Analyzing and Managing Role-Based Access Control Policies
Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn, and Ma@bgolla

Abstract

Today more and more security-relevant data is stored on a@mpystems; security-critical business processes
are mapped to their digital counterparts. This situatiopliap to various domains such as health care industry,
digital government, and financial service institutes reggithat different security requirements must be fulfilled
Authorization constraints can help the policy architedige and express higher-level organizational rules. Algio
the importance of authorization constraints has been adddein the literature, there does not exist a systematic
way to verify and validate authorization constraints. Iis thaper, we specify both non-temporal and history-based
authorization constraints in the Object Constraint LagguéOCL) and first-order linear temporal logic (LTL).
Based upon these specifications, we attempt to formallyffyvesle-based access control policies with the help of
a theorem prover and to validate policies with the USE syst@malidation tool for OCL constraints. We also
describe an authorization engine, which supports the eafoent of authorization constraints.

Index Terms

Role-based access control policy, authorization comgalinear temporal logic, Object Constraint Language.

I. INTRODUCTION

Information technology pervades more and more our daiy Tihis applies to different domains such as
health care, e-government, and banking. New technololyegever, go along with new risks, which must
be systematically dealt with. Specifically, the informaticontained in the IT systems can be regarded as
a key resource of an organization and must therefore begteak@dequately. Due to the fact that insider
attacks are a major threat for large organizations [1] it andatory to establish adequate mechanisms
that enforce the access control requirements demandecebyligs and laws relevant to an organization.

For example, in Europe strong privacy requirements suchasetformulated in the Directive 95/46/EC
[2] exist. This directive among other areas applies to hakpiand hence specific organizational rules
must be implemented in order to prevent privacy violatiohgypical organizational rule in a hospital
might be “a nurse can only see the records of all patients veve been on her ward within the previous
90 days”. Another rule might state that a physician can omieghte the permission to read a patient

record to another physician who has at the same time adiatpecialist role.

Dr. Sohr is with the Universitt Bremen, Germany.

Mr. Drouineaud is with the Univergit Bremen, Germany.

Prof. Dr. Gail-Joon Ahn is with the University of North Carolina at Charloti&A.
Prof. Dr. Gogolla is with the Universit Bremen, Germany.

In the banking domain, other protection goals such as ddtgrity and accountability are more
important. In particular, separation of duty policies (3¢8), [4] must be enforced. SoD is a well-known
principle that prevents fraud and error by requiring thateast two persons are required to complete a
task. A common example of such an SoD rule is “a clerk must nepgre and approve a check”.

As pointed out by Sandhu et al. [5], one of the main advantafesle-based access control (RBAC)
is that such higher-level organizational rules can be imgleted in a natural way. Specifically, advanced
RBAC concepts like role-based authorization constrairdase an important means for laying out higher-
level organizational rules [6]. Due to the fact that RBAC his® decome an accepted standard for access
control, we consider RBAC as the basic access control modbinhis paper.

Usually, the control and protection goals of an organizattan only be expressed by a set of rules
rather than a single rule. Hence, we define an RBAC policy asattkical RBAC in the sense of the
RBAC standard [7] plus theet of authorization constraintdefined for the organization in question.
Unfortunately, authorization constraints can increase domplexity of RBAC itself. Thus, it generally
becomes more difficult to make sure that certain requireggnas hold in a given RBAC policy or that
the policy is free of contradictions. Through the combinatof different types of authorization constraints
undesirable properties may arise. For example, assume/é¢hladve defined the SoD rule mentioned above.
Let us further assume that a specific user has the permissiaing approval of the check and that she
can delegate this permission to other users. If the delegateady has the permission to prepare the
check in question, then either the SoD property is violatethe delegation cannot be executed.

New technologies such as Web services increase the corypbnd the dependencies of IT systems
w.r.t. access control. For this reason, it is an importasi ta find a suitable methodology to express and
verify assertions on organization-wide RBAC policies. @itise, unauthorized access and consequently
fraud may be expected. Although there are several works @sRcification of authorization constraints,

e.g., [6], [8], there is a lack of an appropriate tool supgortthe analysis/verification of RBAC policies.

In the following, we use the term “authorization constraint” instead of “tiieed authorization constraint” for the sake of simplicity.

The work presented in this paper can be regarded as a firstioskeghp security officers in the definition
process of consistent (i.e, free of contradictions) andecdRBAC policies. In addition, even if we have
defined correct RBAC policies, we also wish to enforce thedeipse automatically by the IT system.
Hence, tool support for the enforcement of RBAC policies soalesirable.

In the following, we briefly discuss two different approashe the policy specification and verification.
The first approach is more formal and uses a theorem provefof9fhe verification. In contrast, the
second one is more practical and is based upon a validatarfdo software models [10]. In any case,
the verification should be carried out in the design procésiseopolicy and not after the deployment. This
way, only consistent RBAC policies are implemented, andcpsi with undesirable properties are ruled
out early. Interestingly, the validation tool can also beptyed to implement an authorization engine,

which helps toenforcecertain RBAC policies. This topic is discussed after thefieiion sections.

A. Formal Specification and Verification

In domains with high security requirements such as bankopdi@tions, which deal with large amounts
of money, or military applications, a rigorous way for thessification and analysis of RBAC policies is
needed. Specifically, this is required for the certificatodran IT system w.r.t. the Common Criteria for
high levels of security [11].

We consider first-order linear temporal logic (LTL) [12] appeopriate formalism for specifying RBAC
policies because often one must cope with dynamic politidsanking applications, for example, dynamic
SoD authorization constraints must be enforced such asrsbased SoD [13]. History-based SoD is a
flexible variant of SoD, in which a user may have all the pegg for a business process, but must not
perform all the subtasks of this process on a certain obgegt,(check). Furthermore, we have often other
types of dynamic authorization constraints such as detegatiles or authorization constraints which
mandate a certain order of task execution as needed for wankflin these cases, first-order LTL allows
for a concise and elegant formulation of the RBAC policy in sfien. Furthermore, first-order LTL has
been extensively studied in the literature [14], [12].

3

The formal verification assures that an RBAC policy satistesproperties intended by the organization
(e.g., no user may prepare and approve a check). We will aartythis verification by means of the
theorem prover Isabelle [9]. In particular, the first-ord&L (including axioms) is embedded into Isabelle.
Afterwards, the proofs of those properties to be fulfilleddy RBAC policy are automatically checked

by Isabelle. The details of this formal verification are r@ed later in this paper.

B. Practical Specification and Validation

Due to the fact that theorem provers are still tools for etgpehe aforementioned formal verification
approach is strictly speaking not necessary in applicatiwith moderate security requirements. For this
reason, we present a more light-weight approach to poli@cifpation and analysis. Clearly, we can
employ this approach in application domains with high ségutemands, too, and then use the formal
verification if certain problems have been detected in tlaetpral verification step.

For the practical specification and verification, we employ Unified Modeling Language (UML) and
Object Constraint Language (OCLL5]. As demonstrated in [16], [17], UML/OCL can be converign
used to specify several types of authorization constraitseover, owing to the fact that OCL has proved
its applicability in several industrial applications, OC& @an appropriate means for such a practically
relevant process as the design of RBAC policies.

Hence, we demonstrate in this paper how to employ the USEemsygtUML-based Specification
Environment) [10] to verify RBAC policies formulated in UMLnd OCL. USE is a validation tool
for UML models and OCL constraints, which has been reportegiglied in industry and research. We
consider validation by generating snapshots (systems$taseprototypical instances of a UML/OCL model
and compare the generated instances with the specified ricdethe RBAC policy in our case). From
now on, we use the term “validation” introduced by Richteralef10] whenever we discuss the practical

verification.

20CL is UML's constraint specification language and UML has been widdtpted in the software engineering discipline.

Validation with the USE system can help to detect if certaanstraints conflict with each other or if
constraints are missing. The latter case may lead to aisitugx which unallowed access is possible. For
example, if an SoD constraint betweewrashierand acashier supervisois missing, a user who assumes
both roles may commit fraud. The former case, however, mag kize effect that from the security point
of view reasonable system states cannot be establishede Whilalidation allows the detection of certain
conflicting constraints, one cannfiirmally provethe correctness of the RBAC policy in question. For

this purpose, a more formal approach is required such asetmeproving.

C. Authorization Engine

Beyond specification and validation/verification, the eaéonent of RBAC policies is also an important
issue. Such an authorization engine should be designedngridmented by sound software engineering
techniques. In particular, the main focus should lie in thedeling process, whereas the implementation
should be carried out routinely and as much as possible aticaily. In this paper, we also demonstrate
how to employ the USE system, which is a validation tool foftware models, to implement an
authorization engine. This engine serves as a key compdoeahforcing various types of authorization

constraints. This way, RBAC policies for different orgariiaas can be implemented.

D. Structure of this Paper

The remainder of the paper is now organized as follows: 8edtigives a short overview of RBAC and
authorization constraints. In Section lll, typical dynanaiuthorization constraints such as history-based
SoD and delegation rules are formalized in first-order LThefeafter, we present the formal verification of
RBAC policies with Isabelle. Section IV demonstrates how RB#dlicies can be specified in UML/OCL
and validated by means of USE. Section V describes an aam#tiom engine built on the USE system
whereas Section VI discusses extensions of our work antedel@ork. Section VII summarizes the results

of this paper.

