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DiSC: Benchmarking Secure Chip DBMS
Nicolas Anciaux, Luc Bouganim, Philippe Pucheral, and Patrick Valduriez

Abstract—Secure chips, e.g., present in smart cards, USB dongles, i-buttons, are now ubiquitous in applications with strong security

requirements. Moreover, they require embedded data management techniques. However, secure chips have severe hardware

constraints, which make traditional database techniques irrelevant. The main problem faced by secure chip DBMS designers is to be

able to assess various design choices and trade-offs for different applications. Our solution is to use a benchmark for secure chip

DBMS in order to 1) compare different database techniques, 2) predict the limits of on-chip applications, and 3) provide codesign hints.

In this paper, we propose Data management in Secure Chip (DiSC), a benchmark that reaches these three objectives. This work

benefits from our long experience in developing and tuning data management techniques for the smart card. To validate DiSC, we

compare the behavior of candidate data management techniques using a cycle-accurate smart-card simulator. Furthermore, we show

the applicability of DiSC to future designs involving new hardware platforms and new database techniques.

Index Terms—Secure chip DBMS, embedded DBMS, benchmark, smart card, access control, access methods, query processing.

Ç

1 INTRODUCTION

SECURE chips, i.e., chips with a high level of tamper
resistance, are now ubiquitous in applications with

strong security requirements. Secure chips are integrated
in smart cards, i-buttons, and other forms of radio
frequency or pluggable smart tokens like USB dongles.
With more than one billion units sold every year, smart card
is the most popular secure chip form factor. It is used
worldwide in secured applications such as banking, pay-
TV, GSM subscriber identification, loyalty, healthcare, and
transportation. Recently, new secure chips form factors
have appeared for different applications such as Digital
Right Management (DRM) or antipiracy protection for PC
(every PC should integrate a Trusted Platform Module
(TPM) soon [33]). Although secure chips have very limited
computing resources, they are getting more and more
powerful. Today, they can support several applications,
e.g., using downloaded Java applets. To allow multiple
applications to share data efficiently, embedded data
management techniques are necessary. Embedding query
processing, access control, and transaction management
makes the application code smaller and safer. However,
secure chips have a unique hardware resource balance (e.g.,
powerful CPU versus tiny RAM and very fast read versus
very slow write in stable storage), making current database
techniques, even those designed for lightweight DBMS [15],
[22], [29], [32] irrelevant.

In the smart-card context, we addressed the problem of
scaling down database techniques and proposed the design
of a DBMS kernel called PicoDBMS [24]. We developed a
PicoDBMS prototype on a smart-card platform provided by
Gemalto, a leading smart-card manufacturer [1]. This
prototype has been recently componentized to tackle
various application scenarios, and these components have
been adapted to the future generation of Gemalto’s smart-
card platform. In retrospect, building embedded DBMS
prototypes stressed the high complexity of developing and
validating specific database techniques that encompasses
hardware, operating system, and application design issues.
With the rapid evolution of hardware and the diversifica-
tion of embedded applications, it becomes ever harder to
select with reasonable confidence the database techniques
that best fit a given hardware and software configuration.

Secure chips do not escape Moore’s law in terms of CPU
speed, memory size, and communication throughput. While
the pressure on some resources decreases, the hardware
characteristics of secure chips still impose to deeply revisit
traditional database techniques. For example, electronic
stable memory technologies (e.g., EEPROM or FLASH)
exhibit different trade-offs in terms of density, granularity,
and performance that strongly impact data management. At
the same time, applications on secure chips are experiencing
a strong mutation. Secure portable folders are getting
growing interest from major industrial players (e.g., Mas-
terCard’s Open Data Store [18]), and the introduction of
secure chips in common computing infrastructures (e.g., PC
or PDA [33]) is paving the way for new large-scale
applications. Ambient intelligence is also flooding many
aspects of our everyday life, with smart objects gathering
information about our habits and preferences. In all of these
situations, data hosted by these secure chips is personal and
must be carefully protected. Different applications introduce
different requirements in terms of access control, and this
control has to be performed on chip to make it tamper
resistant. Thus, as the access control policy to be enforced on
on-chip data gets more sophisticated, the embedded
database engine gets more complex, and hardware resource
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consumption increases. For example, select, join, and
aggregate operators may be involved in the on-chip
computation of an authorized view of the data. Thus, the
main problem faced by DBMS kernel designers is to be able
to assess various design choices and trade-offs for different
applications.

The solution that we propose in this paper is to use a
benchmark dedicated to secure chip data management
techniques. The objectives of such a benchmark are listed as
follows:

1. To compare different database techniques (storage,
indexing, access control, and query processing) over
different dimensions (e.g., functionality, perfor-
mance, resource consumption, and code simplicity)
in order to select the ones that best match the
requirements of a hardware platform/application
tandem.

2. To predict the limits (e.g., in terms of performance
and database size) of an on-chip application running
over a hardware platform/DBMS kernel tandem.

3. To provide codesign hints to help calibrating the
resources of a future hardware platform to meet the
requirements of on-chip data intensive applications.

Designing such a benchmark is difficult. Existing bench-
marks [3], [6], [7], [27], [34] cover different DBMS technol-
ogies (relational, object oriented, and XML) and well-
established application domains (OLTP, OLAP, ERP, etc.).
Moreover, they all focus on performance by considering
general-purpose hardware (although the price of the plat-
form is sometimes considered). When dealing with con-
strained hardware, performance is not the unique concern.
Important dimensions like the amount of RAM required to
process a query, the database footprint and algorithms’
complexity must be captured. Furthermore, it is hard, if not
impossible, to define a generic application for secure chip
DBMS since new applications keep being invented.

In this paper, we propose DiSC, a benchmark for Data
management techniques in Secure Chip. DiSC benefits from
our long experience in designing, developing, and tuning
DBMS prototypes on different smart-card platforms. DiSC
combines five metrics—resource consumption, code sim-
plicity, insertion performance, extraction (of an authorized
view) performance, and query performance—in a way that
makes reachable the three objectives mentioned above. The
benchmark covers well-defined and representative classes
of authorizations and captures the consumption of critical
hardware resources to enforce them. To validate DiSC, we
compare the behavior of candidate data management
techniques using a cycle-accurate smart-card simulator.

The paper is organized as follows: Section 2 makes the
case for a secure chip DBMS benchmark based on the
evolution of hardware and applications. Section 3 defines
DiSC with its metrics, data set, and queries. Section 4
introduces a case study of DiSC in the smart-card context.
Section 5 reports on the results of benchmarking candidate
techniques from this case study using DiSC. Section 6
concludes. An appendix, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu
tersociety.org/10.1109/TKDE.2008.67, details the query set
and data generator.

2 CASE FOR A SECURE CHIP DBMS BENCHMARK

We make the case for a secure chip DBMS benchmark by
analyzing the evolution of hardware and applications.
Then, we define the requirements for such benchmark.

2.1 Evolution of Secure Chip Technologies

The term secure chip refers to a monolithic chip providing
strong antitampering features, whatever its actual form
factor (i.e., physical sizes and shapes) ranging from the
well-known smart card to chips embedded in smart phones,
USB keys, and other forms of pluggable smart tokens. Note
that powerful server-based secure coprocessors like the IBM
4758 [10] fall outside this definition. Secure chips share
strong hardware commonalities and differ mainly in their
interface to the host they connect to [37].

Today’s secure chips typically embed on a single chip: a
32-bit RISC processor (clocked at about 50 MHz), memory
modules composed of ROM (about 100 Kbytes), static RAM
(some Kbytes) and electronic stable storage (hundreds of
Kbytes of EEPROM or FLASH), and security modules
enforcing physical security. The ROM is used to store the
operating system, fixed data, and standard routines. The
RAM is used as working memory (heap and stack).
Electronic stable storage is used to store persistent informa-
tion and holds data and downloaded programs. In the
following, we analyze the main hardware trends for secure
chips highlighting its very unique internal resource balance.

CPU resource. During the last 10 years, embedded
processors improved from the first 8-bit generation clocked
at 2 MHz to the current 32-bit generation clocked at 50 MHz
with an added cryptographic coprocessor to sustain
cryptographic computations and enforce security proper-
ties. At least three factors justify a continuous growth of
CPU power. First, the rapid evolution of secure chip
communication throughput (e.g., high delivery contactless
cards and USB cards) allows secure chip applications to
evolve toward CPU intensive data-flow processing using
cryptographic capabilities [23]. Second, many efforts from
manufacturers focus on multiapplication and multi-
threaded secure chip operating systems demanding even
more CPU power. Finally, the cost of a chip is mainly
driven by the size of the silicon die. In such large-scale
markets, this cost consideration strongly favors enhancing
the processing power rather than memory, CPU being less
surface consuming.

