
IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 1

Computation and Monitoring of Exclusive
Closest Pairs

Leong Hou U, Nikos Mamoulis, and Man Lung Yiu

Abstract—Given two datasets A and B, their exclusive closest pairs (ECP) join is a one-to-one assignment of objects from the two
datasets, such that (i) the closest pair (a, b) in A × B is in the result and (ii) the remaining pairs are determined by removing objects
a, b from A,B respectively, and recursively searching for the next closest pair. A real application of exclusive closest pairs is the
computation of (car, parking slot) assignments. This paper introduces the problem and proposes several solutions that solve it in main-
memory, exploiting space partitioning. In addition, we define a dynamic version of the problem, where the objective is to continuously
monitor the ECP join solution, in an environment where the joined datasets change positions and content. Finally, we study an extended
form of the query, where objects in one of the two joined sets (e.g., parking slots) have a capacity constraint, allowing them to match
with multiple objects from the other set (e.g., cars). We show how our techniques can be extended for this variant and compare them
with a previous solution to this problem. Experimental results on a system prototype demonstrate the efficiency and applicability of the
proposed algorithms.

Index Terms—H.2.4.h Query processing, H.2.4.k Spatial databases

F

1 INTRODUCTION

IN this paper, we study an interesting type of spatial
join operation, called the exclusive closest pairs join

(ECP). ECP produces (all) one-to-one assignments of
objects between two datasets A and B, such that (i) the
closest pair (a, b) in A×B belongs to the result and (ii)
the remaining pairs are determined by removing objects
a, b from A,B respectively, and recursively searching for
the next closest pair. Thus, each object appears only once
in the result.

A real-life application of the ECP query is the car-
parking assignment problem, where each car driver a ∈
A requests for a parking slot from the set B of available
slots. The well-known optimal matching (OM) problem
[17] searches for the 1-to-1 assignment of cars to parking
spaces, such that the sum/average of travel distances is
minimized (i.e., optimal). However, in the real world,
selfish users do not sacrifice individual convenience for
the overall benefit of other users. It is more reasonable
to assign each car c ∈ A to the parking space p ∈ B that
may not be taken by another driver c′, which happens to
be closer to p than c is. In addition, solving the exact OM
problem is expensive; algorithms like successive shortest
path (SSPA) [4] and the Hungarian algorithm [12] have
O(n3) time complexity, where |A| = |B| = n. As we
show in our experimental study, the ECP query produces
results of similar quality to the OM solution and yet

• L. H. U and N. Mamoulis are with the Department of Computer Science,
University of Hong Kong, Pokfulam Road, Hong Kong.
E-mail: {hleongu,nikos}@cs.hku.hk

• M. L. Yiu is with the Department of Computer Science, Aalborg Univer-
sity, DK-9220 Aalborg, Denmark.
E-mail: mly@cs.aau.dk.

• This work was supported by grant HKU 7160/05E from Hong Kong RGC.

Manuscript received XXXX XX, 200X; revised XXXX XX, 200X.

ECP can be computed at least 2 orders of magnitude
faster than the exact OM algorithms. Therefore, our
formulation of the ECP query searches for a practical
solution to the assignment problem.

Figure 1 shows examples of previously studied join
operators and the newly introduced ECP query for
two cars A = {c1, c2} and four parking slots B =
{p1, p2, p3, p4}. Note that the distance join [11], apart
from having to determine an appropriate value for ε,
may result to assignments of the same parking slot
to multiple cars and may leave a car without an as-
signment. The all k nearest neighbor join (AkNN) [2],
[21], [26] has the same problem; multiple cars may
have the same slot as their nearest neighbor. Another
related query is the bichromatic reverse nearest neighbor
(BRNN) query [18] (i.e., list for each car c, a parking slot
p (if any) having c as its nearest car). Again, this query
solves the problem only partially, since a single park-
ing slot may have multiple reverse nearest neighbors,
whereas only one of them can be assigned to it. The k
inclusive closest pairs (kICP) query [3] lists the top k car-
parking pairs with the smallest distance, allowing one
object to participate to more than one query results. Due
to this property, the query has limited applicability for
the assignment problem we examine, since drivers are
not certain about the availability of their nearest parking
slots (as in the case of AkNN queries). On the other
hand, the ECP query reserves a parking slot to one driver
only. For example, after c2 is assigned to p1, the query
does not consider p1 for the assignment of other cars.
In addition, each car is assigned to a parking space as
close as possible to it, that is not nearer to some other
unassigned car.

The above example demonstrates the utility of ECP
joins for real assignment problems, where other spatial

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 2

Car

Parking Space

(1) Distance-based

spatial join (ε)

(2) All kNN pairs

(k=3)

(4) k inclusive

closest pairs

(k=3)

(5) Exclusive

closest pairs

(3) BRNN pairs

ε

p2

p3

p1

p4

c1

c2

p2

p3

p1

p4

c1

c2

p2

p3

p1

p4

c1

c2

p2

p3

p1

p4

c1

c2

p2

p3

p1

p4

c1

c2

Fig. 1. Spatial join queries

join queries are inadequate. It is easy to show [19], [20]
that the ECP join is a special case of the stable marriage
(SM) problem [6], where preferences are derived from
symmetric object distances. This equivalence ensures
that we obtain the ECP join result by running a SM
algorithm. Stable marriage algorithms, however, require
the complete preference lists of all objects, which comes
at O(|A| · |B|) preprocessing time and space require-
ments. On the other hand, we propose ECP algorithms,
which compute on-demand only a small fraction of these
distances, by adapting the Gale-Shapley SM algorithm
[6] to exploit space-partitioning and nearest neighbor
searching.

Our first algorithm, called CPMECP, utilizes the con-
ceptual partitioning scheme [16] to retrieve for all objects in
one dataset (e.g., A) their nearest neighbors in the other
(e.g., B) incrementally. CPMECP progressively outputs
ECP assignments, using distance bounds to confirm
them. We then propose to evaluate ECP with a plane scan
approach (PSECP), which sorts both datasets along the
x-axis and scans them concurrently. We instantiate two
algorithms from PSECP by exploiting space partitioning
techniques: GRIDECP and STRIPECP, which partition
the space into grid cells and horizontal stripes respec-
tively. After analyzing the pros and cons of CPMECP
and PSECP, we finally develop a hybrid ECP algorithm
(HYECP), which finds the closest ECP pairs using PSECP
and then switches to CPMECP computation for the
remaining ones.

All the above algorithms are designed for memory-
resident data. The first reason for this design choice is
that main memories today are large enough to accom-
modate spatial data with the magnitude of the problem
examined in this paper (i.e., car-parking assignment).1

The second reason is that we consider the case where
objects have high update rates. Therefore, in this pa-
per, we also extend the ECP computation problem to
an ECP monitoring problem, where parking requests
from cars and availability events from parking slots

1. Besides, our CPMECP solution can directly be applied for
secondary-memory data indexed by R-trees. In this case, we just have
to replace the CPM-based neighbor search module with a nearest
neighbor algorithm for R-trees (e.g., [9]).

arrive from a data stream. Due to such events, ECP
assignments must be deleted (i.e., when a car un-parks),
new assignments must be added (i.e., when a new car
requests parking), and current assignments may have
to be changed. For instance, assume that pair (c, p) is
in the current assignment and a new parking slot p′

closer to c becomes available. In this case, c must be re-
assigned to p′ and p should become available for other
cars. This change may trigger a “chaining” effect which
could alter the whole assignment. We design an ECP
monitoring algorithm, which is based upon the ECP join
computation methods. Our method processes incoming
events in an appropriate order, such that the correct
ECP results are maintained correctly and efficiently. We
assume that a centralized server monitors the locations
of objects. When an object moves to another location, it
informs the server about its new location.

Apart from maintaining the ECP results for dynamic
data, we also study an extended form of the ECP join,
called capacity constrained ECP query (CAPECP), orig-
inally defined in [20]. In this case, the objects in one
of the two datasets (e.g., parking slots) have a capacity
constraint (e.g., multiple cars can be accommodated by
them). CAPECP, for each identified closest pair (c, p),
removes c from A (like ECP) and reduces the capacity of
p by 1. If the latter reaches 0, then p is removed from B.
The motivating application for CAPECP is that multiple
objects (e.g., cars) can be served by a facility (e.g.,
parking lot). In Section 3.4 we provide modifications of
the proposed ECP algorithms for CAPECP.

Although so far we have only mentioned the car-
parking problem as the main application of ECP, this
new query and its CAPECP variant can be used to
solve a wide range of (static or dynamic) assignment
problems between objects and facilities, where the as-
signment preference is expressed by the Euclidean dis-
tance between them. Examples include cars to parking
slots, tourists to landmarks, police cars to emergency
incidents, mobile internet users to wireless routers, etc.
As discussed above, we found that ECP produces results
of good quality even if the OM measure is used.

