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Efficient Correlation Search from Graph Databases

Yiping Ke, James Cheng, and Wilfred Ng

Abstract— Correlation mining has gained great success in two graphs are similar). Existing work [18], [19], [20], [R1
many application domains for its ability to capture underlying  [22] mainly focuses on structural similarity search. Hoegv
dependencies between objects. However, research on coaBON i many applications, two graphs that are structurally idigar
mining from graph databases is still lacking despite that gaph but always appear together in a graph in the database may be

data, especially in scientific domains, proliferate in recet years. int ti E le. in chemisti fer t
We propose a new problem of correlation mining from graph more Interesting. For example, In chemistigomersreter (o

databases, called Correlated Graph Search (CGS). CGS adapt Molecules with the same chemical formula and similar stmest
Pearson’s correlation coefficient as the correlation measa to The chemical properties of isomers can be quite differerd du
take into account the occurrence distributions of graphs. kw- to different positions of atoms and functional groups. Gderis
ever, the CGS problem poses significant challenges, sinceeey the case that the chemist needs to find some molecule that
subgraph of a graph in the database is a candidate but the ghares similar chemical properties to a given moleculeicBiral
number of subgraphs is exponential. We derive two necessary similarity search is not relevant, since it mostly returasmers

conditions that set bounds on the occurrence probability of . . .
a candidate in the database. With this result, we devise an ©f the given molecule that have similar structures but dsife

efficient algorithm that mines the candidate set from a much chemical properties, which is undesirable. On the cont@@s is
smaller projected database and thus we are able to obtain a able to obtain the molecules that share similar chemicgiqutes
significantly smaller set of candidates. Three heuristic ries are but may or may not have similar structures to the given matecu
further developed to refine the candidate set. We also make 8s Therefore, our proposed CGS solves an orthogonal problem of
of the bounds to directly answer high-support queries with®it i, 0yra| similarity search and the discovered correlageaphs

mining the candidates. Our experimental results demonstrte the re ver ful in manv real lication h drua desian
efficiency of our algorithm. Finally, we show that our algorithm are very usefu any real applications such as drug aesig

provides a general solution when most of the commonly used @nomalous detection, etc. o _ _
correlation measures are used to generalize the CGS problem We use Pearson’s correlation coefficient to define CGS since i

is shown to be one of the most desirable correlation measures
[17] for its ability to capture the departure of two variabligom
independence. It has been widely used to describe the #ireng
of correlation among boolean variables in transaction lueges
. INTRODUCTION [17], [5], [6]. This motivates us to apply the measure in the

Correlation mining is recognized as one of the most impogontext of graph databases. However, graph mining is a much
tant data mining tasks for its capability to identify ungéry harder problem due to the high complexity of graph operation
dependencies between objects. It has a wide range of appligg., subgraph isomorphism testirig NP-complete [23]). The
tion domains and has been studied extensively in markéebasdifficulty of the problem is further compounded by the facatth
databases [1], [2], [3], [4], [5], [6], quantitative datales [7], the search space of CGS is often large, since a graph coosists
multimedia databases [8], data streams [9], and many othegx¥ponentially many subgraphs and any subgraph of a graph in
However, little attention has been paid to mining correlasi D can be a candidate graph. Thus, there are great challenges in
from graph databases, in spite of the popularity of grapta ddackling the problem of CGS.
models pertaining to various domains, such as biology [[1d], How can we reduce the large search space of CGS to avoid
chemistry [12], social science [13], the Web [14] and XML J15 expensive graph operations as much as possildle?nvestigate

In this paper, we study a new problem of mining correlatiori§e properties of Pearson’s correlation coefficient and/eéwo
from graph databases [16]. We propose to Bearson’s correla- necessary conditions for the correlation condition to hesfed.
tion coefficient[17] to measure the correlation betweemaery More specifically, we derive the lower bound and upper bound
graph and aranswergraph. We formulate this mining problem,of the occurrence probability (also calletippory, supp(g), of
namedCorrelated Graph SearcfCG39, as follows. Given a graph a candidate graply. This effectively reduces the search space
databaseD that consists ofN graphs, a query graph and a from the set of all subgraphs of all graphsiinto be the set of
minimum correlation threshold, the problem of CGS is tfind Frequent subGraphé~Gs) [24] with the support values between
all graphs whose Pearson’s correlation coefficient withpext to  the lower and upper bounds efipp(g).
g is no less thare. However, mining FGs fromD is still expensive when the

Our problem of CGS has a close connection to graph similari@wer bound ofsupp(g) is small or whenD is large. Moreover,
search. There are two types of similarity in graph databas&¥e still have a large number of candidates and the solution is
structural similarity (i.e., two graphs are similar in structure)not scalable. Thus, we need to reduce further the number of
and statistical similarity (i.e., the occurrence distributions ofcandidates and address the scalability problem. The wagrl

idea of our solution, name@GSearchis as follows.
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set. SinceD, is much smaller thaD while l""“”b;‘j;;fé;yp”(g)) Organization. We give preliminaries in Section Il. We define

is greater tharowerbound (supp(g)), our findings not only save the CGS problem in Section Ill. We propose effective cargida
the computational cost for generating the candidate seétalso generation from a projected database in Section IV. We ptese
significantly reduce the number of candidates. Furthermare the CGSearch algorithm in Section V. We present the improved
develop three heuristic rules to be applied on the candidate algorithm, CGSearch*, together with FGQuery, in Section\We
generated from the projected database to identify the grépdt analyze the performance in Section VII. Then, we generdlize
are guaranteed to be in the answer set, as well as to prune @&S problem and discuss its solution in Section VIII. Fipall
graphs that are guaranteed to be false positives. we discuss related work in Section IX and conclude our paper i
Since candidate generation involves a mining operationchvh Section X.
can still be expensive, we further improve the CGSearchrithgn
to avoid performing this mining operation. More specifigalve
maintain a set of FGs at a minimum support threshol@iven a In this paper, we restrict our discussionundirected, labelled
query whose correspondinigwerbound (supp(g)) is no less than connected graphéor simply graphshereinafter), but our method
o, We propose to generate its candidate set by querying frem N be easily extended to process directed and unlabekigihgr
set of FGs. We name this procé&8Query To reduce the number A graph g is defined as a-tuple (V, E, L, 1), whereV"is the
of candidate verifications, we further develop another §¢tree  Set Of vertices £ is the set of edges, is the set of labels and
heuristic rules to be applied on the candidate set produged b'S @ Iabellm_g functl_on that maps each vertex or edge to al labe
FGQuery. By integrating CGSearch and FGQuery, we present’al: We define thesizeof a graphg as size(g) = |E(g)|-
more efficient solution to the CGS problem, nan@@Search*  Given two graphsg = (V, E, L,1) andg’ = (V', E', L,I'), g
Our extensive experiments on both real and synthetic datadé called asubgraphof ¢ (or ¢’ is asupergraphof g), denoted as
show that our algorithm CGSearch processes a wide rangeddt 9' (Or g’ 2 g), if there exists an injective functioft v — v/,
queries with short response time and small memory consompti SIUCh thatv(u, v) € E, (/f(u)’ f(v)) € B 1) = U(f(u)), I(v) =
Compared with the approach that generates candidate sets! b{{v)), @ndi(u,v) =1'(f(w), f(v)). The injective functionf is
mining the entire database with a support range, CGSearctc@dled asubgraph isomorphisrfrom g to ¢'. Testing subgraph
orders of magnitude faster and consumes up to 40 times |&¥morphism is known to balP-complete [23].
memory. The effectiveness of the candidate generation fromLet D = {g1,92,...,9,} be agraph databasg¢hat consists of
the projected database and that of the three heuristic ares N graphs. GiverD and a graply, we denote the set of all graphs
also demonstrated. The results also show that the algorithmD that are supergraphs gfasDy = {¢' : ¢’ € D,¢’ 2 g}.
CGSearch* further improves the response time of CGSearch W call D, the projected databasef D on g. The frequencyof
an order of magnitude, with comparable memory consumptiop,in D, denoted agreq(g; D), is defined asD,|. The supportof
for queries that are of high support. g in D, denoted asupp(g; D), is defined as’%gf’). A graph
Finally, considering that there are also many other well is called aFrequent subGraphFG) [25], [24\], [26] in D if
established correlation measures [17], we generalize 6& Csupp(g; D) > o, whereo (0 < o < 1) is a user-specifiethinimum
problem to adopt other correlation measures. In order to fistpport threshold For simplicity, we usefreq(g) and supp(g)
a general solution, we model the generalized CGS problem tasdenote the frequency and support ofin D when there is
a system of inequalities. By solving this inequality systeme no confusion. Given two graphg; and go, we define thgoint
prove that our solution for Pearson’s correlation coeffitialso frequency denoted asfreq(g1,g2), as the number of graphs in
serves as an effective and efficient solution for the majosit D that are supergraphs of bofh and go, i.e., freq(g1,92) =

Il. PRELIMINARIES

the correlation measures. |Dg, N Dy,|. Similarly, we define thgoint supportof g; and g2
Contributions. We make the following specific contributions.  as supp(g1, g2) = %-

« We formulate the new problem of correlation search in graph The Support measure nti-monotongi.e., if g1 C g2, then
databases, which takes into account the occurrence distrif§#PP(91) > supp(g2). Moreover, by the definition of joint sup-
tions of graphs using Pearson’s correlation coefficient. ~ POrt, we have the following propertiesupp(g1, g2) < supp(g1)