RAM resource. Secure chips hold today a few Kbytes of
static RAM, almost entirely consumed by the operating
system (and the Java virtual machine in Java chips). The gap
between the RAM available to the applications and the CPU
and stable storage resources will certainly keep on increas-
ing for three reasons. First, manufacturers tend to reduce
the hardware resources to their minimum to save produc-
tion costs. The relative cell size of static RAM (16 times less
compact than ROM and FLASH, 4 times less compact than
EEPROM) makes it a critical component [14], which leads to
calibrate the RAM to its minimum [2]. Second, minimizing
the die size increases the tamper resistance of the chip, thus
making physical attacks trickier and more costly. Third,
read access to stable storage being fast, traditional cache
hierarchy is less mandatory. Since RAM competes with
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stable memory on the same die, secure chip manufacturers
favor the latter against the former to increase chip storage
capacity, thus enlarging their application scope.

Stable storage resource. Secure chips rely on a well-
established slightly out-of-date hardware technology
(0.35 micron) to minimize production costs [28]. However,
the market pressure generated by emerging applications
leads to a rapid increase of storage capacity. Taking
advantage of a 0.18-micron technology allows doubling
the storage capacity of EEPROM memories. At the same
time, manufacturers are attempting to integrate denser
memory on chip, like NOR and NAND FLASH. NOR FLASH
is well suited for code due to its eXecute-in-Place property,
but its extremely high update cost makes it poorly adapted
to data storage. NAND FLASH is a better candidate for data
storage though its usage is hard. Reads and writes are made
at a page granularity, and any rewrite must be preceded by
the erasure of a complete block (commonly 64 pages). In the
long term, researchers in memory technologies aim at
developing the perfect alternative, i.e., a highly compact
nonvolatile memory providing fast read/write operations
with fine grain access (e.g., MEMS and PCM). However,
integrating these technologies in a secure chip is an even
longer perspective due to several difficulties: high security
level needs to be proved for any new technology, low
manufacturing cost motivates the usage of old amortized
technologies, and complexity to integrate all components in
the same silicon die.

To conclude, secure chips appear as rather unusual
computing environments compared to traditional servers
running DBMSs and can be summarized by the following
properties: 1) high processing power with respect to the
amount of RAM and on-chip data, 2) tiny RAM with respect
to the amount of on-chip data, and 3) fast reads but slow
and sometimes complex writes/rewrites in stable storage.
Identifying such properties for current and future secure
chips helps in defining the most accurate and steady
metrics for a secure chip DBMS benchmark.

2.2 Evolution of Secure Chip Usage

Smart cards have been used successfully in banking, GSM
subscriber identification, or healthcare applications [17].
Now, large-scale governmental projects are pushing for an
ever wider acceptance of smart cards (passport, driving
license, e-voting, insurance, or transport) in Europe, North
America, and other countries [16]. These applications gather
a set of persistent data that need to be managed and
protected. Secure chips are also at the heart of computing
systems to protect PC platforms against piracy [33] or to
enforce DRM in rendering devices [31]. Chips are even
integrated in a large diversity of usual objects to form an
ambient intelligence surrounding.

While we expect secure chips to be almost everywhere in
the very short term, the question is whether data manage-
ment techniques need to be embedded on these devices and
for which purpose. To help answering this question, we
discuss below two representative application scenarios.

Healthcare folder. The information stored in the future
health cards should include the holder’s identification,
insurance data, emergency data, the holder’s doctors,
prescriptions, and even links to heavier data (e.g., x-ray
exams) stored in hospital servers. Different users may share

data in the holder’s folder with different privileges. HIPAA
specifications consider smart cards as the ideal partner to
hold medical data [30]. On-chip data management techni-
ques are mandatory to store, organize, and query this large
amount of data and to control the respective privileges of
each user.

DRM. Digital piracy is threatening the global multimedia

content industry. Basic DRM models fail to solve this

problem because they poorly adapt to new attractive usage
scenarios and consumers are reluctant to use them for

privacy and fairness concerns. Several initiatives [20], [21],

[38] demonstrate the need for more expressive DRM

languages. Such languages allow business rules to express
conditions on historical data, users’ profiles, and contextual

information. These data must be protected against illegal

usage, as well as against tampering from the user herself.

Data management techniques embedded in different secure

chip form factors (e.g., set-top boxes and smart appliances)
are well suited to answer this requirement [5].

Thus, there is a common and growing requirement for
on-chip data management techniques, ranging from simple

select-project query and access right management up to full-

fledged DBMS capabilities depending on the usage. In the

sequel, we use the generic term secure chip DBMS to capture
this diversity of database capabilities.

2.3 Secure Chip DBMS Benchmark Requirements

Secure chip applications share the ultimate goal of enfor-
cing the confidentiality and the integrity of on-chip data.

The expected behavior of a secure chip DBMS is to store the

data securely (thanks to the chip tamper resistance) and act

as a trusted doorkeeper to solely deliver an authorized view

of the data to the connected user. This is the main
functionality a secure chip DBMS benchmark must capture.

Regarding the access control model, we consider in the

benchmark that privileges are granted to users (considering

groups or roles would introduce an unnecessary complex-

ity). We also focus on read authorizations since data

confidentiality is the primary concern.
Table 1 summarizes the read authorizations a secure chip

DBMS should be able to express and enforce. They are

expressed over an entity relationship schema. Each author-

ization type corresponds to a view definition involving one

or more relational algebra operators. (For the benchmark,
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we consider the relational data model since access control
over XML databases lacks agreement [9], [11].)

Schema Authorizations (SA) are defined on the database
intention (schema) without considering the database exten-
sion (occurrences). They are implemented by views invol-
ving the project operator (P access right).

Occurrence Authorizations (OA) grant access to occur-
rences depending on predicates expressed on their proper-
ties or on the existence of a relationship (either direct or
transitive) with another granted occurrence. The predicates
can apply to attributes of one relation (Select-Project access
right, named SP), two relations (direct relationship, Select-
Project-Join access right, named SPJ), or several relations
(transitive relationship access right, named SPJn).

Computed data Authorizations (CA) grant access to
computed values without granting access to the occurrences
taking part in the computation (e.g., averaged values are
disclosed but not the raw records). They are implemented
by means of views involving aggregates. The aggregation
may be monoattribute (i.e., group by on a single attribute)
and consider a single relation (Select-Project-Group access
right, named SPG), or several relations (Select-Project-Join-
Group access right, named SPJG), potentially grouping on
several attributes (SPJGn access right).

To summarize, the requirements for a secure chip DBMS
benchmark are the following:

. to cover SA, OA, and CA authorizations with the
ability to consider each one separately,

. to capture the consumption of critical hardware
resources (namely, stable storage and RAM) in-
curred by the storage and indexing model and by the
operators implementing these authorization classes,

. to capture with the same accuracy the read and
update performance of the secure chip DBMS,
considering the intrinsic cost and complexity of
write/rewrite operations in electronic stable storage,
and

. to combine dimensions (functionality, performance,
resource consumption, and code complexity) in a
way that makes reachable the three objectives
mentioned in the introduction, namely, selecting
the database techniques that best match a hardware
platform/on-chip application tandem, predicting
the limit of an on-chip application, and providing
codesign hints to calibrate the resources of a future
hardware platform with respect to a target applica-
tion.

Existing database benchmarks do not address these
requirements. Early database benchmarks like the Wiscon-
sin benchmark for RDBMS [3] and the OOx benchmarks for
OODBMS [6], [7] identify a clear performance bottleneck
(join operation in [3] and tree traversal in [6] and [7]) and
organize the data set and query set to best capture the
behavior of DBMSs in front of this bottleneck [13]. As
DBMS technology becomes mature, implementations of
different systems converge, thereby making these bench-
marks less useful [27]. The Transaction Processing Council
[34] overcomes this limitation by publishing a family of
benchmarks embedding a database system into specific
application scenarios. For example, TPC-C models an OLTP

environment, while TPC-H is a decision support bench-
mark. These benchmarks continuously evolve (some of
them becoming obsolete) to remain as a representative of
current practices as possible. Going one step further in this
direction, SAP provides benchmarks dedicated to a
proprietary application [26], the DBMS being evaluated
only as a back-end server.

DiSC is in the spirit of the Wisconsin and OOx bench-
marks, considering that the database technology of interest
is far from being mature. Even supporting join and
aggregate operators may be a technical challenge in our
context, thus leading to consider simple select-project
capable DBMS as possible targets for the benchmark (a
rather unusual consideration for standard benchmarks). In
addition, all these benchmarks focus on performance. When
dealing with embedded software, performance is no longer
the unique concern, the most significant dimension among
performance, functionality, resource consumption, and
code complexity being context dependent.