The rest of the paper is organized as follows. Section
2 surveys related work on closest pair queries in spa-

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 3

tial data, continuous monitoring problems, and spatial
assignment problems. Section 3 describes our proposed
algorithms for ECP computation in main memory. In
Section 4 we introduce the ECP monitoring problem
and present an algorithm for its efficient evaluation. Our
solutions are evaluated in Section 5. Finally, Section 6
concludes the paper, giving directions for future work.

2 BACKGROUND AND RELATED WORK

2.1 Closest Pairs Queries in Spatial Databases

Computation of closest pairs queries have been studied
for several decades. Main-memory algorithms, such as
the Neighbor Heuristic [1] and Fast Pair [5], focus on 1CP
problems. Fast Pair was shown to have the best overall
performance. However, this method is not directly ap-
plicable to: (i) kCP queries for arbitrary values of k, and
(ii) other variants of CP queries, such as the problem we
study in this paper.

Some previous work [3], [8], [24] employ spatial in-
dexes to solve kICP (i.e., kCP) queries in secondary
memory. [3], [8] assume that the datasets are indexed
by R-trees [7]. On the other hand, Yang et al. [24]
extended the R-tree, by augmenting each non-leaf en-
try with the maximum nearest neighbor distance (with
respect to the other dataset) of points in its subtree.
During query evaluation, such distances are utilized
for reducing the search space. [24] showed that their
approach outperforms previous R-tree based methods.
Since these methods operate on indexed data they may
not be applied in a dynamic environment. A high rate of
streaming events imposes a high burden to the update
of the indexes, which in combination with the expen-
sive refreshing of the query results, renders the overall
approach inefficient or impossible. In addition, although
an kICP algorithm can be tuned to process the ECP query
(i.e., by remembering assigned points and avoiding their
re-assignment), such an approach would require a large
amount of memory (as large as the size of a dataset).

2.2 Continuous Monitoring of Spatial Queries

Several extensions of the R-tree have been developed
for supporting frequent updates of spatial data. Lee
et al. [13] proposed the FUR-tree (Frequent Update R-
tree), which uses localized bottom-up update strategies
into the traditional R-tree. Recently, Xiong et al. [22]
developed the RUM-tree (R-tree with Update Memo),
which was shown to have better update performance
than FUR-tree. [10] applied an event-driven approach to
maintain query results for kNN and spatial join queries,
with the assumption that moving objects can be modeled
by linear motion functions.

Continuous monitoring of multiple spatial queries (e.g.,
range [14], [15] and kNN [23], [25], [16]) adopt the shared
execution paradigm to reduce the processing cost. Instead
of monitoring the results for different queries separately,
the problem is viewed as a large spatial join between the

query objects and data objects. As illustrated in Figure
2a, grid cells (of cell length δ) are employed for indexing
the objects. In practice, memory grid cells [25], [16] are
used (instead of disk-based structures) in order to handle
very high update rate. q1 corresponds to a range query
(shown in bold rectangle) and its influence region consists
of the (gray) cells that intersect with q1. Since data object
updates outside the influence region cannot affect the
query result, the processing cost is significantly reduced.
As another example, q2 represents a NN query (shown
in bold circle). Its difference from q1 is that its influence
region is a circular region centered at q2 with dynamic
radius equal its NN distance. For example, when the NN
of q2 moves closer to (further from) q2, then the influence
region of q2 shrinks (grows).

Conceptual Partitioning Monitoring (CPM) [16] is
the state-of-the-art grid-based index for monitoring NN
queries and it has good performance in environments
with frequent updates. Given a query point q, and as-
suming that the objective is to find its nearest neighbors
(NN) incrementally, CPM partitions the space around
Cell(q) (the cell containing q), as shown in Figure 2b. The
grid cells are implicitly grouped into rectangles based
on their direction and distance with respect to Cell(q).
Each rectangle DIRlvl is associated with a direction
DIR and a level number lvl. The direction can be U
(up), D (down), L (left), or R (right). The level number
denotes the number of rectangles between DIRlvl and
the cell containing the query point q. To retrieve the
NN of q incrementally, we initialize a heap (priority
queue) q.H to contain Cell(q) and the neighboring CPM
rectangles (U0, D0, L0, R0) to Cell(q). The contents of q.H
are deheaped in ascending order of their dmin to q.2 If a
rectangle (resp., cell) is deheaped, the cells (resp. points)
in it are added on q.H . A deheaped point corresponds
to the next nearest neighbor of q. This way, NNs are
retrieved efficiently and unnecessary accesses to distant
points are avoided.

δ

q1

q2

p1

p2

p3

p4

p5

D
3

D
2

D
1

D
0

R
3R

2R
1R

0
L

0
L

1
L

2
L

3

U
0

U
1

U
2

U
3

q

(a) Regular Grid (b) CPM

Fig. 2. Monitoring Spatial Queries

2.3 Spatial Matching Queries
Wong et al. [20], independently to us, defined an ex-
tended version of the ECP query and proposed an

2. Given a point p and a rectangle r, dmin(p, r) is the minimum
distance between p and any possible point in r.

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 4

algorithm, called CHAIN, to solve this problem in main
memory, assuming that the input datasets A and B are
indexed by a main-memory R-tree. CHAIN can solve
both the ECP problem and its CAPECP extension dis-
cussed in the Introduction; objects may have a capacity,
indicating the maximum number of times they partici-
pate in the assignment.

CHAIN first picks a random object c from dataset A
and finds its NN cNN in B (using B’s index). Then,
CHAIN finds the NN c′ of cNN in A (using A’s index).
If c′ 6= c, then cNN is pushed to a queue Q. Otherwise
(i.e., if c′ = c), pair (c, cNN) is output as a result
pair and c, cNN are deleted from A, B, respectively
(by applying deletion operations to the corresponding
spatial indexes). The algorithm continues by dequeueing
the next object x from Q (or picks a random object
from A if Q is empty) and testing if x’s NN in the
other dataset has x as its nearest neighbor (i.e., the
same test described above). Depending on the result
of this test, the corresponding ECP pair is output or
x’s NN is pushed to Q. Eventually, CHAIN terminates
after all ECP pairs have been identified this way. For
the CAPECP version of the problem, CHAIN operates
similarly, but when pairs are identified the capacities of
the corresponding objects are decremented, until they
reach zero, in which case they are deleted.

The main drawback of CHAIN is that objects in
identified ECP pairs are deleted from the indexes and
subsequent 1-NN searches reach the next nearest neigh-
bors after such deletions. The overhead of continuously
updating the indexes is very high, even when they are
memory-based. As we will show in Section 5, our algo-
rithms are 1-2 orders of magnitude faster than CHAIN
[20]. In addition, we propose an adaptation of CHAIN
that applies incremental NN search (i.e., without per-
forming explicit object deletions), and show that even
though this algorithm performs better than the original
CHAIN, it is still significantly slower than our methods.

3 ECP EVALUATION

As shown in the preliminary version of this paper [19]
(and independently proved in [20]), the ECP query is
a special case of the classic stable marriage problem
and can be solved by applying an algorithm like Gale-
Shapley’s stable matching algorithm (SMA) [6]. Never-
theless, such a direct application of SMA requires the
computation of a large number (|A| · |B|) of distances
and large space to store them, thus it does not scale
well for large problems. We conjecture that the spatial
properties of the query, in combination with appropriate
indexes can be utilized to accelerate SMA. For example,
we need not compute the distance of a point a ∈ A to
all in B before running SMA; instead, we apply spatial
ranking techniques [9], [16] to generate the preference
list of a incrementally and on-demand.

In this section, we propose efficient algorithms for
evaluation of ECP queries in main memory. Section

3.1 describes a ECP computation algorithm, which in-
tegrates CPM with SMA. Since CPM was originally de-
signed for kNN monitoring, it has high memory require-
ments for processing SMA. Thus, in Section 3.2 we pro-
pose an alternative approach that is reminiscent to plane
sweep methods from Computational Geometry and has
lower memory requirements. The two approaches are
finally integrated into a hybrid solution in Section 3.3.

3.1 CPM-based Computation
The first algorithm, called CPMECP, adopts Conceptual
Partitioning Monitoring (CPM) [16] (see Section 2.2) for
indexing the points and supporting incremental NN
search. CPMECP (Algorithm 1) uses the CPM index to
compute the ECP result, by extending the aforemen-
tioned nearest neighbor search algorithm. Recall that we
have two datasets A and B in our problem. In order to
optimize performance, we consider the smaller dataset
as a query set (that generate preference lists in the sta-
ble marriage evaluation). Accordingly, the other dataset
represents an objects set. For the ease of exposition, let
A be the query set and B be the objects set. For each
point o in A we keep track of the following information:
(i) its current ECP object (o.ψ), and (ii) the distance (o.λ)
to that object. Initially, o.λ is set to ∞, and o.ψ is set to
NULL.

