
1

Analyzing and Managing Role-Based Access Control Policies

Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn, and Martin Gogolla

Abstract

Today more and more security-relevant data is stored on computer systems; security-critical business processes
are mapped to their digital counterparts. This situation applies to various domains such as health care industry,
digital government, and financial service institutes requiring that different security requirements must be fulfilled.
Authorization constraints can help the policy architect design and express higher-level organizational rules. Although
the importance of authorization constraints has been addressed in the literature, there does not exist a systematic
way to verify and validate authorization constraints. In this paper, we specify both non-temporal and history-based
authorization constraints in the Object Constraint Language (OCL) and first-order linear temporal logic (LTL).
Based upon these specifications, we attempt to formally verify role-based access control policies with the help of
a theorem prover and to validate policies with the USE system, a validation tool for OCL constraints. We also
describe an authorization engine, which supports the enforcement of authorization constraints.

Index Terms

Role-based access control policy, authorization constraints, linear temporal logic, Object Constraint Language.

I. I NTRODUCTION

Information technology pervades more and more our daily life. This applies to different domains such as

health care, e-government, and banking. New technologies,however, go along with new risks, which must

be systematically dealt with. Specifically, the information contained in the IT systems can be regarded as

a key resource of an organization and must therefore be protected adequately. Due to the fact that insider

attacks are a major threat for large organizations [1] it is mandatory to establish adequate mechanisms

that enforce the access control requirements demanded by the rules and laws relevant to an organization.

For example, in Europe strong privacy requirements such as those formulated in the Directive 95/46/EC

[2] exist. This directive among other areas applies to hospitals, and hence specific organizational rules

must be implemented in order to prevent privacy violations.A typical organizational rule in a hospital

might be “a nurse can only see the records of all patients who have been on her ward within the previous

90 days”. Another rule might state that a physician can only delegate the permission to read a patient

record to another physician who has at the same time activated a specialist role.

Dr. Sohr is with the Universität Bremen, Germany.
Mr. Drouineaud is with the Universität Bremen, Germany.
Prof. Dr. Gail-Joon Ahn is with the University of North Carolina at Charlotte, USA.
Prof. Dr. Gogolla is with the Universität Bremen, Germany.



In the banking domain, other protection goals such as data integrity and accountability are more

important. In particular, separation of duty policies (SoD) [3], [4] must be enforced. SoD is a well-known

principle that prevents fraud and error by requiring that atleast two persons are required to complete a

task. A common example of such an SoD rule is “a clerk must not prepare and approve a check”.

As pointed out by Sandhu et al. [5], one of the main advantagesof role-based access control (RBAC)

is that such higher-level organizational rules can be implemented in a natural way. Specifically, advanced

RBAC concepts like role-based authorization constraints1 are an important means for laying out higher-

level organizational rules [6]. Due to the fact that RBAC has also become an accepted standard for access

control, we consider RBAC as the basic access control model within this paper.

Usually, the control and protection goals of an organization can only be expressed by a set of rules

rather than a single rule. Hence, we define an RBAC policy as hierarchical RBAC in the sense of the

RBAC standard [7] plus theset of authorization constraintsdefined for the organization in question.

Unfortunately, authorization constraints can increase the complexity of RBAC itself. Thus, it generally

becomes more difficult to make sure that certain required properties hold in a given RBAC policy or that

the policy is free of contradictions. Through the combination of different types of authorization constraints

undesirable properties may arise. For example, assume thatwe have defined the SoD rule mentioned above.

Let us further assume that a specific user has the permission for the approval of the check and that she

can delegate this permission to other users. If the delegatee already has the permission to prepare the

check in question, then either the SoD property is violated or the delegation cannot be executed.

New technologies such as Web services increase the complexity and the dependencies of IT systems

w.r.t. access control. For this reason, it is an important task to find a suitable methodology to express and

verify assertions on organization-wide RBAC policies. Otherwise, unauthorized access and consequently

fraud may be expected. Although there are several works on the specification of authorization constraints,

e.g., [6], [8], there is a lack of an appropriate tool supportfor the analysis/verification of RBAC policies.

1In the following, we use the term “authorization constraint” instead of “role-based authorization constraint” for the sake of simplicity.

2



The work presented in this paper can be regarded as a first stepto help security officers in the definition

process of consistent (i.e, free of contradictions) and correct RBAC policies. In addition, even if we have

defined correct RBAC policies, we also wish to enforce these policies automatically by the IT system.

Hence, tool support for the enforcement of RBAC policies is also desirable.

In the following, we briefly discuss two different approaches to the policy specification and verification.

The first approach is more formal and uses a theorem prover [9]for the verification. In contrast, the

second one is more practical and is based upon a validation tool for software models [10]. In any case,

the verification should be carried out in the design process of the policy and not after the deployment. This

way, only consistent RBAC policies are implemented, and policies with undesirable properties are ruled

out early. Interestingly, the validation tool can also be employed to implement an authorization engine,

which helps toenforcecertain RBAC policies. This topic is discussed after the verification sections.

A. Formal Specification and Verification

In domains with high security requirements such as banking applications, which deal with large amounts

of money, or military applications, a rigorous way for the specification and analysis of RBAC policies is

needed. Specifically, this is required for the certificationof an IT system w.r.t. the Common Criteria for

high levels of security [11].

We consider first-order linear temporal logic (LTL) [12] an appropriate formalism for specifying RBAC

policies because often one must cope with dynamic policies.In banking applications, for example, dynamic

SoD authorization constraints must be enforced such as history-based SoD [13]. History-based SoD is a

flexible variant of SoD, in which a user may have all the privilege for a business process, but must not

perform all the subtasks of this process on a certain object (e.g., check). Furthermore, we have often other

types of dynamic authorization constraints such as delegation rules or authorization constraints which

mandate a certain order of task execution as needed for workflows. In these cases, first-order LTL allows

for a concise and elegant formulation of the RBAC policy in question. Furthermore, first-order LTL has

been extensively studied in the literature [14], [12].

3



The formal verification assures that an RBAC policy satisfies the properties intended by the organization

(e.g., no user may prepare and approve a check). We will carryout this verification by means of the

theorem prover Isabelle [9]. In particular, the first-orderLTL (including axioms) is embedded into Isabelle.

Afterwards, the proofs of those properties to be fulfilled byan RBAC policy are automatically checked

by Isabelle. The details of this formal verification are presented later in this paper.

B. Practical Specification and Validation

Due to the fact that theorem provers are still tools for experts, the aforementioned formal verification

approach is strictly speaking not necessary in applications with moderate security requirements. For this

reason, we present a more light-weight approach to policy specification and analysis. Clearly, we can

employ this approach in application domains with high security demands, too, and then use the formal

verification if certain problems have been detected in the practical verification step.

For the practical specification and verification, we employ the Unified Modeling Language (UML) and

Object Constraint Language (OCL)2 [15]. As demonstrated in [16], [17], UML/OCL can be conveniently

used to specify several types of authorization constraints. Moreover, owing to the fact that OCL has proved

its applicability in several industrial applications, OCL is an appropriate means for such a practically

relevant process as the design of RBAC policies.

Hence, we demonstrate in this paper how to employ the USE system (UML-based Specification

Environment) [10] to verify RBAC policies formulated in UML and OCL. USE is a validation tool

for UML models and OCL constraints, which has been reportedlyapplied in industry and research. We

consider validation by generating snapshots (system states) as prototypical instances of a UML/OCL model

and compare the generated instances with the specified model(i.e., the RBAC policy in our case). From

now on, we use the term “validation” introduced by Richters etal. [10] whenever we discuss the practical

verification.

2OCL is UML’s constraint specification language and UML has been widely adopted in the software engineering discipline.

4



Validation with the USE system can help to detect if certain constraints conflict with each other or if

constraints are missing. The latter case may lead to a situation in which unallowed access is possible. For

example, if an SoD constraint between acashierand acashier supervisoris missing, a user who assumes

both roles may commit fraud. The former case, however, may have the effect that from the security point

of view reasonable system states cannot be established. While the validation allows the detection of certain

conflicting constraints, one cannotformally provethe correctness of the RBAC policy in question. For

this purpose, a more formal approach is required such as theorem proving.

C. Authorization Engine

Beyond specification and validation/verification, the enforcement of RBAC policies is also an important

issue. Such an authorization engine should be designed and implemented by sound software engineering

techniques. In particular, the main focus should lie in the modeling process, whereas the implementation

should be carried out routinely and as much as possible automatically. In this paper, we also demonstrate

how to employ the USE system, which is a validation tool for software models, to implement an

authorization engine. This engine serves as a key componentfor enforcing various types of authorization

constraints. This way, RBAC policies for different organizations can be implemented.

D. Structure of this Paper

The remainder of the paper is now organized as follows: Section II gives a short overview of RBAC and

authorization constraints. In Section III, typical dynamic authorization constraints such as history-based

SoD and delegation rules are formalized in first-order LTL. Thereafter, we present the formal verification of

RBAC policies with Isabelle. Section IV demonstrates how RBACpolicies can be specified in UML/OCL

and validated by means of USE. Section V describes an authorization engine built on the USE system

whereas Section VI discusses extensions of our work and related work. Section VII summarizes the results

of this paper.