« We present an efficient algorithm, CGSearch, to solve ti@d supp (g1, 92) < supp(g2).
problem of CGS. We propose to generate the candidate seEXAMPLE 1. Figure 1 shows a graph databa®egthat consists
by mining FGs from the projected database of the quesf 10 graphs,gi,...,g10. For simplicity of illustration, all the
graph. We develop three heuristic rules to further reduee thodes have the same label (not shown in the figure); while the
size of the candidate set. We also prove the soundness ghdracters:, b andc represent distinct edge labels.
completeness of the query results returned by CGSearch. The graphys is a subgraph of.. The projected database @,

« We present an improved algorithm, CGSearch*, which is., Dgs, IS {g2, 93, g6, 97, gs}. The frequency ofjs is computed
able to avoid performing the mining process of candida@s freq(gs) = |Dgs| = 5. The support ofgs is supp(gs) =
generation for queries of high support. Three more heurist{%’f,# = 15—0 = 0.5. As for g9, we haveDy, = {g6,97,99}-
rules are presented to be applied on this candidate setTioe joint frequency ofys and g9 is computed agreq(gs, g9) =
further reduce the search space. |Dgs N Dyo| = {g6,97} = 2. Therefore, the joint support afg

« We conduct a comprehensive set of experiments to verifind g9 is computed asupp(gs, go) = % =02 N
the efficiency of the algorithm and the effectiveness of the
candidate set generation and the heuristic rules. l1l. THE CGS FROBLEM

« We generalize the CGS problem to adopt other correlationWe first definePearson’s correlation coefficierf7] for two
measures and show that our algorithm provides a genegahphs. Pearson’s correlation coefficient for booleanatdes is
solution for most of the commonly used measures. also known as theg¢ correlation coefficierit [28].
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TABLE |
NOTATION USED THROUGHOUT THEPAPER
Notation [ Description |
D a graph database
q a query graph
6 a minimum correlation threshold, < 60 < 1
?(q, 9) Pearson’s correlation coefficient gfand g
q the answer set of
base(Aq) the base of the answer set
9 the projected database &f on graphg
freq(g), supp(g) the frequency/support of in D
freq(q, g), supp(q, g) the joint frequency/support of andg in D
freq(g; Dq), supp(g; Dq) the frequency/support af in D,
freq(q, g; Dq), supp(q, g; Dg) | the joint frequency/support af andg in D,
lower supp(g): UPPET supp(g) the lower/upper bound ofupp(g)
lower supp(q,9) UPPET supp(q,9) the lower/upper bound ofupp(q, g)

LEMMA 1: If g andg are correlated, then the following bounds
of supp(g) hold:

(9) (9 (9o) (9,0

Fig. 1. A Graph Databasé? = {g1,...,g10} 0=2(1—supp(q))+supp(q) — supp(g) < 02 (1—supp(q))+supp(q)
Proof: By the definition of joint support, we have
supp(q, ) < supp(g) and supp(q, g) < supp(q).
Since ¢ and g are correlated,¢(q,g9) > 6. By replacing
supp(q, g) With supp(g) in ¢(q,g), we obtain the lower bound

supp(q) < supp(q)

DEFINITION 1: (PEARSON'S CORRELATION COEFFICIENT)
Given two graphg; andgs, thePearson’s Correlation Coefficient
of g1 andgs, denoted a% (g1, g2), is defined as follows:

(g1, 9) = supp(g1,92) — supp(g1)supp(g2) ~ as follows:

V/supp(g1)supp(g2) (1 — supp(g1)) (1 — supp(g2)) supp(g) — supp(q)supp(9) -
Whensupp(g1) or supp(g2) is equal ta0 or 1, ¢(g1, g2) is defined V/ supp(q)supp(g) (1 — supp(q))(1 — supp(g)) —
to beo. supp(q)

= > .
The range of¢(g1,g0) falls within [—1,1]. If ¢(g1,g2) is supp(9) 2 0=2(1 — supp(q)) + supp(q)
positive, theng; and g are positively correlated; it (g1, g2)
is zero, theng; and g» are independent; otherwisg; and g

are negatively correlated. In this paper, we focus on pasjti

Similarly, by replacingsupp(q, g) with supp(q) in ¢(q,g), we
obtain the upper bound as follows:

correlated graphs defined as follows. supp(g) < — supp(q) )
DEFINITION 2: (CORRELATED GRAPHS) Two graphsg; and 62(1 — supp(q)) + supp(q)
g2 arecorrelatedif and only if ¢(g1, g2) > 0, whered (0 < 6 < 1) u
is a user-specifiechinimum correlation threshold For simplicity, we uselower g,,(4) and upper g,,,(4) to de-
We now define the correlation mining problem in graptote the respective lower and upper boundssafp(g) with
databases as follows. respect tog, as given in Lemma 1. The above lemma states

DEFINITION 3: (CORRELATED GRAPH SEARCH) Given a a necessary condition for a correlated answer graph, that is
graph databas®, a correlation query graphy and a minimum a candidate graph should have support within the range of
correlation threshold, the problem ofCorrelated Graph Search [lower g,y (g)s UPPET gupp (g)]-

(CGS)is to find the set of all graphs that are correlated with With the result in Lemma 1, we are able to obtain the candidate
Theanswer sebf the CGS problem is defined a&, = {(9,Dy) : set by mining the set of FGs [24], [26], [29] fror® using
o(q,9) > 0}. lower g, () @S the minimum support threshold amgper ., 4

For each correlated graph of ¢, we associateD, with ¢ as the maximum support threshold. However, according to the
to form a pair (g, Dgy) in the answer set in order to indicateanti-monotone property of the support measure, the gragtns w
the distribution ofg in D. We also define the set of correlatechigher support values are always generated before those wit
graphs in the answer set as thaseof the answer set, denoted adower support values, no matter whether a breadth-first @pthd
base(Aq) = {g : (9, Dg) € Aq}. In the subsequent discussions, dirst strategy is adopted. As a result, the maximum threshold
correlation query graph is simply calledgaery. upper gpp(4) 1S NOt able to speed up the mining process. There-

Table | presents the notation used throughout the paper.  fore, generating the candidate set by mining the FGs f@m
with a support range is still not efficient enough, espegiathen

IV. CANDIDATE GENERATION lowersupp?gp) is smgll orD is large. This motivaq[es uspf(fdevise a

A crucial step for solving the problem of CGS is to obtaifmore efficient and effective approach to generating theidates.
the set of candidate graphs. Obviously, it is infeasibleeti all
subgraphs of the graphs iR because there are exponentiallyB. Candidate Generation From a Projected Database
many subgraphs. In this section, we discuss how to effdgtive From Definition 1, it follows that if ¢(q,g) > 0, then

generate a small set of candidates for a given query. supp(q,g) > 0. This means thay and g must appear together
in at least one graph i®. This also implies thatg € base(Ay),
A. Support Bounds of Correlated Graphs g appears in at least one graph in the projected databage of

We begin by investigating the bounds on the support of B,. SinceD; is in general much smaller thah, this gives rise
candidate graply, with respect to the support of a quefyWe to the following natural question: can we mine the candidze
state and prove the bounds in Lemma 1. more efficiently fromD, instead of fromD?
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The challenge is that we need to determine a minimum supporiThus, we need to prove that, within the range of
threshold that can be useq to'mine the EGS from so that no [lowersupp.(g),.uppersu.pp(g)], f'(supp(g)) > 0 or, equivalently,
correlated answer graph is missed. Obviously, we cannotaus¢he following inequality:
trivial threshold to mine all FGs since it is too expensive this
subsection, we derive a minimum support threshold thatlesab 1 -2 supp(g) s _2 | _supld) (3)
us to compute the candidates frapy efficiently. Our solution is Vsupp(9)(1 — supp(g)) — 0\ 1— supp(q)
inspired by an important observation as stated in Lemma 2. (o) < 0.5, then(1—2-supp(g)) >

First, if supp(g) < upper

LE(MI\/)IA 2: Given a graphy, supp(g9;Dq) = supp(:9;Pq) = ( and hencef’ (supp(g)) >s(7)14.pp
SU, s . —
7355,;‘(15 : Now, we consider the case whemper ;) > supp(g) >

Proof: By the definition of the projected database, ip 5. Since the left hand side of Inequality (3) is less than 0, we
follows that all graphs irD, containq. Therefore, each graph square both sides of Inequality (3) and obtain:
in Dy that containsg must also contairg. Thus, supp(g; Dy) =

supp(q, g; Dy) holds. Since the number of graphs containing both (1—2- supp(9))® < A-supp(q)
¢ and g in D is the same as that i@, that is, freq(q, g) = supp(g)(1 — supp(g)) ~ 02(1 — supp(q))
. asupp(a,9) _ frea(q,9)/|D| _ freq(q,9;Dq) _ . 2 _ . 201 _
freq(q, g; ?q): we have supp(q) — freq(q)/[D] D, = < a-(supp(9))” —a-supp(g) + 07 (1 — supp(q)) <0,  (4)
supp(d, 9; Dy). B Wwherea = 46%(1 — supp(q)) + 4supp(q).

. :el?mg)z.ﬁ?:]es that the Sttl]pploft tOf a gr@f()imf;he(zj prpje;ted The left-hand side of Inequality (4) is a quadratic funcfion
atabaser, 1S tne same as the Joint support @landg N Lq. - \ynich is monotonically increasing within the range [0f5, oc].