3 DISC DEFINITION

In this section, we define the DiSC benchmark with its
metrics, data set, and query set. We also show how DiSC
meets the three objectives set in the introduction by
presenting and analyzing DiSC results as radar charts.

3.1 Metrics

The primary objective of the benchmark is to be able to
select, among a collection of candidate database techni-
ques, the ones that best match the requirements of a
hardware platform/application tandem. In DiSC, the term
database technique refers to the combination of 1) a
storage and indexing model to organize the persistent on-
chip data, 2) an associated query execution model to
compute database views corresponding to one or more of
SA, OA, CA authorization classes, and 3) an associated
transaction model enforcing ACID executions. We make
no assumption on the way data is stored, clustered, or
indexed. We introduce five metrics that capture accurately
the constraints introduced by the hardware platform and
the application: resource consumption, simplicity, extrac-
tion performance, query performance, and insertion
performance.

Resource consumption. This metric captures the hardware
resources consumed by the database technique under test.
As discussed in Section 2, the tamper resistance and the
production cost of a secure chip are determined by the size
of the silicon die, the smaller the better. An embedded
database technique influences this parameter by: 1) the
quantity of RAM required by its execution, 2) the quantity
of XiP-NVRAM (i.e., eXecute-In-Place Non Volatile RAM
like ROM or NOR FLASH or any other technology) required
to store its code, and 3) the quantity of NVRAM (EEPROM,
NAND FLASH, or any other technology) required to store
the database footprint it produces (data, associated indexes
if any, and logs). Each memory technology exhibits a
different density (e.g., RAM cells are four times larger than
EEPROM cells and four times larger than ROM cells), and
the total silicon surface expressed in square millimeters also
depends on the chip engraving technology (e.g., 0.32 or
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0.18 micron). In addition, a database technology may trade
RAM for indexes (i.e., indexes may reduce computation
complexity) or code footprint for database footprint (i.e., by
integrating compression techniques). Thus, we decided to
unify all these parameters in a single metric expressed by
Resource (NbTuple/Su), where Su stands for Surface unit and
corresponds to the size occupied by 1 Kbyte of ROM (by
convention), while NbTuple is the number of entries of the
reference database (see Section 3.2 for the details about the
data set) related to one Su. In other words, Resource is the
ratio of the total number of database entries divided by the
total number of Su of required RAM, XiP-NVRAM, and
NVRAM altogether.

Simplicity. The objective of this metric is to capture the
complexity of the code of the database technique under test.
Code complexity is an important concern for embedded
secure software due to the cost and time of certification (by
exhaustive testing and/or formal proofs) required to
guarantee safety and security properties. Code safety is
mandatory on mass markets due to the quasi-impossibility
to update or patch the software embedded in secure chips.
Code security is mandatory by essence since all targeted
applications are secure applications. To illustrate this,
smart-card software has to comply with the highest
certification level (EAL 7) of the Common Criteria, the
international standard (ISO/IEC 15408) for computer
security [8]. The complexity of certifying software depends
on the several parameters that are difficult to capture in a
single metric. Thus, while being conscious of this impreci-
sion, we express this metric in terms of the footprint of the
database technique implementation: Simplicity (in Kbytes) is
the DBMS code footprint.

Extraction performance. The performance metric in data-
base benchmarks usually measures the response time of
queries over the database. Here, we are mainly concerned
with access right management. Thus, it makes sense to
measure the performance of the system for building and
externalizing complete authorized views rather than for
executing queries (the selectivity may be significantly
different in both cases). We choose to express this extraction
performance of an authorized view in terms of latency and
throughput (i.e., like for a storage device) rather than in
terms of the usual response time. Indeed, we can view a
secure chip DBMS as a smart storage medium: users (either
human or applications) connect to it to access the on-chip
data (according to their access rights), analogously to any
other storage device. In addition, latency and throughput
are well adapted to human interaction (e.g., to fill in the
window of a mobile terminal hosting the secure chip) and
to applications that consume results in pipeline. The latter
situation is likely to occur if we consider the discrepancy of
computing power between the secure chip and the host it is

connected to (e.g., a PC). Thus, we express extraction
performance as Extraction latency (seconds), which is the time
to get the first tuple of a view, and Extraction throughput
(tuples/second), which is the number of tuples of a view
produced per second.

Query performance. While querying the secure chip DBMS
is not the primary concern, it makes sense to measure the
performance of querying authorized views. Querying could
obviously be delegated to the terminal. However, the secure
chip DBMS may take advantage of selection and projection
to decrease the cost of externalizing a complete authorized
view. Thus, as for extraction performance, the query
performance metric is expressed in terms of Query latency
(seconds) and Query throughput (tuples/second).

Insertion performance. DiSC pays special attention to insert
performance for two reasons. First, a secure chip DBMS is
likely to manage historical data (medical folder, history of
video, and audio assets consumption in DRM applications,
history of events in ambient intelligence applications, etc.), a
situation where insert is the dominant operation. Second, all
forms of NVRAM integrated in secure chips exhibit very
poor write/rewrite behavior that must be captured in the
benchmark. Insertion performance integrates the time
required to create tuples, update indexes if any, check
integrity constraints, and perform logging. For the same
reasons as before, the insertion performance metric is
expressed by the Insertion throughput (tuples/second), number
of tuples inserted per second.

3.2 Data Set

As discussed earlier, DiSC does not attempt to be
representative of a particular class of applications but
strives to provide an adequate framework to compare on-
chip database techniques. Thus, we introduce a generic
database schema that allows comparing simple to complex
queries with variable selectivities. To ease result interpreta-
tion, we reduce the generic schema to its simplest form (see
Fig. 1). Relations cardinality ratios are similar to the TPC-H
benchmark [35], i.e., a large relation (R0) referencing two
relations (R1 and R2) that are six times smaller, each
referencing in turn a relation (respectively, R3 and R4) that
is again six times smaller. R0 is the reference relation and
contains as many tuples as the universal relation built by a
key join of all relations. The number of database entries
mentioned in the Resource metric (see Section 3.1) refers to
the cardinality of relation R0.

Table 2 gives the schema of relation R0. Attribute A0 is
the primary key, and attributes A1 and A2 are foreign
keys referencing relations R1 and R2. Attributes A4 to A6
are variable size strings. A4 (respectively, A5) contains
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10 (respectively, 100) distinct values to enable exact
selections with a selectivity of 10 percent (respectively,
1 percent), in the same spirit as the data distribution
introduced in the Wisconsin benchmark [3]. To assess the
compactness of different storage alternatives, A3 (nu-
meric) and A6 (string) take their values in a domain
containing jR0j=10 distinct values. Relations R1 to R4
share the same structure as R0, except regarding foreign
keys that may be missing. For the sake of simplicity, the
attribute names (i.e., numbering) are the same for all
relations (e.g., in relation R1, attribute A2 does not exist).

The attribute values generated in this synthetic data set
follow a uniform distribution (e.g., each distinct A6 value is
shared by jR0j=10 tuples in R0). We discard the idea of
generating skewed data distribution for two reasons. First,
while real data sets are often skewed, providing realistic
skewed schemas is still an open problem and is beyond the
scope of this paper. Second, performance measurements are
more difficult to interpret when obtained on skewed data.
Thus, considering the objective of this benchmark, introdu-
cing skewed data is of little interest.

We introduce a Scale Factor (SF) to allow benchmarking
a database technique with databases of various sizes. The
exact value of SF ¼ 1 may highly depend on the hardware
platform under test (from some Kbytes to several Mbytes of
stable storage). Since it does not make sense to compare the
results of benchmarks conducted on different platforms, the
value of SF ¼ 1 is left to the benchmark implementer.

3.3 Query Set

Similar to the data set, the query set has been built with the
objective to compare on-chip database techniques rather
than to comply with an existing application scenario along
with an ad hoc workload. The query set is however
representative of the database functionalities required by
a secure chip DBMS. Hence, it complies with the access
right classification introduced in Table 1. Depending on the
authorization classes SA, OA, and CA, different query plans
need to be computed from a simple project up to complex
multijoins and aggregates. The objective being on compar-
ing database techniques, queries are organized in three
groups reflecting the complexity of the query plan rather
than the authorization classes.