5



II. RBAC AND AUTHORIZATION CONSTRAINTS

RBAC [5], [7] has received considerable attention as a promising alternative to traditional discretionary

and mandatory access control. The explicit representationof roles simplifies the security management and

makes possible to use security principles like SoD and leastprivilege [5]. We now give an overview of

(general) hierarchical RBAC according to the RBAC standard [7]:

• the setsU , R, P , S (users, roles, permissions, and sessions, respectively)

• UA ⊆ U × R (user assignment)

• PA ⊆ R × P (permission assignment)

• RH ⊆ R × R is a partial order called the role hierarchy or role dominance relation written as≤.

Users may activate a subset of the roles they are assigned to in a session. P is the set of ordered pairs

of operations and objects. In the context of access control all resources accessible in an IT-system (e.g.,

files, database tables) are referred to by the notionobject. An operationis an active process applicable to

objects (e.g., read, write, append). The relationPA assigns to each role a subset ofP . SoPA determines

for each role the operation(s) it may execute and the object(s) to which the operation in question is

applicable for the given role. Thus any user having assumed this role can apply an operation to an object

if the corresponding ordered pair is an element of the subsetassigned to the role byPA.

Role hierarchies can be formed by theRH relation. Senior roles inherit permissions from junior roles

through theRH relation (e.g., the rolechief physicianinherits all permissions from thephysicianrole).

An important advanced concept of RBAC are authorization constraints. Authorization constraints can

be regarded as restrictions on the RBAC functions and relations. For example, an SoD constraint may

state that no user may be assigned to both thecashierandcashier supervisorrole, i.e., the UA relation is

restricted. It has been argued elsewhere that authorization constraints are the principal motivation behind

the introduction of RBAC [5]. They allow a policy designer to express higher-level organizational rules as

indicated above. In the literature, several kinds of authorization constraints have been identified such as

various types of static and dynamic SoD constraints [13], [18], [6]; constraints on delegation [19], [20];

6



cardinality constraints [5]; context constraints [19], [21]; workflow constraints [22].

As indicated above, we now define an RBAC policy as follows:

Definition 1: An RBAC policy of an organization is hierarchical RBAC plus theset of authorization

constraints defined for the organization in question.

An RBAC policy should be distinguished from anRBAC configuration:

Definition 2: An RBAC configuration consists of the concrete roles, permissions, users, sessions, role

assignments and role hierarchies currently defined within an organization.

III. F ORMAL SPECIFICATION AND VERIFICATION OF RBAC POLICIES

In the following, we describe our formal approach to the specification and verification of RBAC policies

in more detail. We begin with the specification of dynamic authorization constraints, namely, dynamic

SoD, delegation and revocation rules, in first-order LTL. Later, these authorization constraints are used in

an example, which demonstrates how the verification works.

A. Formal Specification of RBAC Policies in LTL

First-order LTL [12] is a linear temporal first-order logic.Thus it is powerful enough to express most

of mathematics such as Zermelo-Fraenkel set theory (including the axiom of choice). Therefore it is

sufficient for reasoning about RBAC policies on a conceptual level 3. On the other hand, there is a clearly

defined formal semantics based upon Kripke frames for first-order LTL [12]. Since it is a linear temporal

logic, it is specifically well-suited for reasoning about temporal invariants as needed for IT security and

for safety-critical systems such as aircraft controllers or railway control systems [14].

Subsequently, we explain the basic concepts of first-order LTL. A temporal first-order signature consists

of a set of sorts, a set of function symbols and a set of predicate symbols (each symbol coming with a

string of argument sorts and, for function symbols, a resultsort). There arerigid and flexible predicate

symbols: the former do not change over time, whereas the latter may vary. Models live over discrete time,

3Ahn demonstrates that the specification language RCL 2000 for authorization constraints is equivalent to a restricted form of first-order
predicate logic [6].

7



spec TEMPORALRBAC =
sorts User ,Session,Role,Operation,Object
rigid op user : Session → User ;
flexible preds UA : User × Role;

PA : Operation × Object × Role;
Active in : Role × Session;

Exec : Session × Operation × Object ;
Exec : User × Operation × Object

forall r : Role; u : User ; s : Session; op : Operation; obj : Object
• (3r Active in s) ⇒ UA(user(s), r)
• �(Exec(s, op, obj ) ⇒ ∃r : Role . r Active in s ∧ PA(op, obj , r))
• �(Exec(u, op, obj ) ⇔ ∃s : Session.user(s) = u ∧ Exec(s, op, obj ))

end
spec DELEGATETEMPORALRBAC=TEMPORALRBAC then

rigid pred UAO : User × Role;
flexible preds UA : User × Role;

UAD : User × Role;
... further predicates, e.g., Delegate, Revoke

forall u : User ; r : Role
• UAD(u, r) ∨ UAO(u, r) ⇔ UA(u, r)
• ¬(UAD(u, r) ∧ UAO(u, r))
• ... see text

end

Fig. 1. Temporal-logic RBAC and predicates for delegation, formalized within first-order LTL.

indexed by the natural numbers as time steps. They interpretthe sorts with (time-independent) carrier

sets, function and rigid predicate symbols with time-independent functions and predicates of appropriate

types, and flexible predicate symbols with families of functions and predicates, where the families are

indexed by natural numbers.

Sentences are the usual first-order sentences built from equations, predicate applications and logical

connectives and quantifiers∀, ∃. Additionally, we have the modalities� (always in the future),3

(sometimes in the future) and, (in the next step). The corresponding past modalities are�- , 3- and

,- . Satisfaction is defined inductively for a given time step, where the modalities allow for referring to

other time steps. A sentence is satisfied in a model if it is satisfied in the time step zero.

We now specify RBAC in first-order LTL (see Fig. 1, upper part).For this purpose, we use the notation

of the algebraic specification language CASL as we have done earlier [23]. The functionuser is rigid

(i.e., does not depend on the state) whereas the predicatesUA, PA, Active in and Exec are flexible

(i.e., depend on the state).Exec now traces the operations performed, i.e.,Exec(s, op, obj) means that

sessions executes operationop on objectobj in the present (implicit) state. Note that we have left out

the predicates and axioms for role hierarchies to simplify the discussion.

8



1) Specification of Dynamic SoD with History:Dynamic SoD is a flexible form of SoD. Here, a user

may perform certain steps of a task, but only if she has not done certain other steps of the task before. There

are several attempts to express dynamic SoD in the computer security world such as Sandhu’s Transaction

Control Expressions [24]. Practical applications of RBAC often need dynamic SoD; see Simon and Zurko

[18] and Nash and Poland [3]. In fact, Sandhu stresses the importance of history [24].

Dynamic SoD properties [13], [18] can be elegantly formulated in first-order LTL without explicitly

talking about states. We demonstrate this by means of two typical examples, namely, object-based dynamic

SoD and history-based SoD. Note that we use the CASL-style representation again and hence the variables

after the forall quantifier correspond to the parameters of the SoD predicates. The SoD predicates are

defined by equivalences, similarly to the secondExec predicate given in Fig. 1:

• Object-based dynamic SoD

A user may perform at most one operation on a given object.

forall obj : Object;
ObjDSoD(obj ) ⇔ [∀u : User ; op, op′ : Operation.op 6= op′ ∧ Exec(u, op, obj) ⇒ �¬Exec(u, op′, obj)]

• History-based dynamic SoD

A user may execute all operations and may also execute more than one operation on a target object,

but she may not perform all operations (if more than one) on the same target object.
forall obj : Object;
HDSoD(obj ) ⇔ [∀u : User ; op : Operation.

Exec(u, op, obj) ⇒ ∃op′ : Operation.(op 6= op′ ∧ �- ¬Exec(u, op′, obj)) ∨ ∀op′ : Operation.op′ = op]

First-order LTL can also be employed in order to formally specify SoD policies where the order of

executions matters, e.g., the dynamic object-based SoD variant, proposed by Nash and Poland [3]. The

Exec predicate can then be used to express RBAC policies for workflows where the tasks are executed

in a certain order [22]. This is, however, discussed elsewhere due to space limitations [25].

2) Delegation and Revocation:In the following, both delegation and revocation policies are formalized

within first-order LTL.

9



Delegation: Delegation is an important factor to fulfill dynamic requirements for secure distributed

computing environment. There are many definitions of delegation in the literature [26], [27], [28], [29],

[30]. In general, it is referred to as one active entity in a system delegates its authority to another entity

to carry out some functions on behalf of the former.

As proposed by Zhang et al. [30], we introduce two new user assignment relations, called original user

assignmentUAO and delegated user assignmentUAD . This way, one can make explicit whether a role

is assigned to the user by an administrator directly or a rolewas delegated by another user.UA then is

the union of these two assignment relations as shown in the lower part of Fig. 1.