This prompts us to derive the lower bound and upper bound f§fnce0.5 < supp(g) < upper we replacesupp(g) with

supp(a, 9; Dg), given thatg is correlated withy. Then, we canuse " in this qﬁadratig?ﬁﬁgt)ibn:

the bounds as the minimum and maximum support thresholds lp supp(9)

compute the candidates from. a -+ (UPPET upp(g))” — @ UPPET g (o) + 07 (1 — supp(q))

Sincesupp(q, g; Dy) = 22229 by | emma 2, we try to derive 2 ?
PP\D: 95 2a) = “supp(q) y ' y = 0(1 — supp(q))(
2))(

4 - upper +1
the bounds forsupp(q, g). PPET supp(g) + 1)

2 .

First, by the definition of joint support, we obtain the upper~ ¢ (1 = supp(q))(=4x 0.5+ 1) (SinCeupper gy (4) > 0.5)

bound of supp(q, g) as follows: < 0.
supp (g, g) < supp(q). (1) Therefore, whem.5 < supp(g) < upper g4, INequality (4)

Then, we derive a lower bound fetipp(q, g). Giveng(q,g)>0, holds and hencg’(supp(g)) > 0.

the following inequality can be obtained from Definition 1. Thus, f is monotonically increasing within the range of
supp(q, g) > f(supp(g)), ) [lower gupp(g)> yppersupp(g)]. T_he lower bound_ Of;upp(q,g_]) fol-

Where lows by substitutingsupp(g) with lower g,y In INnequality (2):

f(supp(g)) = 0+/supp(q)supp(g)(1 — supp(q))(1 — supp(g)) supp(¢,9) = f(supp(g))
+ supp(q)supp(g)- > fz= supp(9) )
- ; 6=2(1 — supp(q)) + supp(q)

The lower bound ofupp (g, g) stated in Inequality (2) cannot be
directly used, since it is a function efipp(g), whereg is exactly = — supp(q) .
what we want to get by usingupp(q, g). However, since we have 072(1 — supp(q)) + supp(q)
obtained the range ofupp(g), i.€., [lower s (g)s UPPET supp(g)] u

as stated in Lemma 1, we now show that this range can be useffrom now on, we usower s,y (q,g) 8N UpPET sypp(q,q) 10

in Inequality (2) to obtain the lower bound efipp(q, g), which denote the lower and upper boundssapp(g, g) with respect to

is independent of. g, as given in Lemma 3.
By investigating the property of the functiofy we find that ~ With the results of Lemmas 2 and 3, we propose to generate
. . . . . . . .. . lower supp(q,q)

f is monotonically increasing withsupp(g) in the range of the candidates by mining FGs frofy, using —_*2:-% as the

. pp(q) .
[lower g (g)» UPPET sypp(4))- Therefore, by substitutingupp(g) ~ minimum support threshold. A generated candl(fatecsms said
with lower i

supp(g) 1N Inequality (2), we are then able to obtainto be completewith respect tog, if Vg € base(Aq), g € C. We

the lower bound ofupp(q, g). We state and prove the bounds ofstablish the result of completeness by the following theor
supp(q, g) in the following lemma. THEOREM 1: LetC be the set of FGs mined from, with the
LEmMMA 3: If g andg are correlated, then the following boundsyinimum support threshold o£“< =urs)  Then,C is complete

f hold: . supp(q) ° '
of supp(q, g) hold: with respect tay.
supp(q) Proof: Let g € base(A,). Since ¢(q,g) > 6, it fol-
< su; ,q) < su, . 4 ’ = 7

70— supp()) T supp(g) = P09 = prld) lows that lower supp(q,g) < supP(@:9) < UPPCTsupp(q,q) DY
Proof: The upper bound follows by the definition of jointLemma 3. Dividing these expressions Byipp(q), we have
support. lowerwumea) o supp(4.9) < 1 By Lemma 2, we have

supp(q) = supp(q) —
To show that the lower bound holds, we need to prove thatwer,,,,(, » < supp(g: Dy) < 1. The resulty € ¢ follows, since

the function f is monotonically increasing within the bounds — surr(a) _ ower
of supp(g) given in Lemma 1. This can be done by applying is the set of FGs mined from®, using — -0 as the
differentiation tof with respect tosupp(g) as follows: minimum support threshold. ]
The result of Theorem 1 is significant, since it implies that
__ 6-supp(q)(1—supp(q))(1—2-supp(g)) . .
f'(SUPP(g))—2\/sup;()z)ipp(g)gp_zupp(q))(ﬁzuz,p(g))““pp(q)' we are now able to mine the set of candidate graphs from a
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much smaller projected databa$® (compared withD) with

a greater minimum support threshof&%’w (compared Fpp—— P
with lower g, (,) Which is equal tolower (4 4), @ Shown o(q,g) > \/ PPLq .\/1 PP\q
in Lemmas 1 and 3). ’ supp(q) — supp(q)
= 0.
V. CGSEARCHALGORITHM Therefore,g € base(Ag). [

) . i Based on Heuristic 1, if we find that a graphn the candidate
In this section, we present our §o|ut|on to the QGS problerget is a supergraph @f we can add, D,) into the answer set
The framework of the solution consists of the following feteps. \yithout checking the correlation condition. In additiome g is

1) Obtain the projected databa®g of q. a supergraph of, Dy can be obtained for free whenis mined
2) Mine the set of candidate graphd from Dy, using from the projected databage;.
lowersupa.a) g5 the minimum support threshold. We next seek to save the cost of unrewarding query operations
supp (g . _ : .
3) RefineC by using three heuristic rules. by pruning those candidate graphs that are guaranteed to be
4) For each candidate graghe C, uncorrelated withy. For this purpose, we develop the following

two heuristic rules.
Before introducing Heuristic 2, we establish the following
lemma, which describes a useful property of the function
LEMMA 4: If both supp(q) and supp(q,g) are fixed, then
¢(q,g) is monotonically decreasing witkupp(g).
Proof: Since bothsupp(q) and supp(q, g) are fixed, we first
simplify ¢ for clarity of presentation. Lett = supp(g), a =

a) ObtainD,.
b) Add (g,Dy) to Ay if ¢(q,g) > 6.

Step 1 obtains the projected database;.offhis step can be
efficiently performed using any existing graph indexinghteique
(e.g., [30], [31]) that can be used to obtain the projectediutese
of a given graph.

Step 2 mines the set of FGs frofy, using some existing FG

mining algorithm [24], [26], [29]. The minimum support tisteold

is determined by Theorem 1. The set of FGs forms the candidate

set,C. For each graplg € C, the set of graphs i®, that contain
g is also obtained by the FG mining process.

In Step 3, three heuristic rules are applied’tw further prune
the graphs that are guaranteed to be false positives, asasvédl

identify the graphs that are guaranteed to be in the answer se

Finally, for each remaining grapfin C, Step 4(a) obtain®,

using the same indexing technique as in Step 1. Then, Stgp 4(5

checks the correlation condition gfwith respect to; to produce
the answer set. Note that the joint supportqfnd g, which
is needed for computing(q, g), is computed ass@pp(g; Dq) -
supp(q)) according to Lemma 2.

In the remainder of this section, we present the three heuris
rules and our algorithni2GSearchto solve the problem of CGS.

A. Heuristic Rules

To check whether each graphin C is correlated withy, a query
operation is needed to obtaipy, for each candidate (Step 4(a)).

supp(q, g), b = supp(q), andc = supp(q)(1 — supp(q)). Then, we

a—b-x
¢(@) = c-z(1—x)
The derivative ofp at = is given as follows:
1 (2a —b)x —a

!/
o) = Ve 2z(1—z)y/z(1—a)
bSinceO < x < 1, we havez(1—x) > 0. Thus, the sign o’ (z)
epends on the sign ¢f2a —b)z —a). Since((2a —b)x —a) is a
linear function, we can derive its extreme values by repigai
with 0 and 1 in the function. The two extreme values @Ra —
b)x — a) are (—a) and (a — b), both of which are non-positive
sincea > 0 anda < b. Therefore, we havé(2a — b)z —a) <0
and¢’(z) < 0. It follows thaté(q, g) is monotonically decreasing
with supp(g). ]
HEURISTIC 2: Given two graphg; andgs, whereg; O g2 and
supp(g1,q) = supp(g2,q), if g1 ¢ base(Aq), thengs ¢ base(Ay).
Proof: Sinceg; D g2, we havesupp(g1) < supp(g2). Since
supp(g1,q9) = supp(g2,q) and supp(q) is fixed, by Lemma 4,

This step can be expensive if the candidate set is large., Theis we have ¢(q,g1) > é(q,g2). Since g1 ¢ base(Aq), we have

develop three heuristic rules to further refine the candidat.

o(q,91) < 8. Therefore,¢(q, g2) < #(q,91) < 0. Thus, we have

First, if we are able to identify the graphs that are guamthte go ¢ base(Aq). [ ]
to be correlated witly before processing Step 4, we can save the By Lemma 2, if supp (g1, ¢)=supp(g2,q), then supp(g1;Dq)

cost of verifying the result. We achieve this goal by Heiridt
HeuRrIsTIC 1: Given a graphg, if g € C andg D ¢, then
g € base(Ay).
Proof: Since g 2 ¢, we have supp(q,g9) = supp(g).
Moreover, sincey € C, we havesupp(g, q; Dg) > %”(’;fﬂ)
By Lemma 2, we further haveupp(q, g) > lower gpp(q,9)-

By replacingsupp(q, g) with supp(g) in ¢(q, g), we have

|1 —supp(q) supp(9)
#a.9)= \/ ' \/1 — supp(g)’

supp(q)
Now, ¢ is monotonically increasing withsupp(g), and
supp(g) = supp(q, g) > lower (4, 4)- We replacesupp(g) with
its lower bound oflower supp () in

supp(4,9) — 9 2(1—supp(q))+supp(q)
¢(q,9). Then, we have the following expression:

=supp(g2; Dg). Thus, Heuristic 2 can be applied as follows: if

we find that a graply is uncorrelated withy, we can prune all

the subgraphs of in C that have the same support @sn D,.
We now use the functiorf again to present the third heuristic:

f(supp(g1)) = 0~/ supp(q)(1 — supp(q))supp(g1)(1 — supp(g1))
+ supp(q)supp(g1)-

HEeURISTIC 3; Given two graphg;; andgo, whereg; D go, if
supp(92,q) < f(supp(g1)), thengs & base(Aq).