Group SP contains monorelation queries involving only
select and/or project operators. The selection selectivity
takes the values 90 percent (to reflect an authorized view
extraction), 10 percent and 1 percent (to reflect a query on a
view), and 0 percent (to reflect an unsuccessful search).
Note that considering very low selectivity (i.e., 90 percent)
is rather unusual in database benchmarks but makes sense
when extraction of authorized views is considered. Group
SPJ contains, key joined, mono- and multijoin queries
translating, respectively, direct and transitive relationship
authorizations. Selections apply on different relations in the
join path from the central relation R0 to peripheral relations
and selection selectivity ranges again from 0 percent to
90 percent. Finally, group SPJG contains complex queries
involving joins and group-by on one or several attributes
with various grouping factors.

The insertion performance metric imposes to consider
Insert queries. We consider tuple insertions into R0. Indeed,

most insertions occur in R0 since this relation has the
highest cardinality. Moreover, insertion in this relation is a
worst case in terms of performance since it incurs the
highest integrity control cost: two referential constraints
need be checked, and the cost of the uniqueness constraint
increases with the cardinality of the relation. Thus, we
measure the insertion throughput in the last phase of the
data set creation (see Appendix B, which can be found on
the Computer Society Digital Library at http://doi.ieee.
computersociety.org/10.1109/TKDE.2008.67), i.e., R1, R2,
R3, and R4 are filled, R0 is created but empty. The
throughput is computed as the total time for insertion
divided by the cardinality of R0.

The complete query set is given in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieee.computersociety.org/10.1109/
TKDE.2008.67. Queries in this set represent either
extractions or queries on views depending on the
considered selectivity. In the following, we refer to both
types of queries, respectively, by the terms extractions
and regular queries.

3.4 Benchmark Results as Radar Charts

The relative importance attached to each metric depends
on 1) the objective assigned to the benchmark (selecting a
database technique, predicting the limits of an application,
or calibrating a platform), 2) the intrinsic bottlenecks of
the hardware platform under test, and 3) the application
requirements. Unlike in traditional DBMS benchmarks
where performance is the focus, no metric dominates
definitely. Thus, we present the results in the form of
radar charts (Fig. 2).

Each radar chart contains the following axes: RES
(Resource), SIM (Simplicity), EXT-th (Extraction through-
put), EXT-la (Extraction latency), QUE-th (Query through-
put), QUE-la (Query latency), and INS (Insertion
performance). Each radar chart is plotted for a couple
Query Group/SF, where Query Group takes its value
among SP, SPJ, and SPJG, and SF represents the size of the
database under test. Radars plotted for different values of
Query Group should not be compared together. Indeed,
they correspond to different alternatives of secure chip
DBMS tackling applications with different requirements in
terms of access control (in the same way that different
benchmarks of the TPC-x family cannot be compared). On
each performance axis (INS, EXT-la, EXT-th, QUE-la, and
QUE-th), a single point summarizes the measurements
performed for all queries of the group. In benchmarks
targeting a specific class of applications, ad hoc workloads
may be introduced to attach different weights to different
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queries. DiSC being agnostic to secure-chip applications, the
performance measurements are aggregated as follows:
Latency is computed as the arithmetical mean of all
observed latencies. Throughput is computed as the mean
of the observed throughputs weighted by the total duration
of the corresponding queries in order to obtain a repre-
sentative averaged throughput.

Finally, to ease the readability of the radar charts, all axes
are uniformly graduated from 0 (worst score) to 5 (best
score). The way to translate real numbers—taken from
experiments—into axis graduations deserves two remarks.
First, establishing a correspondence between score 0 and 5
and absolute minimum and maximum values is actually
impractical, simply because most axes are unbounded (e.g.,
size of the most complex code? maximum insertion, query,
or extraction throughput?). Since the objective of DiSC is to
compare database techniques, we establish a direct corre-
spondence between score 0 (respectively, score 5) of each
axis with the worst (respectively, best) number obtained
when measuring the candidate database techniques. Best
and worst scores are then relative to a benchmark run.
Second, the radar chart should allow to properly visualize
the trade-offs between the compared techniques. To this
end, different scales may be chosen for different axes. For
example, a linear scale could be chosen on a first axis
because the measured values are well distributed between
the worst and best defined scores, while a logarithmic scale
could be chosen on another axis if important gaps exist
between the measured values.

Let us illustrate using radar charts how DiSC meets the
three objectives set in the introduction. Let us assume first
that the benchmark objective is to select the database
technique that best matches the requirements of a hardware
platform/application tandem. The principle consists in
drawing, for all candidate database techniques, the Query
Group/SF radar chart that matches the functional applica-
tion’s requirements in terms of access control capability
(Query Group) and database size (SF). All radar charts
where the resource demand exceeds the hardware platform
capacity are discarded. Among the others, the one that
offers the best expected compromise between the remaining
dimensions is selected.

Let us assume now that the benchmark objective is to
predict the limits—in terms of database size under given
performance constraints—of an on-chip application run-
ning over a hardware platform/DBMS kernel tandem. The
principle consists of drawing, for all SFs, the radar charts
corresponding to the Query Group of interest for the
application and the database technique under test, and then
selecting the one that corresponds to the highest SF and
achieves the required performance on the dimensions of
interest (e.g., insertion, extraction, and/or query perfor-
mance).

Finally, let us assume that the objective is to calibrate the
resources of a future hardware platform to meet the
requirements of a target application. The principle consists
of drawing for all candidate database techniques, the Query
Group/SF radar chart matching the functional application’s
requirements, then selecting the one that minimizes the
hardware resource demand (or the code complexity) while

satisfying nonfunctional application’s requirements (inser-
tion, extraction, or query performance).

4 SMART-CARD CASE STUDY

Through a long lasting cooperation with Gemalto, the world
leader in the smart-card market, we have gained a strong
expertise in designing and prototyping database compo-
nents embedded in smart cards [1], [2], [5], [24]. We had to
experiment data management techniques of various com-
plexity (SIM phone books, fair DRM engine, and Healthcare
folder) on various hardware platforms and simulators. We
faced many difficulties to assess our design choices because
the metrics of interest tightly depend on the hardware-
application tandem. To some extent, these difficulties were
the genesis of this benchmark. Thus, assessing the accuracy
of the DiSC benchmark by comparing candidate data
management techniques developed in this context makes
sense. The sequel of this section presents the experimental
platform used to conduct smart-card experiments. Then, it
introduces the candidate smart-card data management
techniques that will be compared in Section 5 using DiSC.

One may ask whether the benchmark should be
validated by a comparison of existing embedded DBMS.
However, the embedded DBMS that could be compared on
the same hardware platform are commercial lightweight
DBMS designed for PDA-like platforms. As stated earlier,
PDA-like hardware architectures share no commonalities
with secure chips, making PDA-like DBMS and secure chip
DBMS very different in their design. Conversely, existing
on-chip DBMS are not freely available and cannot be
compared on the same hardware platform. The reason for
this is that on-chip data management techniques are usually
embedded in the platform firmware, and their design
depends both on the hardware and operating system
peculiarities. This is why DiSC has not been designed to
compare existing systems but rather to 1) compare data
management alternatives for a target platform, 2) predict
the limits of on-chip applications, and 3) provide codesign
hints.

4.1 Experimental Platforms

Two different platforms have been used to conduct the
experiments: a real smart-card prototype and a cycle-
accurate hardware simulator of this smart-card prototype
(both provided by Gemalto), the latter allowing us to
consider data sets exceeding the current smart-card storage
capacity.

The real smart-card prototype is equipped with a 32-
bit CPU clocked at 50 MHz, 64 Kbytes of EEPROM,
96 Kbytes of ROM, and 4 Kbytes of RAM (with only a
hundred of bytes available for the DBMS). An internal timer
measures the response time for each incoming APDU (i.e.,
Application Protocol Data Unit, which is a communication
unit between the smart card and the reader as defined in the
ISO 7816 standard).

The hardware simulator allows considering data sets up
to 1 Mbyte. It is connected to a control PC and plugged into
a standard smart-card reader (ISO 7816 standard) connected
to a client PC. This hardware simulator is cycle accurate,
meaning that it delivers the exact number of CPU cycles
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between two breakpoints set in the embedded code. Cycle-

accurate simulators allow exact performance predictions.
In both environments, the communication cost between

the smart card (respectively, the simulator) and the

application running on the terminal is not taken into

account in the measurements. Indeed, this cost is not a

long-term bottleneck (USB smart cards with an 8 Mbits per

second throughput are already developed).
The smart-card prototype, as well as the hardware

simulator, runs a modified version of the ZePlatform

operating system. Based on the experiments we conducted,

Gemalto modified the initial version of its operating system

to better support data intensive operations (a rather unusual

case in traditional smart-card applications). Among others,

direct accesses to the EEPROM have been optimized.

