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IDD: A Supervised Interval Distance-Based
Method for Discretization

Francisco J. Ruiz, Cecilio Angulo, and Nuria Agell

Abstract—This paper introduces a new method for supervised discretization based on interval distances by using a novel concept of
neighborhood in the target’s space. The proposed method takes into consideration the order of the class attribute, when this exists, so
that it can be used with ordinal discrete classes as well as continuous classes, in the case of regression problems. The method has
proved to be very efficient in terms of accuracy and faster than the most commonly supervised discretization methods used in the
literature. Itis illustrated through several examples, and a comparison with other standard discretization methods is performed for three
public data sets by using two different learning tasks: a decision tree algorithm and SVM for regression.

Index Terms—Classification, ordinal regression, supervised discretization, interval distances.

1 INTRODUCTION

ISCRETIZATION, also named quantization, is the process

by which a continuous attribute is transformed into a
finite number of intervals associated with a discrete value.
The importance of discretization methods stems from
interest in extending to continuous variable classification
methods, such as decision trees or Bayesian networks,
which were designed to work on discrete variables. The use
of discrete variables, besides diminishing the computational
cost of some automatic learning algorithms, also facilitates
the interpretation of the obtained results [10], [3].

Discretization can be considered as a previous stage in
the global process of inductive learning. In decision trees,
discretization as a preprocessing step is preferable to a local
discretization process as part of the decision tree building
algorithm [4]. This stage can be carried out directly by an
expert or automatically by means of a suitable methodol-
ogy. In any case, the discretization process entails implicit
knowledge of the data. This knowledge is introduced
explicitly into the learning process by an expert or extracted
implicitly from the data as a prior step to the global learning
process, if discretization is carried out automatically.

On Qualitative Reasoning methods [19], discretization
becomes a mandatory step when data present excess of
precision. Excess of precision is, in general, caused by
increasing interest in improving measurement processes.
Precision may be desirable for some scientific purposes but
not for others, since it supposes an excessive amount of
information that also requires excessively large memory
and calculation capacity. Computer programmers know
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that if it is not strictly necessary, they should otherwise
avoid using double precision variables and resort, when-
ever possible, to integer variables, or better still, Boolean
variables.

The existing methods of discretization can be classified
mainly into two categories: unsupervised and supervised
[3]. Unsupervised methods do not consider the class to
which the training patterns belong. Among these, the most
significant are the equal-width and the equal-frequency
methods [1], [8], [3]. These methods are very simple to
implement with a low computational cost. In addition, it
has been pointed out [2] that these types of methods are
vulnerable to outliers and the results obtained are rather
unsatisfactory in most cases.

On the other hand, supervised methods consider the
interdependence between the variable to be discretized and
the class to which the patterns belong. Holte [7] presented
the simplest example of a discretization method, the
1R algorithm. This method attempts to divide the domain
of every continuous variable into pure bins, each containing
a large majority of one particular class. Chi-merge [8], Chi2
[11], and StatDisc [15] provide statistical justification of
discretization by using the x? test to measure the indepen-
dence between intervals. Other supervised methods such as
the D2 method introduced by Catlett [1] and Minimum
Description Length (MDLP) criterion [16] are based on
recursive entropy minimization [4]. Finally, some super-
vised methods of discretization, such as the CAIM method
[9], are based on information measures extracted from the
quanta contingence matrix.

Most of the existing supervised methods are incremental.
This means that they begin with a simple discretization and
undergo an iterative process, adding news cutpoints (in
top-down methods) or deleting cutpoints (in bottom-up
methods). CAIM is an example of a top-down method,
whereas Chi-merge is an example of a bottom-up method.
Incremental methods need an additional criterion to
identify when to stop the process. Unsupervised methods
such as equal width or equal frequency are not incremental
methods, as all cutpoints are found simultaneously: ex-
plaining why these methods are so fast.

Published by the IEEE Computer Society
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The automatic methods of discretization existing in the
literature are specifically designed for the problem of Pattern
Recognition or Classification, according to which the output
variable is a categorical variable whose values belong to a
finite set with no order relation. The objective of discretiza-
tion in such methods is to obtain intervals of the continuous
attribute so that patterns with values pertaining to the same
interval belong to the same class. This requirement is
complemented with a fixed number of intervals and an
accepted error level.

