
Efficient Range Query Processing in
Peer-to-Peer Systems

Dongsheng Li, Jiannong Cao, Senior Member, IEEE, Xicheng Lu, and Keith C.C. Chan

Abstract—With the increasing popularity of the peer-to-peer (P2P) computing paradigm, many general range query schemes for

distributed hash table (DHT)-based P2P systems have been proposed in recent years. Although those schemes can support range

query without modifying the underlying DHTs, they cannot guarantee to return the query results with bounded delay. The query delay in

these schemes depends on both the scale of the system and the size of the query space or the specific query. In this paper, we

propose Armada, an efficient range query processing scheme to support delay-bounded single-attribute and multiple-attribute range

queries. We first describe the order-preserving naming algorithms for assigning adjoining ObjectIDs to objects with close attribute

values. Then, we present the design of the forwarding tree to efficiently match the search paths of range queries to the underlying DHT

topology. Based on the tree, two query processing algorithms are proposed to, respectively, process single-attribute and multiple-

attribute range queries within a bounded delay. Analytical and simulation results show that Armada is an effective general range query

scheme on constant-degree DHTs, and can return the query results within 2 logN hops in a P2P system with N peers, regardless of the

queried range or the size of query space.

Index Terms—Peer-to-peer computing, distributed hash table (DHT), delay bounded, range query.

Ç

1 INTRODUCTION

MANY peer-to-peer (P2P) systems such as Chord [1],
CAN [2], Tapestry [3], Pastry [4], and FissionE [5]

are based on distributed hash tables (DHTs), using a hash
table-like interface to publish and lookup objects. DHT-
based P2P systems have proven to be scalable, robust,
efficient, and generally applicable. As a result, DHT has
become a general infrastructure for building many P2P
distributed applications such as archive storage systems,
data management systems, application-level multicasts,
and discovery services.

As it is not an easy task to implement, deploy, and
manage a full-edged DHT for an application, it is valuable
to take the DHT infrastructure and related services as an
application-independent building block to implement cer-
tain key components of many applications. The DHT can
act as an outsourced service [6], [7] for easing the
implementation of applications, which can inherit the
scalability and robustness of the DHT. As the capability of
the existing DHT is limited, many services may be built on
the same DHT infrastructure to support different applica-
tions, and these services should be designed without
modifying the underlying DHT.

The basic capability supported by the DHT infrastruc-
ture is exact-match query. However, the ever-wider use of

DHT infrastructures has found applications that require
support for range query [8], [9], [10]. Examples of range
query include the query “10;000 < salary < 20;000” in P2P
data management systems, the query “2:4 GHz < CPU <

4 GHz and 1 Gbyte �Memory � 4 Gbytes” in grid informa-
tion services, and queries for game information in an area in
P2P online games.

A number of range query schemes have been proposed
for DHT-based P2P systems. One important category of
them is the general range query scheme (e.g., [7], [8], [9], and
[10]), which is built entirely on top of existing DHT
infrastructures and does not need to modify the topology
or behavior of the underlying DHTs. This way of using
DHTs as a shared general infrastructure allows different
applications to be built on the same DHT infrastructure [6],
[7], providing the range query capability without the cost of
specifically tuning the underlying DHT. However, because
such schemes do not adapt the behavior of the underlying
DHT to the requirement of range queries, often they are not
very efficient. In most existing general range query
schemes, the query delay depends on both the total number
of peers in the system ðNÞ and the size of the query space or
the specific query. As a result, these schemes cannot
guarantee to return all query results in a bounded delay
that is related only to the scale of the system. When the
whole query space or the queried range is large, the query
execution can be very slow.

In this paper, we describe Armada, an efficient, delay-
bounded general range query scheme. Armada operates on
top of FissionE [5], a high-performance constant-degree
DHT scheme, and does not need to modify the underlying
FissionE infrastructure. Armada provides support for
efficient single-attribute and multiple-attribute range
queries and can return all query results in a bounded
delay, independent of the size of the query space or the

78 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

. D. Li and X. Lu are with the National Lab for Parallel and Distributed
Processing, National University of Defense Technology, Changsha, Hunan
410073, P.R. China, and also with the College of Computer, National
University of Defense Technology, Changsha, Hunan 410073, P.R. China.
E-mail: {dsli, xclu}@nudt.edu.cn.

. J. Cao and K.C.C. Chan are with the Department of Computing,
Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
E-mail: {csjcao, cskcchan}@comp.polyu.edu.hk.