Proof: Since g; O g2, we havesupp(g1)<supp(g2). By
Lemma 1, the necessary condition ftliy, g2) >0 is thatsupp(g2)
should fall within the rangeflower g,y (4> UPPET supp(g))- AS
shown in the proof of Lemma 3, the functiofi is monoton-
ically increasing within the rang@ower g, (), UPPET sypp(g))-
Therefore, we haveupp (g2, q)<f(supp(g1))<f(supp(g2)). By
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replacingsupp (g2, ¢) with f(supp(g2)) in ¢(q, g2), we derive the we have proved in Heuristic 1 thatis correlated withg; while

following expressions: for the case of Line 9, the soundness is guaranteed in Line 8.
Sags) < f(supp(g2)) — supp(q)supp(ga) Thus, the soundness of, follows.
V/ supp(q) supp(g2) (1 — supp(q)) (1 — supp(g2)) We now prove the completeness. By Theorem 1, the candidate
0/ supp(q)supp(g2) (1 — supp(q)) (1 — supp(gz))  SELC, produced in Line 2 of Algorithm 1 is completéy € C, if

= g is not included in4y, theng(q, g) is checked to be less than
GVSUPp(q)SUpp(gQ)(l — supp(@))(1 = supp(g2)) (Line 10) org is pruned by Heuristics 2 or 3 (Lines 11-14). For
’ all these caseg; is proved to be uncorrelated withand thus is
It thus follows the result thags ¢ base(Ag). ~ B notin A,. Therefore, the completeness .4f, follows. |
Note that in Heuristic 3supp (g2, q)<f(supp(¢91)) also implies gy avpLE 2: Consider again the graph database in Figure 1
91 ¢ base(Aq). This is becausg: 2 g2 implies supp(91,9) < and the query in Figure 2(a). Le® = 0.6. CGSearch (Line 1)
supp(g2,q). Therefore, we havesupp(g1,q) < f(supp(91))- first obtainsDy = {g1, 92, 93, 94}. Thus, we havesupp(q) = 0.4

Similarly, by replacingsupp(g1,q) with f(supp(g1)) in ¢(q,91),  and lower supp(q.q) = 0.19. Then, CGSearch (Line 2) mines FGs

we can haves(q, g1) < ¢ and thusg; ¢ base(Aq). from D, using 00'—%49 = 0.475 as the minimum support threshold
By Lemma 2, we haveupp(g2,q) = supp(g2; Dq) - supp(q). '

: and obtains nine candidates, which are shown in Figure Z{i®.
;P”S'('f)f“pp(g%‘ﬂ < f(supp(g1)), then supp(92;Dg) < pymper following the colon “” in the figure is the support afo
LZPPILL Thus, Heuristic 3 can be applied as follows: if We.gndidate inD
. mF](q) : : andigate Inb.
find that a graply is uncorrelated witty, we can prune all the  gince the candidates are sorted in descending order of their
subgraphs of in C that have support less thafﬁsw InDq.  size, CGSearch first processes Sincec; is a supergraph of
B. CGSearch Algorithm q, (c1,De,) is directly |ncludgd mAq by Heuristic 1. No.te. that
De, = {g1,92} can be obtained in the process of mining the
Now, we present the CGSearch algorithm. As shown in Alg@andidates fronD,, sincec, is a supergraph of.

rithm 1, after we obtain the candidate sefrom the projected  Then, CGSearch processesto obtainD., = {g2, g3, 6. 97 }-
databaseD, (Lines 1-2), we process each candidate grapli in Therefore, we haves(q,cp) = —2:5x04-04x04 _ 17 < ¢

. . . : ’ ’ v0.4x0.6x0.4%x0.6 : ’
according to the descending order of the graph sizes. TheasL Then CGSearch computeB, = {cg} SINCE cg C cy and
4-5 apply Heuristic 1 to include the supergraphs; & C directly g, (cs: D,) — supp(ca: Dg) = 0.5. CGSearch further computes
into the answer set without performing the query operat@® (7, — (¢, co} sincecs C cz, co C cz, and supp(cy; Dy) =
in Line 7). For other graphs id, we first obtain their projected (c:Dy) = 0.75 < 0.76 = f(supp(e2)) 35 shown in Figure
databases (Line 7). If they are verified to be correlated wite oy ar o ' ' . supp(a)
( (Line 7) y r ated wi 2(b). Therefore, after processing, C = {cs, cs, 7, cg}.
include them in the answer set (Lines 8-9); otherwise, HétiarR

- e _ : Similar to ¢;, CGSearch directly includeges, Dc,) into Ag
(Lines 11-12) and Heuristic 3 (Lines 13-14) are applied rthier since c; is a supergraph of;. For cs, after obtaining De,,

reduce the search space so that the unrewarding query mStSCfGSearch computes(cs, q) = 0.61 > 6, 0 (cs, De,) is added
false-positives are saved. to A,. Finally, by queryinge; andcg, sinceg¢(cy,q) = 0.4 < 0
Algorithm 1 CGSearch and ¢(cs, q) = 0.82 > 0, CGSearch addg, D, ) t0 Ag.

Input: A graph databas®, a query graphy, and a correlation Therefore, Ay = {(c1,De,), (¢3, Des), (¢5, Des), (¢, Des ) }-
thresholds. Among the nine candidates, five of them do not need to perform
correlation verification by applying Heuristics 1 to 3.

When carrying out the exhaustive search, there are 40 sub-
graphs for such a small and simple graph database. If we afener
the candidate set by mining FGs from using lower g, () =
0.19 and upper .,y = 0.64 as support thresholds, there are

Output: The answer sed,.
lower

1. ObtainDg;
2. Mine FGs fromD, using # as the minimum support

threshold and add the FGs &

i' forifea]cggqr;\ phg € C in size-descending ordafo still 16 graphs in the candidate set. This clearly illugigathat
5 Add (g, Dy) to Ay; the candidate generation from the projected databasdisagrtly

6 else reduces the search space indeell

7 ObtainDy;

8. if (¢(q,9) > 0) C. Discussion

ib. e|sédd (9,Dy) t0 Ay To apply the three heuristic rules in our algorithm, we need t
11. Hy — {g' €C:g C g,supp(g’;D,) = supp(g; D,)}; Obtain supergraphs or subgraphs of a given graph (Lines dnd1
12. C «— C—Hs; 13 of Algorithm 1) by testing subgraph isomorphism. However
13. Hs —{g €C:¢ Cg,supp(g’;Dy) < %ﬂ(f)”}? subgraph isomorphism testing is expensive and should hdea/o
14. C « C- Hs; as much as possible. We find that the number of subgraph
15. return Ay; isomorphism tests can be effectively reduced by using ahdept

first FG mining algorithm (such agSpan[26]) for the candidate
We now prove the soundness and completeness of the rege@lheration. In a depth-first mining process, the FGs geserat
returned by CGSearch. In other words, we prove that CGSearn be organized in a prefix tree, in which a child is a supetgra

is able to returnd, with respect to a giver precisely. of its parent. Thus, by following theoot-to-leaf pathsin the
THEOREM 2: The answer set4,, returned by Algorithm 1, is prefix tree, we are able to determine the subgraph-supérgrap
soundand completewith respect tog. relationship without performing subgraph isomorphisntites
Proof: We first prove the soundnes(g, Dy) € Ay, (g, Dy) If we only follow a path in the prefix tree and do not check

is added ta4, in either Line 5 or Line 9. For the case of Line 5the relationship of the graphs that appear in different fatve
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EL@ computesupp(q, g), which is much cheaper than the operation to
a

obtain Dy in the case whem € C.
Although FGQuery can save candidate generation time and
candidate verification ir€q is also cheaper than that @ Cg
is usually much larger tha@. To reduce the number of candidate
b a b c c verifications required for the candidates’i, we develop another
f\ z I z i - i - i - set of heuristic rules to be applied €.
al ¢ ¢ c a a b In the remainder of this section, we first discuss the heaarist

rules. Then, we describe how the heuristic rules are applied

(a) An Example Query;

(c;05)  (c;05) (s 1) (€ 078)  (c505) Finally, we present the improved algorithm, nam@@Search*
c which uses FGQuery to avoid mining for queries of high suppor
a b c
¢ oc—0 O0—0 O0—0 A. Heuristic Rules
(6, 0.5) €1 €1 (¢, 0.75) Sw_mlar to Heurls_tlc 1, the following heuristic is to idefytithe
_ candidate graphs idg that are guaranteed to be answer graphs.
(b) Candidate Set, of ¢ HEURISTIC4: Given a graphy, if g € Co andg 2 ¢, then
Fig. 2. An Example Query and Its Candidate Set g € base(Aq).