Subsequently, we formalize a basic variant of delegation infirst-order LTL. In this variant, useru

delegates roler to useru1 and loses at the same time the power of the delegated roler:

forall u, u1 : User ; r, r1 : Role;
Delegate(u, r, u1, r1) ⇔ [UAO(u, r) ∧ UA(u1, r1) ∧ ¬UA(u1, r) ∧ const ⇒ ©(UAD(u1, r) ∧ ¬UA(u, r))]

¬UA(u1, r) is required here because it is not useful to delegate roler to a useru1 who has already

been assigned to this role. Moreover,u must obviously belong tor on delegation, and oftenu1 should

hold the power of a certain prerequisite roler1 on the delegation process. Sometimes, there also exist

additional constraints (e.g., concerning the delegation depth or time) which are to be satisfied to enable

the delegation process, i.e., the delegation depends on further predicates. These delegation constraints are

represented by theconst statement, which is a first-order LTL formula.

Revocation:Often, it is necessary to revoke roles that have been delegated, e.g., when a clinician

returns from vacation. Several different semantics are possible for user revocation such as [31], [26]. We

give here only the formal specification of a simple revocation rule:

forall u : User ; r : Role; Revoke(u, r) ⇔ [UAD(u, r) ∧ const ⇒ ©¬UAD(u, r)]

const stands for a revocation constraint. For example, the power to read a patient’s electronic health record

is lost if the clinician does not belong to the current department of the patient in question any more.

10



B. Formal Verification of RBAC Policies

Having specified various types of authorization constraints in first-order LTL, we now generate RBAC

policies by combining several authorization constraints.But doing so, we want to be sure that our RBAC

policies meet the requirements (see end of Section III-B.2),and at the same time avoid unintended side

effects like deadlocks (cf. example in Section III-B.2) or unallowed access. For this reason, we treat

the formal verification of RBAC policies in this section. Formal verification may be cumbersome, but it

guarantees the highest degree of reliability. Moreover, security assurance standards such as the Common

Criteria request formal methods as a precondition for the highest security level (EAL7). Here, we will

use the theorem prover Isabelle as a tool for the formal verification.

Isabelle [9] is a generic proof assistant. It allows mathematical formulas to be expressed in a formal

language and provides tools for proving those formulas in a logical calculus. Formal calculi and/or

mathematical theorems are encoded in theory files (suffix.thy) that can be invoked to Isabelle. Invoking

a theory file makes Isabelle accept all definitions, axioms, etc. in this theory. Furthermore, Isabelle will

check proofs of theorems given in this theory.

1) How to Build Correct RBAC Policies:The first-order LTL with past modalities specified in Is-

abelle/HOL asLTL.thy is a powerful formalism for expressing and examining RBAC policies [32]. The

most important properties of this kind of LTL have been proved as theorems inBasic Inf Rules.thy,

Basic Op Rules.thy andAdv Op Rules.thy in this sequence, which was a demanding task. RBAC

is defined inRBAC1.thy [32]. However, this can only help if the specified RBAC policy is consistent.

Consistency is to be understood in the following sense:

Definition 3: An RBAC policy is consistent if a sequence of non-empty RBAC configurations exists

which satisfies all the rules of the policy in question.

Note that we consider sequences of RBAC configurations here and not only a single RBAC configuration

because we use a linear temporal logic as the formalism for policy specification. A sequence of RBAC

configurations is then a model of the RBAC policy in first-orderLTL, i.e., the RBAC policy is free of

11



contradictions. Finding such a sequence for which a given RBAC policy holds proves the satisfiability of

the considered RBAC policy in the sense of first-order LTL. Thus, applying adequate tools such as model

checkers or the USE tool can already help the policy designerto avoid basic mistakes. But this is often

not enough. First-order LTL allows the designer to derive properties from a given RBAC policy.

Suppose an RBAC policy is specified as a set of sentences in first-order LTL, and a requirement for this

policy is given as another sentence. If we can derive the requirement from the given RBAC policy within

first-order LTL, then the requirement in question is fulfilled by this RBAC policy with absolute certainty.

In order to reach this certainty, the policy designer has to supply proofs for the requirements as described

above. The correctness of the proofs in question can then be verified by Isabelle due to the work described

above. Assuming Isabelle works correctly and accepts the proofs, the desired certainty is assured. Since

first-order logic is generally undecidable (according to results of Turing [33]), the mentioned proofs can

usually not be fully automated, but require human intervention. This applies also to the example of such

a proof described in the following subsection.

2) Formal Verification of RBAC Policies:LTL is encoded in Isabelle (cf.LTL.thy) as described above.

Using LTL as a foundation, we then define RBAC as described inRBAC1.thy. The main modification

w.r.t. [34] is the introduction of the predicates for delegation namedUAO andUAD (see axiomsUAO ax ,

UAD ax ,UA2 ax ). Consequently, the predicateUA is not rigid any more, butUAO now is.

Delegation is defined by an additional Isabelle theory basedon RBAC. In this theory, we introduce the

predicateDELEGATE, and specify delegation axiomatically as defined in SectionIII-A.2. However, the

difference is that we omit the prerequisite conditions for the delegated user for reasons of convenience.

In our theory, a user is allowed to delegate a roler if and only if she is assigned to the roler by UAO .

Having specified delegation and revocation exactly, it is now possible to examine the interactions of

these concepts with various authorization constraints. This can lead to unexpected results. We now describe

an example policy showing an undesirable deadlock behaviorunder certain conditions. For this purpose,

let us assume that delegation and RBAC are defined as describedabove. Furthermore, we have two distinct

12



usersu1, u2, and an objecto with an object-based dynamic SoD condition, i.e., any user is permitted to

apply at most one operation to objecto. As an additional authorization constraint we demand for reasons

of secrecy that any operation4 can be performed ono at most by one user (i.e., no two distinct users are

allowed to apply the same operation too). Finally, let r be the only role having the permission to apply

operationop1 to o, and letu1 be the only user assigned tor by UAO . Pick now an arbitrary point of

time t from which on the following actions happen:

t: Useru1 delegates roler to u2 .

t + 2: Useru2 applies operationop1 to o 5.

t + 3: Useru1 revokes roler from u2 and and from now on never delegates it again tou2 .

From this situation we conclude thatUAD(u2 , r) is true att+1, t+2, andt+3. However, fromt+4

and all time steps laterUAD(u2 , r) is always false. Thus it follows that alsoUA(u2 , r) must be false

for those points of time since only forUAO(u1 , r) is true, andu1 andu2 are distinct users. Thus, for

those points of timeu2 will not be allowed to apply operationop1 to o since the permission to do this

is limited to roler .

By our constraints and prerequisite conditions, we now have the situation that fromt + 4 on no user

can apply operationop1 to o because useru2 cannot do this any more due to revocation and the secrecy

constraint forbids access for any other user. Moreover, we can conclude thatu2 cannot apply any operation

to o since she has already performed operationop1 on o (object-based dynamic SoD) and once again

op1 is not available due to revocation. In theoremBlockade this is shown to be true fromt + 5 on. The

proof for this has been checked with Isabelle and can be downloaded [32].

Of course, deadlocks are not desirable for an RBAC policy. So let us mention apositive example

described by Drouineaud et al. [34]. In that scenario, a banksafe is controlled by an IT system, which

automatically generates a key, i.e., a secret number. The system then uses a secret sharing scheme to

distribute shares of this key to certain users (assigned to the roles cashier and/or director). The distribution

4We assume here that an operation reveals some information on the object.
5We assume here that tillt + 2 no other user has yet performedop1 on o and thatu1 has not yet revoked roler from u2 .

13



process is regulated by SoD (dual control). As can be shown, this RBAC policy meets the requirement

to prevent the system from distributing a sufficient number of shares for computing the key to asingle

user. So Isabelle helps to verify security requirements.

3) Advantages of Verification:Proving properties of RBAC policies in first-order LTL with a theorem

prover such as Isabelle usually requires human intervention (see above). On the other hand, model checking

[35] can be automated. But model checkers only examine a specific model. If a model checker confirms

that an RBAC policy and some requirement hold for a given RBAC configuration / model, this need not

be true for another RBAC configuration. There may be an RBAC configuration for which the considered

RBAC policy holds, but the requirement is not fulfilled. In theworst case, a slight change of a single

parameter such as one additional user or object can cause that effect. Therefore one might have to run the

model checker for each access demand in order to ensure all given requirements by model checking. At

first glance this may seem comfortable, since one would only have to find and define the requirements,

and the IT system then could do the rest automatically. Unfortunately, model checking has a high degree

of computational complexity, although it is a decidable problem. Hence, the described simple solution for

access control may seem advantageous, but would slow down most IT systems to an intolerable extent.

Unlike model checking, deriving properties of RBAC policiesin first-order LTL with a theorem prover

allows one to give proofs that are independent of the number of users, objects, operations, etc. due to

quantification. Assuming the authorization constraints ofwhich the considered RBAC policy consists can

easily be implemented, we obtain an IT system that meets all IT security demands for access control in

a fast and efficient way. Since a complete automation of verification is generally impossible, we intend

to make verification at least more comfortable. Our current research focuses on the following topics:

• Identifying important authorization constraints or combinations of authorization constraints that may

serve as building blocks for relevant RBAC policies in areas such as banking via case studies and

proving important properties of the discovered constraints or combinations of constraints. The found

theorems could then help policy designers who use some of thedescribed elements for building an

14



RBAC policy and thus save some effort. Indeed, these designers could simply refer to the adequate

results without bothering about the proofs.