There are two important negative aspects to be con-
sidered in classic discretization methods. On the one hand,
such methods do not consider class proximity, i.e., they
penalize patterns assigned to a similar class in the same
way as patterns assigned to a very different class. On the
other hand, such methods are ineffective when the output
variable involves a large number of classes since, in this
case, it is necessary to consider a large number of intervals
with very few patterns in each.

These points reveal the limitations of the existing
discretization methods when the output variable has a
large number (or even infinity) of ordered different values.
This is a frequent situation, which arises, for example, when
the output variable is a qualification: an exam grade, a
product satisfaction level, a program audience, a life
expectancy after medical treatment, or a financial rating.
In these cases, it would be advisable to use the full output
variable information including the order identified.

This paper introduces a new method for supervised
discretization, Interval Distance-Based Discretization (IDD),
which avoids the limitations mentioned above, i.e., it takes
into account the order of the output variable and can be
used with any number of different output variable values.
This new method is based on interval distances and a novel
concept of neighborhood. In addition, the methodology
proposed is also applicable when there is no order in the
class variable, using a suitable distance in the output
variable distribution.

In Section 2, the IDD is described in detail. Section 3 is
devoted to presenting some interval distances that can be
used in the proposed method. In Section 4, some examples
are used to illustrate the IDD method, and in Section 5, the
method is applied to demonstrate best performance over
other methods in two different learning tasks. The final
section is reserved for discussion and a summary of this
work.

2 INTERVAL DISTANCE-BASED DISCRETIZATION

This section presents the novel method of IDD. This method
considers the order of the output variable and can work
with ordinal output variables with a large number of
different values as well as with continuous variables. The
IDD is neither a bottom-up nor a top-down method, but one
which, unlike the usual supervised discretization techni-
ques, finds the cutpoints in a single step, dramatically
improving computational speed with respect to other
techniques. In addition, the number of intervals can either
be set previously by the user, as happens in other iterative
algorithms, or obtained directly through using the novel
concept of A-neighborhood.

A-neighborhood is the set of A nearest neighbors, with
respect to the input variable, considered for analyzing
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whether or not a specific value is a suitable discretization
cutpoint. The concept of A-neighborhood is key in the IDD
method and can be considered as a measure of the quality
of the borders. This concept will show that the effectiveness
of a border depends on the size of the intervals separated by
this border. A specific point may be an effective border for
small intervals and ineffective for large intervals, in the
same way that a geographic border may be good for
separating regions and unsuitable for separating countries.
The A-neighborhood is a concept that considers the kind of
border it is looking for. This concept is highly related to the
granularity of discretization. If A-neighborhood is large, the
granularity will be small (there are fewer borders when
looking for countries’” borders than when looking for
borders of towns or counties).

The IDD has, in addition, a new interesting feature that is
different from the existing methods of discretization. In
general, discretization forces patterns belonging to the same
interval to have the same class. However, the IDD takes into
consideration that the distribution of the classes of two
contiguous intervals are as different as possible, allowing
classes of the same interval to be distributed with a broad
deviation. In order to understand the advantage of this
characteristic, the discretization of the “age” variable can be
considered when the output is the “income” variable. What
makes it possible to distinguish, for example, the age
interval (15, 25] from the age interval (26, 37] is not that the
first have a low income and the second have a high income,
but that most of the first have low income and the second
have low, medium, and high incomes: the income deviation
in each interval is significantly different.

2.1 Terminology

Let us start by establishing the formal terminology on
discretization and some concepts related to the new
method. A learning task requires a training data set
consisting of N examples, where each example has a set
of input variables and an output variable. Given a set of
N sample patterns, let us consider a continuous input
variable, X its domain and Y the domain of the output. In
this method, such as in the majority of the supervised
discretization methods, only one input variable is consid-
ered, so the training set can be partially represented by the
set of couples:

{1, 1), (@2,92), -, (TN, yn)} C X X Y. (1)

Definition (discretization). A discretization D of granularity
n of a continuous variable with domain X is a set of disjoint
intervals:

D: {[d[]7d1]7]d17d2]7"'7]dn—17dn]} (2)
such that dy and d,, are the minimal and maximal values of X,

respectively, and the rest of d; is arranged in ascending order.