II. RBAC AND AUTHORIZATION CONSTRAINTS

RBAC [5], [7] has received considerable attention as a primgialternative to traditional discretionary
and mandatory access control. The explicit representafioales simplifies the security management and
makes possible to use security principles like SoD and lpagilege [5]. We now give an overview of

(general) hierarchical RBAC according to the RBAC standatd [7

. the setsd/, R, P, S (users, roles, permissions, and sessions, respectively)
e« UACU x R (user assignment)
« PAC R x P (permission assignment)

« RH C R x R is a partial order called the role hierarchy or role domirareation written as<.

Users may activate a subset of the roles they are assignadatsession P is the set of ordered pairs
of operations and objects. In the context of access conroésources accessible in an IT-system (e.g.,
files, database tables) are referred to by the natlgject An operationis an active process applicable to
objects (e.g., read, write, append). The relatidh assigns to each role a subset/of So PA determines
for each role the operation(s) it may execute and the olgjett(which the operation in question is
applicable for the given role. Thus any user having assummisddle can apply an operation to an object
if the corresponding ordered pair is an element of the subssEgned to the role byA.

Role hierarchies can be formed by tRe7 relation. Senior roles inherit permissions from junioresl
through theRH relation (e.g., the rolehief physiciannherits all permissions from theghysicianrole).

An important advanced concept of RBAC are authorization traimgs. Authorization constraints can
be regarded as restrictions on the RBAC functions and retiBor example, an SoD constraint may
state that no user may be assigned to bothctighierand cashier supervisorole, i.e., the UA relation is
restricted. It has been argued elsewhere that authonzatostraints are the principal motivation behind
the introduction of RBAC [5]. They allow a policy designer tgpeess higher-level organizational rules as
indicated above. In the literature, several kinds of autladion constraints have been identified such as

various types of static and dynamic SoD constraints [13],[]6]; constraints on delegation [19], [20];

cardinality constraints [5]; context constraints [19]1]2workflow constraints [22].

As indicated above, we now define an RBAC policy as follows:

Definition 1: An RBAC policy of an organization is hierarchical RBAC plus tbet of authorization
constraints defined for the organization in question.

An RBAC policy should be distinguished from &BAC configuration

Definition 2: An RBAC configuration consists of the concrete roles, penmmnss users, sessions, role

assignments and role hierarchies currently defined withiorganization.

IIl. FORMAL SPECIFICATION AND VERIFICATION OF RBAC POLICIES

In the following, we describe our formal approach to the #pmation and verification of RBAC policies
in more detail. We begin with the specification of dynamichawization constraints, namely, dynamic
SoD, delegation and revocation rules, in first-order LTLtdtathese authorization constraints are used in

an example, which demonstrates how the verification works.

A. Formal Specification of RBAC Policies in LTL

First-order LTL [12] is a linear temporal first-order logi€hus it is powerful enough to express most
of mathematics such as Zermelo-Fraenkel set theory (induthe axiom of choice). Therefore it is
sufficient for reasoning about RBAC policies on a concepterall®. On the other hand, there is a clearly
defined formal semantics based upon Kripke frames for figd&oLTL [12]. Since it is a linear temporal
logic, it is specifically well-suited for reasoning aboutnigoral invariants as needed for IT security and
for safety-critical systems such as aircraft controllersaslway control systems [14].

Subsequently, we explain the basic concepts of first-ordier A temporal first-order signature consists
of a set of sorts, a set of function symbols and a set of pregisgmbols (each symbol coming with a
string of argument sorts and, for function symbols, a resait). There areigid and flexible predicate

symbols: the former do not change over time, whereas ther lathy vary. Models live over discrete time,

3Ahn demonstrates that the specification language RCL 2000 for auttiomizepnstraints is equivalent to a restricted form of first-order
predicate logic [6].

spec TEMPORALRBAC =
sorts User, Session, Role, Operation, Object
rigid op wuser : Session — User;
flexible preds UA : User x Role;
PA : Operation X Object X Role;
__Active_in__ : Role x Session;
Ezec : Sesston X Operation X Object;
Ezec : User x Operation x Object
forall r: Role; u: User; s: Session; op : Operation; obj : Object
. (Or Active_in s) = UA(user(s),r)
° O(Ezec(s, op, 0bj) = 3r : Role. r Active_in s A PA(op, obj,T))
. U(Ezec(u, op, obj) < Is : Session.user(s) = u A Ezec(s, op, obj))
end
spec DELEGATETEMPORALRBAC=TEMPORALRBAC then
rigid pred UAO : User x Role;
flexible preds UA : User x Role;
UAD : User x Role;
... further predicates, e.g., Delegate, Revoke
forall w : User; r: Role
. UAD(u,r)V UAO(u,r) < UA(u,r)
. —(UAD(u,r) N UAO(u,T))
. ... see text
end

Fig. 1. Temporal-logic RBAC and predicates for delegation, formaliz&Hinvfirst-order LTL.

indexed by the natural numbers as time steps. They intetpeesorts with (time-independent) carrier

sets, function and rigid predicate symbols with time-inglggeent functions and predicates of appropriate
types, and flexible predicate symbols with families of fumes and predicates, where the families are
indexed by natural numbers.

Sentences are the usual first-order sentences built froratiegs, predicate applications and logical
connectives and quantifierg, 3. Additionally, we have the modalities] (always in the future),&
(sometimes in the future) an@ (in the next step). The corresponding past modalities[&re> and
(. Satisfaction is defined inductively for a given time stefyewe the modalities allow for referring to
other time steps. A sentence is satisfied in a model if it isfsad in the time step zero.

We now specify RBAC in first-order LTL (see Fig. 1, upper par this purpose, we use the notation
of the algebraic specification language CASL as we have doriere3]. The functionuser is rigid
(i.e., does not depend on the state) whereas the predi¢atesPA, Active_in and Ezec are flexible
(i.e., depend on the state}izec now traces the operations performed, iBzec(s,op,obj) means that
sessions executes operationp on objectobj in the present (implicit) state. Note that we have left out

the predicates and axioms for role hierarchies to simphfy discussion.

1) Specification of Dynamic SoD with Histor{pynamic SoD is a flexible form of SoD. Here, a user
may perform certain steps of a task, but only if she has no¢ @entain other steps of the task before. There
are several attempts to express dynamic SoD in the compatarity world such as Sandhu’s Transaction
Control Expressions [24]. Practical applications of RBACGzofheed dynamic SoD; see Simon and Zurko
[18] and Nash and Poland [3]. In fact, Sandhu stresses thertamne of history [24].

Dynamic SoD properties [13], [18] can be elegantly formedhatn first-order LTL without explicitly
talking about states. We demonstrate this by means of twoalygxamples, namely, object-based dynamic
SoD and history-based SoD. Note that we use the CASL-styleseptation again and hence the variables
after theforall quantifier correspond to the parameters of the SoD predicdige SoD predicates are

defined by equivalences, similarly to the secdic predicate given in Fig. 1:

« Object-based dynamic SoD

A user may perform at most one operation on a given object.

forall obj : Object;
0bjDSoD(0bj) < [Vu : User; op,op’ : Operation.op # op’ A\ Exec(u,op, obj) = O=Exec(u, op’, 0bj)]

« History-based dynamic SoD
A user may execute all operations and may also execute maneaifie operation on a target object,
but she may not perform all operations (if more than one) enstlime target object.
forall obj : Object;
HDSoD(o0bj) < [Vu : User; op : Operation.

Exec(u,op,obj) = Jop’ : Operation.(op # op’ AE —~Ezec(u,op’,0bj)) V Vop' : Operation.op’ = op]
First-order LTL can also be employed in order to formally @fje SoD policies where the order of
executions matters, e.g., the dynamic object-based Sontaproposed by Nash and Poland [3]. The
Ezec predicate can then be used to express RBAC policies for wevkflwhere the tasks are executed

in a certain order [22]. This is, however, discussed elsegvkdee to space limitations [25].

2) Delegation and Revocatiorin the following, both delegation and revocation policies formalized

within first-order LTL.

Delegation: Delegation is an important factor to fulfill dynamic requirents for secure distributed
computing environment. There are many definitions of delegan the literature [26], [27], [28], [29],
[30]. In general, it is referred to as one active entity in ateyn delegates its authority to another entity
to carry out some functions on behalf of the former.

As proposed by Zhang et al. [30], we introduce two new usegasgent relations, called original user
assignmentUAO and delegated user assignméri D. This way, one can make explicit whether a role
is assigned to the user by an administrator directly or a wa@e delegated by another usétd then is
the union of these two assignment relations as shown in therlpart of Fig. 1.

Subsequently, we formalize a basic variant of delegatiofirst-order LTL. In this variant, usen
delegates role to userul and loses at the same time the power of the delegated-role

forall w,ul : User; r,rl: Role;
Delegate(u, r,ul,rl) < [UAO(u,r) NUA(ul,rl) A =UA(ul,r) A const == O(UAD(ul,r) A =UA(u,r))]

-~UA(ul,r) is required here because it is not useful to delegate rdie a userul who has already
been assigned to this role. Moreovermust obviously belong te on delegation, and oftenl should
hold the power of a certain prerequisite role on the delegation process. Sometimes, there also exist
additional constraints (e.g., concerning the delegatieptid or time) which are to be satisfied to enable
the delegation process, i.e., the delegation depends trefypredicates. These delegation constraints are
represented by theonst statement, which is a first-order LTL formula.