Algorithm 1 CPMECP
V, P, P ′ : Queue
Result : Heap
algorithm CPMECP(Point set A, B)

1: for all a ∈ A do
2: insert 〈Cell(a), dmin(a, Cell(a))〉 into a.H
3: for each direction DIR do
4: insert 〈DIR0, dmin(a,DIR0)〉 into a.H
5: insert a into P
6: loop:=0
7: while |Result| < min{|A|, |B|} do . check if all results found
8: loop:=loop+ 1
9: maxdist:=(loop− 1/2) · δ

10: while P 6= ∅ do
11: dequeue an object a from P
12: ε-INNECP(a,maxdist, V, P, P ′)

13: for all b ∈ V do
14: if b = (b.ψ).ψ then
15: insert (b.ψ, b) into Result
16: P :=P ′; P ′:=∅

In its initialization phase (Lines 1–5), CPMECP allo-
cates an NN heap a.H for each object a ∈ A, and inserts
in it the points in Cell(a) and all 0-level CPM rectangles
that surround a. During CPMECP, a.H contains cells,
rectangles, and/or objects from B and can identify the
one with the smallest dmin to a in O(1) time. In addition,
all points in A are inserted to a patients set P , containing
query points that have not found their exclusive closest
pair yet.

CPMECP then starts a sequence of iterations (Lines 7-
16); after each loop a number of ECP pairs are identified
and inserted to the result. At the i-th iteration, for each
query point a ∈ P , CPMECP incrementally retrieves

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 5

from B nearest neighbors of a which are no further than
the i-th level rectangle of the CPM partition and attempts
to find the ECP pair of a in them (Lines 10-12).

We now describe in more detail the core search mod-
ule of CPMECP which is called at Line 12. Algorithm 2
is a pseudo-code for this ε-bounded incremental nearest
neighbor search with integrated ECP assignment (ε-
INNECP). ε-INNECP browses the nearest neighbors of
a query point a incrementally, subject to the constraint
that their distance to a is not greater than ε. At Lines
3-9, it processes the element on top of the a.H heap, if
it is a rectangle or a cell, exactly like the original NN
algorithm of [16]. If the next a.H entry is an object b, it
is processed according to Lines 11-19. If d(a, b) is smaller
than b.λ (this happens if b is unassigned or b has been
previously assigned to a further query point), then the
current ECP of a (resp. b) is tentatively set to b (resp. a).
If b is unassigned, we insert it into a candidates list V .
Otherwise, the previous assigned pair of b (b.ψ ∈ A),
is added to P and marked as unassigned. Then, b.λ
and b.ψ are updated as d(a, b) and a respectively. Search
terminates if a is assigned to a point b ∈ B (while-loop
break of Line 19) or if a has not been assigned after all its
ε-bounded nearest neighbors in B have been examined.
In the latter case, a is inserted into next loop’s patients
list P ′ (Line 21). Note that ε-INNECP does not search
for neighbors of a beyond ε distance from a, and ε is
increased at each loop.

Algorithm 2 ε-bounded INN search and tentative ECP
assignment

algorithm ε-INNECP(Point a, Distance ε, Queue V , P , P ′)
1: while a.H 6= ∅ and a.H’s top entry’s distance ≤ ε do
2: deheap 〈o, odist〉 from a.H
3: if o is a cell c then
4: for all objects b′ ∈ c do
5: insert 〈b′, d(a, b′)〉 into a.H
6: else if o is a rectangle DIRlvl then
7: for each cell c′ in DIRlvl do
8: insert 〈c′, dmin(a, c′)〉 into a.H
9: insert 〈DIRlvl+1, dmin(a,DIRlvl+1)〉 into a.H

10: else . o is an object b
11: if b.λ > odist then . b prefers a to its previous pair
12: a.ψ:=b; a.λ:=odist; . update ECP for a
13: if b.ψ is NULL then
14: insert b into V . insert to ECP candidates V
15: else
16: (b.ψ).ψ:=NULL; (b.ψ).λ:=∞ . unset pair of b
17: insert b.ψ into P
18: b.ψ:=a; b.λ:=odist . update ECP for b
19: break . break while-loop
20: if a.ψ=NULL then . a has not been assigned in this loop
21: insert a into P ′

After each loop of CPMECP has examined all points
in P , for each b in the candidate list V , it checks whether
a = b.ψ has also a.ψ = b (Lines 13-15 of CPMECP).
In this case (a, b) is definitely a pair in the ECP result.
The reason is that d(a, b) ≤ ε and there could not be an
unassigned neighbor to a (or b) with a smaller distance
(those have already been retrieved by ε-INNECP). The
algorithm terminates when the number of results reaches

min{|A|, |B|}. Otherwise, ε-INNECP is invoked again
with a new distance ε = (loop − 0.5) · δ, where loop is
the current loop and δ is the extent of a grid cell.

Figure 3 exemplifies how CPMECP algorithm works.
Assume that 4 cars (in A) and 3 parking slots (in B)
remain unassigned after the first loop. Then, ε is set to
(2−0.5)∗δ, thus the maximum search range around each
a ∈ P is shown by the gray circles in Figure 3a. Assume
that the order of points in P is (a1, a2, a3, a4). Figure 3b
shows the running steps of this example in loop=2. At the
first call of ε-INNECP, a1 is assigned to b1, since b1 is the
NN of a1 and b1 is currently unassigned. Then, a2 takes
b1 and a1 is put back to P (Lines 16-17 of ε-INNECP).
This happens because (i) b1 is the NN of a2 and (ii) a1

is the current ECP pair of b1 and d(a2, b1) < d(a1, b1).
The algorithm continues and eventually outputs the
assignments (a2, b1) and (a1, b2), whereas P ′ = {a3, a4}
are moved to the next loop (so is b3). Although ε-
INNECP runs with a larger searching area in the next
loop, it avoids accessing unnecessary elements, because
it continues searching using the current min-heap a.H
for each a ∈ P .

Although CPMECP, as described above, applies on
data indexed in main memory, it can be easily adapted
to apply on secondary memory data indexed by an R-
tree. We only need to replace function ε-INNECP (line
12 in CPMECP) by a bounded NN search to the R-tree,
which terminates when either the next NN is found or
when the bound has been exceeded.

a1

a3

a2

b1

b3
b2

a4

Loop a a.ψ P P ′

2 a1 b1 (a2, a3, a4) -
2 a2 b1 (a3, a4, a1) -
2 a3 b2 (a4, a1) -
2 a4 - (a1) (a4)
2 a1 b2 (a3) (a4)
2 a3 - - (a4, a3)

(a) set of points (b) Iterations (Lines 10-12)

Fig. 3. An example of CPMECP (loop=2)

3.2 Plane Scan Based Methods
Observe that in CPMECP a heap must be maintained
for each a ∈ A. Its memory usage is acceptable for the
scenario of [16] where a point set (say, A) is much smaller
than the other (B). However, in our problem setting,
two sets can have comparable sizes and thus CPMECP
has high memory usage. In particular, the heaps for
unassigned objects grow larger with the range of search
(i.e., the number of loops), as more cells and more objects
are added to them.

In this section, we propose an alternative approach
(Algorithm 3) for processing the ECP join of two
datasets. This PSECP algorithm first sorts A and B along
an axis (e.g., the x-axis). For the sake of discussion, we
use ai (bj) to denote the i-th (j-th) point of A (B) in the
sorted order. Then, it scans the two sorted lists concur-
rently to determine the nearest neighbors of each a ∈ A

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 6

in B and of each b ∈ B in A. At each loop, corresponding
to a scan for both lists, we determine pairs of objects
mutually having each other as nearest neighbors, remove
them from their lists, and add them to the ECP result.
The scalability of this method is improved, when used
as a module of a divide and conquer technique, which
we describe afterwards.

Algorithm 3 PSECP
algorithm PSECP(Point set A, B)

1: sort points in A along the x-axis; sort points in B along the x-axis
2: let ai (bj) be the i-th (j-th) point of A (B) in the sorted order
3: while A 6= ∅ ∧B 6= ∅ do
4: PlaneScan(A,B) . find candidate pairs
5: PlaneScan(B,A) . refine candidate pairs
6: for all a ∈ A do
7: if a = (a.ψ).ψ then . mutual NN pair
8: A:=A− a; B:=B − a.ψ
9: insert (a, a.ψ) into Result

3.2.1 The basic plane scan algorithm
Algorithm 4 is a pseudo-code of the plane scan module
of Algorithm 3. The algorithm is similar to a plane sweep
method which computes the intersection join of two rect-
angle sets, however it is unidirectional. PlaneScan(A,B)
scans the x-sorted lists A and B concurrently and for
every encountered point ai ∈ A, it performs a search to
find its nearest neighbor in B (Algorithm 4). This is done
by two local scans from the current bj ; one backward and
one forward. The search at each direction stops when the
x-distance of the next examined point is greater than
the distance ai.λ to the current nearest neighbor. The
event of meeting a point bj is handled symmetrically.
Finally, we perform a scan to the assignment lists and
report in the ECP join all pairs (a, b) for which a.ψ = b
and b.ψ = a. The remaining points are handled at
subsequent iterations of PSECP (calls to Algorithm 4).
Observe that PSECP is guaranteed to terminate after
finite loops because each iteration produces at least one
ECP pair (i.e., the closest pair of the current sets A and
B).