The set {dy, dy, ..
cutpoints of discretization D. Usually d; € {z1,..
but if N is small it is better to take

d; € {(.731 —|—$2)/2, (.ZQ +$3)/2, Ceey (.77]\[—1 +1‘V)/2}

The criterion applied to decide whether d; is a suitable
landmark depends on the discretization method used.

.,d,} is named the set of landmarks or
. 7'1)1\7} = X/
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Fig. 1. lllustration of A-neighborhood for A = 3.

2.2 Neighborhood

The criterion IDD consists of selecting a cutpoint if this
locally separates the range of input variable into intervals
which are different according to the specific learning
problem being considered. When it is judged that a value
d; € X is a good candidate to be a cutpoint, the adjacent
intervals formed by the same number, A, of data in both
sides of d; will be considered. This set of values will be
named A-neighborhood. Most of the discretization methods
analyze the suitability of a cutpoint by considering the
intervals |d;_1, d;] and ]d;, d; 1], so they need to consider the
cutpoints d;_; and d;1.

From here on, throughout the rest of this paper, it will be
considered that x; < x;. Vi.

Definition (Set of right and left A-neighborhoods). Let
x; € X, the right-A-neighborhood and left-A-neighborhood
of x; are, respectively, the set of A values:

AL($7) = {CE{,,A, ..
AR(lL) = {Ii+1, oo

. ,C.El 1} cX s (3)
,ZLH_A} C X.

The definition of neighborhood is illustrated in Fig. 1 for
the case of A=3. It is important to note that the
left-A-neighborhood is not defined for the first A values
Z1,. ..,z of the training set and the right-A-neighborhood is
not defined for the last A values zy_a+1, ..., 2y, resulting
in these values not being selected as cutpoints. It is
necessary to consider this circumstance when choosing
the suitable A (usually a suitable value will verify A < N).
As mentioned above, the value of A is related to the
granularity of discretization. A large A will obtain few
cutpoint numbers, whereas a low value of A will obtain
more cutpoints.

2.3 Output Sets and Intervals Associated
In order to decide if z; is a suitable cutpoint, we will look at
the output of the A-neighborhoods associated to z;.

Definition (Output sets of right and left A-neighborhoods).
Let x; € X, the output sets of right-A-neighborhood and
left-A-neighborhood of x; are, respectively, the sets of A
values:

0Sa-(2i) = {yi-a,- .-
OSay (i) = {¥it1, - -

7yif1} C Ya

(4)
7yi+A} cY.

If the output variable is an ordinal variable or a
continuous variable, it is possible to associate an interval
(I0Sa) to each A-neighborhood. The most direct association
is the range of A-neighborhood outputs.

Definition (Range intervals associated to output sets of
right and left A-neighborhoods). Let xz; € X, the range
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intervals associated to output sets defined above are,
respectively,

I0S\"" (x;) = (min(OSa-), max(0OSr-)) C Y,
IOSrU/ﬂgE’ _ s (5)
() = (min(OSay ), max(0OSa)) C Y.

Other associations are possible, for example, the inter-
quartile ranges (I0S}"?) or intervals centered at the mean
and radius equal to the standard deviation (IOSgedesv).
These latter associations will be less sensitive to outliers
than the range.

The output sets of the A-neighborhoods, or the intervals
associated, do not depend on the input variable values but
only on its order. In this form, the cutpoints selected remain
unchanged if a normalization of this input variable is made.

2.4 The IDD Criterion

The distance between the two intervals associated to the
output sets of A-neighborhoods will be the criterion to
decide if z; € X is suitable for being a cutpoint. It is possible
to consider several kinds of distances between intervals.
Section 3 will present two different distances defined in the
set of intervals.

Once a distance measure has been chosen, a function d
from {zat1,...,2ny-a-1} to R (or, better, from {A +
1,...,N —A —1} to R) will be obtained:

d(i) = distance(IOSA—(z;), IOSA+(x;)). (6)

The most significant local maxima of function d will be
the cutpoint selected. This selection is achieved using a
window of size A’ (being A" an integer), which moves from
the beginning to the end of the domain of d. The absolute
maximum is voted in each window. The most-voted values
are the cutpoints selected. The number of cutpoints selected
depends on the size of the A’ windows. It is reasonable for
the size of the A’ windows to be related with A. We have
taken A’ = A.