Revocation: Often, it is necessary to revoke roles that have been del@gatg., when a clinician
returns from vacation. Several different semantics areiptesfor user revocation such as [31], [26]. We

give here only the formal specification of a simple revoaatiole:
forall w: User; r : Role; Revoke(u,r) < [UAD(u,r) A const = O-UAD(u,r)]

const stands for a revocation constraint. For example, the powerad a patient’s electronic health record

is lost if the clinician does not belong to the current deparit of the patient in question any more.

10

B. Formal Verification of RBAC Policies

Having specified various types of authorization constsaintfirst-order LTL, we now generate RBAC
policies by combining several authorization constraiBist doing so, we want to be sure that our RBAC
policies meet the requirements (see end of Section IlI-Ba@)l at the same time avoid unintended side
effects like deadlocks (cf. example in Section 1lI-B.2) orallowed access. For this reason, we treat
the formal verification of RBAC policies in this section. Fahverification may be cumbersome, but it
guarantees the highest degree of reliability. Moreoverusy assurance standards such as the Common
Criteria request formal methods as a precondition for thédsg security level (EAL7). Here, we will
use the theorem prover Isabelle as a tool for the formal eatitn.

Isabelle [9] is a generic proof assistant. It allows mathgcabhformulas to be expressed in a formal
language and provides tools for proving those formulas irogichl calculus. Formal calculi and/or
mathematical theorems are encoded in theory files (suffixy) that can be invoked to Isabelle. Invoking
a theory file makes Isabelle accept all definitions, axions, ia this theory. Furthermore, Isabelle will
check proofs of theorems given in this theory.

1) How to Build Correct RBAC PoliciesThe first-order LTL with past modalities specified in Is-
abelle/HOL ad TL. t hy is a powerful formalism for expressing and examining RBAG@e$ [32]. The
most important properties of this kind of LTL have been prbas theorems iBasi c_| nf _Rul es. t hy,
Basi c_Op_Rul es. t hy andAdv_Op_Rul es. t hy in this sequence, which was a demanding task. RBAC
is defined iINnRBACL. t hy [32]. However, this can only help if the specified RBAC polisydonsistent.
Consistency is to be understood in the following sense:

Definition 3: An RBAC policy is consistent if a sequence of non-empty RBACfigumations exists
which satisfies all the rules of the policy in question.

Note that we consider sequences of RBAC configurations heteaionly a single RBAC configuration
because we use a linear temporal logic as the formalism fiicypspecification. A sequence of RBAC

configurations is then a model of the RBAC policy in first-orddiL, i.e., the RBAC policy is free of

11

contradictions. Finding such a sequence for which a given &pAlicy holds proves the satisfiability of
the considered RBAC policy in the sense of first-order LTL. §happlying adequate tools such as model
checkers or the USE tool can already help the policy desigmeroid basic mistakes. But this is often
not enough. First-order LTL allows the designer to deriveperties from a given RBAC policy.

Suppose an RBAC policy is specified as a set of sentences wofdst LTL, and a requirement for this
policy is given as another sentence. If we can derive theimemaent from the given RBAC policy within
first-order LTL, then the requirement in question is fulfillby this RBAC policy with absolute certainty.
In order to reach this certainty, the policy designer hasufply proofs for the requirements as described
above. The correctness of the proofs in question can theeiifeed by Isabelle due to the work described
above. Assuming Isabelle works correctly and accepts thefgrthe desired certainty is assured. Since
first-order logic is generally undecidable (according tsutts of Turing [33]), the mentioned proofs can
usually not be fully automated, but require human inteneentThis applies also to the example of such
a proof described in the following subsection.

2) Formal Verification of RBAC Policied:TL is encoded in Isabelle (cLTL. t hy) as described above.
Using LTL as a foundation, we then define RBAC as describeBBACL. t hy. The main modification
w.r.t. [34] is the introduction of the predicates for delega namedUAO and UAD (see axiomd/AO _az,
UAD _az,UA2_az). Consequently, the predicatéA is not rigid any more, buUAO now is.

Delegation is defined by an additional Isabelle theory base®BAC. In this theory, we introduce the
predicateD ELEGATE, and specify delegation axiomatically as defined in SedlieA.2. However, the
difference is that we omit the prerequisite conditions tog tlelegated user for reasons of convenience.
In our theory, a user is allowed to delegate a molé and only if she is assigned to the rateby UAO.

Having specified delegation and revocation exactly, it i& mpmssible to examine the interactions of
these concepts with various authorization constraints ddm lead to unexpected results. We now describe
an example policy showing an undesirable deadlock behawider certain conditions. For this purpose,

let us assume that delegation and RBAC are defined as desabbgd. Furthermore, we have two distinct

12

usersul, u2, and an object with an object-based dynamic SoD condition, i.e., any usgrermitted to
apply at most one operation to objectAs an additional authorization constraint we demand fasoas
of secrecy that any operatidncan be performed on at most by one user (i.e., no two distinct users are
allowed to apply the same operationdp Finally, letr be the only role having the permission to apply
operationopl to o, and letu! be the only user assigned toby UAO. Pick now an arbitrary point of

time ¢ from which on the following actions happen:

t: Useru! delegates role to u2.
t 4+ 2: Useru2 applies operationp to o °.

t + 3. Userul revokes roler from u2 and and from now on never delegates it again.fo

From this situation we conclude th&t4d D (u2, r) is true att + 1, t + 2, andt + 3. However, fromt 44
and all time steps latet/AD(u2, r) is always false. Thus it follows that alsBA(u2, r) must be false
for those points of time since only faVAO(u1,r) is true, andu? and u2 are distinct users. Thus, for
those points of time:2 will not be allowed to apply operationp! to o since the permission to do this
is limited to roler.

By our constraints and prerequisite conditions, we now haeesituation that front + 4 on no user
can apply operatiop! to o because usetr2 cannot do this any more due to revocation and the secrecy
constraint forbids access for any other user. Moreover,ameconclude that2 cannot apply any operation
to o since she has already performed operatprt on o (object-based dynamic SoD) and once again
opl is not available due to revocation. In theoré®vckade this is shown to be true from+ 5 on. The
proof for this has been checked with Isabelle and can be da@deld [32].

Of course, deadlocks are not desirable for an RBAC policy. €aus mention goositive example
described by Drouineaud et al. [34]. In that scenario, a lsafk is controlled by an IT system, which
automatically generates a key, i.e., a secret number. Teiemythen uses a secret sharing scheme to

distribute shares of this key to certain users (assigneldetodies cashier and/or director). The distribution

“We assume here that an operation reveals some information on the object.
SWe assume here that till+ 2 no other user has yet performeg! on o and thatu! has not yet revoked role from 2.

13

process is regulated by SoD (dual control). As can be shows,RBAC policy meets the requirement
to prevent the system from distributing a sufficient numbkesttares for computing the key tosingle
user. So Isabelle helps to verify security requirements.

3) Advantages of VerificationProving properties of RBAC policies in first-order LTL with letorem
prover such as Isabelle usually requires human interveiigee above). On the other hand, model checking
[35] can be automated. But model checkers only examine afgpewdel. If a model checker confirms
that an RBAC policy and some requirement hold for a given RBA@figaration / model, this need not
be true for another RBAC configuration. There may be an RBAC gardtion for which the considered
RBAC policy holds, but the requirement is not fulfilled. In tirst case, a slight change of a single
parameter such as one additional user or object can causeffina. Therefore one might have to run the
model checker for each access demand in order to ensurevail ggquirements by model checking. At
first glance this may seem comfortable, since one would oalyetto find and define the requirements,
and the IT system then could do the rest automatically. Waf@ately, model checking has a high degree
of computational complexity, although it is a decidableljpeon. Hence, the described simple solution for
access control may seem advantageous, but would slow dowhlhaystems to an intolerable extent.

Unlike model checking, deriving properties of RBAC policiedfirst-order LTL with a theorem prover
allows one to give proofs that are independent of the numbersers, objects, operations, etc. due to
guantification. Assuming the authorization constraintsvbhich the considered RBAC policy consists can
easily be implemented, we obtain an IT system that meetsTadketurity demands for access control in
a fast and efficient way. Since a complete automation of eatibn is generally impossible, we intend
to make verification at least more comfortable. Our currestearch focuses on the following topics:

. ldentifying important authorization constraints or cormddions of authorization constraints that may

serve as building blocks for relevant RBAC policies in areashsas banking via case studies and
proving important properties of the discovered constsaortcombinations of constraints. The found

theorems could then help policy designers who use some aldkeribed elements for building an

14

RBAC policy and thus save some effort. Indeed, these desigrarld simply refer to the adequate
results without bothering about the proofs.

« Building a library containing the found theorems and prods, that the proofs and theorems,
respectively, could be reused for further proofs. For edampe could build libraries for delegation,
SoD, context constraints, and workflow constraints.

« Investigating the existence of decidable fragments of-@irder LTL that may be well-suited for the

verification of RBAC policies.

V. PRACTICAL SPECIFICATION AND VALIDATION OF RBAC PoOLICIES WITHUML AND OCL

Having presented the formal specification and verificatibiRBAC policies, we now turn to a more

light-weight specification and validation approach baspdnuUML and OCL.

A. Specification of RBAC Policies in UML and OCL

First, we briefly explain the basic elements of UML and OCL anere¢after we specify several types
of authorization constraints in OCL.