4.2 Candidate Data Management Techniques

4.2.1 Common Design Rules

Whatever the target application, the data management

techniques under evaluation have been designed with the

following objectives in mind:

1. minimization of resource consumption, considering
the tiny hardware resources provided by smart
cards,

2. code simplicity, considering that software em-
bedded in smart cards is subject to the highest level
of certification (common criteria, EAL 7 level),

3. good insertion performance, considering that all
target applications we tackled essentially had an
append behavior (e.g., secure management of
historical data in a medical folder, in a DRM profile,
and in a bookmark list), and

4. acceptable, not necessarily optimal, performance for
the user in terms of extraction and querying,
considering the monouser environment of smart
cards.

The complexity of the required onboard data manage-

ment techniques was tight to the target application and the

sophistication of its access control policies. To evaluate

dynamically authorized views implementing SA, OA, and

CA authorizations on chip, the database components that

need to be embedded are a storage manager to organize

data and indexes within the chip stable memory, an access

right manager to enforce grants and revokes on database

views, a query manager to process execution plans, and a

transaction manager to enforce the ACID properties. Other

database functions (e.g., query parsing and result sorting)

do not impact confidentiality and can be executed off card.
To match the smart-card hardware constraints, the design

of the on-chip database components follows design rules:

Compactness rule (minimize data, index, and code foot-

print), RAM rule (minimize RAM consumption), Write rule

(minimize writes to very slow EEPROM), Read rule (take

advantage of very fast reads in EEPROM), Access rule (take

advantage of low granularity and direct reads in EEPROM),

CPU rule (take advantage of the overdimensioned CPU with

respect to the on-chip data), and Security rule (never

externalize private data, minimize code complexity).

4.2.2 Candidate Storage and Indexing Models

Different candidate storage and indexing models can be
devised for a smart card. Since the objective is to compare
these models using DiSC, we now discuss the trade-offs
between them and their respective impact on the processing
strategies.

The simplest way to organize data is Flat Storage (FS),
where tuples are stored sequentially, and attribute values
are embedded in tuples. The main advantage of FS is
simplicity and access locality. On the other hand, FS is space
consuming (all duplicate attribute values are stored) and
relies on sequential scans for all operations. FS may be a
good candidate for supporting very simple applications
with a low constraint on the database size.

Since locality is no longer an issue in our context (Read
and Access rules), pointer-based storage models inspired by
main memory DBMS [19], [25] may help combining indexing
and compactness. The basic idea is to preclude any duplicate
value to occur. Values are grouped in domains (sets of
unique values) and attribute values are replaced by pointers
within tuples (named tuple-to-value pointers), as shown in
Fig. 3a. We call this model Domain Storage (DS). Obviously,
attributes with no duplicates (e.g., keys) are not stored using
DS but with FS. While tuple update and deletion are more
complex than with FS, their implementation could be more
efficient in a smart card because the amount of data to be
written is smaller (Write rule).

Let us now consider how indexes can be made compact
and efficient. A select index is typically made of a collection
of values and a collection of value-to-tuple pointers linking
each value to all tuples sharing it. The collection of values
can be saved since it exactly corresponds to a domain
extension. To get the collection of value-to-tuple pointers
almost for free, these pointers can be stored in place of the
tuple-to-value pointers within the tuples. This yields an
index structure that makes a ring from the domain values to
the tuples, as shown in Fig. 3b. The ring index can also be
used to access the domain values from the tuples and thus
serves as data storage model. Thus, we call Ring Storage
(RS) the storage of a domain-based attribute indexed by a
ring. The index storage cost is reduced to its lowest bound
(one pointer per domain value), whatever the cardinality of
the indexed relation but slows down access to tuple
attributes (project operation) since retrieving the value for
the attributes means traversing in average half of the ring
(i.e., up to reach the domain value). This extra cost at
projection time can be saved by combining RS and DS in a
same model called Ring Inverse Storage (RIS; see Fig. 3c).
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Join indexes [36] can be treated in a similar way. A join
predicate of the form ðR:a ¼ S:bÞ assumes that R.a and S.b
vary on the same domain. Storing both R.a and S.b by
means of rings leads to define a join index. As most joins are
performed on key attributes, R.a being a primary key and
S.b being the foreign key referencing R.a, key attributes are
stored with FS in our model. Nevertheless, the extension of
R.a precisely forms a domain, even if not stored outside of
R, and attribute S.b varies on this domain. Thus, DS
naturally implements for free a unidirectional join index
from S.b to R.a (see Fig. 4a). Traversals from R.a to S.b can
be optimized too by RS, a bidirectional join index being
obtained by a ring index on S.b (see Fig. 4b). RIS adds direct
(i.e., one single pointer) traversals from S.b to R.a to this
bidirectional join index.

4.2.3 Query Processing

Traditional query processing strives to exploit large main
memory for storing temporary data structures (e.g., hash
tables) and intermediate results and resort to materializa-
tion on disk in case of memory overflow. This hurts both
Read and Write rules. To address this issue, we consider
query processing techniques that do not use any working
RAM area (except for a small collection of cursors) nor incur
any write in stable memory.

Let us consider the execution of Select-Project-Join (SPJ)
queries. All operators can be combined in an extreme right-
deep tree execution plan (see Fig. 5), which leads to pure
pipeline execution without materialization. As left operands
are always base relations, they are already materialized in
stable memory. Pipeline execution can be easily achieved
using the well-known Iterator Model [12]. A query execution
plan is activated starting at the root of the operator tree. The
data flow is demand driven: a child operator passes a tuple
onto its parent node in response to a next call from the
parent.

The Select operator tests each incoming tuple against the
selection predicates. Depending on the storage model,
attribute values are directly read in the tuple (FS), reached
by dereferencing a pointer (DS/RIS), and/or by following a
pointers ring (RS). With RS, the selection predicate (or part
of it if multiattribute) can be evaluated on the distinct
values of a domain, and the matching tuples are directly
retrieved by following the relevant pointers rings.

The project operator is pushed up to the tree since no
materialization occurs. Project simply builds a result tuple
by copying the value (FS) and/or dereferencing, the cursors
(DS/RIS), following the pointers ring (RS) to reach the value
present in the input tuple.

With FS, joins are implemented by nested loops between
the left and right inputs, since no other join technique can
be applied without ad hoc structures (e.g., hash tables)
and/or working area (e.g., sorting). In case of indexes (DS/
RS/RIS), the cost of joins depends on the way indexes are
traversed. Consider the join between R (n tuples) and S
(m tuples), S referencing R through a foreign key. With DS,
the join cost is proportional to m starting with S (i.e., right
input is S) and to n�m starting with R. With RS, the join cost
becomes proportional to nþm starting with R and to m2=2n
starting with S (retrieving the R tuples associated to each
S tuple incurs traversing half of a ring in average). RIS
combines the best cases of DS and RS.

Let us finally consider the execution of the aggregate
operator (sort is not described since it can be performed on
the terminal). At first glance, pipeline execution is not
compatible with aggregation, typically performed on
materialized intermediate results. The proposed solution
exploits two properties: 1) aggregate can be done in pipeline
if the incoming tuples are yet grouped by distinct values,
and 2) pipeline operators are order-preserving since they
consume (and produce) tuples in their arrival order. Thus,
enforcing an adequate consumption order at the leaf of the
execution tree allows pipelined aggregation. If the grouping
attribute is not part of the right leaf relation, the execution
tree must be rearranged. Multiattribute aggregation is
trickier to implement since it imposes one (respectively,
several) Cartesian product at the leaf of the tree to produce
tuples ordered by a couple (respectively, tuple) of distinct
grouping values.

4.3 On-Chip DBMSs under Evaluation

The objective is to compare the respective merits of each
candidate data management technique using DiSC. To this
end, we must consider the three Query Groups (SP, SPJ, and
SPJG) of DiSC. For each group, we build an adequate on-
chip DBMS instance, that is a set of data management
techniques that strictly implements the required function-
ality and should best meet the resource consumption and
simplicity expectations (e.g., join and aggregate operators
are not required to support SP). For each on-chip DBMS
instance, we evaluate the four storage and indexing models
(FS, DS, RS, and RIS described in Section 4.2.2), with a
common transaction mechanism defined in [24]. This leads
to the 12 on-chip DBMS alternatives summarized in Table 3.

Each on-chip DBMS alternative is exploited in order to
optimize the access control rights to be enforced. For
example, the SP Query Group does not require performing
on-chip joins while the SPJ Query Group does. Thus,
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foreign key attributes are stored using FS in the SP-RS
DBMS alternative and using RS in the SPJ-RS DBMS
alternative. The motivations for selecting a particular
storage and indexing model for each attribute may be data
compactness (Comp), selection performance (Selection),
and join performance (Join). Note that SPJ-x and SPJG-x
DBMS alternatives share the same storage and indexing
model for all attributes.