• Building a library containing the found theorems and proofs,so that the proofs and theorems,

respectively, could be reused for further proofs. For example, we could build libraries for delegation,

SoD, context constraints, and workflow constraints.

• Investigating the existence of decidable fragments of first-order LTL that may be well-suited for the

verification of RBAC policies.

IV. PRACTICAL SPECIFICATION AND VALIDATION OF RBAC POLICIES WITH UML AND OCL

Having presented the formal specification and verification of RBAC policies, we now turn to a more

light-weight specification and validation approach based upon UML and OCL.

A. Specification of RBAC Policies in UML and OCL

First, we briefly explain the basic elements of UML and OCL and thereafter we specify several types

of authorization constraints in OCL.

1) UML and OCL: UML [36] is a general-purpose modeling language in which we can specify,

visualize, and document the components of software systems. It captures decisions and understanding

about systems that must be constructed. UML has become a standard modeling language in the field of

software engineering. UML permits to describe static, functional, and dynamic models of software systems.

In this paper, we concentrate on the static UML models. A static model provides a structural view of

information in a system. Classes are defined in terms of their attributes and relationships. The relationships

include specifically associations between classes. In Fig.2, the static UML model for RBAC consisting

of the RBAC classes and associations is depicted (UML class diagram). The classes and associations

correspond to the RBAC sets and relations defined in Section II. A further diagram type relevant to our

work is the object diagram. Here, objects are instances of classes and links are instances of associations.

15



Session

name: String

User

name: String

Permission

name: Stringname: String

Role

Establishes
(user)

(roles)
Activates

	UA 	PA

*

***

** *

1

*

*

RH

Fig. 2. Class Model for RBAC-Entity Classes.

An object diagram then provides a snapshot of a system at a particular point of time showing objects,

their attribute values, and links connecting the objects [36].

OCL [15] is a declarative language that describes constraints on object-oriented models. A constraint

is a restriction on one or more values of an object-oriented model. Each OCL expression is written in the

context of a specific class. In an OCL expression, the reservedword self is used to refer to a contextual

instance. The type of the context instance of an OCL expression is written with thecontext keyword,

followed by the name of the type. The labelinv: declares the constraint to be an invariant. Invariants

are conditions that must be true during the lifetime of a system for all instances of a given type. The

following line shows an example of an OCL invariant describing a role with at most one user:

context Role inv: self.user->size()<2

self refers to an instance ofRole. Thenself.user is a set ofUser objects that is selected by navigating

from objects of classRole to User objects through an association. The “.” stands for a navigation. A

property of a set is accessed by an arrow “->” followed by the name of the property. A property of the

set of users is expressed using thesize operation in this example.

The following shows another example describing that a user can be assigned to a roler2 only if she is

already member ofr1 (prerequisite role constraint introduced by Sandhu et al. [5])6:

context User inv: self.role_->includes(’r2’) implies self.role_->includes(’r1’)

6The word “role” is a keyword in the USE specification format, which is introduced later. In order to distinguish the USE keyword from
the word “role” in the sense of RBAC, we append the underscore for thismeaning of the word “role”.

16



The expressionself.role ->includes(’r2’) means thatr2 is a member of the set of roles the user is

assigned to. Theimplies connector is similar to logical implication. Furthermore,OCL has several built-in

operations that can iterate over the members of a collection(set, bag, sequence) such asforAll, exists

iterate, andany (cf. [15]). These operations are used throughout the rest ofthe paper.

2) Specification of Authorization Constraints in OCL:In the section before, we have already specified

the prerequisite roles constraint in OCL. Subsequently, we give two further examples that demonstrate

how to use OCL to specify authorization constraints. The second example shows that even more complex

authorization constraints can be formulated in OCL. In fact,we will even prove in Section VI-A that

OCL is at least as powerful as the authorization constraint specification language RCL 2000 [6]. As a

consequence, our specification and validation approach presented below can deal with all authorization

constraints formulated in RCL 2000.

Example 1: Simple Static SoD (SSoD)

The first example concerns an SoD constraint. Consider two conflicting roles such as cashier and cashier

supervisor. Mutual exclusion in terms of UA specifies that one individual cannot have both roles. This

constraint on UA can be specified using the OCL expression as follows7:

context User inv SSoD:
let CR:Set={{cashier,cashier_supervisor},{r1, r2},...}
in CR->forAll(cr|cr->intersection(self.role_)->size()<2)

This formulation of SSoD is based upon the SSoD specificationgiven by Ahn [6]. Technically,CR

denotes a set which consists of conflicting role sets.

Example 2: Static SoD - Conflict Users

Even more complex authorization constraints can be formulated in OCL. One example of such a constraint

is SSoD-CU identified by Ahn [6]. SSoD-CU (Static SoD - Conflict Users) means that two or more

colluding users cannot be assigned to conflicting roles. Forexample, it might be the company policy that

members of the same family cannot be assigned to the roles cashier and cashier supervisor. SSoD-CU

7For the sake of simplicity, we have left out here the part for the definition of role instances such ascashier andcashier supervisor
with the help of OCL’sany operation, e.g.,cashier:Role=Role.allInstances->any(name=’cashier’). Similar remarks hold
for the subsequent OCL specifications.

17



can now be expressed in OCL in the following way:

context User inv SSoD-CU:
let

CU:Set(Set(User))=Set{Set{Frank,Joe},Set{Sue,Lars}},
CR:Set(Set(Role))=Set{Set{cashier,cashier_supervisor},...}

in
CR->forAll(cr|cr->intersection(self.role_)->size()<2)
and
CU->forAll(cu|
CR->forAll(cr|cr->iterate(r:Role; result:Set(User)=Set{}|
result->union(r.user))->intersection(cu)->size()<2))

SSoD-CU is a composite constraint consisting of two parts, anSSoD part and an additional part concerning

the conflicting users. The SSoD part is required because otherwise obviously the whole constraint would

not be useful. Theiterate operation iterates over all rolesr belonging to a set of conflicting roles and

collects all users of these roles.CR has the same meaning as in Example 1 whereasCU is a set consisting

of all conflicting user sets.

B. Policy Validation with USE

OCL is a light-weight formalism, which can help in specifyingRBAC policies. We now demonstrate

how the USE tool [10] is employed for the validation of RBAC policies formulated in UML/OCL. Before

describing the validation process in more detail, we first explain the functionality of USE.

1) The USE tool:USE allows the software modeler to validate UML and OCL descriptions and is the

only OCL tool allowing interactive monitoring of OCL invariants and the automatic generation of system

states. In particular, we use the term “system state” in the following sense:

Definition 4: A system stateor snapshotconsists of the current objects and links given by a UML

object diagram (cf. Section IV-A.1). A system state must adhere to a UML model, i.e., for each object a

class and for each link an association must exist in the corresponding class diagram. Anon-empty system

stateat least contains one object.

The central idea of the USE tool is to check for software quality criteria like correct functionality of

UML descriptions already in the design level in an implementation-independent manner. This approach

takes advantage of descriptive design level specificationsby expressing properties concisely and in a more

18



abstract way. Such properties are given by OCL invariants, and these are checked by the USE system

against the generated snapshots. These abstract design level tests are expected to be also used later in the

implementation phase.

The USE tool expects a textual description of a UML model and its OCL constraints as an input (for

an example of such a description refer to Fig. 4). After syntax checks, the model can be displayed by the

graphical user interface provided by USE. In particular, USE makes available a project browser which

displays all the classes, associations, and invariants of the current model.

Fig. 5 shows a USE screen shot with an example, which is discussed later in Section IV-B.2. On the

left, we see the project browser displaying the classes, associations, and invariants. In a detail window

below, a selected constraint is pictured. Next to the project browser, we see an object diagram with the

current snapshot. The evaluation of the invariants in this system state is pictured in the class invariant

window to the right of the object diagram window. The invariant window gives the developer feedback

about the validity of the invariants.

The USE tool can now be employed in various ways in the contextof RBAC policies (cf. Fig. 3).

Specifically, it can be used for the specification (cf. Fig. 4)and for the validation of RBAC policies in the

design phase. Validation is the topic of the following section. Furthermore, an authorization engine can be

built by using the Java API provided by the USE system. This isdiscussed in more detail in Section V.

The last use case is testing concrete RBAC configurations, i.e., after the deployment of the policy. This

aspect is more thoroughly discussed elsewhere [37] and is not topic of this paper.

At this point, we differentiate between administrators andpolicy designers. The latter are responsible

for designing policies whereas the former deploy policies.We make this distinction because a policy

designer should possess significant knowledge about organizational rules. In addition, we expect that

policy designers are more familiar with modeling languagesand validation tools than administrators.

2) Policy Validation: As indicated above, the USE approach to validation is to generate system states

and check these states against the specified constraints. Inour case, the system states are certain RBAC

19



USE RBAC Validation System

Administrator

Policy Designer

specify RBAC policy

validate RBAC policy

enforce RBAC policy

test RBAC configuration

detect conflicting
constraints

detect missing
constraints

<<extend>>

<<extend>>

Fig. 3. Use cases for the RBAC USE system.

configurations. The RBAC configurations can be created automatically by running a script with the state

manipulation commands, which are supported by the USE tool,or alternatively, with a graphical user

interface provided by the USE system [10].