In our implementation, the call PlaneScan(B,A) at Line
7 (of Algorithm 3) is combined with the identification of
the pairs (a, b) to be output (Lines 8-11) during the same
scan. In addition, during the PlaneScan(B,A), we confine
the search only to objects bj ∈ B, for which (bj .ψ).ψ =
bj has been set by the PlaneScan(A,B) run. Only these
objects can be returned as ECP results at the current loop
(if their NN does not change during the PlaneScan(B,A)).
As a result, the scanning/searching cost for dataset B is
reduced.

To exemplify the PSECP functionality, consider the
set of points in Figure 4a. During the first loop, after
the PlaneScan(A,B) call, we get a2.ψ = b1, a1.ψ = b1,
a3.ψ = b2, and a4.ψ = b3. In addition, we have
b1.ψ = a2, b2.ψ = a3, and b3.ψ = a4. Therefore only
the subset {b1, b2, b3} of B must be examined during
the PlaneScan(B,A) call, to verify whether their current
NN assignments are correct. From these objects, only

Algorithm 4 Plane Scan Algorithm
algorithm PlaneScan(Point set A, B)

1: j:=1 . current position of point in B
2: for all i from 1 to |A| do . current position of point in A
3: while ai.x ≥ bj .x and j < |B| do
4: j:=j + 1 . skip the current point in B

5: h:=j − 1
6: while h ≥ 1 and ai.λ ≥ distx(ai, bh) do
7: if ai.λ > d(ai, bh) then
8: ai.ψ:=bh; ai.λ:=d(ai, bh)

9: if bh.λ > d(ai, bh) then
10: bh.ψ:=ai; bh.λ:=d(ai, bh)

11: h:=h− 1
12: h:=j
13: while h ≤ |B| and ai.λ ≥ distx(ai, bh) do
14: execute Lines 7-10
15: h:=h+ 1

b1 and b3 have their current pairs as their actual NN
(the actual NN of b2 is a1 and not a3). Thus, only pairs
(a2, b1), (a4, b3) are output after the first loop of PSECP.
Figure 4b shows the candidate assignments (after Line 6
of PSECP) and the results output after each loop.

a1

a4

a3

a2 b1

b4

b3

b2

b5

b6

b7
Loop Candidates Results

1 a2 ↔ b1 a2 ↔ b1
a3 ↔ b2 a4 ↔ b3
a4 ↔ b3

2 a1 ↔ b2 a1 ↔ b2
3 a3 ↔ b4 a3 ↔ b4

(a) Points and scanlines (b) Running steps

Fig. 4. An example of plane scan

3.2.2 Grid-based plane scan
Although PSECP saves redundant accesses significantly,
its plane scan along x-sorted lists may lead to unnec-
essary temporary assignments (that do not translate to
actual results). For instance, in Figure 4a, the plane scan
for the point a2 visits the points b4, b2, and b1 (in the
order). Even though b1 is the closest to a2, we need to
examine other points (e.g., b2) closer to a2 along the x-
axis.

In order to reduce unnecessary assignments, we ex-
tend PSECP to a divide-and-conquer solution, called
GRIDECP. First, all objects are indexed by a (hierarchical)
grid G with 4l cells, where l denotes the number of grid
levels. Second, for each cell cm, objects in the cell are
sorted and the PSECP method is applied on them to
obtain local candidate ECP pairs.

To verify whether a local candidate pair (ai, ai.ψ)
(found in the cell cm) is an actual ECP result, we need to
consider their minimum possible distances to other points
outside cm. In the following, we use dmin(ai, (G−cm).B)
to denote a lower-bound value of the minimum distance
between ai and points of B outside cm. The derivation
of this bound will be elaborated at the end of the section.
When d(ai, ai.ψ) < dmin(ai, (G − cm).B), ai must be
closer to ai.ψ than to other points of B. Similarly, we
compute dmin(ai.ψ, (G− cm).A) and determine whether

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 7

ai.ψ is closer to ai than to other points of A. The pair
(ai, ai.ψ) is immediately reported as a result pair when
both of these conditions are satisfied. In case no further
result pairs can be obtained within individual cells, we
merge four adjacent cells into one (see Figure 5a) and
create new grid with 4l−1 cells. The GRIDECP algorithm
continues until min{|A|, |B|} pairs are generated.

It remains to discuss the derivation of the bound
dmin(a, (G− c).B), for a point a ∈ A in the cell c. Figure
5b illustrates a simple method for deriving the bound.
Let δ be the side length of a grid cell. Suppose that the
lower x and y coordinates of the cell c are c.xl and c.yl

respectively. Clearly, the minimum distance from a to
any point outside c is indicated by one of the dotted
lines. By letting ∆x = a.x− c.xl and ∆y = a.y− c.yl, the
bound can be defined as:

dbasic
min (a, (G− c).B) = min{∆x, δ −∆x,∆y, δ −∆y}

Although the above derivation is simple, the bound
may be loose, affecting the effectiveness of discovering
ECP results. We now show how to derive a tighter
bound, as depicted in Figure 5c. For each cell c′, we
maintain the minimum bounding rectangle MBR(c′.B)
of all points of B in the cell c′. Observe that points
of B outside the cell c falls in either region: (i) the
eight neighbor cells surrounding c, and (ii) the region
beyond those neighbor cells. Regarding (i), the minimum
distance bound with respect to a neighbor cell c′ is
dmin(a,MBR(c′.B)). For (ii), the minimum distance is
taken as δ + dbasic

min (a, (G − c).B). Combining them, we
obtain the following bound for dmin(a, (G− c).B):

dtight
min (a, (G− c).B) = min{δ + dbasic

min (a, (G− c).B),

min
neighbor cell c′ of c,|c′.B|>0

dmin(a,MBR(c′.B))}

level-1 gridlevel-2 grid level-0 grid

a∆x

∆y

δ

cell c

(a) Merging grid cells (b) Deriving dbasic
min

a

δ

cell c’

Φ(c’.B)

cell c

(c) Deriving dtight
min

Fig. 5. Grid cells and derivation of the lower bound
distance dmin(a, (G− c).B)

strip1

strip2

(a)

a1

a4

a3

a2

b1

b3b2

strip1

strip2

(b)

a5

b4

a1

a4

a3

a2

b1

b3b2

Φ(c’.B)Φ(c’.A)

Fig. 6. An example of strip-based plane scan

3.2.3 Strip-based plane scan
GRIDECP partitions the space using a grid but it has
to manage a large number of cells and applies nu-
merous plane scans for computing ECP results. To al-
leviate this, we propose to modify the algorithm into
the STRIPECP algorithm, which divides the space into
horizontal stripes.

In STRIPECP, plane scan is applied on each stripe
(equivalent to a row of grid cells), like the GRIDECP
algorithm. For each discovered pair (ai, ai.ψ) within a
stripe, we need to compare its distance d(ai, ai.ψ) against
the lower-bound distance dmin of ai and ai.ψ to the
borders of neighbor stripes. However, if the border for
all points in a strip is used, then the above bound could
be too loose and ineffective for pruning. Thus, we also
apply the borders at the grid-cell level.

As an example, consider the objects shown in Figure
6a. In strip1, we discover the assignment a3 ↔ b3 and
test whether it is a valid ECP pair. If we simply consider
the distance of b3 to the border strip2 (see Figure 6a),
then such a (lower-bound) distance is less than d(a3, b3)
and we cannot immediately conclude (a3, b3) to be an
actual ECP result. On the other hand, if we use the bor-
ders at the grid-level (see Figure 6b), we can immediately
output the pair (a3, b3). Note that only the grid-level
borders of neighboring cells outside the stripe are used,
since the results are already confirmed to be valid within
the stripe by the plane scan algorithm. As confirmed by
our experiments, STRIPECP achieves better scalability
than GRIDECP.

3.3 A Hybrid Solution
In previous sections, we proposed two alternative ap-
proaches for ECP evaluation in main memory; a CPM-
based solution (CPMECP) and two plane-scan based
methods (STRIPECP being the best one). We observed by
experimentation that each solution has its own advan-
tages and drawbacks. Although CPMECP is effective in
finding the ECP pairs without redundant calculations, it
maintains a huge number of heaps (one for each object)
and suffers from large memory usage. On the other
hand, STRIPECP has low memory requirements but
performs many redundant computations for candidate
pairs in many loops. As discussed in Section 3.2, objects
of false-hit pairs at each loop need to be examined in

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 8

the next one. If there is no large reduction in the set
of remaining objects, then the number of loops becomes
high, degrading the efficiency of the algorithm.