We believe that the 12 DBMS alternatives under
evaluation cover well the spectrum of solutions that could
be devised for the targeted context. These alternatives
capture the main trade-offs in terms of storage (direct
versus compressed), indexation (indexed versus nonin-
dexed structures), and query capability (SP, SPJ, and SPJG).
Of course, variations of these alternatives could be
considered, but the impact in terms of performance is
expected to be low in a main memory like context (the small
gap between RIS and RS that will be reported in the next
section confirms this allegation).

4.4 Scale Factors

We selected DiSC SFs to cope with a stable storage capacity
of 64 Kbytes for the real smart-card prototype (minus the
DBMS code footprint located in EEPROM) and 1 Mbyte for
the hardware simulator. We define three SFs to model
small, medium, and large data sets. The small (respectively,
medium) data set is calibrated to fit in the real smart-card
prototype (respectively, the hardware simulator) with the
less compact storage and indexing model (i.e., FS). The large
data set is obtained by excluding FS from the experiments
and becomes bound by RIS. The small, medium, and large
data sets correspond, respectively, to 360, 9,000, and
14,400 tuples in R0 with a total of 500, 12,500, and
20,000 tuples in the complete data set. In other words,
considering the small data set as SF ¼ 1, the medium and
large data sets correspond, respectively, to SF ¼ 25 and
SF ¼ 40.

5 COMPARING DBMS ALTERNATIVES WITH DISC

This section reports on the results of benchmarking the
12 on-chip DBMS alternatives introduced earlier using
DiSC. The performance measurements have been done on
the real smart card for the small data set and on the cycle-
accurate hardware simulator for the medium and large data
sets. Given the large number of DBMS alternatives, we only

give synthetic results. In the following, we give the results
for each metric of DiSC. Finally, we illustrate the interest of
using DiSC radar charts for analyzing the results.

5.1 Resource Consumption

Resource consumption depends on the database footprint
(data, indexes, and logs), the quantity of RAM required by
query processing and the DBMS code footprint. Let us first
consider the database footprint that is the dominant factor
except for very small SFs. Fig. 6 shows the database
footprint for each DBMS alternative and SF. Fig. 6a
corresponds to SP-x DBMS alternative. Fig. 6b is common
to SPJ-x and SPJG-x, which share the same storage and
indexing model for all attributes and thus produce the same
database footprint.

As expected, FS is less compact since it does not benefit
from any form of compression (FS is not measured for
SF ¼ 40, see Section 4.4). DS is the most compact model
since domains act as a dictionary compression scheme. The
extra cost incurred by RS compared to DS is rather small
whatever the SF, thus highlighting the high compactness of
ring indexes (only one extra pointer per domain value). RIS
incurs a much higher storage overhead by adding one
pointer per tuple for each indexed attribute (e.g., RS has no
impact on the largest relation R0, while RIS adds two
pointers per R0 tuple, one for each foreign key occurrence).
Thus, RIS should be adopted only if it provides a significant
performance gain at extraction and query time.

Let us now study RAM consumption. The pure pipeline
query processing strategy presented in Section 4.2.3 reduces
the RAM consumption to its lower bound, that is, one
cursor per relation and domain involved in the query plan
plus one counter per aggregate function to compute. Thus,
the impact of RAM consumption on the resource metric is
negligible.

Code footprint reduction has been exploited as a market-
ing advantage by lightweight DBMS vendors. As far as
resource consumption is concerned, and except for very
small SFs, our experience shows that the challenge is more
on reducing the database footprint than the code footprint.
This is exemplified by the small difference between the
different DBMS alternatives (see Table 4): from 15 Kbytes for
the simplest SP-FS up to 42 Kbytes for the most complex
SPJG-RIS. Furthermore, the difference between x-FS and
x-DS DBMS alternatives is only 4 Kbytes, while the savings
on the database footprint are excellent. Finally, even though
the DBMS code is located in EEPROM in our prototype, it
should be hosted in ROM or in NOR-FLASH in a commercial
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product, both technologies being four times denser than the
EEPROM, which hosts the database.

5.2 Code Simplicity

Table 4 gives the total code footprint of each DBMS
alternative, while Fig. 7 presents the respective size of each
module of the DBMS kernel for the most complete SPJG-RIS
alternative. In Fig. 7, three groups of modules can be
distinguished, each representing roughly one third of the
code: 1) modules related to the data definition (i.e., DDL)
including metadata and access right management, 2) mod-
ules related to the management of FS, DS, RS, and RIS
storage models, and 3) query optimization and execution
and transaction management. The rather large size of
metadata management is explained as follows: Query
execution plans cannot fit in RAM simultaneously, thus
precluding to store metadata in database relations and
access them by queries. Metadata are therefore stored in ad
hoc structures and accessed through ad hoc procedures.
Conversely, Table 4 shows that 11 Kbytes of code is enough
to implement simple and multijoins, as well as mono and
multiattribute aggregations (see difference between SP-x
and SPJG-x code footprint). As discussed in Section 4.2.3,

the query processing strategy trades a high number of

iterations for code simplicity, thanks to the CPU, Read and

Access rules.

5.3 Extraction and Query Performance

For each Query Group (SP, SPJ, and SPJG) and storage and

indexing alternative (FS, DS, RS, and RIS), we show the

throughput for extractions and regular queries. Additional

curves are plotted for individual queries when required. We

omit the latency dimension, which has little interest in our

context since pure pipeline execution makes latency roughly

equal to 1/throughput. Finally, all diagrams use a logarith-

mic scale due to the large performance differences among

queries. The rather high throughputs are the result of 1) fast

and low granularity direct reads in EEPROM (Read and

Access rules), 2) overdimensioned CPU with respect to the

on-chip data (CPU rule), and 3) the fact that communication

cost is not integrated in the measurements (see Section 4.1).

5.3.1 SP Performance

Figs. 8a and 8b show the performance of extractions and

regular queries for SP-FS, SP-DS, SP-RS, and SP-RIS (SP-x

for short) DBMS alternatives. We make the following

observations:
High throughput for all configurations. As expected, the

indexed models RIS and RS offer better performance for

regular queries compared to FS and DS (Fig. 9b). However,

FS and DS outperform RS for extractions (Fig. 9a) because

rings slow-down projections (half of the rings must be

traversed on the average to get the attribute value).
Throughput is independent of the SF. The time required to

select and project a given tuple is constant whatever the size

of the considered relation. Note, however, that indexed

models (RS and RIS) have lower throughput for regular

queries with SF ¼ 1 (small data set) since selections require

full scan of the domain entries to identify the qualified rings

of tuples. For fixed size domains, the relative cost of this

step may be important compared to the number of
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produced tuples (with SF ¼ 1, attribute A5 holds 100 dis-
tinct values, while R0 contains only 360 tuples).

Throughputs suffer from high query selectivity. As shown in
Fig. 9, FS and DS throughputs decrease by more than
10 times between extractions (selectivity of 90 percent) and
regular queries (selectivity of 1 percent and 10 percent).
Indeed, the worse the query selectivity, the less irrelevant
tuples scanned and checked before producing a matching
tuple. RS and RIS models are much more resistant to
selectivity increase, except for extreme values (near 0 per-
cent). For the particular case of 0 percent selectivity, we
considered the query response time as the delay to produce
the first and unique result (i.e., EOF).

5.3.2 SPJ Performance

The respective performance of SPJ-x DBMS alternatives are
shown in Figs. 8c and 8d and lead to the following
observations:

Indexed alternatives provide high throughput. FS yields
poor performance because join is performed by nested
loops. Storing foreign keys with DS naturally implements
a unidirectional join index (foreign key to primary key)
and yields excellent performance for extractions (even
better than RS, which suffers from the projection cost).
The performance degrades for regular queries since it
imposes a unique join ordering in the query plan, thereby
precluding applying selections first. For regular queries,
RS is almost 10 times better than DS, and RIS yields the
best performance.

Indexed alternatives are independent of the SF. The use of
join indexes with DS, RS, and RIS models make their
performance independent of the database size. However, as
for SP performance, RS and RIS yield lower throughput for
regular queries with SF ¼ 1 because of the constant cost of
scanning the domain entries to identify the qualified rings
of tuples. The performance of FS drastically decreases when
the SF increases because of the nested loops.