The result of the validation can lead to different consequences. Firstly, we may have reasonable system

states that do not satisfy one or more authorization constraints of the policy. This may indicate that

the constraints are too strong. Secondly, the RBAC policy mayallow undesirable system states, i.e., the

constraints are too weak. In the first case, we may have conflicting constraints, whereas in the second

case constraints are missing. Subsequently, both situations are discussed more thoroughly. However, we

first describe an RBAC policy, which will serve as an example policy throughout the rest of this section.

Example RBAC Policy:The USE specification of the example RBAC policy is depicted inFig. 4. It

consists of the RBAC-related class and association definitions and a set of authorization constraints (cf.

Definition 1). The constraints are formulated as OCL invariants. In particular, we define two constraints,

one is a prerequisite role constraint between two rolesr1 and r2, the other is an SSoD-CU constraint.

However, the static SoD part of the SSoD-CU constraint given in Section IV-A.2 is left out. The reason

for this becomes clear when we describe our approach to the detection of missing constraints. Moreover,

20



model RBAC
--classes

class Role
attributes
name:String
end

class User
attributes
name:String
end

class Permission
attributes
op:Operation
o:Object
end

class Object
attributes
name:String
end

class Operation
attributes
name:String
end

class Session
attributes
name:String
end

-- associations

association UA between
User[*] role user
Role[*] role role_
end

association PA between
Permission[*] role permission
Role[*] role role
end

association establishes between
User[1] role user
Session[*] role session
end

association activates between
Session[*] role session
Role[*] role role
end

association RH between
Role[*] role senior
Role[*] role junior
end

constraints

context User inv PrerequisiteRole:
self.role ->includes(r2)
implies self.role ->includes(r1)

context Role inv SSoD-CU:
let
CU:Set(Set(User))=Set{{u1,u2,u3},

{u4,u5}}
in
let
CR:Set(Set(Role))=Set{Set{r1,r2},...}
in
CU->forAll(cu|
CR->forAll(cr|cr->iterate(r:Role;
result:Set(User)=oclEmpty(Set(User))|
result->union(r.user))->

intersection(cu)->size()<=1))

Fig. 4. USE specification of an RBAC policy.

our example is rather simple for didactic reasons. One should bear in mind that in reality RBAC policies

may be considerably more complex, consisting of different kinds of authorization constraints such as

various SoD properties, context constraints, and delegation rules. In fact, we also experimented with more

complex policies, which contain complex constraints such as object-based static SoD.

Conflicting Constraints:USE may help the policy designer find conflicting constraintsas will be

demonstrated by means of the aforementioned example. In particular, let us assume that the policy designer

has forgotten that she had once defined the prerequisite roleconstraint betweenr1 andr2. Later, the policy

designer decided to definer1 andr2 mutually exclusive due to a change of organizational rules and adds an

SSoD constraint betweenr1 andr2 to the policy. Obviously, the constraints cannot be satisfied at the same

time and hence the composite constraint is too strong. The USE screen shot in Fig. 5 displays the situation

after useru has been assigned tor2. Clearly, the policy designer cannot assignu to roler1; otherwise the

new SSoD constraint would be violated. However, now the constraint User::PrerequisiteRole is evaluated

to false (cf. “Class invariants” view in Fig. 5), and hence thecurrent RBAC configuration is not a correct

21



system state according to the given policy specification, although the configuration seems to be reasonable.

Fig. 5. USE screen shot: two conflicting constraints.

Admittedly, the mere information that a constraint is falsemight often not help to find the real reason

for the problem and to resolve the conflict. Additional information is required which objects and links of

the current state violate the constraint. For such a purpose, the policy designer can debug the constraints

that are not satisfied by the current system state with the “Evaluate OCL expression” dialog made available

by USE. For example, in Fig. 5 the result of the query “all users who are assigned tor2 but not tor1”

applied to the given RBAC configuration is shown. Here, one canlearn thatu is not assigned tor1,

although this is required by the prerequisite role constraint. If one now conversely tries to assignu to r1,

the SSoD constraint fails, and as a consequence one can conclude that the constraints are contradictory.

A policy designer can now employ USE in a similar way for otherconstraint types such as cardinality

constraints or other SoD properties. In particular, this approach is helpful if a new constraint is added

to a complex policy, in order to check if it is in conflict with the composition of the already defined

constraints, i.e., if at least one of these constraints is evaluated to false.

Nevertheless, USE may find conflicts only in certain cases, and there is no guarantee that all conflicts

can be detected. Hadu not been assigned tor2, the conflict would not have been detected. In order to

eliminate contradictory constraints to a larger extent, a more formal approach such as theorem proving is

required. On the other hand, the USE approach is only meant toimprove the design of an RBAC policy,

22



and does not aim at a formally proven design. Given the condition that there is often a lack of tools

for policy analysis, the USE approach can be considered as a first practical step towards more reliable

security mechanisms. The formal verification as described in Section III-B and the validation with USE

can hence be regarded as complementary.

However, various heuristics can be applied which may streamline the conflict detection process with

USE. One approach is sketched in the following. This approach is based upon an automatic snapshot

generator which is made available by the USE system [38]. This snapshot generator allows one to define

certain properties on the snapshots and to automatically construct sequences of snapshots, apart from

manually giving commands or applying the graphical user interface provided by USE. For this purpose, a

language called ASSL (A Snapshot Sequence Language) has been introduced such that snapshots can be

constructed in a more declarative way. In addition, ASSL hasa formal semantics, which has been given

by Gogolla et al. [38]. Due to the fact that loop constructs and a backtracking mechanism are provided

by ASSL sequences of snapshots can be generated. Moreover, invariants can be dynamically loaded at

runtime, either in order to further restrict the snapshots to be constructed (controlling invariants) or to

certify given properties. This way, we can rule out trivial snapshots such as the empty snapshot, which

obviously satisfies the conflicting constraints mentioned above and does not reveal the conflict.

One remark should be made on the appropriate number of RBAC elements (such as users, roles, user

assignment) of which a snapshot should consist. As a rule of thumb, the snapshots should contain the

elements occurring in the RBAC policy under investigation. As a consequence, the number of RBAC

elements is roughly the sum of the number of elements that occur in the RBAC policy.

The following general recipe can help in detecting conflicting constraints by means of the automatic

snapshot generator (assuming that a new constraint is addedto a set of non-conflicting constraints):

• specify the set of non-conflicting constraints in a file in USEformat,

• define ASSL procedures for generating appropriate entities, attributes and links between the entities

(e.g., users, roles, UA and PA relations) and then call theseprocedures,

23



• in certain cases, load further controlling invariants dynamically,

• dynamically load the new constraint,

• if there do not exist any snapshots which satisfy all the constraints at the same time, there may be

conflicting constraints and a further investigation of the RBAC policy is required.

Note that the aforementioned steps will not necessarily be carried out in the given order. ASSL procedure

calls are usually interleaved with dynamically loading further constraints (such as controlling invariants)

in order to produce the appropriate snapshot sequences.

In the following, we briefly describe by means of the running example how to use the snapshot generator

for the detection of conflicting constraints. In Fig. 6, a protocol file can be found, which contains the

central steps for the generation of the snapshot sequences.The aim is to produce snapshots that reveal the

aforementioned conflict. First, the RBAC policy in USE formatis loaded, containing only a prerequisite

role constraint and the RBAC model. Thereafter, appropriatenumbers of users and roles are generated,

including the rolesr1 andr2. In order to give an impression how ASSL procedures look like, the procedure

generateRoles is depicted in Fig. 6. This procedure creates roles and checks within a for-loop that no

duplicates are generated.

In the next step, the controlling OCL invariantRole::inv1 is loaded, which guarantees that every user

is assigned to at least one role and conversely every role hasat least one user. This prevents the creation

of trivial snapshots. In the main step, then the new constraint, SSoD, is dynamically added to the policy

and sixUA links are generated. As a result, we obtain no snapshot whichsatisfies all the so far defined

conditions. This may indicate that there are conflicting constraints, and we can use the query facilities

provided by the USE system for a further investigation.

The snapshot generator can also be applied to detect chains of conflicting constraints, consisting of

more than two constraints. Here, we can remove one constraint after the other from the USE specification

until we obtain a snapshot. The constraint removed in the last step may belong to a conflicting chain. If

we remove the constraints in another order, we may identify other constraints of the conflicting chain.

24



use> open Policy.use
use> gen start conflict1.assl generateUsers(3)
use> gen start conflict1.assl generateRoles(4)
use> gen load ControllingInv2.invs
Added invariants:
Role::inv1
use> gen load SSoD.invs
Added invariants:
User::SSoD
use> gen start conflict1.assl generateUA(6)
use> gen result
Checked 4096 snapshots.
Result: No valid state found.

procedure generateRoles(count:Integer)
var theRoles:Sequence(Role);
begin
theRoles:=CreateN(Role,[count]);
for r:Role in [theRoles]

begin
[r].name:=Any([Sequence{’r1’,’r2’,’r3’,’r4’}->reject(n1|Role.allInstances.name->exists(n2|n1=n2))]);

end;
end;

Fig. 6. ASSL commands and an ASSL procedure.