1) UML and OCL: UML [36] is a general-purpose modeling language in which vea specify,
visualize, and document the components of software systdnesiptures decisions and understanding
about systems that must be constructed. UML has become dasthmodeling language in the field of
software engineering. UML permits to describe static, fiomal, and dynamic models of software systems.
In this paper, we concentrate on the static UML models. Aistaiodel provides a structural view of
information in a system. Classes are defined in terms of tltigiibates and relationships. The relationships
include specifically associations between classes. In Eighe static UML model for RBAC consisting
of the RBAC classes and associations is depicted (UML claagrain). The classes and associations
correspond to the RBAC sets and relations defined in Sectiof further diagram type relevant to our

work is the object diagram. Here, objects are instancesasfsels and links are instances of associations.

15

) Activates
Session * (roles)

name: String
RH

*

-
Establishes
(user)

1 * * *

uA b

User % Role * | % Permission

name: String name: String name: String

Fig. 2. Class Model for RBAC-Entity Classes.

An object diagram then provides a snapshot of a system attecydar point of time showing objects,
their attribute values, and links connecting the objec.[3

OCL [15] is a declarative language that describes conssraintobject-oriented models. A constraint
is a restriction on one or more values of an object-orientedeh Each OCL expression is written in the
context of a specific class. In an OCL expression, the resemzed sel f is used to refer to a contextual
instance. The type of the context instance of an OCL expnegsiavritten with thecontext keyword,
followed by the name of the type. The labelv: declares the constraint to be an invariant. Invariants
are conditions that must be true during the lifetime of a esysfor all instances of a given type. The

following line shows an example of an OCL invariant descigbarole with at most one user:

context Rol e inv: sel f.user->size()<2

sel f refers to an instance @bl e. Thensel f. user is a set ofuser objects that is selected by navigating
from objects of classol e t0 User Objects through an association. The' ‘stands for a navigation. A
property of a set is accessed by an arrow”‘followed by the name of the property. A property of the
set of users is expressed using thee operation in this example.

The following shows another example describing that a uaerbe assigned to a role only if she is

already member of1 (prerequisite role constraint introduced by Sandhu et&)%;[

context User inv: self.role_->includes(’r2) implies self.role_->includes('rl")

®The word “role” is a keyword in the USE specification format, which is introet later. In order to distinguish the USE keyword from
the word “role” in the sense of RBAC, we append the underscore fomtle&ning of the word “role”.

16

The expressioRel f.rol e->i ncl udes(’ r2') means that2 is a member of the set of roles the user is
assigned to. Thenpl i es connector is similar to logical implication. Furthermo@CL has several built-in
operations that can iterate over the members of a colle¢tety bag, sequence) suchfasal |, exists
iterate, andany (cf. [15]). These operations are used throughout the retiteopaper.

2) Specification of Authorization Constraints in OCl the section before, we have already specified
the prerequisite roles constraint in OCL. Subsequently, we tyvo further examples that demonstrate
how to use OCL to specify authorization constraints. The sg@@xample shows that even more complex
authorization constraints can be formulated in OCL. In faet, will even prove in Section VI-A that
OCL is at least as powerful as the authorization constraiatifipation language RCL 2000 [6]. As a
consequence, our specification and validation approactepted below can deal with all authorization
constraints formulated in RCL 2000.

Example 1: Simple Static SoD (SSoD)

The first example concerns an SoD constraint. Consider twlictimg roles such as cashier and cashier
supervisor. Mutual exclusion in terms of UA specifies thaé amdividual cannot have both roles. This
constraint on UA can be specified using the OCL expression |asvis:

context User inv SSoD:

let CR Set ={{cashi er, cashi er_supervisor},{r1, r2},...}
in CR->forAll (cr|cr->intersection(self.role_)->size()<2)

This formulation of SSoD is based upon the SSoD specificagivan by Ahn [6]. Technicallycr
denotes a set which consists of conflicting role sets.
Example 2: Static SoD - Conflict Users
Even more complex authorization constraints can be fortedlan OCL. One example of such a constraint
is SSoD-CU identified by Ahn [6]. SSoD-CU (Static SoD - Conflicteldl means that two or more
colluding users cannot be assigned to conflicting roles.eikample, it might be the company policy that

members of the same family cannot be assigned to the rolésecamnd cashier supervisor. SSoD-CU

"For the sake of simplicity, we have left out here the part for the definitionle instances such asashi er andcashi er _super vi sor
with the help of OCL'sany operation, e.g¢ashi er: Rol e=Rol e. al | I nst ances- >any(nane=" cashi er’). Similar remarks hold
for the subsequent OCL specifications.

17

can now be expressed in OCL in the following way:

context User inv SSoD- CU:
let
CU: Set (Set (User)) =Set {Set {Frank, Joe}, Set {Sue, Lars}},
CR: Set (Set (Rol e)) =Set {Set {cashi er, cashi er _supervisor},...}
in
CR->forAll (cr|cr->intersection(self.role_)->size()<2)
and
CU->forAl | (cul
CR->forAll (cr|cr->iterate(r:Role; result:Set(User)=Set {}|
result->union(r.user))->intersection(cu)->size()<2))

SSoD-CU is a composite constraint consisting of two part§%oD part and an additional part concerning
the conflicting users. The SSoD part is required becausevaiteeobviously the whole constraint would
not be useful. Theterate operation iterates over all rolesbelonging to a set of conflicting roles and
collects all users of these roles: has the same meaning as in Example 1 wheoeas a set consisting

of all conflicting user sets.

B. Policy Validation with USE

OCL is a light-weight formalism, which can help in specifyiRBAC policies. We now demonstrate
how the USE tool [10] is employed for the validation of RBAC ipa@s formulated in UML/OCL. Before
describing the validation process in more detail, we firgil@r the functionality of USE.

1) The USE tool:USE allows the software modeler to validate UML and OCL dggiams and is the
only OCL tool allowing interactive monitoring of OCL invaritsnand the automatic generation of system
states. In particular, we use the term “system state” in dtlewing sense:

Definition 4: A system state®r snapshotconsists of the current objects and links given by a UML
object diagram (cf. Section IV-A.1). A system state mustadito a UML model, i.e., for each object a
class and for each link an association must exist in the spording class diagram. Aon-empty system
stateat least contains one object.

The central idea of the USE tool is to check for software duairiteria like correct functionality of
UML descriptions already in the design level in an implenaioh-independent manner. This approach

takes advantage of descriptive design level specificabygrexpressing properties concisely and in a more

18

abstract way. Such properties are given by OCL invariantd, these are checked by the USE system
against the generated snapshots. These abstract desfjtekeg are expected to be also used later in the
implementation phase.

The USE tool expects a textual description of a UML model aaddCL constraints as an input (for
an example of such a description refer to Fig. 4). After symtiaecks, the model can be displayed by the
graphical user interface provided by USE. In particularB8akes available a project browser which
displays all the classes, associations, and invarianteeottirrent model.

Fig. 5 shows a USE screen shot with an example, which is discukter in Section IV-B.2. On the
left, we see the project browser displaying the classegcadons, and invariants. In a detail window
below, a selected constraint is pictured. Next to the ptdpeowser, we see an object diagram with the
current snapshot. The evaluation of the invariants in thiigesn state is pictured in the class invariant
window to the right of the object diagram window. The invatiavindow gives the developer feedback
about the validity of the invariants.

The USE tool can now be employed in various ways in the cora&X@BAC policies (cf. Fig. 3).
Specifically, it can be used for the specification (cf. Figadll for the validation of RBAC policies in the
design phase. Validation is the topic of the following sectiFurthermore, an authorization engine can be
built by using the Java API provided by the USE system. Thidissussed in more detail in Section V.
The last use case is testing concrete RBAC configurations aifter the deployment of the policy. This
aspect is more thoroughly discussed elsewhere [37] andtisopa of this paper.

At this point, we differentiate between administrators gdicy designers. The latter are responsible
for designing policies whereas the former deploy polic& make this distinction because a policy
designer should possess significant knowledge about aasomal rules. In addition, we expect that
policy designers are more familiar with modeling languaged validation tools than administrators.

2) Policy Validation: As indicated above, the USE approach to validation is to ggaesystem states

and check these states against the specified constraintsir loase, the system states are certain RBAC

19

USE RBAC Validation System

specify RBAC polic!
detect conflicting
_- constraints
_ -~ <<extend>>
\ P -
Policy Designer validate RBAC policy

<~

T~ _<<extend>>

~ detect missing
constraints
enforce RBAC policy)
Administrator test RBAC configuratiol

Fig. 3. Use cases for the RBAC USE system.

configurations. The RBAC configurations can be created autoatist by running a script with the state
manipulation commands, which are supported by the USE twoglternatively, with a graphical user
interface provided by the USE system [10].

The result of the validation can lead to different consegasnFirstly, we may have reasonable system
states that do not satisfy one or more authorization cansraf the policy. This may indicate that
the constraints are too strong. Secondly, the RBAC policy albyv undesirable system states, i.e., the
constraints are too weak. In the first case, we may have comfliconstraints, whereas in the second
case constraints are missing. Subsequently, both sitigatice discussed more thoroughly. However, we
first describe an RBAC policy, which will serve as an examplécgahroughout the rest of this section.