The pseudocode for this algorithm is given as follows:

votes = zeros(L)

fori=1toL—-A'+1
index = argmax(d(i: (i+ A’ —1)))
votes (index) ++

end for

votes

This algorithm returns the vector “votes” with a few
nonzero elements. Each value is analyzed A’ times, i.e., the
maximum value possible for votes(k) is A’. One criterion for
selecting cutpoints is to choose the values elected A’ times
exactly (the maximum). This way, the number of cutpoints
is indirectly chosen by the values of A and A'. It is better to
consider the vector votes weighted by the vector d; this way,
it is easier to select the cutpoints in order of importance.

3 INTERVAL DISTANCES

To complete the method, it is necessary to define the
concept of interval distance. It is not evident what a
distance between intervals is. Normally, the distance
between two sets of a metric space is defined as the
minimum distance between an element of one set and an



RUIZ ET AL.: IDD: A SUPERVISED INTERVAL DISTANCE-BASED METHOD FOR DISCRETIZATION

element of the other set. However, this is not a correct
distance, i.e., the properties of a true distance are not
satisfied. A suitable distance must satisfy for all x, y:

1. d(z,y) >0andd(z,z) =0,

2. d(z,y) =d(y,z), and

3. d(z,y) <d(z,2) +d(zvy).

Let us consider some of the most relevant distances
defined on the set of closed and bounded real intervals.

3.1 Hausdorff Distance

By considering closed and bounded real intervals as
compact subsets of a metric space, it is possible to employ
the Hausdorff distance.

Definition (Hausdorff distance). Let I and I be two closed
real intervals, the Hausdorff distance between I, and I is

dy (I, Iy) = max{max,ey, d(z, I1), maxes, d(x, Iy)}, (7)

where the distance from a point x to an interval I is defined as
d(z,I) = minger(d(z, y)).

Therefore, the Hausdorff distance represents the max-
imum distance of an arbitrary point, belonging to one of the
intervals, to the other interval.

It is useful to characterize the Hausdorff distance as a
function of the ends of the intervals and as a function of the
center and the radius.

Proposition. If I =a,b1] and Iy =[ag, by, therefore
dH(Il, IQ) = max{\az — a1|, |b2 — b1|}

Proof. It is sufficient to consider that the distance from a
real point = to the interval I =a,b] is 0 if z € I and
min(d(a,z),d(b,z)) elsewhere and to apply the Haus-
dorff distance definition to all the relative positions of
two intervals I; and Is. O

Proposition. If ¢; and r are, respectively, the center and the
radius of I, and cy, and vy are the center and the radius of
I, respectively, ie., ¢ = (a1 +b1)/2, = (b —a1)/2,
Cy = (G,Q + bQ)/Q, and ry = (bz — O,Q)/Q, then

du(l1, I2) = |e1 — e + |r1 — o] = |Ac| + |Ar],
where Ac = ¢y — ¢ and Ar = ry — 1.

Proof.

dy (I, Iy) = max{|a2 — al|, |b2 — b1|}
= max{|c2 —r2 —cl +rl],|c2+1r2 —cl —rl|}
= max{|Ac — Ar|,|Ac+ Ar|}

by using max{a, 5} = 1/2 - (a + 6+ |6 — al)
max{|Ac — Ar], |Ac+ Ar|2} =1/2-(Ac— Arf? + |Ac+ Arf?
+||Ac— Arf* — |Ac+ Ar|2\)
= A + Ar? 4 2|Ac- Ar|
= (|Ad| + |Ar])?,
therefore, max{|Ac — Ar|,|Ac+ Ar|} = |Ac| + |Ar|. O

The Hausdorff distance can be expressed very easily
when using the center and the radius of the intervals. The

1233

proposition allows us to consider Hausdorff distance as a
Manbhattan distance or Minkowski distance () with p = 1.

3.2 Euclidean Distance

By identifying each interval I = [a, b] as a point of the metric
space R?, it is possible to use any distance from R?. The two
matching intervals ®;(I) = (a,b) € R* and ®5(I) = (c,7) =
((b+a)/2,(a—b)/2) € R* will lead to similar distances.