Detection of Missing Constraints:The second consequence of constraint validation may be that

a policy permits undesirable system states, i.e., the authorization constraints are too weak. Once again

consider the example policy from Fig. 4. If we create a systemstate, in whichu is assigned to the rolesr1

andr2, all constraints (in our case specifically the conflict user part of the SSoD-CU constraint) defined so

far are evaluated to true. Hence, the policy seems supposedly to be correct although the policy permits a

user being assigned to the mutually exclusive rolesr1 andr2. Obviously, the policy designer has forgotten

to define the SSoD part of the SSoD-CU constraint. Therefore, afurther SSoD constraint must be added

to the policy in order to exclude the undesirable state and toobtain a more restrictive RBAC policy.

In general, we can create snapshots whichdeliberately violaterequirements that the RBAC policy under

investigation must satisfy. If still all authorization constraints defined so far are fulfilled, then one or more

constraints are missing. Moreover, we can also use the aforementioned automatic snapshot generator for

detecting missing constraints. This can be done the following way: First, the requirement to be investigated

is formulated as an OCL invariant and is at the same time logically negated. For this purpose, a special

negate flag can be set with the help of the USE system [38]. By means of the snapshot generator we can

then try to create sequences of system states which satisfy both the added (negated) requirement and the

already defined constraints. If we find such a system state, one or more constraints are missing.

25



V. AUTHORIZATION ENGINE

In this section, we demonstrate how an RBAC authorization engine can be built based upon the

functionality of the USE system. This tool helps to enforce several kinds of authorization constraints

like those listed in [6]. A more detailed description of the authorization engine can be found in [39].

More explicitly speaking, the authorization engine can be used in principle to specify and enforce all

authorization constraints expressible in OCL. As a consequence, types of authorization constraints beyond

those enumerated by Ahn [6] can also be supported. In the following, the functionality of the authorization

engine will be presented. Thereafter, we describe more thoroughly how this tool has been implemented.

A. Functionality of the Authorization Engine

The prototype of the authorization engine currently supports most of the functionality demanded by

the RBAC standard [7]. This means that we have implemented administrative functions, system functions,

and review functions.Administrative functionsare required for the creation and maintenance of the RBAC

element sets and relations (e.g.,UA, PA, RH ). For example,AddUserandAssignUserbelong to this class

of functions.System functionsare required by the RBAC authorization engine for session management and

making access control decisions. Thus, examples areCreateSessionand CheckAccess. Review functions

can be employed for inspecting the results of the actions created by administrative functions. Typical

examples of review functions areAssignedUsersandUserPermissions.

Beyond this basic functionality, the RBAC authorization engine provides mechanisms for defining

and enforcing role hierarchies and authorization constraints such as various SoD properties, cardinality

constraints, prerequisite roles, and context constraintsw.r.t. location. In addition, the tool can be quite

easily extended to support other authorization constraints. This way, it is flexible enough to enforce various

RBAC policies, depending on the internal rules of the organization in question.

To give a better overview, a screen shot of the current prototype of the authorization engine is shown in

Fig. 7. In particular, authorization constraints can be defined with the help of dialog windows such as the

26



Fig. 7. The authorization engine.

window on the right-hand side for a static SoD constraint. The current RBAC configuration is visualized

by the large window in the middle.

The authorization engine can be employed both at administration- and runtime in order to enforce the

aforementioned authorization constraints. For the enforcement of static constraints, an administration tool

similar to that depicted in Fig. 7 can be used by a security officer. In case of simple dynamic SoD [18],

the session mechanism provided by the considered application can be used: Whenever an application

session is generated, a corresponding RBAC session is created in the authorization engine. Similarly, the

fact that roles are activated or deactivated can be communicated to the authorization engine. The engine

then makes the access decision based upon the application’scurrent security state (cf. Section V-B.4) and

hence the authorization engine can be regarded as a policy decision point [40]. One can even integrate

the authorization engine with Web services in order to enforce the RBAC policies on the middleware and

not on the application level. Then the Web service session can be mapped to an RBAC session.

B. Implementation Aspects

The authorization engine has been implemented by using a Java API made available by the USE tool.

This way, the functionality of USE is hidden from the administrator/security officer by the graphical user

27



interface of the authorization engine. Now our implementation, based upon the USE API, will be described

in more detail. In particular, we explain how the administrative functions, system functions, and review

functions have been realized. Thereafter, the constraint checking mechanism is sketched.

1) Administrative Functions:The core operations provided by the authorization engine are adminis-

trative functions. An administrator can change an RBAC configuration with these functions. We have

implemented administrative functions by the state manipulation commands of the USE system [10]. To

demonstrate this, we subsequently consider the operationAssignUser which assigns a user to a role.

AssignUser can be expressed by the state manipulation command!insert(u,r) into UA (with a useru

and a roler). This command can then be called by employing the command execution facility provided by

the USE API calledexecuteCmd(). The other administrative functions have been realized in asimilar way.

Clearly, in order to remain in a state consistent with the current RBAC policy, all (relevant) authorization

constraints must also be checked. This will be explained in more detail below.

2) Review Functions:RBAC review functions are demanded by the RBAC standard and have also

been conveniently implemented employing the USE functionality. For this purpose, we have employed

the query facilities of USE (cf. Section IV-B.2). In particular, the USE API provides the methodeval(),

which evaluates a query consisting of an OCL expression in thecurrent system state. For example, the

following OCL query expresses theUserPermissionsfunction, which returns all permissions of a user:

UserPermissions(u:User):Set(Permission)=
u.role_->iterate(r:Role; result:Set(Permission)={}| result->union(r.permission))

This query has been specified in a USE file (such as that presented in Fig. 4), which is read when the

authorization engine is started. Then theeval() method of the expression evaluator provided by the USE

system is invoked with the two parameters “UserPermissions” and the user “u”, whose set of permissions

is to be determined. The other review functions have been implemented similarly.

3) System Functions:Some RBAC system functions such asCheckAccesshave been realized with

USE similarly to the review functions. As in the case of review functions, theCheckAccessfunction has

been specified in the USE file and is then executed by the aforementionedeval() method. In contrast, the

28



session-related system functions likeCreateSessionmust be realized in the same way as the administrative

functions by means of the state manipulation commands.

4) Constraint Checking:The basic idea of the constraint checking mechanism is as follows: The

authorization engine checks if the relevant authorizationconstraints are still satisfiedafteran administrative

or system function such asCreateSessionhas been carried out. This is done by thecheck() method made

available by the USE API. If any constraint is violated, the last administrative or system function is

automatically revoked with the help of anundo() method. As a consequence, the tool produces only

RBAC configurations that are consistent with the specified RBACpolicy.

VI. D ISCUSSION ANDFUTURE WORK

There are several directions for further research. We mainly discuss two extensions of our approach that

seem to be worthwhile pursuing. First, LTL and OCL are only general-purpose specification formalisms.

However, we have not a formalism at hand which is speciallytailored towardsthe need of a policy

designer. For this reason, we discuss here how RCL 2000 specifications can be translated into OCL

statements. The policy designer can then decide to use OCL and/or RCL 2000 for the specification of the

RBAC policies. In the latter case, the policy designer can then employ the USE tool for validation and

the authorization engine after the translation process.

The second extension of our work concerns history-based constraints: Owing to the fact that USE can

only check the current snapshot of a system, history-based authorization constraints cannot be dealt with.

For this purpose, a temporal extension of OCL is needed. In thefollowing, we discuss both extensions

in more detail. We also compare our approach with other worksin a section on related work.

A. Relationship between RCL 2000 and OCL

Given the expressive power of OCL, specification languages for authorization constraints such as

RCL 2000 [6] can be translated into OCL. This gives the policy designer the opportunity to specify

authorization constraints in a security language and then to validate and enforce the constraints with the

29



help of USE. Subsequently, we show that RCL 2000 expressions have appropriate counterparts in OCL,

i.e., we demonstrate that the syntactical constructs of RCL 2000 can be translated into OCL expressions.

The reader may be referred to Ahn’s thesis [6] in order to obtain more information on the details of

RCL 2000’s syntax.

RCL 2000 sets and relations:The basic RBAC sets such asU , R and P are modeled by UML

classes. The relations such asUA, PA, andRH can be represented by the UML associations presented

in Fig. 4. In addition, the setsCU , CP , andCR are expressed by local variables in alet statement (cf.

Section IV-A.2). Although OCL only supports finite sets, thisis no problem here because RCL 2000 itself

only supports finite sets.

Operators: Operators like⇒, ∧, ≤ or ≥ have their obvious counterparts in OCL, namely,implies,

and, ≤ or ≥. |X| returns the cardinality of a setX and can be expressed by OCL’ssize operator.