Example RBAC PolicyThe USE specification of the example RBAC policy is depicteéFio 4. It
consists of the RBAC-related class and association defisiteod a set of authorization constraints (cf.
Definition 1). The constraints are formulated as OCL invdsaim particular, we define two constraints,
one is a prerequisite role constraint between two relesind r2, the other is an SSoD-CU constraint.
However, the static SoD part of the SSoD-CU constraint giveBection IV-A.2 is left out. The reason

for this becomes clear when we describe our approach to tieetam of missing constraints. Moreover,

20

model RBAC
--classes

class Rol e
attributes
nane: String
end

class User
attributes
nane: String
end

class Per mi ssi on
attributes

op: Operation

o: Obj ect

end

class Obj ect
attributes
nane: String
end

class Qperati on
attributes

nane: String
end

class Sessi on
attributes
name: String
end

- associ ations

association PA between

Perm ssion[*] role pernission
Rol e[*] role rol e_

end

association est abl i shes between
User[1] role user

Session[*] role session

end

association activates between
Session[*] role session

Rol e[*] role rol e_

end

association RH between
Rol e[*] role seni or
Rol e[*] role j uni or
end

constraints

context User inv PrerequisiteRole:
sel f.rol e->incl udes(r2)
implies sel f.rol e_->i ncl udes(r1)

context Rol e inv SSoD- CU:

let

CU: Set (Set (User))=Set {{ul, u2, u3},
{u4,u5}}

in

let

CR: Set (Set (Rol e))=Set {Set {r1,r2},...}

in

CU->forAll (cu|

CR->forAll (cr|cr->iterate(r:Role;

resul t: Set (User) =oclEmpty(Set (User))|

resul t->union(r.user))->
intersection(cu)->size()<=1))

association UA between
User[*] role user
Rol e[*] role rol e_
end

Fig. 4. USE specification of an RBAC policy.

our example is rather simple for didactic reasons. One shioear in mind that in reality RBAC policies
may be considerably more complex, consisting of differend& of authorization constraints such as
various SoD properties, context constraints, and delegatiles. In fact, we also experimented with more
complex policies, which contain complex constraints suglolgject-based static SoD.

Conflicting Constraints:USE may help the policy designer find conflicting constraigsswill be
demonstrated by means of the aforementioned example. ficydar, let us assume that the policy designer
has forgotten that she had once defined the prerequisitesakraint betweenl andr2. Later, the policy
designer decided to defimé andr2 mutually exclusive due to a change of organizational rufesadds an
SSoD constraint betweeni andr2 to the policy. Obviously, the constraints cannot be satisfiethe same
time and hence the composite constraint is too strong. THe 4¢8een shot in Fig. 5 displays the situation
after usern:, has been assigned t@. Clearly, the policy designer cannot assigto roler1; otherwise the
new SSoD constraint would be violated. However, now the traimg User : : Pr er equi si t eRol e IS evaluated

to false (cf. “Class invariants” view in Fig. 5), and hence tuerent RBAC configuration is not a correct

21

system state according to the given policy specificatidhpalgh the configuration seems to be reasonable.

£ uSE: conflicting.use =10l x|
File Edt State View Help
BRI OB RO OEFEIEEIE

_ARBAC i -

D 4 Chasses il S Ohject diagram
® Object
& Operstion
Permizsion
Role
& Session i
® User 3 r1:Role

(] Aszociations i

B 4 Invariants
& User:PrerequisteRole
User:S5oD

(] Pre-Postconditions

constraint faied

Bl = Evaluate OCL expression x|

Erter QCL expression:
ser allnstances->seleci(uju role_-»select(r2lr2 name="r2)->size==1 and
wrole_=sslect(r|r name="r1"->size=1)

context Userinv PrerequisiteR:
letr! :Role=
Role.allinstances-=anyi$elem2
Role | ($elem2.name = ¥ in let

-
g
I et{@u]}: SetiUzer) Clear Result

.I Close ‘

Fig. 5. USE screen shot: two conflicting constraints.

Admittedly, the mere information that a constraint is famsight often not help to find the real reason
for the problem and to resolve the conflict. Additional imfa@tion is required which objects and links of
the current state violate the constraint. For such a purpgbsepolicy designer can debug the constraints
that are not satisfied by the current system state with thaltate OCL expression” dialog made available
by USE. For example, in Fig. 5 the result of the query “all gs@ho are assigned t® but not tor1”
applied to the given RBAC configuration is shown. Here, one leann thatu is not assigned tol,
although this is required by the prerequisite role constrdf one now conversely tries to assigro r1,
the SSoD constraint fails, and as a consequence one caruderttiat the constraints are contradictory.

A policy designer can now employ USE in a similar way for othenstraint types such as cardinality
constraints or other SoD properties. In particular, thiprapch is helpful if a new constraint is added
to a complex policy, in order to check if it is in conflict witlhé composition of the already defined
constraints, i.e., if at least one of these constraints atueted to false.

Nevertheless, USE may find conflicts only in certain cased,thare is no guarantee that all conflicts
can be detected. Had not been assigned t@, the conflict would not have been detected. In order to
eliminate contradictory constraints to a larger extent,aerformal approach such as theorem proving is
required. On the other hand, the USE approach is only meantgmve the design of an RBAC policy,

22

and does not aim at a formally proven design. Given the camdihat there is often a lack of tools
for policy analysis, the USE approach can be considered astapfiactical step towards more reliable
security mechanisms. The formal verification as describbe8eaction 111-B and the validation with USE
can hence be regarded as complementary.

However, various heuristics can be applied which may stlieanthe conflict detection process with
USE. One approach is sketched in the following. This appgraacbased upon an automatic snapshot
generator which is made available by the USE system [38k $hapshot generator allows one to define
certain properties on the snapshots and to automaticalgtaect sequences of snapshots, apart from
manually giving commands or applying the graphical usesrfate provided by USE. For this purpose, a
language called ASSL (A Snapshot Sequence Language) hasrismluced such that snapshots can be
constructed in a more declarative way. In addition, ASSL &dsrmal semantics, which has been given
by Gogolla et al. [38]. Due to the fact that loop constructd anbacktracking mechanism are provided
by ASSL sequences of snapshots can be generated. Moremvaiants can be dynamically loaded at
runtime, either in order to further restrict the snapshotdé constructed (controlling invariants) or to
certify given properties. This way, we can rule out trivialapshots such as the empty snapshot, which
obviously satisfies the conflicting constraints mentionbdva and does not reveal the conflict.

One remark should be made on the appropriate number of RBAGeeks (such as users, roles, user
assignment) of which a snapshot should consist. As a rulénwhb, the snapshots should contain the
elements occurring in the RBAC policy under investigatiors & consequence, the number of RBAC
elements is roughly the sum of the number of elements thatrdocthe RBAC policy.

The following general recipe can help in detecting confligtconstraints by means of the automatic

shapshot generator (assuming that a new constraint is addedet of non-conflicting constraints):

« specify the set of non-conflicting constraints in a file in USEMat,
. define ASSL procedures for generating appropriate entiéigsbutes and links between the entities

(e.g., users, roles, UA and PA relations) and then call tipeseedures,

23

« in certain cases, load further controlling invariants dyically,
« dynamically load the new constraint,
. if there do not exist any snapshots which satisfy all the rairgs at the same time, there may be

conflicting constraints and a further investigation of theA&Bpolicy is required.

Note that the aforementioned steps will not necessarilyalbgsxl out in the given order. ASSL procedure
calls are usually interleaved with dynamically loadingtifigr constraints (such as controlling invariants)
in order to produce the appropriate snapshot sequences.

In the following, we briefly describe by means of the runnimgraple how to use the snapshot generator
for the detection of conflicting constraints. In Fig. 6, atpawl file can be found, which contains the
central steps for the generation of the snapshot sequehgesim is to produce snapshots that reveal the
aforementioned conflict. First, the RBAC policy in USE fornmioaded, containing only a prerequisite
role constraint and the RBAC model. Thereafter, appropmat@bers of users and roles are generated,
including the roles1 andr2. In order to give an impression how ASSL procedures look like procedure
gener at eRol es IS depicted in Fig. 6. This procedure creates roles and chedthin a for-loop that no
duplicates are generated.

In the next step, the controlling OCL invariard! e: : i nv1 is loaded, which guarantees that every user
is assigned to at least one role and conversely every rolathlaast one user. This prevents the creation
of trivial snapshots. In the main step, then the new conmg{r&SoD, is dynamically added to the policy
and six UA links are generated. As a result, we obtain no snapshot vdatkfies all the so far defined
conditions. This may indicate that there are conflictingstrints, and we can use the query facilities
provided by the USE system for a further investigation.

The snapshot generator can also be applied to detect chiamenfiicting constraints, consisting of
more than two constraints. Here, we can remove one conséfiér the other from the USE specification
until we obtain a snapshot. The constraint removed in thieska® may belong to a conflicting chain. If

we remove the constraints in another order, we may identtgroconstraints of the conflicting chain.

24

use> open Policy. use

use> gen start conflictl.assl generateUsers(3)
use> gen start conflictl.assl generateRol es(4)
use> gen | oad Controllinglnv2.invs

Added invari ants:

Role::invl

use> gen | oad SSoD.invs

Added invari ants:

User: : SSoD

use> gen start conflictl.assl generateUA(6)
use> gen result

Checked 4096 snapshots.

Result: No valid state found.

procedure generat eRol es(count: | nt eger)
var theRol es: Sequence(Rol e) ;
begi n
theRol es: =Creat eN(Rol e, [count]);
for r:Role in [theRol es]
begi n
[r].name: =Any([Sequence{’r1','r2’,'r3",'r4 }->reject(nl|Role.alllnstances. nane->exists(n2|nl=n2))]);
end;
end;

Fig. 6. ASSL commands and an ASSL procedure.