To demonstrate this problem, we execute STRIPECP
on sample datasets with sizes |A| = |B| = 100K. Figure
7 shows the fraction of total output results as a function
of time. Observe that the number of objects drops fast
initially, but the reduction rate decreases in the later
loops. It takes 4.5 seconds to compute all results but uses
2.6 seconds for deriving the last 15% ECP results. After
the first few loops, the algorithm produces few ECP
assignments and requires many iterations for processing
few remaining objects.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
ra

ct
io

n
of

 fo
un

d
re

su
lts

CPU time (s)

Fig. 7. Output progress of STRIPECP on test datasets

To alleviate this problem, we consider switching
STRIPECP to another method when the number of re-
maining objects becomes too small. As discussed below,
CPMECP works well for a small number of objects, for
which the heap bookkeeping is cheap. Thus, we propose
a hybrid solution, called HYECP, which first applies
STRIPECP on the input datasets and then switches to
CPMECP when the number of remaining ECP pairs (yet
to be identified) drops below ω ·min{|A|, |B|}, where ω
is a user-defined parameter between 0 and 1.

3.4 The CAPECP Query

In this section, we present a generalized version of the
ECP query and discuss how the proposed algorithms
can be adapted to process this query. CAPECP is similar
to ECP, except that each object may have a capacity,
which is a positive integer indicating how many objects
from the other dataset can match with it. For example,
if the capacity b.σ of the parking slot b ∈ B is 10,
then b can accommodate at most 10 cars from A. When
the next closest pair (a, b) in A × B is identified, the
capacities of objects a and b are decreased by one. If
the capacity of an object (e.g., b.σ) reaches 0 then the
object is removed from the corresponding dataset (e.g.,
B). CAPECP iteratively finds and reports the next closest
pair, performing capacity adjustments (and deletions if
applicable), until all objects from one of the two datasets
have been deleted.

It is easy to see that CAPECP can be simulated and
solved as an ECP query, by replacing each object p
with p.σ identical points. However, this approach boosts

the size of the datasets and degrades performance. We
now discuss the (minor) modifications necessary to our
proposed ECP algorithms for handling CAPECP queries.
We make the following changes to lines 13 to 18 of
CPMECP (Algorithm 2). For each point, e.g., a ∈ A,
the candidate λ is replaced by a heap hλ which stores
up to a.σ elements. After this modification, we keep at
most a.σ NN candidates for each a. If any element in hλ

passes the verification test in Algorithm 1, Lines 14 to 15,
then this pair must be in the CAPECP result. We refer
to this modified CPMECP algorithm by CPMCAPECP.
In PSECP, we remove points from A and B when they
are in confirmed ECP pairs. For CAPECP queries, the
only modification to PSECP is to replace the removal of
points (Line 8 of Algorithm 3), by reduction of their σ
values wherever applicable.

4 CONTINUOUS MONITORING OF ECP PAIRS

In this section, we set up the problem of monitoring
ECP pairs dynamically and propose a solution that uses
the static ECP algorithms presented in the previous
section. To motivate our problem setting, we base it on
a realistic application, where the ECP join between a set
of moving cars (C) and a set of static parking slots (S)
is to be computed and incrementally maintained. When
the car-parking assignment system starts up, it receives a
number of events Er from cars (c ∈ C) in the monitored
area, corresponding to assignment requests. It then runs
a static ECP join algorithm to determine the slots to be
assigned to these cars.

While the system is running, it receives events from
cars and pushes them into a buffer Buf . At regular time
intervals (e.g., every few seconds), events collected in
Buf are handled in batch. Three types of events are
collected in Buf : Er events from cars that have just
requested to park, Ep events from cars that have just
parked to their assigned slot, and Em events from cars
that have just unparked and they are moving. Accord-
ingly, we divide the sets of cars (and slots) into four
classes based on their current state, as specified in Figure
8a. Figure 8b shows how streaming events or system
decisions define the transitions of cars and parking slots
among states. Suppose that at each timestamp the system
receives a number of Er, Ep, and Em events from cars.
First, all Ep events are processed, which change the
statuses of the corresponding cars and slots from Ca to
Cp and Sa to Sp, respectively. Then, the Em events are
processed and corresponding cars in Cp and slots in Sp

will move to classes Cm and Sf , respectively (we will
explain the role of Sf shortly). Finally, the Er events
move cars from Cm state to Cr state. Unassigned cars in
Cr and currently assigned cars in Ca must be processed
by a continuous ECP algorithm based on these rules.

• If an assigned car c ∈ Ca can be assigned a better
slot (due to the availability of a new free parking
slot which is closer) then perform this change.

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 9

• For all cars in c ∈ Cr, find their ECP pairs after
having considered the optimal re-assignments for
cars in Ca.

Symbol Description
Cm (set of) cars which move and do not want to park
Cr cars which move and request to park
Ca cars which move and are assigned to a parking slot
Cp parked cars
Se (set of) slots which are unoccupied and unassigned
Sa slots which are assigned but not occupied
Sp slots which are currently occupied
Sf slots which are set free at the current timestamp

(a) Possible states

State transition diagrams

Cm Cr

CaCp

Er

ECP algo

Ep

Em

Se Sa

SpSf

Ep

ECP algo

Em

time
ECP
algo

Cars Parking Slots

(b) State transition diagrams

Fig. 8. States of cars/slots and their transitions

Note that a re-run of the ECP join for the union of
Cr ∪Ca cars could result in the unfavorable assignment
of a c ∈ Ca to a slot which is further than its currently
assigned slot. In order to avoid such situations3, we must
run a special version of ECP that handles cars in Ca

separately.
Our continuous ECP algorithm (CECP) (see Algorithm

5) is based on the realistic assumption that only slots in
Sf can change a current assignment (ca, ca.ψ) for ca ∈ Ca

to a better one. The rationale is that once assigned to
its slot, ca will have moved towards it, so it is unlikely
for a slot in Se (i.e., the empty slots from the previous
timestamp) will suit ca now (since it did not suit it in
the previous timestamp). Based on this assertion, we
examine all slots in Sf to see if any of them could change
the current assignment of a ca ∈ Ca to a better one. If
a slot sf ∈ Sf can replace the current assignment ca.ψ
of a car ca, we perform this change and push ca.ψ to
Sf (since it could update the assignment of another car).
Otherwise, we put sf to Se (the set of empty slots). After
all slots in Sf have been examined and the set becomes
empty, we perform a static ECP join for the pair of
requesting cars and empty slots (Cr, Se). For this join, we
use one of the static ECP algorithms described in Section
3 (i.e., CPMECP, GRIDECP, STRIPECP, HYECP). We now
discuss two optimization techniques for speeding up the
search operation at Line 3 of CECP.

4.1 Distance-bounded search

For each sf , CECP scans Ca to find a car ca ∈ Ca for
which sf can replace ca.ψ or verify that no such car exists
in Ca. This search can be accelerated if the cars in Ca are

3. Imagine that you have been assigned to a parking and while
moving towards it, the system informs you that you have to change
to a further slot!

Algorithm 5 Continuous ECP
algorithm CECP(C,S)

1: while Sf 6= ∅ do . first phase
2: sf := remove slot sf from Sf

3: if ∀ca ∈ Ca d(ca, ca.ψ) > d(ca, sf) then
4: move ca.ψ to Sf ; set ca.ψ:=sf

5: move sf to Sa

6: else
7: move sf to Se

8: execute a static ECP algorithm on (Cr, Se) . second phase

checked in increasing distance from sf . Therefore, before
CECP begins for the current timestamp, we organize the
existing Ca (from the previous timestamp) in a CPM
index. In addition, we compute the maximum distance Γ
of any assigned pair in Ca (i.e., Γ = max{d(ca, ca.ψ)|ca ∈
Ca}). This preprocessing phase requires a only single
pass over Ca, whereas the resulting index can be used
for any sf ∈ Sf .

For each sf , we examine the objects ca ∈ Ca incremen-
tally according to their distance to sf (i.e., we perform
a NN search on the CPM-index [16]). This way, the
chances to find an assignment for sf early are maximized
because assigned cars close to sf are examined earlier.
More importantly, NN search can terminate as soon as
d(sf , ca) ≥ Γ, for a neighbor ca of sf .

4.2 Partitioning in CPM cells
Recall that each sf ∈ Sf attempts to find any ca ∈ Ca,
for which dist(ca, sf) < dist(ca, ca.ψ). If the distance
between ca and its assigned slot sa (ca.ψ) is smaller
than the minimum distance between ca and the bor-
der of the CPM cell Cell(ca) which encloses ca (i.e.,
d(ca, ca.ψ) ≤ dmin(ca, Cell(ca))), then ca cannot be re-
assigned to any sf outside Cell(ca). For example, con-
sider three assigned pairs (c0, s0), (c1, s1), (c2, s2), and
a newly available slot sf , as shown in Figure 9. Since
d(c0, s0) ≤ dmin(c0, Cell(c0)) and sf /∈ Cell(c0), we know
that c0 cannot be re-assigned to sf .