RBAC functions:RCL 2000 supports various RBAC functions. We now demonstrate bymeans of

several examples that the RBAC functions can be modeled in OCL.Due to space limitations we do

not cover every RBAC function here. One example is theuser function, which returns the unique

user of a session. This function can be trivially represented by self.user if the context of the OCL

expression isSession. The overloadedroles function returns all the roles belonging to a user, session,and

permission, respectively. Moreover,roles∗ is a variant ofroles which additionally takes the role hierarchy

into consideration. For example,roles∗(u) = {r ∈ R |∃ r1 ∈ R. r ≤ r1∧ (u, r1) ∈ UA} returns all the

roles assigned to useru and all the roles junior to them.roles∗ can be formulated in OCL as follows:

roles star(u:User):Set(Role)=
Role.allInstances->select(r|r.senior->exists(r1|u.role->includes(r1))).

Note thatr.senior by definition already contains all the roles senior tor due to the transitivity of≤.

Hence, we need not specify a function which calculates the senior roles ofr recursively.

Non-deterministic functions:The central functions of RCL 2000, however, areOE (one element)

andAO (all other), which are both non-deterministic functions.OE (X ) selects non-deterministically one

element from a setX. Multiple occurrences of the expressionOE (X ) within an RCL 2000 statement

30



return always the same element ofX. AO(X) gives then the complementX − {OE (X )} on any set

X. Hence, we have the equationX = {OE(X)} ∪ AO(X).

The OE function can be expressed by theany operation provided by OCL with the condition set to

true, i.e.,OE (X ) corresponds toX->any(true). As mentioned above, multiple occurrences of theOE (X )

expression always yield the same element. This can be conveniently expressed by factoring out theany

expression in alet expression.AO(X ) can then be translated toX-{X->any(true)}.

For example, consider the following RCL 2000 expression containing OE andAO terms:

OE (OE (CR)) ∈ roles(OE (U )) ⇒ AO(OE (CR)) ∩ roles(OE (U )) = ∅

Then the corresponding OCL expression is:

let
CR:Set(Set(Role))={...},
cr:Set(Role)=CR->any(true),
r:Role=cr->any(true),
u:User=User.allInstances->any(true)

in
u.role ->includes(r) implies((cr-{r})->intersection(u.role )={})

Having shown that the basic elements of RCL 2000 can be converted to OCL, we now brieflysketch

a translation algorithm: In the first step of this algorithm all the AO expressions are eliminated from the

RCL 2000 expression. Then we iteratively translateOE terms into OCL expressions, introducing new

local variables in alet construct as explained above. This way, the same occurrences of OE expressions

within an RCL 2000 expression can be factored out. If we have nested OE expressions, the translation

will be started from the innermostOE term.

The analysis of the runtime depends on the number ofOE terms. Therefore, this algorithm can translate

an RCL 2000 expression inO(n), supposing thatn is the number of the differentOE terms. As future

work a compiler could be developed that parses the RCL 2000 statements and converts them into OCL

expressions, based upon the aforementioned algorithm.

31



B. History-based constraints

OCL is quite similar to first-order predicate logic. As expressions of the predicate calculus, OCL

expressions used in invariants are evaluated in a system state. However, due to the fact that we consider

here only one snapshot of the system, we have no notion of time. Hence, authorization constraints that

consider the execution history such as history-based or object-based dynamic SoD cannot be expressed.

In the following, we sketch how history-based authorization constraints can be specified in TOCL

(Temporal OCL) [41], an extension of OCL with temporal elements. In particular, temporal operators like

always (in the future),sometime (in the future), andnext are available. To demonstrate how history-based

authorization constraints can be formulated in TOCL, we takeobject-based dynamic SoD as an example.

In order to specify object-based dynamic SoD, we use the the predicateExec(u, op, obj) introduced in

Section III-A.1. However, due to the fact thatExec is a ternary predicate and OCL does not directly

support ternary associations8 we extend (T)OCL with an additional predicateExec to express ternary

associations, as proposed by Gogolla et al. [42]. Then, we obtain the following TOCL specification for

object-based dynamic SoD:

context Object inv ObjDSoD:
Operation.allInstances->forAll(op,op1|

User.allInstances->forAll(u|(Exec(u,op,self) and op1<>op) implies always not Exec(u,op1,self)))

This corresponds to the first-order LTL specification given in Section III-A.1:

∀u : User ; op, op1 : Operation; obj : Object.op 6= op1 ∧ Exec(u, op, obj) ⇒ 2¬Exec(u, op1, obj)

Having a formalism for the specification of history-based constraints at hand, the next step would be

to extend USE itself in order to support TOCL. This way, the authorization engine could also enforce

history-based constraints, which are often required in thecontext of workflows [3].

In this respect, another direction for future work would be to develop a compiler which translates TOCL

specifications into first-order LTL. Then we could utilize Isabelle to formally verify properties of the LTL

representation (and indirectly of the TOCL specification) ofthe RBAC policy in question. To sum up, we

8Strictly speaking, with the help of association classes ternary associations can be expressed in OCL, but this construction is a bit clumsy.

32



RCL 2000 UML/OCL LTL TOCL

Static SoD constraints yes yes yes yes

Simple Dynamic SoD [18] yes yes yes yes

History-based SoD constraints no no yes yes

Workflow constraints no no yes yes

Cardinality constraints yes yes yes yes

Prereq. roles/permissions yes yes yes yes

Context constraints w.r.t. location no yes yes yes

Context constraints w.r.t. time [21] no currently no support currently no support currently no support

Delegation/revocation no yes yes yes

Verification/validation no support validation with USE formal verification with Isabelle currently no support

Authorization engine currently no support yes currently no support currently no support

TABLE I

OVERVIEW OF RBAC SPECIFICATION LANGUAGE PROPERTIES.

could now enforce dynamic RBAC policies with the enhanced USEsystem and at the same time verify

dynamic RBAC policies by means of Isabelle. This way the gap between the (T)OCL and first-order LTL

approach can be filled. As a summary, Tab. I presents the essential properties of the RBAC specification

languages discussed in this paper.

C. Related Work

There are several works on the formal specification of authorization constraints such as [21], [6], [8],

[13]. Gligor et al. [13] formalize history via traces of states, but end up with rather complex formulas

explicitly talking about states. In contrast, first-order LTL allows for an elegant formulation of history-

based SoD constraints.

Joshi et al. define the GTRBAC model which has the notions of temporal constraints and events [21].

Joshi et al. explicitly introduce points of time and duration in order to specify temporal contexts whereas

we currently concentrate on history-based and order-basedSoD constraints. Clearly, we can extend our

library of Isabelle theories in order to support GTRBAC and could introduce predicates for events. This

is needed, for example, if we would like to deal with temporaldelegation constraints such as duration

33



constraints on delegation rules. In addition, Shafiq et al. present a verification framework using Petri nets,

which is based on GTRBAC [43]. Similarly to the validation approach with USE, the framework can

detect conflicting and missing constraints. In contrast to the USE approach, the verification is tailored to

GTRBAC’s event-based model. However, this verification approach can handle only finite sets of RBAC

entities and has exponential time and space complexity. In contrast, we can prove general theorems on

RBAC policies by means of theorem proving with Isabelle, regardless whether the underlying sets are

infinite or change at runtime.

Often the graph-based approach presented by Koch et al. [44]is mentioned in the context of policy

verification. Among other aspects, this approach ensures that concrete RBAC configurations remain

consistent w.r.t. a specified RBAC policy when administrative RBAC functions (represented as graph

rules) are performed. In this respect, this approach is similar to our enforcement mechanism based upon

USE. In fact, one could also build an authorization engine based upon a graph transformation engine. In

addition, Koch et al. present an approach to the detection and resolution of conflicting constraint pairs,

similar to the validation with USE. Currently, however, no tool support for the detection of conflicting

constraints seems to exist.

Crampton presents another authorization engine [45]. However, with Crampton’s approach, for example,

neither the SSoD-CU constraint nor context constraints are supported. On the other hand, no history-based

SoD constraints can be currently enforced with the USE approach.

In this paper, we only presented a simple delegation and revocation scheme. In fact, newer schemes

[28], [46], [29] could also be expressed by means of the LTL approach. For example, Atluri et al. extended

the notion of delegation to allow conditional delegation, where the delegation conditions can be based on

time, workload and task attributes, specifically focusing on constraints associated with workflow systems

[28]. In addition, GTRBAC has recently adopted role-based delegation notions with hybrid hierarchies

and multiple hierarchy semantics to support fine-grained delegation schemes [29].

34



VII. C ONCLUSION

In this paper, we presented a methodology for the specification, verification, and enforcement of RBAC

policies. In particular, we demonstrated that several types of authorization constraints can be specified

with the help of the formalisms first-order LTL, OCL and TOCL. Due to the fact that UML/OCL is

quite familiar in industrial environments there is hope that OCL can be used by policy designers in many

organizations. In addition, we demonstrated that the theorem prover Isabelle can help in formally verifying

properties of complex dynamic RBAC policies. The validationapproach with the USE system, however,

can be regarded as a first line of defense, which can be used to fulfill several practical needs. First, USE

can be employed to validate authorization constraints. This way, certain conflicts between authorization

constraints and missing constraints can be detected. Second, the Java API provided by USE can be utilized

to build an authorization engine which helps to enforce various RBAC policies.

To sum up, both the formal and the practical approach to policy specification and verification can be

used in the design phase in order to rule out inconsistenciesand undesirable properties of RBAC policies

early. Last but not least, the approaches can be regarded as complementary rather than competitive.