Detection of Missing ConstraintsThe second consequence of constraint validation may be that

a policy permits undesirable system states, i.e., the aaimn constraints are too weak. Once again
consider the example policy from Fig. 4. If we create a sysséte, in whichu is assigned to the roled
andr2, all constraints (in our case specifically the conflict usat pf the SSoD-CU constraint) defined so
far are evaluated to true. Hence, the policy seems supposetie correct although the policy permits a
user being assigned to the mutually exclusive releandr2. Obviously, the policy designer has forgotten
to define the SSoD part of the SSoD-CU constraint. Therefoferther SSoD constraint must be added
to the policy in order to exclude the undesirable state anobtain a more restrictive RBAC policy.

In general, we can create snapshots wiiieliberately violataequirements that the RBAC policy under
investigation must satisfy. If still all authorization iraints defined so far are fulfilled, then one or more
constraints are missing. Moreover, we can also use therataroned automatic snapshot generator for
detecting missing constraints. This can be done the follgwyay: First, the requirement to be investigated
is formulated as an OCL invariant and is at the same time ltdgioggated. For this purpose, a special
negate flag can be set with the help of the USE system [38]. Bynsehthe snapshot generator we can
then try to create sequences of system states which sabtsfiythhe added (negated) requirement and the

already defined constraints. If we find such a system statepomore constraints are missing.

25

V. AUTHORIZATION ENGINE

In this section, we demonstrate how an RBAC authorizationinengan be built based upon the
functionality of the USE system. This tool helps to enforewesal kinds of authorization constraints
like those listed in [6]. A more detailed description of theterization engine can be found in [39].

More explicitly speaking, the authorization engine can beduin principle to specify and enforce all
authorization constraints expressible in OCL. As a consacgielypes of authorization constraints beyond
those enumerated by Ahn [6] can also be supported. In th@rfwlh, the functionality of the authorization

engine will be presented. Thereafter, we describe moreotighly how this tool has been implemented.

A. Functionality of the Authorization Engine

The prototype of the authorization engine currently sufgparnost of the functionality demanded by
the RBAC standard [7]. This means that we have implementedrésinative functions, system functions,
and review functionsAdministrative functionare required for the creation and maintenance of the RBAC
element sets and relations (e.§4, PA, RH). For exampleAddUserand AssignUselbelong to this class
of functions.System functionare required by the RBAC authorization engine for sessionag@ment and
making access control decisions. Thus, examplesCagateSessioand CheckAccessReview functions
can be employed for inspecting the results of the actionatedeby administrative functions. Typical
examples of review functions arssignedUserand UserPermissions

Beyond this basic functionality, the RBAC authorization ewgiprovides mechanisms for defining
and enforcing role hierarchies and authorization congsasuch as various SoD properties, cardinality
constraints, prerequisite roles, and context constraints. location. In addition, the tool can be quite
easily extended to support other authorization conssairitis way, it is flexible enough to enforce various
RBAC policies, depending on the internal rules of the orgation in question.

To give a better overview, a screen shot of the current prpeobf the authorization engine is shown in

Fig. 7. In particular, authorization constraints can beraefiwith the help of dialog windows such as the

26

£ RBAC Administration Tool ~18ix]
ive functions i phical view Add constraints Options.

[s=U|s=U/U=R[U*R|S=R/S*R R>R|R*R[P| R R>P R*P|
T

Selectuser Select rale

authar

Reset Close
Create session

T

loper:
(Operation ASSIGN USER: OK

Ready.

Fig. 7. The authorization engine.

window on the right-hand side for a static SoD constrainte Thrrent RBAC configuration is visualized
by the large window in the middle.

The authorization engine can be employed both at admitimtraand runtime in order to enforce the
aforementioned authorization constraints. For the eefoent of static constraints, an administration tool
similar to that depicted in Fig. 7 can be used by a securitg&fiin case of simple dynamic SoD [18],
the session mechanism provided by the considered applicaan be used: Whenever an application
session is generated, a corresponding RBAC session is @rgatiee authorization engine. Similarly, the
fact that roles are activated or deactivated can be commteuido the authorization engine. The engine
then makes the access decision based upon the applicationént security state (cf. Section V-B.4) and
hence the authorization engine can be regarded as a polaigiae point [40]. One can even integrate
the authorization engine with Web services in order to exdfahe RBAC policies on the middleware and

not on the application level. Then the Web service sessionbeamapped to an RBAC session.

B. Implementation Aspects

The authorization engine has been implemented by usingaABI made available by the USE tool.

This way, the functionality of USE is hidden from the admirasor/security officer by the graphical user

27

interface of the authorization engine. Now our implemeatatbased upon the USE API, will be described
in more detail. In particular, we explain how the administe functions, system functions, and review
functions have been realized. Thereafter, the constréi@tiang mechanism is sketched.

1) Administrative Functions:The core operations provided by the authorization engieeaaminis-
trative functions. An administrator can change an RBAC caméijon with these functions. We have
implemented administrative functions by the state maaifpoth commands of the USE system [10]. To
demonstrate this, we subsequently consider the operatisiyn User which assigns a user to a role.
AssignUser can be expressed by the state manipulation commam@rt (u,r) into UA (with a useru
and a roler). This command can then be called by employing the commaedution facility provided by
the USE API calletxecut ecrd() . The other administrative functions have been realizedsimalar way.
Clearly, in order to remain in a state consistent with theentrRBAC policy, all (relevant) authorization
constraints must also be checked. This will be explained anendetail below.

2) Review Functions:RBAC review functions are demanded by the RBAC standard and hiso
been conveniently implemented employing the USE functipndor this purpose, we have employed
the query facilities of USE (cf. Section 1V-B.2). In partiem| the USE API provides the methedal (),
which evaluates a query consisting of an OCL expression irctleent system state. For example, the
following OCL query expresses thdserPermissiongunction, which returns all permissions of a user:

User Per mi ssi ons(u: User): Set (Per mi ssi on) =
u.role_->terate(r:Role; result: Set(Perm ssion)={}| result->union(r.permn ssion))

This query has been specified in a USE file (such as that pegsant~ig. 4), which is read when the
authorization engine is started. Then thal () method of the expression evaluator provided by the USE
system is invoked with the two parameters “UserPermissiand the user “u”, whose set of permissions
is to be determined. The other review functions have beeteimgnted similarly.

3) System FunctionsSome RBAC system functions such @heckAccesfave been realized with
USE similarly to the review functions. As in the case of rewiinctions, theCheckAccesfunction has

been specified in the USE file and is then executed by the atorgomedeval () method. In contrast, the

28

session-related system functions liReeateSessiomust be realized in the same way as the administrative
functions by means of the state manipulation commands.

4) Constraint Checking:The basic idea of the constraint checking mechanism is dswwl The
authorization engine checks if the relevant authorizatmmstraints are still satisfieafter an administrative
or system function such &reateSessiohas been carried out. This is done by theck() method made
available by the USE API. If any constraint is violated, tlestladministrative or system function is
automatically revoked with the help of amdo() method. As a consequence, the tool produces only

RBAC configurations that are consistent with the specified RRpaGcy.

VI. DISCcUSSION ANDFUTURE WORK

There are several directions for further research. We maliscuss two extensions of our approach that
seem to be worthwhile pursuing. First, LTL and OCL are onlyegahkpurpose specification formalisms.
However, we have not a formalism at hand which is specitijored towardsthe need of a policy
designer. For this reason, we discuss here how RCL 2000 spéicifis can be translated into OCL
statements. The policy designer can then decide to use OCQhraR@L 2000 for the specification of the
RBAC policies. In the latter case, the policy designer cam temploy the USE tool for validation and
the authorization engine after the translation process.

The second extension of our work concerns history-basesdti@nts: Owing to the fact that USE can
only check the current snapshot of a system, history-basgub@azation constraints cannot be dealt with.
For this purpose, a temporal extension of OCL is needed. Irfath@ving, we discuss both extensions

in more detail. We also compare our approach with other waorks section on related work.

A. Relationship between RCL 2000 and OCL

Given the expressive power of OCL, specification languagesatdhorization constraints such as
RCL 2000 [6] can be translated into OCL. This gives the policyigtex the opportunity to specify
authorization constraints in a security language and theralidate and enforce the constraints with the

29

help of USE. Subsequently, we show that RCL 2000 expressiores dqgpropriate counterparts in OCL,
i.e., we demonstrate that the syntactical constructs of R0 2@n be translated into OCL expressions.
The reader may be referred to Ahn’s thesis [6] in order to iabtaore information on the details of
RCL 2000’s syntax.

RCL 2000 sets and relationsThe basic RBAC sets such &5 R and P are modeled by UML
classes. The relations such &sl, PA, and RH can be represented by the UML associations presented
in Fig. 4. In addition, the set§'U, C'P, andCR are expressed by local variables imea statement (cf.
Section IV-A.2). Although OCL only supports finite sets, tlEs10 problem here because RCL 2000 itself
only supports finite sets.

Operators: Operators like=-, A, < or > have their obvious counterparts in OCL, namehy! i es,
and, < or >. | X| returns the cardinality of a seét and can be expressed by OCEkixze operator.