. ] ) Proof: Since g 2 ¢, we have supp(q,g9) = supp(g).
are not able to identify all the graphs i, and Hs of Algorithm Furthermore, sincg € Cq, We havelower ;) < supp(g) <
1 and all the supergraphs gf However, we observe that there,, T supp(a)

up] *

is a trade-off here. On the one hand, if we fully apply the ehre - By replacingsupp(q, g) with supp(g) in ¢(q,g), we have
heuristic rules by cross-checking the graphs in differeathg

_to find aII_ the subgraph-supergraph relationships, mor@r_apﬂn 1= supp(q) supp(g)
isomorphism tests have to be performed but fewer candidaites ¢(a,9) = N1z d

o . 9 supp(q) supp(g)
needed for verification of the correlation condition. On dtker o . ] ) .
hand, if we only partially apply the three heuristic rulessipply ~ Which is monotonically increasing withupp(g). We further
following the paths in the prefix tree, no subgraph isomanphi replacesupp(g) with its lower bound ofower g, 4 in the above
test is needed but more candidates are required for veidgficat ¢(¢;9) and obtain the following expression:

We further demonstrate this trade-off in our experiments. l
1 — sw ower

VI. CGSEARCH* A LGORITHM supp(q) 1 = lower gypp(g)

An essential step in the CGSearch algorithm introduced in Therefore,g € base(Aq) follows. u
Section V is to mine the set of candidates from the projected By Heuristic 4, if we find that a graph iy, is a supergraph of
database (Line 2 of Algorithm 1). Although mining from theg, we can directly add it to the answer set without any veriirat
projected database is much cheaper than mining from theewhol The following two heuristic rules are not only useful for ide
database, the mining operation is still expensive. In thigien, tifying answer graphs without performing correlation dkieg,
we further improve the CGSearch algorithm to avoid perfagni but also effective for eliminating false-positives.
the mining process for queries that are of high support. HEURISTIC 5. Given two graphsy; and g2, whereg; 2 go

More specifically, we organize the set of FGs (as wefndsupp(g1) = supp(g2), the following two statements are true:
as their corresponding projected databases) with a minimunga) g; € base(Aq) if and only if go € base(Aq).
support thresholdr according to the support values of FGs. (b) g1 ¢ base(Ay) if and only if go ¢ base(Ag).

In this way, the set of FGs within the support range of Proof: Sinceg; D go and supp(g1) = supp(g2), we know
[lower sypp () UPPET supp(g) ), 1-€-, the set of candidate graphs, cathatg, appears in every graph in whigh appears. Thus, we have
be obtained directly iflower,;,, ;) > o. We call this process supp(q, g1) = supp(q, g2). By Definition 1, we havep(q,g1) =

of obtaining the candidate sSEGQuery Since FGQuery is much ¢(q, g2) and hence the results of 5(a) and 5(b) follow. [ |
cheaper than the mining operation, we can significantlycede By Heuristic 5, when a candidate graphn Cg is included in
response time for processing query graphs whose corresppndr excluded from the answer set, the same result also applies
lower g, (4 1S NO less thamw. g's supergraphs or subgraphs that have the same support.

LetCq be the candidate set returned by FGQuery @itk the HEURISTIC 6: Given two graphsy; and go, whereg; 2 go,
candidate set generated from the projected database bya®¢hSe the following two statements are true:

The cost of correlation verification for a candidate graph Cg (@) If supp(g2) < h(supp(q,g1)), thengs € base(Aq).
is significantly lower that forg € C. To check the correlation (b) If supp(g1) > h(supp(q,g2)), theng; ¢ base(Ay).
condition, i.e.,¢(q,g) > 6, we need the values ofupp(g) and The function’ is defined as follows:

supp(q,g). For g € C, the value ofsupp(q,g) is obtained when h(supp(g, 9))

mining the projected database @f To check whethel is an ’
answer, we should obtain the projected databage Df;, (Line 7 _ a(2-supp(g,9) —a) +c— by/e— (2 supp(a,9) — a)27

of Algorithm 1) to getsupp(g), which is an expensive operation. 2c

On the other hand, foy € Cg, the value ofsupp(g) and the wherea = supp(q); b = 0y/a(l — a) andc = a® + b*.

projected databasP, are indexed in FGQuery. Thus, to verify Proof: We first prove that the function is monotonically
whetherg is an answer, we only need to intersézf andD, to increasing withsupp (g, g). The derivative of: is given as follows:
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W' (supp(q, g))
_ay/e— (2 supp(q,9) — a)2 +b(2 - supp(g, 9) — a)
cy/e— (2 supp(q,9) — a)?

If supp(q,g)z%mq), that is,(2- supp(q,g)—a) > 0, Equation
(5) is no less than. This proves that the functiolh monotonically
increases withsupp (g, g) within the range oﬂ%”(‘”, 1].

We now consider the case whe1npp(q,g)<w+p(q). We have
0<(a—2- supp(q, g))<a. Thus, it follows from Equation (5) that:

)

h'(supp(q, 9))
_ ay/e—(a—2-supp(q,9))2 — bla — 2 - supp(q, 9))

cy/e— (2 supp(q, g) — a)? ©
_ /e +07 — (a—2 supp(,9))® —bla —2-supp(a:9))
ev/e— (2 supp(q, 9) — a)?
ab — bla 2 supp(a,g) ©
" ey/e— (2 supp(q, 9) — a)?
> 0. 9)

Equation (7) is obtained by replacingwith (a + b%) in the
numerator of Equation (6). The last two inequalities foll@mce
a > (a—2-supp(q,9)).

Therefore, we have proved that the functiois monotonically
increasing withsupp(q, g).

Now, we prove Heuristic 6(a). Sincg; 2 g2, we have
supp(q, g1) < supp(q, g2). Since the functiork is monotonically
increasing withsupp(q, g), we havesupp(g2) < h(supp(q,g1)) <
h(supp(q,g2)). By Lemma 4,¢(q, g2) is monotonically decreas-
ing with supp(g2) when other parameters are fixed. Therefore,
replacingsupp(g2) with h(supp(q, g2)) in ¢(q, g2), we derive the
following expression:

¢(Q7 92)
supp(q, g2) — supp(q)h(supp(q, 92))

= /supp(q)(1 — supp(q))h(supp(q, g2))(1 — h(supp(q, g2)))
0.

The resultgy € base(Ay) follows.

Heuristic 6(b) can be proved similarly as Heuristic 6(a).m

Note that in Heuristic 6(a)supp(g2)<h(supp(q, g1)) also im-
pliesg; € base(Aq). This is because; 2 g2 implies supp(g1) <
supp(g2) < h(supp(g,g1)). As similar proof to that for Heuristic
6(a) appliesg; € base(Aq) follows. Similarly, in Heuristic 6(b),
supp(g1) > h(supp(q, g2)) also impliesgs ¢ base(Ay).

By Heuristic 6, if we find that a candidate graplis an answer,
we can directly include its subgraphdg whose support value is
no greater than(supp(q, g)). On the other hand,

all supergraphs of that have one more edge thgn The FG-
lattice can be constructed during the construction of Fd&in
without incurring too much extra cost. The only change to the
algorithm for the construction of FG-index is by deletingn&i9

of Algorithm 1 in [31] and computing the children list and the
parents list of each FG.

Algorithm 2 FGQuery

Input: A query graphy and a set of FGs.
Output: The answer sed,.

1. ObtainCq from F;

2. Initialize two empty queue)y and Qn;
3. for each g 2 ¢, whereg € Cg, do

4. Add (g,D,) to A, and markg;

5. for each unmarkedchild, ¢, of g do

6. Child_-Y(c, g, Qv, Qn, Ag);

7. while (Qn~ is not empty)

8. Popg out of Qn;

9. for each unmarkedparent,p, of g do
10. ParentN(p, g, Qv, Qn, Ag);
11. for each unmarkedchild, ¢, of g do
12. Child_N(c, g, Qv, Qn, Ag);
13. while (Qy is not empty)
14. Popg out of Qv;
15. for each unmarkedparent,p, of g do
16. ParentY(p, g, Qv, Qn, Ag);
17. for each unmarkedchild, ¢, of g do
18. Child_-Y(c, g, Qv, Qn, Ay);
19. if (@~ is not empty) goto Line 7;
20. else if (Qy is not empty) goto Line 13;
21. else /x bothQy andQy are emptyx/

. ScanCq until an unmarkedgraphg is found;

3. Markg;
24, if (ChecKg))
25. Add (g, D,) to Ay, pushg into Qy, andgoto Line 13;
26. else
27. Pushg into @~ andgoto Line 7;
28. return Ag;

Since many graphs share a large number of supergraphs and
subgraphs, we need an effective strategy to apply Helgidtio
6, so that the graphs will not be processed duplicately. Wesde
an efficient algorithm,FGQuery as shown in Algorithm 2, to
apply the three heuristics to computg.

FGQuery first obtains the candidate s&y from F. Since
whether or not a graph belongsdg is determined by its support,
F can be pre-sorted in ascending order of the support of the FGs
Thus,Cq, is simply the sub-arrayF(lower g, (g), UPPET supp(g))»
where lower g4y @nd upper ;) Of @ given g can be
computed by using Lemma 1.

if we find that a According to Heuristics 5 and 6, given the knowledge of

candidate graply is not an answer, we can prune its supergraflnether or not a graph is in the answer set, we can directly

in Cg whose support value is greater thafsupp(q, g)).