We can extend this argument for arbitrary cars as
follows. For each ca ∈ Ca, we define level(ca) to be the
minimum number of CPM levels around Cell(ca) such
that ca cannot be re-assigned to sf , for any sf further
than these levels. This can be computed by comparing
d(ca, ca.ψ) to dmin(ca, L) where L is the border (MBR) of
successive cell layers around ca. For example, in Figure
9, level(c0) = 0, level(c1) = 1, and level(c2) = 2.

The idea behind our second optimization is to par-
tition the cars ca in each cell, based on their level(ca).
For example, in Figure 9, c0 belongs to the level-0
partition of Cell(c0), c1 belongs to the level-1 partition
of Cell(c1), and c2 belongs to the level-2 partition of
Cell(c2). Then, for each sf , when we examine a cell C
during NN search, we only check all ca ∈ C, for which
level(ca) ≥ sf .cpmlevel, where sf .cpmlevel is the current
search level around sf . The further C is from sf the more
partitions inside it will be pruned. For example, in Figure
9, while searching for a better assignment containing sf ,

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 10

when visiting Cell(c0), we do not have to check its level-
0 partition (which contains c1). Similarly, when visiting
Cell(c2), we can prune its level-0 and level-1 partitions
(but not the level-2 partition which contains c2; therefore
c2 has to be examined).

Level 0

Level 1

Level 0Level 1

Level 2

sf

s1

c1 c0 s0

c2

s2

slot car

Fig. 9. Partitioning of objects to levels

5 EXPERIMENTAL EVALUATION

This section experimentally evaluates the efficiency of
our proposed ECP algorithms using synthetic data. The
algorithms were implemented in C++ and all experi-
ments were performed on a Pentium IV 1.8GHz machine
with 512MB memory, running Windows XP. The com-
parison figures that we show already include the cost of
creating and maintaining the necessary data structures
for the algorithms (e.g., the CPM grid for ECPCPM).

Section 5.1 compares the static ECP algorithms
(namely, CPMECP, GRIDECP, STRIPECP, HYECP) pro-
posed in Section 3. Note that CPMECP has already
been compared with two alternative ECP solutions based
on the CPM grid in our preliminary work [19]. In the
comparison, we also included the CHAIN algorithm of
[20] and an optimized version of this method, called
CPMCHAIN, which operates on a CPM-grid (indexing
the objects) instead of a main-memory R-tree. When the
capacity of an object reaches zero, the object is marked
as “deleted”, rather than directly removing it from the
index. In addition, CPMCHAIN performs NN searches
incrementally, by maintaining a search heap for each
object in order to continue from the previous NN every
time the next NN has to be explored (i.e., the current
NN is matched to another object).

Section 5.2 evaluates the quality of the ECP result com-
pared to the optimal matching. Section 5.3 evaluates the
CECP algorithm (for continuous monitoring), proposed
in Section 4).

5.1 Efficiency of ECP Computation
We evaluate the performance of the proposed ECP algo-
rithms with synthetic datasets. In each dataset, the coor-
dinates of points are random values uniformly generated
in the 2D space [0, 10000] × [0, 10000]. Besides uniform
points, we also generated datasets following Gaussian
and Zipfian distributions. In the Gaussian distribution

the coordinates of the points are generated to have as
mean the center of the space and the deviation is set to
2500. For the Zipfian distribution, the skew parameter
is fixed to 0.8 and the x- and y- coordinates are skewed
towards 0. We study the performance of our ECP al-
gorithms with respect to various parameters, which are
displayed in Table 1 (their default values are shown in
bold). In each experiment, only one parameter varies
while the others are fixed to their default values. The
parameter |G| denotes the number of cells per axis.
CPMECP and GRIDECP operate on a grid with |G|2
cells, STRIPECP partitions the space into |G| strips, and
HYECP operates initially using |G| strips and then using
a |G| × |G| grid. Since different ECP algorithms achieve
their best performance at different values of |G|, their
default values will be determined in the next experiment.

TABLE 1
Range of parameter values

Parameter Values
Number of cells per axis, |G| 4, 8, 16, 32, 64, 128, 256, 512
Total data size, |O| (×1000) 15, 30, 60, 120, 240

Cardinality ratio, |A|/|B| 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
Data Distribution Uniform, Gaussian, Zipfian

Switching Ratio, ω (for HYECP) 0.7, 0.8, 0.9

Figure 10 illustrates the execution time and memory
usage as a function of |G|. Note that CPMECP achieves a
good tradeoff between CPU time and memory usage, at
|G| = 128. STRIPECP incurs low CPU time at |G| = 16.
Since STRIPECP maintains only a few extra information
for reflecting changes in the grid, its memory usage is
not sensitive to |G|. GRIDECP shows similar results as
STRIPECP. HYECP has a good balance between CPU
time and memory usage, at |G| = 32. In the subsequent
experiments, we set the following default values for |G|:
128 for CPMECP, 16 for GRIDECP and STRIPECP, and 32
for HYECP. The ‘U’-shape of the curves can be explained
as follows. For CPMECP, very high (very low) values of
|G| increase the search cost and the memory usage since
too many empty cells (unused objects) are inserted into
the heaps for performing the incremental NN search. For
PS-based approaches (GRIDECP, STRIPECP, HYECP),
when |G| is too low (i.e., each cell has large area), we
encounter the scenario of Figure 4 and each plane scan
may sweep over a large region. In case |G| is too high,
each cell has small area and many points are located
close to cell boundaries. As a result, ECP candidates of
those points cannot be immediately reported and they
need to be further processed after the cells are merged.

We proceed to study the scalability of our ECP al-
gorithms and compare them with CHAIN. Figure 11a
shows the effect of the data sizes |O| on the running
time. The cost of algorithms increases with |O| and
their performance gap widens at high values of |O|.
CHAIN is one to two orders of magnitude slower than
the other methods (including CPMCHAIN). There are

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 11

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000

C
P

U
 ti

m
e

(s
)

|G|

CPMECP
GRIDECP

STRIPECP
HYECP

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000

P
ea

k
m

em
or

y
(M

B
yt

es
)

|G|

CPMECP
GRIDECP

STRIPECP
HYECP

(a) CPU time (b) Peak memory

Fig. 10. Effect of |G|

two reasons for the bad performance of CHAIN. First,
each NN query of CHAIN is run from scratch, while
incremental NN search is performed by the other ap-
proaches. Second, CHAIN performs expensive deletions
to the main-memory R-trees every time an ECP pair is
detected. CPMCHAIN is faster than CHAIN, but still
significantly slower than HYECP (our best technique).
Regarding memory usage, observe in Figure 11b that,
CPMECP has high storage demands when |O| is large.
This drawback restricts the application of CPMECP in
real scenarios with limited available memory. CHAIN
has the lowest memory usage overhead, since it does
not maintain any heaps for incremental NN searches.
CPMCHAIN has the highest memory usage than all
methods because it maintains NN heaps for all objects
(like CPMECP), however, search is performed in a depth-
first fashion (using Q). The NN queries performed by
this method might search more space than CPMECP
(which operates in a breadth-first fashion, for all points
at the same time). In summary, HYECP is the best
method, since it has the lowest computational cost, while
not demanding excessive memory.

 0.1

 1

 10

 100

 1000

 0 100 200

C
P

U
 ti

m
e

(s
)

|O|

CPMECP
GRIDECP

STRIPECP
HYECP
CHAIN

CPMCHAIN

 0

 50

 100

 150

 200

 250

 300

 0 100 200

M
em

or
y

U
sa

ge
 (

M
B

yt
es

)

|O|

CPMECP
GRIDECP

STRIPECP
HYECP
CHAIN

CPMCHAIN

(a) CPU time (b) Peak memory

Fig. 11. Effect of data size |O|

In the next experiment (Table 2), we compare the
algorithms for input datasets of varying data distribu-
tion. Again, HYECP has the best performance for all
pairs of inputs. Observe that HYECP has very low cost
for pairs with the same data distribution. Cases with
a Gaussian dataset take more time to compute because
most of the (Gaussian) points are located at the center
and the distance of a ECP pair can be at most half
the diagonal length of the spatial domain. Cases with a
Zipfian dataset are even more expensive because most of
the (Zipfian) points are located near the origin point (0,0)

and the distance of a ECP pair can reach the diagonal
length of the spatial domain.