Throughputs suffer from high query selectivity. SPJ exacer-
bates the behavior already mentioned with SP, particu-
larly for FS (due to nested loop joins) and also for DS. As
mentioned above, using the unidirectional join index
provided by DS precludes applying selection on a
referenced relation first. This behavior is highlighted in
Fig. 9b, which plots the throughput of SPJ query Q4
(joining all relations of the schema) with a selectivity of
0 percent, 1 percent, 10 percent, and 90 percent,
respectively, the selection being applied on R1. The

throughput of RS and RIS is independent of the
selectivity except for very high selectivity. This observa-
tion is no longer true for queries with two selections on
two different relations since the pipelined query proces-
sing strategy precludes applying both selections first.
Such specific behaviors are difficult to capture with the
benchmark due to the aggregation of all measurements
performed within a query group. As discussed in
Section 3.4, ad hoc workloads could help tackling this
issue assuming a given class of applications is targeted.

5.3.3 SPJG Performance

This section studies the performance of the SPJG-x DBMS
alternatives. Figs. 8e and 8f show the average results for
both extractions and regular queries. To allow deeper
analysis, Fig. 10 individually plots the result of the three
extractions considered in the benchmark, respectively,
reflecting SPG, SPJG, and SPJGn access rights (see
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieee.computersociety.org/
10.1109/TKDE.2008.67). The main observations are the
following.

RS and RIS fairly support aggregation. RS and RIS produce
in average more than 100 tuples per second for extractions
and about 10 tuples per second for regular queries. The
important difference between SPJ and SPJG is naturally
explained by the high difficulty to handle aggregations
without RAM consumption. Thanks to rings, joins within
aggregation queries are handled with small degradation
(see Fig. 10a versus Fig. 10b). The throughput remains
stable when varying the SF for aggregations on a single
attribute (Figs. 10a and 10b). For aggregations on two
attributes (Fig. 10c), the RS/RIS index can help for only one
of them. A Cartesian product is then required, making the
performance dependent on the database size.

FS collapses while DS may still fit specific situations. DS and
FS exhibit poor throughputs for regular queries and are
strongly impacted by the SF. However, DS keeps producing
a few tuples per second for extractions (see Fig. 8e), which
may be sufficient for some applications.

5.4 Insertion Performance

Figs. 8g and 8h show that the throughput is acceptable
(several tuples per second) whatever the DBMS alternative.
Differences between Figs. 8g and 8h only appear for RS and
RIS and show a small overhead incurred by rings and
inverse rings built on foreign key attributes in SPJ-x and
SPJG-x.
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Fig. 9. Throughput for SP-x query Q2 with SF ¼ 25. (a) SP-x

alternatives—Q2. (b) SPJ-x alternatives—Q4.

Fig. 10. SPJG alternatives—throughputs for extractions. (a) SPG query.

(b) SPJG query. (c) SPJGn query.



The cost of writes in EEPROM strongly impacts insertion
performance. Thus, the smaller the number of writes is, the
better the insertion throughput. This explains the differ-
ences among all storage and indexing models. The insertion
throughput globally decreases when the SF increases with a
different proportion for each storage and indexing model.
The insertion cost partially depends on the target relation
size: while the tuple creation cost (dependent on the storage
and indexing model) and the logging cost are independent
of the relation size, integrity checking and domain update
are dependent on the relation and domain cardinality,
respectively.

5.5 Using DiSC Radar Charts

This section illustrates the interest of using DiSC radar
charts based on the performance results presented above.
As explained in Section 3.4, all axes are uniformly
graduated from 0 (worst score) to 5 (best score). Thus, the
translation of real numbers—taken from the experiment-
s—into axis graduations must be fixed. The scale of each
axis must also be fixed, depending on whether a linear or
logarithmic scale is more appropriate to quantify the
difference between the database techniques (i.e., DBMS
alternatives). We choose a linear scale for code Simplicity
(SIM axis), Resource (RES axis), and Insertion performance
(INS axis). A logarithmic scale is more appropriate for
extraction (EXT-th axis) and querying (QUE-th axis)
because of the broad intervals among the measured values
(logarithm to base 8 is the best suited to score 5 a maximum
throughput around 30,000 tuples/second). Table 5 gives the
translation between radar chart axis graduations and
absolute values.

A large number of radar charts could be plotted, one for

each DBMS alternative and SF. We present below three

radar chart series identifying interesting trade-offs.
The first series, presented in Figs. 11a, 11b, 11c, and 11d,

contains one radar chart per SP-x DBMS alternative for the

small data set ðSF ¼ 1Þ. This series is of interest to select the

DBMS alternative best suited for very simple applications,

where access privileges are reduced to views based on

selection and projection, and the data set is reduced to a few

hundreds of tuples. Fig. 11a shows that FS is very simple

and provides excellent extraction performance and very

good query performance but exhibits a poor insertion

throughput and high resource consumption. DS is a bit

more complex in terms of code but obtains a better resource

usage (dictionary-based compression) and reaches the best

insertion throughput (integrity checking and domain

checking have a negligible cost with SF ¼ 1). RS trades

simplicity for even more performance on the query axis but

yields a smaller insertion throughput than DS. Finally RIS

trades simplicity, insertion throughput, and resources to

obtain the best querying and extraction performance. Thus,

DS appears as the most attractive alternative and is

definitely superior to FS. If extreme query performance is

required, RS could be an option but not RIS, which has no

advantage in this context. Note that no alternative reaches a

good score on the resource axis. The reason is the negative

impact of the code footprint on this metric for low SFs.
A second radar chart series is given in Figs. 11e, 11f, and

11g. It analyzes the behavior of SPJ-RS DBMS alternative

when increasing the SF. This radar chart series could be

exploited to determine the limit of an application requiring

access rights on SPJ views and supported by a SPJ-RS

DBMS. We are interested in estimating the largest database

that can be supported while satisfying given performance

constraints. Let us assume that the performance constraints

imposed by the application are a minimum average

throughput of 5 tuples/second for insertion and 2,000 tu-

ples/second for extraction and querying. In the DBMS

alternative of interest, QUE-th and EXT-th axes are

independent of the SF and need not be further considered.

Thus, the largest database that can be supported turns out
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TABLE 5
Translation Table for Radar Chart Axis Graduations

Fig. 11. SP-x, SPJ-x and SPJG-x DBMS alternatives.(a) SP-FS SF ¼ 1. (b) SP-DS SF ¼ 1. (c) SP-RS SF ¼ 1. (d) SP-RIS SF ¼ 1. (e) SPJ-RS

SF ¼ 1. (f) SPJ-RS SF ¼ 25. (g) SPJ-RS SF ¼ 40. (h) SPJG-FS SF ¼ 25. (i) SPJG-DS SF ¼ 25. (j) SPJG-RS SF ¼ 25. (k) SPJG-RIS SF ¼ 25.



to be SF ¼ 25, due to the imposed score on INS (of course,
the more radar charts are drawn, the finer the analysis).

The last radar chart series given in Figs. 11h, 11i, 11j, and
11k concentrates on the SPJG-x DBMS alternatives using the
medium data set ðSF ¼ 25Þ. For such application require-
ments in terms of access control and SF, FS, and DS
alternatives offer very poor performance along the extrac-
tion and query axes. However, DS might still be of
interest—due to its good behavior on the other axes—for
specific usage where query and extraction performance in
not a concern (e.g., background aggregation, as discussed in
Section 5.3.3). In the more general case, RS or RIS are
required to achieve reasonable performance. Compared to
RS, RIS roughly doubles the query and extraction perfor-
mance (logarithmic scale) at the expense of 60 percent
degradation on resources. Hence, choosing RIS in this
setting may make sense if the application is bounded by the
performance since the query and extraction performances
are globally low.

For the sake of conciseness, we use the same radar chart
series to illustrate a codesign scenario. Let us consider that
the objective is to determine the amount of hardware
resources required to satisfy an on-chip application which
has the following requirements: SPJG access control
policies, a database size up to SF ¼ 25, an average
throughput of 5 tuples/second for insertion, and 50 tu-
ples/second for extraction. FS and DS are too far from the
performance objective in terms of extraction. RS consumes
much less resources than RIS and is then the DBMS
alternative selected. This choice implies that the XiP-
NVRAM of the target hardware platform must be calibrated
to host at least 39 Kbytes of code. The minimum of NVRAM
required to host the database can be easily estimated by
ðN=RES� SIMÞ �D1=D2, where N is the number of R0
tuples for the SF of interest, RES the resource metric
expressed in Tuple/Su ðSu ¼ surface of 1 Kbytes of ROMÞ,
SIM the simplicity metric expressed in Kbytes, D1 the
density of ROM, and D2 the density of the target NVRAM.
Here, ð9;000=5� 39Þ � 1=4 � 450 Kbytes of EEPROM are
required to store the RS representation of the database at
SF ¼ 25.

