata,” Fuzzy Logic and the Semantic Web, Computer Intelligence,
Elsevier, to appear.

T.R. Gruber, “Toward Principles for the Design of Ontologies
Used for Knowledge Sharing,” Int’l |. Human-Computer Studies,
vol. 43, nos. 5-6, pp. 907-928, 1995.

E. Damiani, R. Khosla, and W.I. Grosky, Human Centered
e-Business. Kluwer Academic, 2003.

N.F. Noy and M.A. Musen, “PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment,” Proc. 17th Nat'l
Conf. Artificial Intelligence (AAAI/IAAI), pp. 450-455, 2000,
citeseer.ist.psu.edu/noy00prompt.html.

P. Ceravolo, E. Damiani, and M. Viviani, “Adding a Trust Layer to
Semantic Web Metadata,” Soft Computing for Information Retrieval
on the Web, to appear.

M. Blaze, J. Feigenbaum, and A.D. Keromytis, “The Role of Trust
Management in Distributed Systems Security,” Secure Internet
Programming, pp. 185-210, 1999, citeseer.ist.psu.edu/23045.html.
A. Jesang, R. Ismail, and C. Boyd, “A Survey of Trust and
Reputation Systems for Online Service Provision,” Decision
Support Systems, 2005.

R. Aringhieri, E. Damiani, S. De Capitani di Vimercati, S.
Paraboschi, and P. Samarati, “Fuzzy Techniques for Trust and
Reputation Management in Anonymous Peer-to-Peer Systems,”
J. Am. Soc. Information Science and Technology (JASIST), to appear.
Extensible Markup Language (XML), http://www.w3.org/
XML/, 2005.

Z. Cui, E. Damiani, M. Leida, and M. Viviani, “OntoExtractor: A
Fuzzy-Based Approach in Clustering Semistructured Data
Sources and Metadata Generation,” Proc. Ninth Int’l Conf. Knowl-
edge-Based Intelligent Information and Eng. Systems (KES '05), Sept.
2005.

E. Damiani and L. Tanca, “Blind Queries to XML Data,” Proc. 11th
Int’l Conf. Database and Expert Systems Applications (DEXA '00),
pp. 345-356, 2000.

D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey,
“Scatter/Gather: A Cluster-Based Approach to Browsing Large
Document Collections,” Proc. 15th Ann. Int'l ACM Conf. Research
and Development in Information Retrieval (SIGIR '92), pp. 318-329,
1992.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

CERAVOLO ET AL.: BOTTOM-UP EXTRACTION AND TRUST-BASED REFINEMENT OF ONTOLOGY METADATA

(40]

[41]

(42]

(43]

(44]

[43]

[40]

[47]

(48]

(49]

[50]

[51]

(52]

(53]

[54]

[55]

[50]

[57]

[58]

[59]

[60]

[01]

[62]

[63]

[64]

P. Kilpeldinen, “Tree Matching Problems with Applications to
Structured Text Databases,” PhD dissertation, Dept. of Computer
Science, Univ. of Helsinki, 1992.

B. Bouchon-Meunier, M. Rifqi, and S. Bothorel, “Towards General
Measures of Comparison of Objects,” Fuzzy Sets Systems, vol. 84,
no. 2, pp. 143-153, 1996.

P. Bosc, E. Damiani, and M.G. Fugini, “Fuzzy Service Selection in
a Distributed Object-Oriented Environment,” IEEE Trans. Fuzzy
Systems, vol. 9, no. 5, Oct. 2001.

E. Damiani, M.C. Nocerino, and M. Viviani, “Knowledge
Extraction from an XML Data Flow: Building a Taxonomy Based
on Clustering Technique,” Proc. EUROFUSE 2004: Eighth Meeting
EURO Working Group on Fuzzy Sets, pp. 133-142, 2004.