Next, we investigate the combined effect of the cardi-
nality ratio |A|/|B| and data size |O| on the performance
of the ECP algorithms. Since ECP is a symmetric problem
(see Section 3), it suffices to consider only cardinality
ratio in the interval (0, 1]. We did not include CHAIN
and CPMCHAIN in the experiments, since CHAIN is 1-
2 orders of magnitude slower than the other methods
and CPMCHAIN is always outperformed by CPMECP
computationally and in terms of memory requirements.
As shown in Figure 12a, HYECP outperforms its com-
petitors for most of the cases. For the case of very low
cardinality ratio (e.g., |A|/|B| = 0.1), HYECP is slightly
slower than CPMECP; in these cases, switching between
CPMECP and PSECP does not pay off. Regarding the
most expensive case (highest values of |O| and |A|/|B|),
HYECP saves 30% CPU time and 70% peak memory
usage over CPMECP. Moreover, CPMECP is more sen-
sitive to the value of |O| than the others. Observe that
STRIPECP achieves its best performance when the ratio
|A|/|B| is between 0.6 to 0.8. In case the ratio is too high
or too low, STRIPECP produces a lot of false hits. Figure
12b shows that HYECP has a good tradeoff between
CPU time and memory usage. Also, the memory usage
of CPMECP is more sensitive to the parameter |O| than
the others.

 0

 50

 100

 150

 200

 250

 0.2
 0.4

 0.6
 0.8

 1

 2
 4
 6
 8

 10

sec

CPMECP
GRIDECP

STRIPECP
HYECP

|O|

Ratio (A/B)

sec

 0

 50

 100

 150

 200

 250

 0.2
 0.4

 0.6
 0.8

 1

 40
 80

 120
 160

MBytes

CPMECP
GRIDECP

STRIPECP
HYECP

|O|

Ratio (A/B)

MBytes

(a) CPU time (b) Peak memory

Fig. 12. Effect of cardinality ratio |A|/|B| and data size
|O|

Recall that HYECP switches from plane scan searching
to CPM searching when the number of remaining ECP
pairs (yet to be identified) drops below ω ·min{|A|, |B|},
where ω is a parameter value between 0 and 1. Figure
13 shows the performance of HYECP for different values
of ω. HYECP achieves the best performance (in terms of
CPU time and memory usage) at ω = 0.9.

Next, we investigate the performance of the algo-
rithms for CAPECP queries on the default data, where
all objects in dataset B have equal capacity σ (varying
capacity does not affect the relative performance of the
algorithms). We included CHAIN and CPMCHAIN in
the comparison. As Figure 14 shows, σ does not affect
the cost and memory requirements of the methods.

Figure 15 shows the performance of algorithms with
respect to the data ratio |A|/|B|, by fixing the capacity
σ to 16. STRIPECP incurs higher cost at lower data
cardinality ratio, affecting the performance of the first

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 12

TABLE 2
Effect of different data distributions (memory: MBytes; time: seconds)

Distribution CPMECP STRIPECP HYECP CHAIN CPMCHAIN
A B memory time memory time memory time memory time memory time

Uni Uni 15.87 1.16 7.53 1.22 9.91 1.06 10.07 9.781 22.21 1.75
Gau Gau 17.24 1.19 7.53 1.22 10.11 1.08 10.07 24.72 24.21 1.80
Zipf Zipf 25.31 1.48 7.53 2.53 9.93 1.09 10.07 43.02 37.31 3.56
Uni Gau 64.63 8.17 7.53 47.53 34.18 4.00 10.07 130.11 122.66 16.97
Gau Uni 86.44 13.08 7.53 44.39 44.69 5.58 10.07 159.41 121.30 16.51
Gau Zipf 161.18 31.09 7.53 224.16 148.86 13.99 10.07 31.55 465.50 54.70
Zipf Gau 332.72 50.64 7.53 222.99 164.69 24.27 10.07 72.88 469.94 64.61
Uni Zipf 110.10 27.05 7.53 288.34 97.69 10.98 10.07 32.77 458.77 54.81
Zipf Uni 344.03 53.69 7.53 272.02 151.07 22.25 10.07 34.25 451.95 57.64

 0
 50

 100
 150

 200
 250

 0.2
 0.4

 0.6
 0.8

 1
 2
 3
 4

sec

w=0.7
w=0.8
w=0.9

|O|

Ratio (A/B)

sec

 0
 50

 100
 150

 200
 250

 0.2
 0.4

 0.6
 0.8

 20
 40
 60
 80

MBytes

w=0.7
w=0.8
w=0.9

|O|

Ratio (A/B)

MBytes

(a) CPU time (b) Peak memory

Fig. 13. Effect of ω in HYECP

 0.1

 1

 10

 10 20 30 40 50 60

C
P

U
 ti

m
e

(s
)

Capacity σ

CPMECP
STRIPECP

HYECP
CHAIN

CPMCHAIN

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60

M
em

or
y

U
sa

ge
 (

M
B

yt
es

)

Capacity σ

CPMECP
STRIPECP

HYECP
CHAIN

CPMCHAIN

(a) CPU time (b) Peak memory

Fig. 14. Effect of capacity σ

phase in HYECP. At these settings, CPMECP is faster
than HYECP. Nevertheless, STRIPECP and HYECP have
lower memory consumption than CPMECP.

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

C
P

U
 ti

m
e

(s
)

Ratio (A/B)

CPMECP
STRIPECP

HYECP
CHAIN

CPMCHAIN

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

M
em

or
y

U
sa

ge
 (

M
B

yt
es

)

Ratio (A/B)

CPMECP
STRIPECP

HYECP
CHAIN

CPMCHAIN

(a) CPU time (b) Peak memory

Fig. 15. Effect of ratio |A|/|B| with capacity σ = 16

5.2 Comparison of ECP result with the optimal
matching
In the next experiment, we investigate how close the ECP
result is to the optimal matching. In specific, we imple-

mented the successive shortest path algorithm (SSPA)
[4], having as objective to find the 1-1 assignment be-
tween A and B with the minimum average distance
between the assigned pairs. Figure 16 compares SSPA
with HYECP in terms of computational cost and quality
of resulting matching on three pairs of datasets taken
from Table 2. The results are similar for other pairs.
HYECP is at least two orders of magnitude faster than
SSPA in all cases. The costs of both methods increase
with the cardinality ratio, as the size of the matching
(and the effort to find it) increases. The optimal average
matching distance (generated by SSPA) and the average
matching distance difference between ECP and SSPA are
shown in Figure 16b, for various data distributions and
cardinality ratio. Observe that the quality of matching
obtained by ECP stays close to the optimal.

 0.01

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 ti

m
e

(s
)

Ratio (A/B)

Uni:Uni-SSPA
Uni:Uni-HYECP
Uni:Gau-SSPA

Uni:Gau-HYECP
Uni:Zipf-SSPA

Uni:Zipf-HYECP

ECP−SSPA
SSPA

 0

 1,500

 2,000

 2,500

 3,000

 3,500

0.
1

0.
3

0.
5

0.
7

0.
9 1

0.
1

0.
3

0.
5

0.
7

0.
9 1

0.
1

0.
3

0.
5

0.
7

0.
9 1

av
er

ag
e

di
st

an
ce

Uni:Uni Uni:Gau Uni:Zipf

 500

 1,000

(a) CPU time (b) Quality

Fig. 16. Comparison with the optimal assignment

5.3 Maintenance of ECP results
We developed a data generator that simulates a real-life
car-parking assignment problem and monitoring prob-
lem, based on the specifications of Section 4. The gener-
ator starts with a set of parking slots and a set of cars
which are uniformly distributed in a [0, 10000]×[0, 10000]
space. A parking-request probability Preq, an unparking
probability Punpark, and a velocity V are assigned to each
car. Initially, all cars are moving to a random direction
and they request for parking with probability Preq at
each timestamp. If a car c issues a parking request to
the system (Er) it moves to the parking request state
and the system attempts to assign a slot to it. Once a
slot s is assigned to c, c moves towards s according to

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 13

its velocity and when it reaches s it parks, issuing a Ep

event. After c has parked, at each subsequent timestamp
it has Punpark probability to issue a Em event. A car
that unparks sets its slot free and starts moving to a
direction 90 degrees different than its direction when
moving towards its parking slot. At each timestamp,
the system processes all incoming events according to
Section 4. Table 3 shows the parameters of the generator,
their range of values and their default value in bold font.

TABLE 3
Stream generation parameters

Parameter Values
Number of cars, |C| 600K
Number of slots, |S| 150K

Parking request probability, Preq% 0.5%, 1%, 2%, 4%, 8%
Unparking probability, Punpark% 0.5%, 1%, 2%, 4%, 8%

Average velocity of cars, V 1.67, 3.33, 5.27, 6.67, 13.33

The effectiveness of the optimizations of Sections 4.1
and 4.2 in the first phase of CECP was verified in the
preliminary version of our paper [19]. There, we showed
that these optimizations reduce the cost of the basic
version of CECP by two orders of magnitude. Here, we
investigate the overall performance of CECP if the two
optimizations are used in the first phase and for different
versions of the offline ECP method used in the second
phase (i.e., CPMECP, STRIPECP, or HYECP). We skip the
comparison of GRIDECP since it has worse performance
than STRIPECP in all previous experiments. Figure 17a
shows the average performance per timestamp of both
CECP phases for different values of Preq. For small
values of Preq the distances between assigned cars and
their slots tend to be large, a fact that increases the cost
of CECP’s first phase (as many re-assignments are per-
formed). Larger Preq reduces the cost of the first phase
due to the decrease of the average distance between
assigned pairs. On the other hand, as Preq increases |Cr|
becomes larger and the second phase of CECP becomes
more expensive for all algorithms. Figure 17b shows
that the memory requirements of both phases of CECP
are slightly affected by Preq, with the same trend as
the CPU time difference. CPMECP has higher memory
overhead than the others, which is similar to our static
experiments. HYECP has equal or lower CPU cost than
CPMECP.