RBAC functions:RCL 2000 supports various RBAC functions. We now demonstratenbgns of
several examples that the RBAC functions can be modeled in MCie. to space limitations we do
not cover every RBAC function here. One example is ther function, which returns the unique
user of a session. This function can be trivially represkriig sel f. user if the context of the OCL
expression isessi on. The overloadedoles function returns all the roles belonging to a user, sessiod,
permission, respectively. Moreovetles* is a variant ofroles which additionally takes the role hierarchy
into consideration. For examplegles™(u) = {r € R|3rl e R. r <rlA(u,rl) € UA} returns all the
roles assigned to userand all the roles junior to themoles® can be formulated in OCL as follows:

rol es.star(u: User): Set(Role)=
Rol e. al | I nst ances->sel ect (r|r.seni or->exists(rl|u.role->includes(rl))).

Note thatr. seni or by definition already contains all the roles senior tdue to the transitivity oK.
Hence, we need not specify a function which calculates th@éseoles ofr recursively.
Non-deterministic functionsThe central functions of RCL 2000, however, avé (one element)
and AO (all other), which are both non-deterministic functiod#z (X') selects non-deterministically one

element from a seX. Multiple occurrences of the expressi@n® (X) within an RCL 2000 statement

30

return always the same element 8t AO(X) gives then the complemed — {OFE(X)} on any set
X. Hence, we have the equation = {OFE(X)} U AO(X).

The OF function can be expressed by they operation provided by OCL with the condition set to
true, i.e., OE(X) corresponds ta->any(true). AS mentioned above, multiple occurrences of g(X)
expression always yield the same element. This can be cemiBnexpressed by factoring out they
expression in aet expressionAO(X) can then be translated 10 {x- >any(true) }.

For example, consider the following RCL 2000 expression éoimg OF and AO terms:
OE(OE(CR)) € roles(OE(U)) = AO(OE(CR)) Nroles(OE(U)) =

Then the corresponding OCL expression is:

let
CR Set(Set(Role))={...},
cr: Set (Rol €) =CR- >any(true),
r: Rol e=cr->any(true),
u: User =User. al | I nst ances- >any(true)
in
u.rol e-->includes(r) implies((cr-{r})->intersection(u.role.)={})

Having shown that the basic elements of RCL 2000 can be coavest®CL, we now brieflysketch
a translation algorithm: In the first step of this algorithththe AO expressions are eliminated from the
RCL 2000 expression. Then we iteratively translét& terms into OCL expressions, introducing new
local variables in aet construct as explained above. This way, the same occuserfic@FE expressions
within an RCL 2000 expression can be factored out. If we havéedg3E expressions, the translation
will be started from the innermosPE term.

The analysis of the runtime depends on the numbepBfterms. Therefore, this algorithm can translate
an RCL 2000 expression i@(n), supposing that is the number of the differerDE terms. As future
work a compiler could be developed that parses the RCL 2008ns&aits and converts them into OCL

expressions, based upon the aforementioned algorithm.

31

B. History-based constraints

OCL is quite similar to first-order predicate logic. As exmiess of the predicate calculus, OCL
expressions used in invariants are evaluated in a systdm btawever, due to the fact that we consider
here only one snapshot of the system, we have no notion of titeace, authorization constraints that
consider the execution history such as history-based @ctbjased dynamic SoD cannot be expressed.

In the following, we sketch how history-based authorizatmonstraints can be specified in TOCL
(Temporal OCL) [41], an extension of OCL with temporal elenseint particular, temporal operators like
al ways (in the future),sonetime (in the future), andext are available. To demonstrate how history-based
authorization constraints can be formulated in TOCL, we w@liject-based dynamic SoD as an example.
In order to specify object-based dynamic SoD, we use the tbdigate Exec(u, op, obj) introduced in
Section 1lI-A.1. However, due to the fact thétzec is a ternary predicate and OCL does not directly
support ternary associatichsve extend (T)OCL with an additional predicateec to express ternary
associations, as proposed by Gogolla et al. [42]. Then, wairolhe following TOCL specification for
object-based dynamic SoD:
context Cbj ect inv Cbj DSoD:

Operation. alllnstances->forAll (op, opl|
User. al | I nstances->for Al | (u|] (Exec(u, op, sel f) and opl<>op) implies always not Exec(u, opl,self)))

This corresponds to the first-order LTL specification giverSection I11-A.1:

Yu : User; op,opl : Operation; obj : Object.op # opl A Exec(u, op,0bj) = O-FExec(u, opl, obj)

Having a formalism for the specification of history-basedstaaints at hand, the next step would be
to extend USE itself in order to support TOCL. This way, thehattation engine could also enforce
history-based constraints, which are often required incthr@ext of workflows [3].

In this respect, another direction for future work would belevelop a compiler which translates TOCL
specifications into first-order LTL. Then we could utilizal®lle to formally verify properties of the LTL

representation (and indirectly of the TOCL specificationjre RBAC policy in question. To sum up, we

8Strictly speaking, with the help of association classes ternary associatinrsecexpressed in OCL, but this construction is a bit clumsy.

32

RCL 2000 UML/OCL LTL TOCL
Static SoD constraints yes yes yes yes
Simple Dynamic SoD [18] yes yes yes yes
History-based SoD constraints no no yes yes
Workflow constraints no no yes yes
Cardinality constraints yes yes yes yes
Prereq. roles/permissions yes yes yes yes
Context constraints w.r.t. location no yes yes yes
Context constraints w.r.t. time [21 no currently no support currently no support currently no support
Delegation/revocation no yes yes yes
Verification/validation no support validation with USE | formal verification with Isabelle| currently no support
Authorization engine currently no support yes currently no support currently no support
TABLE |

OVERVIEW OF RBAC SPECIFICATION LANGUAGE PROPERTIES

could now enforce dynamic RBAC policies with the enhanced 4$&em and at the same time verify
dynamic RBAC policies by means of Isabelle. This way the gamwéen the (T)OCL and first-order LTL
approach can be filled. As a summary, Tab. | presents the tedgemoperties of the RBAC specification

languages discussed in this paper.

C. Related Work

There are several works on the formal specification of awthtbon constraints such as [21], [6], [8],
[13]. Gligor et al. [13] formalize history via traces of stat but end up with rather complex formulas
explicitly talking about states. In contrast, first-ordérLLallows for an elegant formulation of history-
based SoD constraints.

Joshi et al. define the GTRBAC model which has the notions opteal constraints and events [21].
Joshi et al. explicitly introduce points of time and duratio order to specify temporal contexts whereas
we currently concentrate on history-based and order-b&s&l constraints. Clearly, we can extend our
library of Isabelle theories in order to support GTRBAC andldantroduce predicates for events. This
is needed, for example, if we would like to deal with tempatalegation constraints such as duration

33

constraints on delegation rules. In addition, Shafig etrasgnt a verification framework using Petri nets,
which is based on GTRBAC [43]. Similarly to the validation apgch with USE, the framework can
detect conflicting and missing constraints. In contrash® WSE approach, the verification is tailored to
GTRBAC's event-based model. However, this verification apphocan handle only finite sets of RBAC
entities and has exponential time and space complexityohtrast, we can prove general theorems on
RBAC policies by means of theorem proving with Isabelle, rdigss whether the underlying sets are
infinite or change at runtime.

Often the graph-based approach presented by Koch et al.ig4#entioned in the context of policy
verification. Among other aspects, this approach ensurat dbncrete RBAC configurations remain
consistent w.r.t. a specified RBAC policy when administatRBAC functions (represented as graph
rules) are performed. In this respect, this approach islainw our enforcement mechanism based upon
USE. In fact, one could also build an authorization engingedaupon a graph transformation engine. In
addition, Koch et al. present an approach to the detectiohresolution of conflicting constraint pairs,
similar to the validation with USE. Currently, however, n@ltsupport for the detection of conflicting
constraints seems to exist.

Crampton presents another authorization engine [45]. Heweyith Crampton’s approach, for example,
neither the SSoD-CU constraint nor context constraints @gppated. On the other hand, no history-based
SoD constraints can be currently enforced with the USE agubro

In this paper, we only presented a simple delegation andcagvm scheme. In fact, newer schemes
[28], [46], [29] could also be expressed by means of the LThrapch. For example, Atluri et al. extended
the notion of delegation to allow conditional delegatiomene the delegation conditions can be based on
time, workload and task attributes, specifically focusimgconstraints associated with workflow systems
[28]. In addition, GTRBAC has recently adopted role-basekbgiion notions with hybrid hierarchies

and multiple hierarchy semantics to support fine-grainddgdg¢ion schemes [29].

34

VII. CONCLUSION

In this paper, we presented a methodology for the speciicatierification, and enforcement of RBAC
policies. In particular, we demonstrated that several dypeauthorization constraints can be specified
with the help of the formalisms first-order LTL, OCL and TOCL. ®to the fact that UML/OCL is
quite familiar in industrial environments there is hopett@®&L can be used by policy designers in many
organizations. In addition, we demonstrated that the #ragsrover Isabelle can help in formally verifying
properties of complex dynamic RBAC policies. The validatapproach with the USE system, however,
can be regarded as a first line of defense, which can be useifitbseveral practical needs. First, USE
can be employed to validate authorization constraintss Way, certain conflicts between authorization
constraints and missing constraints can be detected. 8eittnJava API provided by USE can be utilized
to build an authorization engine which helps to enforceassiRBAC policies.

To sum up, both the formal and the practical approach to papecification and verification can be
used in the design phase in order to rule out inconsistemacidsundesirable properties of RBAC policies

early. Last but not least, the approaches can be regardeshgsementary rather than competitive.