B. Application of Heuristic Rules in FGQuery

determine the inclusion/exclusion of many supergraphs sad
graphs ofg into/from the answer set. Thus, in Algorithm 2, we
use two queuesy andq@y, for keeping graphs that have been

In this section, we show how Heuristics 4 to 6 can be effeltivedetermined to be in and not in the answer set, respectivety. W
applied in FGQuery. Since a set of FGs is usually indexed byark a candidate whenever we push it into a queue to avoid it

the indexing technique (such as FG-index [31]) for obtajrtime

being processed repeatedly.

projected database, we implement FGQuery on this set of FGs. There are four cases when Heuristics 5 and 6 can be applied.
Let F be the set of FGs indexed by FG-index. To apply th@/e express these four cases in Procedures 1 to 4. If a camdidat

heuristics, we construct a lattice on, called theFG-lattice To
build the lattice, we associate children list and aparentslist

graph g is determined to be an answer, i.@..c Qy, we can
processg’s child, ¢, by calling Child_Y() as given in Procedure

for eachg € F, where the children list keeps all subgraphd. Heuristics 5(a) and 6(a) are applied in Line 1 of Procedure
of g that have one less edge thanand the parents list keepsto include the qualified subgraph gfinto the answer set. When
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the graphc cannot be determined by the heuristics (Lines 3-6 &. CGSearch* Algorithm
Procedure 1), we check the correlation conditioncafsing the We now present the overall algorithr&GSearch* which is

boolean operatiorChecK), which is true when the correlation 5 more efficient solution to the CGS problem by integrating th
condition is true. The graphis then included in eitheQy (and  cgsearch algorithm and the FGQuery algorithm.

Ag) or Qn. Procedure 2 applies Heuristic 5(a) to include the

qualified supergraph of € Qy into the answer set. Similarly, Algorithm 3 CGSearch*

Procedure 3 applies Heuristic 5(b) to prune the subgraph eof
Qn from the candidate set; while Procedure 4 applies Heusisti
5(b) and 6(b) to prune the supergraphgof Q .

Input: A graph databasé®, a query graphg, a correlation
fhresholdd, and a minimum support threshotd
Output: The answer sed,.

Procedure 1Child_Y(c, g, Qy, Qn, Ag) 1. ObtainDy;
- 2. if(lower supp(g) > 0)
1. if (supp(c) = supp(g) or supp(c) < h(supp(q,9))) 3. FGQuery
2. Add(c,Dc) to A; and pushc into Qy; 4 else
3. else if (ChecKc)) 5. CGSearch
4. Add(c,D.) to A, and pushe into Qy; 6. return A, -
5. else _ i i
?' MaF;Il:ihc nto Q; As shown in Algorithm 3, the first step is to obtain the progett

database of; using the indexing technique. Then, we compute

the lower bound of a candidate graghwer , as given in
Procedure 2ParentY(p, g, Qy, Qn. Aq) Lemma 1. Iflower gy, (4 IS NO less than tﬁgpr(ﬁi)nimum support
1. if (supp(p) = supp(g)) . thresholds used in the indexing techniquEGQueryis invoked
g- e|52di?(g)f71§é)|()p§§) Aq and pusty into Qy; to avoid the mining operation for candidate generationentiise,
a Add (p, D,) t0 A, and in . CGSearchs invoked to generate the candidates from the projected
»,Dyp a pushp into Qy; . : _
5 else database. We remark that, the calling3fbSearchn Algorithm 3
6. Pushpinto Qu; skips processing Line 1 of Algorithm 1 since it has been eteztu
7. Mark p; by Line 1 of CGSearch*
Procedure 3 Child_N(c, g, Qyv, Qn, Aq) VII. PERFORMANCEEVALUATION
1. if (supp(c) = supp(g)) We evaluate the performance of our solution to the CGS
2. Pushcinto Qn; problem on both real and synthetic datasets.
3. else if (ChecKc))
g: eb’gdd (¢, De) to A, and pushe into Qv A. Experimental Settings
6.  Pushcinto Qn; The real dataset contains the compound structures of cancer
7. Mark ¢ and AIDS data from the NCI Open Database Compotindike
original dataset contains abo2#9K graphs. After removing the
Procedure 4ParentN(p, g, Qy, Qn, Aq) disconnected graphs, we randomly sel@edK graphs for our
1. if (supp(p) = supp(g) or supp(p) > h(supp(q,g))) experiments. On average, each graph in the dataset has 2% nod
2. Pushpinto Qn; and 23 edges. The number of distinct labels for nodes andsedge
3. else if (Checkp)) _ is 88. The real dataset is used in the experiments in Sections
4, Add (p, D,) to A4 and pushp into Qy; VII-B, VII-C, and VII-D.
2: eISSUShp into Q' Since the graphs in the real dataset are generally smallfand o
7. Mark p; low density, we use synthetic datasets to evaluate thepeafce

of the algorithms on graphs with different sizes and dessiin
Sections VII-E and VII-F. We develop a synthetic graph gatar
(see details in GraphGe&nfor our experiments. We first vary the
average number of edges in a graph from 40 to 100, by fixing the
. . . . average graph density to 0.15. Then, we fix the average number
the children list of the graphs to include the children 8 of edges in a graph to 60, and vary the average graph density

supergraphs in eithapy (and Ag) or Qv by calling Child-Y(. 5 g g5 (50 nodes) to 0.2 (25 nodes). Each synthetic datase
Next, Lines 7-12 process the subgraphs and supergraphe Ofﬁgs 100K graphs and the number of distinct labels is 30.

graphs i.nQN by calling Child-N() and ParentN(), respectively. Since the complexity of the CGS problem mainly depends
Then, L!nes 13-18 process the subgraphs and supergrgphe Ofoih the support of the query, we randomly generate four sets
graphs inQy by calling Child-Y() and Parent_Y()., respectively. of queries,Fy, F», F3, and Fy, for each of the datasets tested.

. When bothQy and Qy become emp;y (Lm?S 21-27), WeEaChFi contains 100 queries. The support ranges for the queries
linearly scanCq. When anunmarkedcandidateg is found, we

heck whethet, i h it int d th in Fy to Fy are[0.02,0.05], (0.05,0.07], (0.07,0.1] and (0.1, 1),
check whethey is an answer, push It intQy or @, and then respectively. We set the minimum correlation threshdltb 0.8

continue to apply Heuristics 5 and 6 to process the candaidapar all experiments, except for Sections VII-B and VII-D, ere
that areg’s supergraphs and subgraphs.

Fina”y, the algorithm I’eturnslq when all candidates |dQ are 1http://cactus_nci_nih_gov/ncidbz/dowmoad_htm|
marked. 2http://www.cse.ust.hk/graphgen

Algorithm 2 consists of four main parts. First, Lines 3-6¢@es
the supergraphs of by Heuristic 4, using the parents list of
the candidate graphs in the FG-lattice. The algorithm akesu
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we test the effect of heuristic rules and the performance tife candidates is much larger than the cost fidly applying
algorithms when varying. the heuristic rules. In this case, CGSeaRhs slower than
The efficiency of CGSearch is based on the effective carelid@@GSearchF since partially applying the heuristic rules is not
generation from the projected database and the applicationable to reduce the number of candidates as effectively as doe
Heuristics 1 to 3. Since there is no existing work on minin@GSearctF. However, with the increase ifi, and hence the
correlations from graph databases, we mainly assess theteff decrease in the size of the candidate set, CGSeRmmltperforms
of the candidate generation method and the heuristic rukes @GSearchF. This is because, given the smaller number of can-
the performance of our algorithm. First, to show the efficien didates, the full application of the heuristic rules, whinotiolves
gained by using the projected database for candidate g@wera subgraph isomorphism testings, is more costly than qugryin
we compare with the approach, calléhnge for which the the candidates by FG-index. This suggests a good strategy fo
candidates are mined from the original database with a stppapplying the heuristic rules: when the number of candidaes
range. Second, to show the effect of Heuristics 1 to 3 on refinilarge, we can use CGSearEtto reduce the search space as much
the candidate set, we implement three variants of our algas possible; when the number of candidates is relativelflsma
rithm: CGSearchP, CGSearchF andCGSearchN. Among them, we can simply use CGSearth
CGSearchP and CGSearck are implemented based on the In most of the cases, CGSearbhis the worst, since all the
different strategies of applying Heuristics 1 to 3 as disedsin candidates need to go through the verification of the cdrogla
Section V-C. We also test the CGSearch* algorithm to assess tondition. However, if the number of candidates is smallisit
efficiency improvement by using FGQuery. Table || summarizepossible that CGSeardh is even slower than CGSearbhdue
the algorithms tested in this experiment. to too many subgraph isomorphism tests that need to be petbr
when fully applying the heuristic rules. Therefore, it candeen

TABLE |I . T X

from Figure 3 that the running time of CGSearehs almost the

ALGORITHMSTESTED . . .
_ same as that of CGSearthwhend is high. However, in general,
| game | Zescr'ptt'c’?h e | cGSearctP outperforms CGSeardN, since the partial applica-

ange enerate the candiaate set Ir using . P . . -

[lower yupy (), upper supp(g)] @S a SUpport range. tion of the heur_lstlc rules requires no subgrgph isomorphisst

CGSearchP | Partially apply Heuristics 1 to 3 in CGSearch. due to the prefix tree, as discussed in Section V-C.
CGSearchF | Fully apply Heuristics 1 to 3 in CGSearch. In the rest of the experiments, we use CGSed&chwhen we

CGSearchN | Do Not apply Heuristics 1 to 3 in CGSearch. compare the algorithm CGSearch with CGSearch* and Range,

CGSearch* | A hybrid approach: invoke FGQuery for high-suppdr
queries and CGSeardh for low-support queries.