REFERENCES

[1] KPMG, “Fraud survey reports 1996-2002,” 2006, KPMG International Canada.
[2] EU, “Directive on the protection of individuals with regard to the processing of personal data and on the free movement of such data.

Directive 95/46/EC. http://www.privacy.org/pi/intlorgs/ec/eudp.html,” 1995.
[3] M. J. Nash and K. R. Poland, “Some conundrums concerning separation of duty,” inProc. IEEE Symposium on Research in Security

and Privacy, 1990, pp. 201–207.
[4] D. D. Clark and D. R. Wilson, “A comparison of commercial and military computer security policies,”Proc. of the 1987 IEEE

Symposium on Security and Privacy, pp. 184–194, 1987.
[5] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-basedaccess control models,”IEEE Computer, vol. 29, no. 2, pp. 38–47,

Feb. 1996.
[6] G.-J. Ahn, “The RCL 2000 language for specifying role-based authorization constraints,” Ph.D. dissertation, George Mason University,

Fairfax, Virginia, 1999.
[7] American National Standards Institute Inc., “Role Based Access Control,” 2004, ANSI-INCITS 359-2004.
[8] T. Jaeger and J. Tidswell, “Practical safety in flexible access control models,”ACM TISSEC, vol. 4, no. 2, pp. 158–190, May 2001.
[9] T. Nipkow, L. Paulson, and M. Wenzel,Isabelle/HOL — A Proof Assistant for Higher-Order Logic. Springer Verlag, 2002.

[10] M. Richters, “A Precise Approach to Validating UML Models and OCL Constraints,” Ph.D. dissertation, Universität Bremen, Fachbereich
Mathematik und Informatik, Logos Verlag, Berlin, BISS Monographs, No. 14, 2002.

[11] R. Anderson,Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley, 2001.
[12] R. Goldblatt,Logics of Time and Computation, Second Edition, Revised and Expanded, ser. CSLI Lecture Notes. CSLI, Stanford,

1992 (first edition 1987), vol. 7, distributed by University of Chicago Press.
[13] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo, “On the formal definition of separation-of-duty policies and their composition,” in1998

IEEE Symposium on Security and Privacy (SSP ’98). IEEE, May 1998, pp. 172–185.
[14] Z. Manna and A. Pnueli,The Temporal Logic of Reactive and Concurrent Systems, Specification. Springer-Verlag, 1992.
[15] J. Warmer and A. Kleppe,The Object Constraint Language: Getting Your Models Ready for MDA. Addison-Wesley, 2003.
[16] G.-J. Ahn and M. Shin, “Role-Based Authorization Constraints Specification Using Object Constraint Language,” inProc. of the 10th

IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise. IEEE, 2001, pp. 157–162.
[17] I. Ray, N. Li, R. France, and D.-K. Kim, “Using UML to visualize role-based access control constraints,” inProc. of the 9th ACM

symposium on Access control models and technologies. ACM Press New York, USA, 2004, pp. 115–124.

35



[18] R. Simon and M. Zurko, “Separation of duty in role-based environments,” in 10th IEEE Computer Security Foundations Workshop
(CSFW ’97), June 1997, pp. 183–194.

[19] K. Sohr, M. Drouineaud, and G.-J. Ahn, “Formal Specificationof Role-based Security Policies for Clinical Information Systems, Santa
Fe, New Mexico,” inProc. of the 20th ACM Symposium on Applied Computing, 2005.

[20] V. Atluri and J. Warner, “Supporting conditional delegation in secure workflow management systems.” inSACMAT, E. Ferrari and G.-J.
Ahn, Eds., 2005, pp. 49–58.

[21] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized temporal role-based access control model.”IEEE Trans. Knowl. Data
Eng., vol. 17, no. 1, pp. 4–23, 2005.

[22] E. Bertino, E. Ferrari, and V. Atluri, “The specification and enforcement of authorization constraints in workflow management systems.”
ACM Trans. Inf. Syst. Secur., vol. 2, no. 1, pp. 65–104, 1999.

[23] T. Mossakowski, M. Drouineaud, and K. Sohr, “A temporal-logicextension of role-based access control covering dynamic separation
of duties,” in Proc. of TIME-ICTL 2003, Cairns, Queensland, Australia, July 8–10 2003.

[24] R. Sandhu, “Transaction control expressions for separation of duties,” Fourth Aerospace Computer Security Applications Conference,
Orlando, pp. 282–286, 1988.

[25] A. Schaad, V. Lotz, and K. Sohr, “A model-checking approachto analysing organisational controls in a loan origination process,” in
Proc. of the 11th ACM Symposium on Access Control Models and Technologies. New York: ACM Press, June 2006.

[26] E. Barka and R. Sandhu, “A role-based delegation model and some extensions,” inProc. of 16th Annual Computer Security Application
Conference, Dec. 11–15 2000, pp. 125–134.

[27] H. M. Gladney, “Access control for large collections,”ACM Trans. on Information Systems, vol. 15, no. 2, pp. 154–194, 1997.
[28] V. Atluri and J. Warner, “Supporting conditional delegation in secure workflow management systems,” inProc. of the 10th ACM

Symposium on Access Control Models and Technologies, Stockholm, Sweden, June 1–3 2005, pp. 49–58.
[29] J. Joshi and E. Bertino, “Fine-grained role-based delegation in presence of the hybrid role hierarchy,” inProc. of the 11th ACM

Symposium on Access Control Models and Technologies, Lake Tahoe, California, USA, June 7–9 2006, pp. 81–90.
[30] L. Zhang, G.-J. Ahn, and B.-T. Chu, “A rule-based framework for role-based delegation and revocation,”ACM Transactions on

Information and System Security, vol. 6, no. 3, pp. 404–441, Aug. 2003.
[31] A. Hagstr̈om, S. Jajodia, F. Parisi-Presicce, and D. Wijesekera, “Revocations –a classification,” in14th IEEE Computer Security

Foundations Workshop (CSFW ’01), June 2001, pp. 44–58.
[32] K. Sohr and M. Drouineaud, “Isabelle Theories. http://www.sis.uncc.edu/liisp/rbac/Isabelle.zip,” 2005.
[33] A. Turing, “On Computable Numbers with an Application to the Entscheidungsproblem,”Proceedings of the London Mathematical

Society (2), vol. 42, pp. 230–265, 1936. [Online]. Available:www.abelard.org/turpap2
[34] M. Drouineaud, M. Bortin, P. Torrini, and K. Sohr, “A first step towards formal verification of security policy properties for RBAC,”

in Proc. of the 4th International Conference on Quality Software, 2004, pp. 60–67.
[35] E. Clarke, O. Grumberg, and A. Peled,Model Checking. Cambridge, Massachusetts: The MIT Press, 1999.
[36] J. Rumbaugh, I. Jacobson, and G. Booch,The Unified Modeling Language Reference Manual, Second Edition, ser. Object Technology

Series. Reading, Mass.: Addison Wesley Longman, 2004.
[37] K. Sohr, G.-J. Ahn, M. Gogolla, and L. Migge, “Specification andvalidation of authorisation constraints with UML and OCL,” in

Proc. of the 10th European Symposium on Research in Computer Security, 2005.
[38] M. Gogolla, J. Bohling, and M. Richters, “Validation of UML and OCL Models by Automatic Snapshot Generation,” inProc. 6th Int.

Conf. Unified Modeling Language (UML’2003). Springer, Berlin, LNCS 2863, 2003, pp. 265–279.
[39] K. Sohr, G.-J. Ahn, and L. Migge, “Articulating and enforcing authorisation policies with UML and OCL,” inProc. of the ACM ICSE

Workshop on Software Engineering for Secure Systems (SESS05), St. Louis, MO, 15-16 May 2005.
[40] OASIS, “eXtensible Access Control Markup Language (XACML)Version 2.0,” 2005. [Online]. Available:

http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf
[41] P. Ziemann and M. Gogolla, “An OCL Extension for Formulating Temporal Constraints,” Universität Bremen, Res. Report 1/03, 2003.
[42] M. Gogolla and M. Richters, “Transformation Rules for UML Class Diagrams,” in Proc. 1st Int. Workshop Unified Modeling

Language (UML’98). Springer, Berlin, LNCS 1618, 1999, pp. 92–106.
[43] B. Shafiq, A. Masood, J. Joshi, and A. Ghafoor, “A role-based access control policy verification framework for real-time systems,”in

Proc. of IEEE Workshop on Object-oriented Real-time Databases, 2005, pp. 13–20.
[44] M. Koch, L. Mancini, and F. Parisi-Presicce, “Graph-based specification of access control policies,”Journal of Computer and System

Sciences, vol. 71, no. 3, pp. 1–33, 2005.
[45] J. Crampton, “Specifying and enforcing constraints in role-based access control,” inProc. of the 8th ACM Symposium on Access Control

Models and Technologies. New York: ACM Press, June 2–3 2003, pp. 43–50.
[46] J. Wainer and A. Kumar, “A fine-grained, controllable, user-to-user delegation method in RBAC,” inProc. of the 10th ACM Symposium

on Access Control Models and Technologies, Stockholm, Sweden, June 1–3 2005, pp. 59–66.

36