REFERENCES

[1] KPMG, “Fraud survey reports 1996-2002,” 2006, KPMG Intgtianal Canada.

[2] EU, “Directive on the protection of individuals with regard to the pregiag of personal data and on the free movement of such data.
Directive 95/46/EC. http://www.privacy.org/pi/intirgs/ec/eudp.html,” 1995.

[3] M. J. Nash and K. R. Poland, “Some conundrums concerningraéipn of duty,” inProc. IEEE Symposium on Research in Security
and Privacy 1990, pp. 201-207.

[4] D. D. Clark and D. R. Wilson, “A comparison of commercial and miljtasomputer security policies,Proc. of the 1987 IEEE
Symposium on Security and Privagp. 184-194, 1987.

[5] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-basedss control models|EEE Computervol. 29, no. 2, pp. 38-47,
Feb. 1996.

[6] G.-J. Ahn, “The RCL 2000 language for specifying role-basetharization constraints,” Ph.D. dissertation, George Mason University
Fairfax, Virginia, 1999.

[7] American National Standards Institute Inc., “Role Based Acces®rGld’ 2004, ANSI-INCITS 359-2004.

[8] T. Jaeger and J. Tidswell, “Practical safety in flexible access abntodels,”ACM TISSECvol. 4, no. 2, pp. 158-190, May 2001.

[9] T. Nipkow, L. Paulson, and M. Wenzelsabelle/HOL — A Proof Assistant for Higher-Order LogicSpringer Verlag, 2002.

[10] M. Richters, “A Precise Approach to Validating UML Models and OCarfStraints,” Ph.D. dissertation, UniveiiBremen, Fachbereich
Mathematik und Informatik, Logos Verlag, Berlin, BISS Monographs, 14, 2002.

[11] R. AndersonSecurity Engineering: A Guide to Building Dependable Distributed Systekvdey, 2001.

[12] R. Goldblatt,Logics of Time and Computation, Second Edition, Revised and ExpaseledCSLI Lecture Notes. CSLI, Stanford,
1992 (first edition 1987), vol. 7, distributed by University of Chicagedat

[13] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo, “On the formal défion of separation-of-duty policies and their composition,”1i698
IEEE Symposium on Security and Privacy (SSP.'98EEE, May 1998, pp. 172-185.

[14] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems, Specificapringer-Verlag, 1992.

[15] J. Warmer and A. Kleppéelhe Object Constraint Language: Getting Your Models Ready for MD¥ddison-Wesley, 2003.

[16] G.-J. Ahn and M. Shin, “Role-Based Authorization Constraintsc8jgation Using Object Constraint Language,’Rmnoc. of the 10th
IEEE International Workshops on Enabling Technologies: Infrastngcfar Collaborative Enterprise IEEE, 2001, pp. 157-162.

[17] 1. Ray, N. Li, R. France, and D.-K. Kim, “Using UML to visualize lesbased access control constraints,’Froc. of the 9th ACM
symposium on Access control models and technologi®€M Press New York, USA, 2004, pp. 115-124.

35

[18] R. Simon and M. Zurko, “Separation of duty in role-based envitents,” in 10th IEEE Computer Security Foundations Workshop
(CSFW '97) June 1997, pp. 183-194.

[19] K. Sohr, M. Drouineaud, and G.-J. Ahn, “Formal SpecificatidrRole-based Security Policies for Clinical Information Systems, Santa
Fe, New Mexico,” inProc. of the 20th ACM Symposium on Applied Comput2ap5.

[20] V. Atluri and J. Warner, “Supporting conditional delegation in seoworkflow management systems.”$RCMAT E. Ferrari and G.-J.
Ahn, Eds., 2005, pp. 49-58.

[21] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized pemal role-based access control mod&EEE Trans. Knowl. Data
Eng, vol. 17, no. 1, pp. 4-23, 2005.

[22] E. Bertino, E. Ferrari, and V. Atluri, “The specification and ecfment of authorization constraints in workflow management systems.”
ACM Trans. Inf. Syst. Secuwol. 2, no. 1, pp. 65-104, 1999.

[23] T. Mossakowski, M. Drouineaud, and K. Sohr, “A temporal-logidension of role-based access control covering dynamic separation
of duties,” inProc. of TIME-ICTL 2003, Cairns, Queensland, Australialy 8-10 2003.

[24] R. Sandhu, “Transaction control expressions for separafiatuties,” Fourth Aerospace Computer Security Applications Conference,
Orlando, pp. 282-286, 1988.

[25] A. Schaad, V. Lotz, and K. Sohr, “A model-checking approsztanalysing organisational controls in a loan origination process,” in
Proc. of the 11th ACM Symposium on Access Control Models and Tege® New York: ACM Press, June 2006.

[26] E. Barka and R. Sandhu, “A role-based delegation model amg sxtensions,” ifProc. of 16th Annual Computer Security Application
ConferenceDec. 11-15 2000, pp. 125-134.

[27] H. M. Gladney, “Access control for large collectiongyCM Trans. on Information Systemsl. 15, no. 2, pp. 154-194, 1997.

[28] V. Atluri and J. Warner, “Supporting conditional delegation in secworkflow management systems,” Rroc. of the 10th ACM
Symposium on Access Control Models and Technolp§ieskholm, Sweden, June 1-3 2005, pp. 49-58.

[29] J. Joshi and E. Bertino, “Fine-grained role-based delegationrésepce of the hybrid role hierarchy,” Proc. of the 11th ACM
Symposium on Access Control Models and Technolpgisse Tahoe, California, USA, June 7-9 2006, pp. 81-90.

[30] L. Zhang, G.-J. Ahn, and B.-T. Chu, “A rule-based framewdor role-based delegation and revocatioACM Transactions on
Information and System Securityol. 6, no. 3, pp. 404-441, Aug. 2003.

[31] A. Hagstbm, S. Jajodia, F. Parisi-Presicce, and D. Wijesekera, “Revocatica<lassification,” in14th IEEE Computer Security
Foundations Workshop (CSFW 'Q1)une 2001, pp. 44-58.

[32] K. Sohr and M. Drouineaud, “Isabelle Theories. http://www.siscuedu/liisp/rbac/Isabelle.zip,” 2005.

[33] A. Turing, “On Computable Numbers with an Application to the Entsaegproblem,”Proceedings of the London Mathematical
Society (2) vol. 42, pp. 230-265, 1936. [Online]. Availableww. abel ar d. or g/ t ur pap2

[34] M. Drouineaud, M. Bortin, P. Torrini, and K. Sohr, “A first stepmards formal verification of security policy properties for RBAC,”
in Proc. of the 4th International Conference on Quality Softw@@04, pp. 60-67.

[35] E. Clarke, O. Grumberg, and A. Pelddpdel Checking Cambridge, Massachusetts: The MIT Press, 1999.

[36] J. Rumbaugh, I. Jacobson, and G. Boothe Unified Modeling Language Reference Manual, Second Edg@anObject Technology
Series. Reading, Mass.: Addison Wesley Longman, 2004.

[37] K. Sohr, G.-J. Ahn, M. Gogolla, and L. Migge, “Specification avalidation of authorisation constraints with UML and OCL,” in
Proc. of the 10th European Symposium on Research in Computeritge2005.

[38] M. Gogolla, J. Bohling, and M. Richters, “Validation of UML and OCLadels by Automatic Snapshot Generation,Hroc. 6th Int.
Conf. Unified Modeling Language (UML'20Q3) Springer, Berlin, LNCS 2863, 2003, pp. 265-279.

[39] K. Sohr, G.-J. Ahn, and L. Migge, “Articulating and enforcingtlaarisation policies with UML and OCL,” ifProc. of the ACM ICSE
Workshop on Software Engineering for Secure Systems (SES30bpuis, MO, 15-16 May 2005.

[40] OASIS, “eXtensible Access Control Markup Language (XACML)Mersion 2.0,” 2005. [Online]. Available:
http://docs. oasi s- open. org/ xacm /2. 0/ access_control - xacm - 2. 0- cor e- spec- 0s. pdf

[41] P. Ziemann and M. Gogolla, “An OCL Extension for Formulating Temgb Constraints,” Universitt Bremen, Res. Report 1/03, 2003.

[42] M. Gogolla and M. Richters, “Transformation Rules for UML Classad@ams,” in Proc. 1st Int. Workshop Unified Modeling
Language (UML'98) Springer, Berlin, LNCS 1618, 1999, pp. 92-106.

[43] B. Shafig, A. Masood, J. Joshi, and A. Ghafoor, “A role-lthaecess control policy verification framework for real-time systerims,”
Proc. of IEEE Workshop on Object-oriented Real-time Dataha2@85, pp. 13-20.

[44] M. Koch, L. Mancini, and F. Parisi-Presicce, “Graph-baseecgjration of access control policieslournal of Computer and System
Sciencesvol. 71, no. 3, pp. 1-33, 2005.

[45] J. Crampton, “Specifying and enforcing constraints in role-baseess control,” ifProc. of the 8th ACM Symposium on Access Control
Models and Technologies New York: ACM Press, June 2-3 2003, pp. 43-50.

[46] J. Wainer and A. Kumar, “A fine-grained, controllable, useus®er delegation method in RBAC,” ifroc. of the 10th ACM Symposium
on Access Control Models and Technologigtockholm, Sweden, June 1-3 2005, pp. 59-66.

36