To summarize, radar charts are very useful to visualize
the different DiSC metrics on synthetic graphics. This is
important to compare different database techniques on
different settings and select the one that best matches a
given requirement. While a traditional performance analy-
sis would have favored RS and RIS, our analysis using DiSC
shows that different application requirements are better
fulfilled using other storage and indexing models (e.g., DS).

6 CONCLUSION

Secure chips have severe hardware constraints that have
triggered a deep revisiting of traditional database techni-
ques, with unusual design choices and trade-offs between
security, resource consumption, code simplicity, and
performance for building a secure chip DBMS. DiSC, result
of our long experience in developing and tuning smart-card
DBMS prototypes, is a benchmark, which allows 1) to
compare different database techniques for secure chip
DBMS, 2) to predict the limits of on-chip applications, and
3) to provide codesign hints to help calibrating the

resources of a future secure chip to meet the requirements
of on-chip data intensive applications.

Our objective is that DiSC applies to future secure chip
DBMS that involve new hardware, new application
requirements, and thus new database techniques. For
example, expected hardware evolutions of secure chips
are an increase of the communication throughput and CPU
power, a much slower increase of the RAM resource and an
important evolution of the stable storage technologies (i.e.,
NOR and NAND FLASH, MEMS, PCM, etc.) [39]. A recent
study describes specific storage techniques to manage data
on a chip endowed with NOR FLASH [4]. While the
hardware constraints differ significantly from EEPROM-
based chips, the DiSC metrics capture identically the trade-
offs introduced in this study (e.g., resource consumption
versus insertion throughput versus query/extraction per-
formance). For instance, the resource consumption metric,
which integrates the memory cell size, accommodates well
different densities of electronic stable memories. Another
important trade-off targets the RAM resource, made critical
by its poor density. In [2], we followed a codesign approach
to calibrate the RAM resource of a chip to match the
performance requirements of embedded applications. This
study however did not allow studying several dimensions
jointly, a limitation that could be circumvented using DiSC.
Some announced secure chips are now endowed with a
processor data cache holding up to 1 Kbyte of SDRAM.
DiSC metrics allow comparing different techniques and
trade-offs on the processor cache, the RAM, and the stable
storage competing on the same silicon die. More generally,
autonomous secure chips used in novel contexts, such as
ambient intelligence, may lead to unusual requirements
(e.g., high insertion throughput, low query or extraction
performance, aggregation-based authorizations). This mo-
tivates the development of new data management techni-
ques that need to be compared thanks to a benchmark.
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APPENDIXA: DISC QUERYSET
DiSC contains seven query patterns (Q1 to Q7) organized in 
three query groups (SP, SPJ and SPJG). Query patterns in-
clude a variable predicate (VarP) to vary the selectivity as 
well as the number and location (in the join path) of selec-
tion predicates. As mentioned in Section 3.3, query selectiv-
ity always refers to selection selectivity. Indeed, since the 
data is generated randomly following a uniform distribu-
tion (see appendix B), applying a selection on any relation 
involved in a Select-Project-Join query reduces to the same 
extent the query result size. The query set should allow for 
selectivity of 90% (extraction of an authorized view), 10 % 
and 1% (to reflect regular queries on authorized views) and 
0% (to reflect an unsuccessful search). To this end, selection 
predicates apply to attributes A4 and A5 varying on fixed 
size domains of cardinality 10 and 100 respectively. Pre-
sentValue or PV for short (resp. MissingValue or MV), de-
notes a string value that exists (resp. does not exist) in the 
domain under consideration. Following this convention, 
VarP predicates (A4  PV), (A4 = PV), (A5 = PV) and (A5 = 
MV) are used to enforce selectivities of 90%, 10%, 1% and 
0% respectively. The query set is depicted in Table 6.  

TABLE 6
DISC QUERY SET

Auth°
(Tab.1)

 
The SP query group includes query patterns Q1 and Q2: 

Q1 (P) is self-explanatory. 
Q2 (SP) is a mono-attribute selection on relation R0 with 
varying selectivity. 

The SPJ query group includes query patterns Q3 and Q4: 
Q3 (SPJ) is a mono-attribute selection on two joining rela-
tions R0 and R1 with varying selectivity. Two variations 
of Q3 are studied, locating the selection on either R0 or 
R1 to induce key foreign key or foreign key  key tra-
versals. 
Q4 (SPJn) joins the five relations of the dataset (R0 to R4) 
and applies a mono- or multi-attribute selection. Similar 
to Q3, mono-attribute selections apply either on R0 or 

R1. Multi-attribute selections are applied on R3 and R4 
and lead to slightly different query selectivities; i.e., 81% 
(R3.A4  PV and R4.A4  PV) for extraction, and 9% 
(R3.A4 = PV and R4.A4  PV), 1% (R3.A4 = PV and 
R4.A4 = PV) and 0% (R3.A5 = MV and R4.A5 = MV) for 
regular queries.  

Finally, the SPJG query group includes query patterns Q5, 
Q6 and Q7: 

Q5 (SPG) computes the average value of attribute R0.A3 
for each R0.A6 group. VarP implements here a having 
clause, in order to apply a selectivity on the aggregate re-
sults of 90% (min(R0.A3)  threshold90) for extraction 
queries, 10% (min(R0.A3)  threshold10) and 0% 
(min(R0.A3)<0) for regular queries. Annex B presents the 
dataset generation and make precise the computation of 
threshold90 and threshold10. 
Q6 (SPJG) is built similarly to Q5 with additional joins 
between relations R0, R1 and R2. VarP implements a 
having clause involving min(R1.A3). 
Q7 (SPJGn) joins all relations and performs a multi-
attribute aggregation, producing 100 distinct values for 
(R3.A4, R4.A4) group. VarP implements a having clause 
involving min(R3.A3). 

APPENDIX B: DATASET GENERATOR
The data set generated must comply with the data set de-
scription given in Section 3.2 and must exhibit the attribute 
selectivity expected by the queries presented in appendix 
A. While planned selectivity are easy to guarantee for a 
regular selection, the problem is more difficult for selectiv-
ity of a having clause, which depends on aggregated val-
ues. Let us consider Q5 with 10% selectivity: Select A6, avg 
(A3) from R0 where A4=PV group by A6 having min (A3)  
threshold10. Generating attributes A3 and A6 of R0 ran-
domly and independently would lead roughly to the same 
average, minimum and maximum value for all A6 groups, 
thus making threshold10 impossible to fix. The solution 
proposed is to derive A6 values from A3 values (denoted 
by A3 A6) in such a way that, for A3 having d distinct 
numeric values in the range [1..d], threshold10 = d/10. 
Thus, the planned selectivity for Q5, Q6 and Q7 can be ob-
tained by enforcing respectively R0.A3 R0.A6, 
R1.A3 R1.A6, R3.A3 R3.A4 at data generation time. 

To make the data generation reproducible, we use a 
pseudorandom number generator initialized with a given 
seed. As explained in Section 3.2, we do not consider 
skewed data distribution. The pseudorandom function PR 
used takes as input a positive integer n greater than zero, 
and delivers a uniformly distributed pseudorandom posi-
tive integer p such that p  [1..n]. 

For N tuples generated in R0, N/6 tuples must be gener-
ated in R1 and R2, and N/36 tuples in R3 and R4. The data 
set generation occurs as follows. An array of character 
strings, denoted by STR[ ], is first built using PR with an 
average size of 18 characters. For attribute Ri.Aj, each gen-
erated string S is concatenated with indices ij to get a 20 
characters string. The size of STR[ ] is bound to N/10, the 
largest number of distinct values for an attribute (attribute 
A6 of R0).  
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The database is populated one relation after the other, 
following an order fixed by the referential integrity con-
straints (e.g., R4, R3, R2, R1, R0). Let us detail the genera-
tion of R0. R0 contains 7 attributes named A0 to A6. A0, the 
primary key, is generated sequentially from 1 to N. Foreign 
key A1 (resp. A2) references one of the N/6 tuples of R1 
(resp. R2). To get a uniform distribution, pseudorandom 
numbers are picked between 1 and N/6 using PR. A3 is a 
numeric attribute populated by picking pseudorandom 
numbers between 1 and N/10 using PR. A4 (resp. A5) is a 
string attribute having 10 (resp. 100) distinct values. Thus, 
A4 values are set to STR[PR(10)] concatenated with the 
string “04” (meaning relation R0, attribute A4). Similarly, 
A5 values are set to STR[PR(100)] || “05”. Finally, A6 val-
ues are set to STR[A3] || “06” to enforce A3 A6. 