—

since CGSearck on average achieves the best performance
among all the variants.

We useFG-index[31] to obtain the projected database of a .
graph. In all experiments, we set the minimum support tholesh ~ C- Performance on Varying Query Support
and the frequency tolerance factoin FG-index t00.03 and0.05, We now assess the performance of our algorithm on queries
respectively. The same value &fis also used for our CGSearch*with different support ranges. Figure 4 presents the redoit
algorithm. We us@Span[26] to mine the FGs for generating theCGSearch*, CGSearch and Range on the query séis to F.
set of candidates. All experiments are run on a linux machineFigures 4(a-b) show the average running time per query and

with an AMD Opteron 248 CPU and 1 GB RAM. the peak memory consumption. From these two figures, we can
o see that CGSeardh is almost two orders of magnitude faster
B. Effect of Heuristic Rules and consumes ten times less memory than Range. The results

We first show the effect of applying Heuristics 1 to 3 preséntealso show that CGSearch* is even over an order of magnitude
in Section V-A. Figure 3 shows the running time éi for the faster than CGSeardR with comparable memory consumption.
three variants of CGSearch at different valuesdofin order For both CGSearcP and Range, the dominating factor in the
to focus on the effect of the heuristic rules, we do not ineludrunning time is the candidate generation process, whicbiveg
the time taken by the candidate generation and only prekent mining the projected database for CGSeafcland mining the
time for querying the candidates and checking the cormiati entire database for Range. On the other hand, the cost oitedad
condition. The time for processing other query sets follsimsilar generation is minimal for CGSearch* since most of the qserie

trends and is hence omitted for brevity. are processed directly using FGQuery.
We observe that CGSearthis slightly slower for processing
007 —— CGSearch_R F, and F,. This is because the cost of candidate generation not

-8 CGSearch_H
—&- CGSearch_|

only depends on the size of the projected database {isn(q)),
ini + lowersupp(q.g9)
but also on the minimum support threshold (.64,
L ) supp(tlz)
Although the minimum support threshold fdt, is the largest

among all the query sets, its projected database is also the

Time (sec)

0.03 Yy largest, which increases the mining time; while &y, its low
minimum support threshold results in slightly longer pigiag
*%e 07 o8 09 1 time. Compared with Range, the running time of CGSedtdh

much more stable. For all support ranges, CGSeRrt¢hkes 2

to 4 seconds for each query, while the running time of Range is

greatly influenced by the support of the queries. With theesse
When 6 = 0.6, the number of candidates is large. Therein the support of the queries, the running time of Range as®e

fore, CGSearcltF performs the best, since the cost for queryingapidly from 100 seconds to 400 seconds. For CGSearch*esinc

Running Time onFy
Fig. 3. Effect of Heuristic Rules
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810 z%k <% - Range LN S —&- F1 (CGSearch_P
o 5 CGSearch R @ 10 5 —+— F4 (CGSearch_P
£10 £ 40 —©- CGSearch E b £ 40 —o— F1 (CGSearch®)
= [~ F4 (Range) = —&- F4 (CGSearch*)
- 10 & F1 h
10 @“e\e\e 20 L ——F4 Eggggg:ﬁhigg 20
-6~ F1 (CGSearch*)
10,2 10,4 -8 F4 (CGSearch*)
1 e 3 o B F2 F3 F4 06 07 08 _ 09 1 6 07 08 _ 0.9
Query Sets Query Sets Minimum Correlation Thresholél Minimum Correlation Thresholél
(a) Running Time (b) Memory Consumption (@) Running Time (b) Memory Consumption
2 10" 1 Fig. 5. Performance on Varying
[=%
& 2 . . .
© 10} [ Range ] §0-8 As shown in Figure 5, for all values of, CGSearctP is
= earc . .
S | |-o cesearch” S04 , over an order of magnitude faster and consumes 6.5 times less
° —8- Answer Set o i *
&1 2 memory than Range ofy, while CGSearch* is near an order
5 Xéo-“ F,| of magnitude faster than CGSearehIn processingFy, when
Q . .
_21013\8/9\6 304 Ez 6 < 0.8, CGSearch* invokes CGSear¢hto process the queries
= - 3 . . . R .
z —F,| since their correspondingwer g, (4 iS l€ss thans, while for

=
O
[e=)

1 6 > 0.8, with the use of the FGQuery, CGSearch* is significantly
faster than CGSeardh

F1 F4 0.2

F2 F3 0.4 5 0.8
Query Sets Structural Snom?larity

(c) Size of Candidate Set (d) Structural Similarity of
Correlated Graphs E. Performance on Varying Graph Size
Fig. 4. Performance on Varying Query Support Since the graphs in the real dataset are of small size (oageer

only a small number of queries performs the mining operatio#8 €dges per graph), we use synthetic datasets to assess the
for candidate generation, the performance is very stabk: aperformance of the algorithms on different graph sizes.
significantly better than the other two algorithms. We report the results forFy and Fy, which are of the
We show the sizes of the candidate sets of CGSearch?rgest and the smallest support ranges, respectivelyirdig
CGSearchP and Range in Figure 4(c). The size of the answéhows the performance of CGSearch*, CGSedtcnd Range.
set is also shown as a reference. The result shows that the &i@r 1, CGSearctP is up to four orders of magnitude faster
of the candidate set produced by CGSedrcis over an order of and consumes 40 times less memory than Range. Note that
magnitude smaller than Range and is close to that of the answé&Search* invokes CGSearéhto processr. Therefore, the
set. Note that the set of candidates of CGSearch* is the samdning time of CGSearch* and CGSearch for is the same.
that of Range in this experiment; however, CGSearch* obtaifror F1, CGSearclP is still over an order of magnitude faster than
the candidates from the FGQuery rather than mines them frdf@nge, while CGSearch* is even an order of magnitude faster
the database as does Range. than CGSearcl. The smaller improvement on the performance
We further study the structural similarity of correlatechins. Of CGSearctP over Range foF, is because the average number
We compute thélaximum Common Subgraph (MQS)a queryg  ©f candidates of Range fary is over three orders of magnitude

and each of its correlated answer grapfrhe structural similarity smaller than that of Range fdr, (111,955 for Fy and 795 for

of ¢ andg is then computed & 1C5(q,9)| where|g| denotes the Fy). However, we can use the more efficient algorithm CGSearch*

size of a graphy. Figure 4(d) &gg(elzﬂilglt)he cumulative probabilitynstead of CGSearcR for processing,. The memory consump-

distributions of the structural similarity of correlatedaghs in tion of both CGSearch* and CGSearbhfor Fy is significantly

Fy to Fy. The result shows that most of the answer graphs dgsS than that of Range. CGSearch* for graph sizesoofnd
structurally dissimilar to query graphs. Abo% of the answer 100 consumes slightly more memory, since the number of FGs
graphs have a structural similarity of less tham2 to the query for larger graph sizes is larger and consequently the speeeed
graphs inF, and Fy, while for the query graphs i, and to build the FG-lattice is larger.

F3, about60% of the answer graphs have a structural similarit ¢ — 35
. . . . > \ange,

of less than0.24. The result indicates that the high correlatior I e 300

between a query graph and its answer graph is mostly due 10"} & (Seseaen | .25

me (sec)

demonstrates the contribution of our new proposal of cateel
. . N s | = carchs) |4
graphs since correlated graphs are not able to be dlscoWedFlOO&/k/ge—(, 100 FA(EGSeach)

existing approaches for structural similarity search. 1 =

B . e . = F4 (CGSearch*) ) —=— F1 (Range)
their co-occurrences rather than their structural siitylahis < 20 I Fi (Cosemen p
10°3 - —— F4 (CGSearch_P|
L g 156 —©- F1 (CGSearch*)
=

107 ¢
. 40 60 .80 10C 0 60 . 80 100
D. Performance on Varying Graph Size Graph Size
(a) Running Time (b) Memory Consumption

Figure 5 shows the performance of CGSearch*, CGSeBrch
and Range when varying the minimum correlation threshld Fig- 6. Performance on Varying Graph Size
from 0.6 to 1. We test all query sets on the real dataset but for Overall, the results in Figure 6 show that our algorithmghbo
clarity of presentation, we only present the resultsfprand F;. CGSearch* and CGSeard are efficient for all graph sizes tested
We also do not preserit; for Range because its running time isand their performance is also much more stable than that of
too long. Range.
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F. Performance on Varying Graph Density supp(q, g) < supp(g)
<

We assess the performance of the algorithms on differephgra zzppgq, gg > SUpp(Q)
densities. We test the average densities of 0.05, 0.1, (hil5 a su§§(339<1

0.2, which correspond to 50, 35, 30 and 25 nodes per graph,
respectively. The average number of edges in a graph is 60. M(supp(g; 9), supp(g)) = 0

Again, we present the results féf; and Fy in Figure 7. For Where the first two inequalities are the properties of joirgort,
Iy, CGSearctP is more than two orders of magnitude fasteihe third and fourth inequalities represent the bounds ef th
than Range. Note that CGSearch* invokes CGSe&rth process Support measure, and the last inequality expresses thelation
Fy and hence their running time faf, is the same. Fory, condition of the generalized CGS problem.
CGSearchP is almost an order of magnitude faster than Range,
but CGSearch* is three orders of magnitude faster than Range il ~
The longer running time of CGSearé¢h in processingFy is Suwmw
mainly due to the large projected databases of the queriég,in
since large projected databases result in a more costlyidaed SUPP(9. 9) = Supp(q) SuPP(g
generation. In fact, over 99% of the running time is used toemi
the candidates in CGSearéh for Fy. However, in this case,
CGSearch* can be used instead of CGSed&tcto processFy.
The memory consumption of both CGSearch* and CGSeBrizh
significantly less than that of Range for all densities. Tlightly supp(g)
more memory consumption of CGSearch* 6y is due to larger
number of FGs for building the FG-lattice in FGQuery.