P. Ceravolo, M.C. Nocerino, and M. Viviani, “Knowledge
Extraction from Semistructured Data Based on Fuzzy Techni-
ques,” Proc. Eighth Int’l Conf. Knowledge-Based Intelligent Informa-
tion and Eng. Systems (KES '04), pp. 328-334, 2004.

D. Rocacher, “On Fuzzy Bags and Their Application to Flexible
Querying,” Fuzzy Sets and Systems, vol. 140, no. 1, pp. 93-110, 2003.
L. Zadeh, “A Computational Approach to Fuzzy Quantifiers in
Natural Languages,” Computing and Math. with Applications J.,
no. 9, pp. 149-184, 1983.

G. Cormode and S. Muthukrishnan, “The String Edit Distance
Matching Problem with Moves,” Proc. 13th Ann. ACM-SIAM
Symp. Discrete Algorithms (SODA '02), pp. 667-676, 2002.

E. Damiani, N. Lavarini, B. Oliboni, and L. Tanca, “An
Approximate Querying Environment for XML Data,” Fuzzy Logic
and the Internet, vol. 137, Jan. 2004.

D. Dubois, “Triangular Norms for Fuzzy Sets,” Proc. Second Int’l
Seminar Fuzzy Set Theory, pp. 39-68, 1980.

RR. Yager, “On Ordered Weighted Averaging Aggregation
Operators in Multicriteria Decisionmaking,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 18, no. 1, pp. 183-190, 1988.

J.A. Hylton, “Identifying and Merging Related Bibliographic
Records,” Technical Report MIT/LCS/TR-678, MIT Lab for
Computer Science, Cambridge, Mass., http://ltt-www .lcs.mit.
edu/ltt-www /People/jeremy/thesis/, 1996.

Zip Distance Calculator Web Service, http://www.webservicex.
net/uszip.asmx, Sept. 2005.

P. Bosc and D. Rocacher, “About Zy, the Set of Fuzzy Relative
Integers, and the Definition of Fuzzy Bags on Z;,” Proc. 10th Int’l
Fuzzy Systems Assoc. World Congress on Fuzzy Sets and Systems
(IFSA ’03), T. Bilgic, B.D. Baets, and O. Kaynak, eds., pp. 95-102,
June-July 2003.

Restaurant Ontology, Imperial College of Science, Technology
and Medicine, Jan. 2006. http://www-agentcities.doc.ic.ac.uk/
ontology /restaurant.

R. Richardson, A.F. Smeaton, and J. Murphy, “Using WordNet as
a Knowledge Base for Measuring Semantic Similarity Between
Words,” Technical Report CA-1294, Dublin, Ireland, citeseer.ist.
psu.edu/richardson94using.html, 1994.

Iso 3166 Maintenance Agency, http://www.iso.org/iso/en/
prods\-services/iso3166ma/index.html, Sept. 2005.

D. Rocacher and P. Bosc, “The Set of Fuzzy Rational Numbers and
Flexible Querying,” Fuzzy Sets and Systems, vol. 155, pp. 317-339,
2005.

M. Wygralak, “An Axiomatic Approach to Scalar Cardinalities of
Fuzzy Sets,” Fuzzy Sets Systems, vol. 110, no. 2, pp. 175-179, 2000.
G. Adomavicius and A. Tuzhilin, “Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions,” IEEE Trans. Knowledge and Data Eng., vol. 17,
no. 6, pp. 734-749, June 2005.

R. Mesiar and M. Komornikova, “Aggregation Operators,” Proc.
XI Conf. Applied Math. (PRIM '96), pp. 193-211, 1996.

A. Ceselli, E. Damiani, S. DeCapitanidiVimercati, S. Jajodia, S
Paraboschi, and P. Samarati, “Modeling and Assessing Inference
Exposure in Encrypted Databases,” ACM Trans. Information
Systems Security, vol. 8, no. 1, pp. 119-152, 2005.

S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina, “The
Eigentrust Algorithm for Reputation Management In P2P Net-
works,” Proc. 12th Int’l Conf. World Wide Web (WWW "03), pp. 640-
651, 2003.