Definition (Euclidean distance between intervals). Let
I = [a1, b1] and Iy = [ag, bs]. The euclidean distance between
I, and I, is defined as follows:

dp(l1, 1) = ((a2 —a)? + (by — 51)2)1/2. 8)

Proposition. If ¢; and ry are, respectively, the center and the
radius of I, and cy and ry are the center and the radius of
I, respectively, ie, c = (a1 + bl)/2, r = (b1 — (11)/2,
Co = (U,Q + bQ)/Q, and ry = (bg — QQ)/Q, then

dp(L, I) = /2 - ((c2 — &1)* 4 (ry — 11)%)"?
=2 (A + A2,

where Ac = cy — ¢ and Ar =ry — ry.

Both Hausdorff and euclidean distances give the same
importance to the two basic features of an interval: the
position associated with the center and the precision
associated with the radius.

Other distances can be defined based on these definitions
[5], for example, using the above function by giving
different importance to the center and the radius.

4 EXAMPLES OF USING THE IDD METHODOLOGY

In order to illustrate the above concepts, let us consider a
couple of synthetic examples: the first with an ordinal
discrete output variable and the second with a continuous
output. In the first case, it will be possible to compare the
IDD method to other standard methods. In the second case,
on the contrary, a comparison will not be possible because it
is impossible to use such methods with continuous output.

4.1 First Example: Ordinal Discrete Output

A set of 1,000 patterns are generated in the first example.
These patterns are characterized by only one input
variable and one discrete output variable with five
classes. As commented above, the value of the input
variable is not important, only the order. For this reason,
a sequence of integer numbers (from 1 to 1,000) has been
taken as the input variable. The data have been generated
using the R expression [13] that is indicated below, where
rnorm(n, u,o) is the R function that generates n random
numbers from a normal distribution with mean p and
standard deviation o and floor(z) returns the closest
integer that is less than or equal to :

data.frame(seq(1000), c(floor(rnorm(300, 3,0.5),
floor(rnorm(150,4,0.2), floor(rnorm(250,2,0.6),
floor(rnorm(300,3,0.4)))).

The distribution of example 1 is represented in Fig. 2.
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Fig. 3. Comparing function d for several values of A (using completed
range and Hausdorff distance).

Figs. 3 and 4 represent the “distance” function presented
in Section 2 for A = 10, 30, and 50 by using the Hausdorff
distance (Fig. 3) and the euclidean distance (Fig. 4) and by
using the minimum-maximum range as intervals associated
to output sets of neighborhoods. It can be seen that the two
figures are similar. In this example, no significant differ-
ences were found when using the two distances. With
regard to the dependence on the value of A, when
increasing A, the number of local maxima of the “distance”
function decreases.

Figs. 5 and 6 represent the “distance” function for A = 10,
30, and 50 by using the Hausdorff distance (Fig. 5) and the

T
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- ™

o
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Fig. 4. Comparing function d for several values of A (using completed
range and euclidean distance).
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Fig. 5. Comparing function d for several values of A (using interquartile
range and Hausdorff distance).
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Fig. 6. Comparing function d for several values of A (using interquartile
range and euclidean distance).

euclidean distance (Fig. 6) and by using the interquartile
range instead of the minimum-maximum range. The
differences are appreciated mainly when A > 10, where
the local maxima are more delimited than in the previous
case. The interquartile range selects more suitable cutpoints,
by ignoring the noise produced by the outliers.

The extraction of the cutpoints from the “distance”
function has been done using the voting algorithm pre-
sented in Section 2. The results of this voting are
represented in Fig. 7a. The votes function, weighted by the
function distance (Fig. 7b), allows us to sort the cutpoints
according to their importance.