supp(q, 9)

Fig. 8. Graph of the Inequality System

If a graphg is an answer to the generalized CGS problem, the

10°

J — corresponding paifsupp(g), supp(q, g)) must satisfy the above
107 i 200 [ S F1 (Range) " inequality system. Thus, the inequality system defines assary
g ———— 18 D Eggggmh b condition and we can find the set of candidate graphs by gplvin
8194 == = 52222;:@2%” the inequality system without missing any answer graphe Nt
5} ange S —— * . . e . . .
g1} | L EE%J“R*E% § 109 | =~ F4 (Ceseare) a pair (supp(g), supp(q, g)) that satisfies the inequality system is
Eh o] [N S not necessary to correspond to an answer graph, becausge ther
T ] | may not be such a graph with these support and joint support
10,62 o1 s o:  &os 0g 015 o Values in the database.
raph Densty raph bensly The solution to the above inequality system can be better
(@) Running Time (b) Memory Consumption visualized by graphing the inequalities and shading thetisol
Fig. 7. Performance on Varying Graph Density region. Figure 8 shows four thick lines that represent the co

For all the densities tested, the results also show that b@sPonding equalities of the first four inequalities. Thedsd
CGSearch* and CGSeardh are very stable in processing hotHrapezoid represents the region where the first four inépsl

F, and F. are true, i.e., the solution to these four inequalities.réfoee, the
solution to the inequality system is the overlap of this ¢zgid
VIIl. GENERALIZATION OF THE CGS FROBLEM and the region defined by the last inequality.

h Now the problem is: how do we plot the last inequality, i.be t
%?]rrelation condition, in the graph? To do this, we need tst fir
investigate the properties of a correlation measure. Afingrto
Piatetsky-Shapiro [32], a good measuve of two variablesA
nd B should satisfy the following three key properties:

In the previous sections, we study an efficient solution ® t
CGS problem. The CGS problem adopts Pearson’s correlati
coefficient as the correlation measure; however, there aneym
other well-established correlation measures proposehleriiter-
ature [17].Does our method work only for Pearson’s correlatiorf’ . e .
coefficient? Or does it work for other correlation measures a P1: M =0 if A and B are statistically independent;
well? In this section, we generalize our problem definition toP2: M monotonically increases with(A, B) whenp(A) and

adopt other measures and show that our method is a general P(B) are fixed;

solution for a majority of correlation measures being used. P3: M monotonically decreases with(A) (or p(B)) when
We first define the generalized CGS problem as follows. p(A, B) andp(B) (or p(A)) are fixed.
DEFINITION 4: (GENERALIZED CORRELATED GRAPH Here,p(A) represents the probability of andp(A, B) repre-

SEARCH) Given a graph databage, a correlation query graph Ssents the joint probability ofA and B. In our problem,p(A) is
and a minimum correlation threshofid the generalized problem equivalent tosupp(A) andp(A, B) is equivalent tasupp(A, B).
of correlated graph searchtis find the set of all graphs that are Now, we state and prove an important property of the corre-
correlated withq as defined by a correlation measufé. lation condition (M (supp(q, g), supp(g)) > 6) in the following
It is challenging to find a general solution for the abovéemma.
generalized CGS problem since the various correlation uneas LEMMA 5: If a correlation measure\ satisfies P2 and P3,
are not only defined differently but also carry very differenthen supp(q, g) is monotonically increasing withupp(g) in the
semantic meanings. We set up the following system of inéipml function M(supp(q, g), supp(g)) = 6.
to model the generalized CGS problem. By solving this system Proof: Let g; and go be two graphs, whereupp(g;) >
of inequalities, we show how our solution developed for tl&SC supp(g2). We show thatsupp(q,g1) > supp(q,g2), given that
problem applies to the generalized CGS problem. M(supp(q,91), supp(g1)) = M(supp(q,g2), supp(g2)) = 6.
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First, sinceM satisfies P3, by fixingupp(q, g1), it follows that Therefore, the generalized CGS problem defined by most

M(supp(q, g1), supp(g1)) < M{(supp(q,g1), supp(g2)). Then, correlation measures can be efficiently solved by our ctirren

since M(supp(q, g1), supp(g1)) = M(supp(q,g2),supp(g2)), solution. The only difference is that the expressions oftihends

it follows that M (supp(q, g2), supp(g2)) < in Lemmas 1 and 3 vary for different measures. The bounds

M(supp(q, g1), supp(g2)). Finally, since M satisfies P2, can be obtained by computing the intersection point of the

it follows that supp(gq,g) monotonically increases withM correlation condition with the linesupp(q,g) = supp(g)”. The

when supp(g) and supp(q) are fixed. Therefore, we havecorresponding heuristic rules for further reducing theceapace

supp(q, g2) < supp(q, g1) and the result follows. B can also be obtained in a similar way as in the case of Pearson’
According to Lemma 5, the curve of the correlation conditiogorrelation coefficient.

should be plotted from the lower left to the upper right inFig Figure 9 shows the graph of the inequality system when

8. Moreover, according to P2, the region where the inequafit Pearson’s correlation coefficient is applied as the cdicela

the correlation condition is true should be located in theangeft measure. The thick curve represents the cases when the®sars

of the figure. Therefore, the overlap of this region and thedsd correlation coefficient of two graphs equalsThe shaded region,

trapezoid, i.e., the solution to the inequality system,esgls on which is the overlap of the trapezoid and the region above the

the intersection points of the curve of the correlation déowl  thick curve, is the solution to the inequality system. Actiog

and the four sides of the trapezoid. to this solution, we can identify the lower and upper bourats f
We now investigate the cases of the intersection points B®thsupp(g) andsupp(q, g) as indicated in the axes of the figure.

derive the solution to the inequality system. We first findt thal hese bounds are the key to the design of our efficient sotutio

the correlation curve has no intersection point with thee lincandidate generation from projected databases and eéeasie

“supp(q,g) = 0". This is because, when the joint support of twdf the index for answering high-support queries.

variables is zero, the correlation of these two variableindd

by any correlation measure is no greater than zero; while the

correlation of two variables represented by a point in theveu 1

is 6, which is greater than zero. Therefore, there are two cases

when the correlation curve intersects with the other thigessof

the trapezoid as follows:

UPPELupp(a.g

supp(q, 9)

Case 1: The correlation curve has an intersection point with 0=
" |owersupp(q‘g """""""" ‘

the line “supp(q, g) = supp(g)”".
Case 2: The correlation curve has no intersection point with

the line “supp(q, g) = supp(g)”. ’

We now discuss .these two cases in detail. . Fig. 9. Graph of the Inequality System whevt is Pearson’s Correlation
In Case 1, there is a lower bound ferpp(q, g), i.€., the value coefficient

of supp(q, g) of the intersection point. It is a lower bound since the
region where the correlation condition is true is locatedvatthe
curve. Therefore, we can solve the generalized CGS probfem e
ficiently by generating the candidates from the projectadlutese

as in the CGS problem. Moreover, there is also a lower bound
for supp(g), i.e., the value ofsupp(g) of the intersection point.
This lower bound is the same as the lower boundsigrp(q, g) a(g, g) =6
since the intersection point is on the lineupp(q, g) = supp(g)”.

Therefore, if the lower bound ofupp(g) is no less than the 0
minimum support threshold for building the index (as disaas 0
in Section VI), we can compute the query results efficienting
FGQuery and avoid candidate generation through a moreycoé'_tig' 10.
mining process.

X e . . In Case 2, the correlation curve intersects with either ihe |
By investigating the commonly used measures introduced ugupp(%g) — supp(q)” or the line “supp(g) = 1". Thus, there is

[17], we find that, among all the fourteen measures that 88SS€, ,qn-trivial lower bound for bothupp (g, 9) and supp(g). To

both properties of P2 and P3, ten of them fall under Case Iy Thg.erate the candidate set from either the projected datatra
are as follows: the whole database, the trivial minimum support threshdld o

0 lower uppeg, 1
supp(g) supp(g? upp(g)

supp(q, 9)

supp(9)
Graph of the Inequality System whav is Odds Ratio

o Pearson’s correlation coefficient; has to be used. In many real applications, mining all FGs from
o Cohen’s kappa coefficient; the whole database is infeasible. Moreover, mining FGs from
¢ Mutual information; the projected database is always cheaper than from the whole
o Cosine measure; database using the same minimum support threshold. Therefo

« Piatetsky-Shapiro’s measure; candidate generation from the projected database is thg onl
« Certainty factor; existing solution, although it can still be costly when thejected

o Added value; database is large or dense. Fortunately, the number oflatore

o Collective strength; measures that fall within Case 2 is very small, including ©odd

« Jaccard index; ratio and its two normalizations (Yule’s Q and Yule’s Y) and

« Klosgen's evaluation function. the interest measure. Figure 10 gives the graph of the itiggua
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system when odds ratio is used as the correlation measw@n It Acknowledgement. We thank Dr. Xifeng Yan and Prof. Jiawei
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for the support values in the solution region.
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