J. Aczél, “On Weighted Synthesis of Judgements,”
Math., vol. 27, pp. 288-307, 1984.

J. Fodor, J.L. Marichal, and M. Roubens, “Characterization of the
Ordered Weighted Averaging Operators,” IEEE Trans. Fuzzy
Systems, vol. 3, no. 2, pp. 236-240, 1995.

Aequationes

[65]
[60]

[67]

[68]

[69]

[70]

(71]

[72]

163

M. Grabisch, “Fuzzy Integral in Multicriteria Decision Making,”
Fuzzy Sets Systems, vol. 69, no. 3, pp. 279-298, 1995.

V. Torra, “The Weighted Owa Operator,” Int’l]. Intelligent Systems,
vol. 12, no. 2, pp. 153-166, 1997.

E. Damiani, S. De Capitani di Vimercati, P. Samarati, and M.
Viviani, “A Wowa-Based Aggregation Technique on Trust Values
Connected to Metadata,” Proc. First Int'l Workshop Security and
Trust Management (STM '05), Sept. 2005.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P.
Samarati, “Managing and Sharing Servents’ Reputations in P2P
Systems,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 4,
pp. 840-854, July/Aug. 2003.

M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New
Algorithms for Fast Discovery of Association Rules,” Proc. Third
Int’l Conf. Knowledge Discovery and Data Mining (KDD ’97), 1997.
P. Ceravolo, “Extracting Role Hierarchies from Authentication
Data Flows,” Int’l]. Computer Systems Science and Eng., vol. 4, no. 6,
2004.

I. Horrocks, U. Sattler, and S. Tobies, “Practical Reasoning for
Expressive Description Logics,” Proc. Sixth Int’l Conf. Logic
Programming and Automated Reasoning (LPAR '99), pp. 161-180,
1999.

OWL Web Ontology Language—Overview, World Wide Web
Consourtium, http:/ /www.w3.org/TR/owl-features/, Dec. 2003.

Paolo Ceravolo received the Laurea degree in
philosophy from the Philosophy Department at
the Catholic University of Milan, Italy, and the
PhD degree in computer science from the
Department of Information Technologies at the
University of Milan, Italy. Currently, he is an
assistant professor in the same department. His
research interests include ontology-based
knowledge extraction and management, seman-
| tic Web technologies, trust/reputation, and soft

computing. On these topics, he has published several scientific papers
and book chapters.

Ernesto Damiani is a full professor in the
Department of Information Technology at the
University of Milan, ltaly. He has held visiting
positions at several international institutions,
including George Mason University, Virginia,
and is an adjunct professor at the University of
Technology, Sydney, Australia. He coordinates
several research projects funded by the ltalian
Ministry of Research, the European Commis-
sion, and by a number of private companies,

including Cisco, ST Microelectronics, Siemens Mobile, and BT Exact.
His research interests include knowledge extraction and metadata
design, advanced software architectures, and soft computing. On these
topics, he has filed international patents and published more than
200 refereed papers in international journals and conferences. He is the
vice chair of the IFIP WG on Web Semantics (WG 2.12) and the
Secretary of the IFIP WG on Open Source Systems (WG 2.13). He is
the author, together with W. Grosky and R. Khosla, of the book Human-
Centered e-Business (Kluwer, 2003). In 2000, he was the recipient of
ACM SIGAPP Outstanding Service Award. He is a member of the IEEE.

Marco Viviani received the Laurea degree in
computer science from the Department of
Information Technologies at the University of
Milan, Italy. Currently, he is a research colla-
borator and a PhD student in the same depart-
ment. His research interests include knowledge
extraction and management, semantic Web
technologies, data mining techniques, pattern
recognition and clustering, trust/reputation, and
fuzzy logic. On these topics, he has published

several scientific papers and book chapters.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on August 7, 2009 at 09:13 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