The next part of this example is the comparison of the
results obtained using the IDD method and other standard
methods. Concretely, it will compare the IDD method to the
bottom-up Chi-merge method [8] and the top-down CAIM
method [9]. Table 1 contains a summary of this comparison.
The most relevant difference between the IDD method and
other methods is that the execution time is of a lower order
of magnitude. The Chi-merge method found the expected
cutpoints by using a very low value of the ¢ parameter,
much lower than in most normal uses of this algorithm. The
CAIM method used in this work is a variant of the original
method proposed by Kurgan, where the number of final

1.00
\

votes
0.50
|

|
3
|

1.00
|

d-votes
0.50
|

0.00 .
| |

600 1000

Fig. 7. Comparing the use of bare votes and weighted votes (using
interquartile range, euclidean distance, and A = 30).
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TABLE 1
Comparison of Methods, Example 1
Cutpoints Time
2
é 162 166 228 230 265 266 301
0% 304 313 377 384 392 398 421
® a=10"1 440 445 450 501 509 556 564 | 240s
594 609 611 650 653 700 862
864 909 910 942 958 962
228 230 265 266 301 450 700
o107 862 864 909 910 240
a=105 265 266 301 450 700 909 910 240 s
a=107 301 450 700 909 910.5 240 s
a=10" 301 450 700 240's
CAIM 240 451 594 139s
»-1 450 237 301 466 501 527 590
= (‘; ATI0 646 657 692 700 0085
® % A=30 448 700 301 582 619 649 229 007 s
& 139 505 756 787 196 901 )
448 710 817 910 219 270 325
A=50 533 651 0.07 s
S 5 449 608 299 565 594 701 909
o g 403 797 534 545 67 847 16 136
= 171 182 251 262 314 328 758
) A=10 837 885 895 920 942 953 972 | +30°
f 982 78 502 748 817 57 392 491
0% 515 637 648 670 681 806
® | A=30 451 300 700 564 595 416
A=50 452 300 702 4.03s

intervals is fixed a priori. The first three cutpoints found
using this algorithm are not the expected cutpoints.

Finally, it can be seen that the best results are found by
using the interquartile range and A =50. The slight
difference is caused by the way in which the max function
works: If there are equal values, max function always
selects the ones to the left.

4.2 Second Example: Continuous Output

In the second example, a set of 1,000 patterns is also
generated but in this case with a continuous output
variable. In this example, it is not possible to compare with
standard discretization methods conceived for the classifi-
cation problem. As in the previous example, a sequence of
integer numbers has been used as input variable. The data
have been generated using the following expression in R:

data.frame(X = seq(1000),Y = c(rnorm(300) * 6 + 2,
rnorm(150) % 3 + 7, rnorm(250) * 2 — 2, rnorm(300) * 4 + 2)).

The distribution of these data is represented in Fig. 8.

Figs. 9, 10, 11, and 12 represent the “distance” function
for A =10, 30, and 50 using euclidean and Hausdorff
distances and minimum-maximum and interquartile
ranges. Although the shape of the graph is different from
example 1, the same arguments with respect to the
influence of A and the use of minimum-maximum and
interquartile ranges can be considered.
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Fig. 9. Comparing function d for several values of A (using completed
range and Hausdorff distance).

Finally, Fig. 13 represents the comparison between the
function votes and the weighted version functions. In the
second case, we obtain the cutpoints ordered by importance.

5 ComMPARING IDD wiTH OTHER DISCRETIZATION
METHODS BY MEANS OF REAL EXPERIMENTAL
DATA

In this section, we evaluate the IDD method for three realistic
data sets involving continuous inputs and continuous and
ordered multiclass outputs by using two different learning
tasks: the decision tree algorithm Recursive Partitioning
(RPART) [18] and the Support Vector Machine (SVM) for
regression [17]. The two tasks have been performed without

A=30 A =50

10 15 20
1
=
LN
o

5
L

0

N T T T T T T T T T T T T T T T T
0 200 600 1000 0 200 600 1000 0 200 600 1000

input input input

Fig. 10. Comparing function d for several values of A (using completed
range and euclidean distance).
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Fig. 11. Comparing function d for several values of A (using interquartile
range and Hausdorff distance).
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Fig. 12. Comparing function d for several values of A (using interquartile
range and euclidean distance).

previous discretization and with a discretization preprocess
on the continuous attributes using several discretization
methods: equal width, Chi-merge, CAIM, and IDD.

The databases are selected from the UCI repository [12]
(auto_mpg and abalone_m) and from the DELVE repository
[14] (kin8nm).