Figure 18a shows the average performance per times-
tamp of both CECP phases for different values of Preq.
The first phase (i.e., the handling of Sf and Ca) uses
both optimizations of Sections 4.1 and 4.2. For small
values of Preq the distances between assigned cars and
their slots tend to be large, a fact that increases the cost
of CECP’s first phase (as many re-assignments are per-
formed). Larger Preq reduces the cost of the first phase
due to the decrease of the average distance between
assigned pairs. On the other hand, as Preq increases
|Cr| becomes larger and the second phase of CECP

becomes more expensive. In the second phase, HYECP
is the best algorithm in terms of CPU and has lower
memory overhead than CPMECP. Figure 18b shows that
the memory requirements of both phases of CECP are
slightly affected by Preq , with the same trend as the CPU
time difference.

 0

 1

 2

 3

 4

 5

 6

 7

 1 10

C
P

U
 ti

m
e

(s
)

Requesting Rate (%)

CPMECP-phase2
STRIPECP-phase2

HYECP-phase2
phase1

 0

 20

 40

 60

 80

 100

 120

 140

 1 10

P
ea

k
m

em
or

y
(M

B
yt

es
)

Requesting Rate (%)

CPMECP-phase2
STRIPECP-phase2

HYECP-phase2
phase1

(a) CPU time (b) Peak memory

Fig. 17. Effect of requesting rate

Figure 18 shows the effect of Punpark on the per-
formance of the algorithm, after fixing Preq and V to
their default values. There is a slight increase on the
CPU time and memory requirements for both phases as
Punpark increases (due to the increase of |Sf |. Finally,
Figure 19 shows that our problem is not sensitive to
the objects velocity (Preq and Punpark are fixed to their
default values).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 10

C
P

U
 ti

m
e

(s
)

Leaving Rate (%)

CPMECP-phase2
STRIPECP-phase2

HYECP-phase2
phase1

 0

 20

 40

 60

 80

 100

 120

 140

 1 10

P
ea

k
m

em
or

y
(M

B
yt

es
)

Leaving Rate (%)

CPMECP-phase2
STRIPECP-phase2

HYECP-phase2
phase1

(a) CPU time (b) Peak memory

Fig. 18. Effect of leaving rate

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14

C
P

U
 ti

m
e

(s
)

Velocity

CPMECP-phase2
STRIPECP-phase2

HYECP-phase2
phase1

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14

P
ea

k
m

em
or

y
(M

B
yt

es
)

Velocity

CPMECP-phase2
STRIPECP-phase2

HYECP-phase2
phase1

(a) CPU time (b) Peak memory

Fig. 19. Effect of different velocities

6 CONCLUSION

In this paper we identified the exclusive closest pairs
(ECP) problem, which is a spatial assignment problem.
A motivating application is the matching of cars and

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 14

parking slots. We proposed main-memory algorithms for
solving the static version of the problem. Apart from the
CPM-based algorithm, which was included in an earlier
version of the paper [19], we designed a plane-sweep
based approach with low memory requirements. This
method was combined with the CPM-based algorithm
to result in a highly optimized hybrid method. We
compared our proposal with an ECP algorithm indepen-
dently proposed in [20] and showed that it is 1-2 orders
of magnitude faster. In addition, we defined the problem
of continuous monitoring ECP pairs in a dynamic envi-
ronment where assignment requests and de-assignment
notifications arrive from a stream. Finally, we showed
that our approaches can be seamlessly applied for a
generalization of the ECP problem, where objects may
have capacities. Via a thorough experimental evaluation
we demonstrated the efficiency of the proposed solutions
on synthetically generated data that simulate a real-life
dynamic car/parking assignment problem. In the future,
we will consider other types of one-to-one assignments
(e.g., finding and maintaining an assignment that mini-
mizes an aggregate distance).

REFERENCES

[1] M. R. Anderberg. Cluster Analysis for Applications. Academic Press,
Inc., 1973.

[2] C. Böhm and F. Krebs. The k-nearest neighbour join: Turbo
charging the kdd process. Knowl. Inf. Syst., 6(6):728–749, 2004.

[3] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopou-
los. Closest pair queries in spatial databases. In SIGMOD, 2000.

[4] U. Derigs. A shortest augmenting path method for solving
minima perfect matching problems. Networks, 11(4):379–390, 1981.

[5] D. Eppstein. Fast hierarchical clustering and other applications
of dynamic closest pairs. ACM Journal of Experimental Algorithms,
5:1, 2000.

[6] D. Gale and L. S. Shapley. College admissions and the stability
of marriage. Amer. Math., 69:9–14, 1962.

[7] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, 1984.

[8] G. R. Hjaltason and H. Samet. Incremental distance join algo-
rithms for spatial databases. In SIGMOD, 1998.

[9] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM Trans. Database Syst., 24(2):265–318, 1999.

[10] G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of k-nn and
spatial join queries on continuously moving points. ACM Trans.
Database Syst., 31(2):485–536, 2006.

[11] N. Koudas and K. C. Sevcik. High dimensional similarity joins:
Algorithms and performance evaluation. In ICDE, 1998.

[12] H. W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistics, 2005.

[13] M.-L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Supporting
frequent updates in r-trees: A bottom-up approach. In VLDB,
2003.

[14] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable incremental
processing of continuous queries in spatio-temporal databases. In
SIGMOD, 2004.

[15] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Contin-
uous query processing of spatio-temporal data streams in place.
In STDBM, 2004.

[16] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual
partitioning: An efficient method for continuous nearest neighbor
monitoring. In SIGMOD, 2005.

[17] E. D. Nering and A. W. Tucker. Linear Programs & Related Problems:
A Volume in the Computer Science and Scientific Computing Series.
Academic Press, Inc., 1992.

[18] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi. Discovery
of influence sets in frequently updated databases. In VLDB, 2001.

[19] L. H. U, N. Mamoulis, and M. L. Yiu. Continuous monitoring of
exclusive closest pairs. In SSTD, 2007.

[20] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao. On efficient
spatial matching. In VLDB, 2007.

[21] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An efficient method
for knn join processing. In VLDB, 2004.

[22] X. Xiong and W. G. Aref. R-trees with update memos. In ICDE,
2006.

[23] X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable
processing of continuous k-nearest neighbor queries in spatio-
temporal databases. In ICDE, 2005.

[24] C. Yang and K.-I. Lin. An index structure for improving nearest
closest pairs and related join queries in spatial databases. In
IDEAS, 2002.

[25] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor
queries over moving objects. In ICDE, 2005.

[26] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao. All-nearest-
neighbors queries in spatial databases. In SSDBM, 2004.

Leong Hou U Leong Hou U received Bachelor
Degree in Computer Science and Information
Engineering in 2003 from the National Chi Nan
University, Taiwan, and received the Master De-
gree in E-Commerce in 2005 from the University
of Macau, Macau. He is currently a PhD can-
didate at the Department of Computer Science,
University of Hong Kong, under the supervision
of Dr. N. Mamoulis. His research focuses on
evaluating different kind of queries on complex
types of data.

Nikos Mamoulis Nikos Mamoulis received a
diploma in Computer Engineering and Informat-
ics in 1995 from the University of Patras, Greece,
and a PhD in Computer Science in 2000 from
the Hong Kong University of Science and Tech-
nology. He is currently an associate professor at
the Department of Computer Science, University
of Hong Kong, which he joined in 2001. In the
past, he has worked as a research and devel-
opment engineer at the Computer Technology
Institute, Patras, Greece and as a post-doctoral

researcher at the Centrum voor Wiskunde en Informatica (CWI), the
Netherlands. His research focuses on management and mining of
complex data types. He has served on the program committees of
over 40 international conferences and workshops on data management
and data mining. He was the general chair of SSDBM 2008 and a co-
organizer of SSTDM 2006. He is an editorial board member for Geoin-
formatica Journal and a field editor of the Encyclopedia of Geographic
Information Systems.

Man Lung Yiu Man Lung Yiu received the
bachelor’s degree in computer engineering and
the PhD degree in computer science from the
University of Hong Kong in 2002 and 2006,
respectively. He is currently an assistant pro-
fessor in the Department of Computer Science,
Aalborg University. His research interests in-
clude databases and data mining, especially ad-
vanced query processing and mining techniques
for complex types of data.