The database auto_mpg concerns city-cycle fuel con-
sumption in miles per gallon, to be predicted in terms of
three multivalued discrete and four continuous inputs. In
the abalone_m data set, the goal is to predict the age of male
abalones based on eight continuous inputs. Finally, the
kin8nm represents the forward dynamics of an eight-link
all-revolute robot arm. The goal is to predict the distance of
the end effector from a target, given the twist angles of the
eight links as features. The outputs of auto-mpg and kin8nm
are purely continuous and the output of abalone-m is

ordered multiclass (20 classes).
In order to use standard supervised discretization

methods such as Chi-merge and CAIM in purely contin-
uous output databases, an unsupervised discretization of
the output variable was performed (using equal width and
five classes). These methods cannot be used when output
variable has many different values.

The standard errors of regression in the two tasks using
all the discretization methods and without discretization
are shown in Fig. 14. These errors are calculated by using
the following formula:
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Fig. 13. Comparing the use of vote and d - vote (using interquartile range,
euclidean distance, and A = 30).
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auto_mpg

standard error

Raw data DD CAIM  cqual width ChiMerge

ORPART 3,62
mSVM 2,85

349
293

367 3,71 3,61
3,19 3,05 3,00

Fig. 14. Standard errors in RPART and SVM tasks in auto_mpg database
using several preprocessed discretization methods (parameters used:
IDD: A =20, euclidean distance, interquartile range. Equal width:
granularity = 5. Chi-merge: a = 0.005).

where ¥/, is the output predicted by the learning task, y; is
the correct output, and N is the number of test patterns.
The parameters of discretization methods were taken in
order to achieve similar level of granularity (approxi-
mately 5) and to facilitate the comparison. More precisely,
the values of parameter A used were A = 20 in auto_mpg
database, A = 30 in abalone_m, and A = 25 in kin8nm. In
all cases, the interquartile range and the euclidean
distance have been used. The standard error has been
estimated using twofold cross-validation and averaging

over 30 different training sets.

Starting from the results shown in Figs. 14, 15, and 16, it
is evident that SVM for regression obtained better perfor-
mance than RPART. In this last algorithm, discretization
allows one to improve the results obtained with raw data.
This is due to the fact that RPART does an implicit
discretization in the algorithm that is less efficient than
the explicit discretization.

IDD achieves the best performance in SVM task in all
databases and good performance in RPART task, similar to
the other methods.

abalone_m
2,70
265
. 2,60 |
2
£ 255
2 2,50
5
g 245
g
240
235
230
Raw data DD CAIM  equal width ChiMerge
ORPART| 2,64 253 2,50 254 253
mSVM 2,34 244 247 255 252

Fig. 15. Standard errors in RPART and SVM tasks in the abalone-m
database using several preprocessed discretization methods (para-
meters used: IDD: A =30, euclidean distance, interquartile range.
Equal width: granularity = 5. Chi-merge: o = 0.08).
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kin8nm
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Fig. 16. Standard errors in RPART and SVM tasks in kin8nm database
using several preprocessed discretization methods (parameters used:
IDD: A =25, euclidean distance, interquartile range. Equal width:
granularity = 5. Chi-merge: a = 0.05).

6 SumMARY, CONCLUSIONS, AND FUTURE WORK

This work describes IDD, a new discretization method,
which, unlike other standard supervised methods of
discretization, considers the order of the output variable. It
can be applied when the granularity of the output variable is
large and even with continuous output variables.

IDD is neither a bottom-up nor a top-down method, but
one which, unlike the usual supervised techniques of
discretization, finds the cutpoints in a single step, drama-
tically improving computational speed with respect to other
techniques. In addition, the number of obtained intervals
can be set previously by the user, as in other iterative
algorithms, or obtained directly by using the novel concept
of neighborhood, which can consider a measurement of the
quality of the borders.

The method is based on the concept of interval distance.
Two different distance measures that can be used in the
method have been introduced.

The features of the method are presented with two
illustrative examples, one with a discrete output variable
and the other with a continuous output variable. In the first
case, it has been possible to compare with other standard
methods but not in the second case since the standard
methods are conceived only for classification problems. An
experiment with real database and involving two different
learning tasks has also been shown. This experiment proves
the efficiency of the presented method.

In this work, no significant differences were found in the
performance between the two distance measures proposed,
Hausdorff and Euclidean. In future works, we will explore
the specific effect of each of these distances in the algorithm.
In addition, the method will be extended to categorical
classes by defining a suitable distance measure in the
specific sets of A-neighborhood outputs.
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> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