Manuscript received 20 Oct. 2006; revised 3 Aug. 2007; accepted 18 Apr.
2008; published online 13 May 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0485-1006.
Digital Object Identifier no. 10.1109/TKDE.2008.99.

1041-4347/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

queried range. The main contributions of this paper include
the following three parts:

1. We propose the partition tree model to provide order-
preserving mappings from the query space to the
namespace of FissionE. The single-attribute naming
algorithm Single hash and the multiple-attribute
naming algorithm Multiple hash are designed to
assign adjoining ObjectIDs to objects with close
attribute values, so that they can be published to the
same or related peers in the system to support
efficient range queries.

2. We design the forward routing tree (FRT), which
matches the search paths of range queries to the
underlying FissionE topology efficiently. Based on the
tree, we propose the range query processing algo-
rithms PrunIng Routing Algorithm (PIRA) and Multi-
ple-attribute prunIng Routing Algorithm (MIRA) to,
respectively, perform single-attribute and multiple-
attribute range queries within a bounded delay.

3. We analyze the lower bounds on the delay and
message cost for range queries, and evaluate the
query delay and message cost of Armada by both
theoretical analysis and simulations.

Results of our analysis and simulation studies show that
Armada can achieve high efficiency in query processing.
For any single-attribute or multiple-attribute range query,
Armada can return all query results within 2 logN hops (in
this paper, logN represents log2N), and its average query
delay is less than logN , which reaches the delay lower
bound OðlogNÞ for range queries on constant-degree DHTs.
The average message cost of single-attribute range queries
in Armada is about logN þ 2n� 2 (n is the number of peers
that intersect with the query), which is very close to its
asymptotic lower bound OðlogNÞ þ n� 1. Armada uses
FissionE [5] as the underlying DHT to organize the peers in
an overlay and to deal with the dynamic join or leave of
peers. The average degree of the FissionE overlay is 4 and
its average routing delay is less than logN . To our

knowledge, Armada is the first delay-bounded range query
scheme on top of constant-degree DHTs.

The remainder of this paper is organized as follows:
Section 2 introduces the related work. Section 3 gives an
overview of Armada. Sections 4 and 5 describe the detail
design of single-attribute and multiple-attribute range
queries of Armada, respectively. Section 6 evaluates the
performance of Armada by analysis and simulations.
Section 7 concludes this paper.

2 RELATED WORK

Range query schemes for DHT-based systems can be

categorized as either general or customized schemes.
General range query schemes (e.g., [7], [8], [9], and [10])
are entirely layered on top of existing DHTs and do not
modify the underlying DHT. Customized schemes (e.g.,
[16], [17], [18], and [19]) either make use of custom-designed
P2P overlays or add specific modifications to the behavior
of the underlying DHTs. In this paper, we focus on general
range query schemes.

2.1 General Range Query Schemes

Chord [1] is a famous DHT ofOðlogNÞdegree. Gupta et al. [8]
propose a probability scheme to support single-attribute
range queries on Chord. The scheme uses locality-sensitive
hashing to locate objects that are relevant to the range query.
However, it can only return approximate results. In contrast,
Armada can return exact results for range queries.

Schmidt and Parashar propose Squid [9] to provide the
multiple-attribute range query capability on Chord. Squid
uses a space-filling curve (SFC) [27] to map objects with
multiple attributes to peers and processes range queries by
searching SFC clusters recursively. Each search step in
Squid, however, invokes one DHT routing of Chord, which
needs to travel OðlogNÞ hops in the system. This results in a
relatively large delay and message cost. The query delay of
Squid is about Oðh� logNÞ (where h is related to the depth of
SFC clusters and the specific query), much larger than logN .

Among the existing general range query schemes, only
the work reported in [7] and [10] are range query schemes
that can run on top of constant-degree DHTs. Andrzejak and
Xu [10] propose a single-attribute range query scheme based
on CAN [2]. The scheme uses inverse SFC to map a resource
with single attribute to peers in CAN’s d-dimensional virtual
space. For any range query, the scheme first routes the query
to the peer in charge of the median value of the query, and
then recursively forwards the query to its neighbors until all
peers that intersect with the query are visited. The scheme
compares three forwarding mechanisms, among which, the
directed controlled flooding (DCF) mechanism (hereafter
called DCF-CAN) can achieve a good overall performance,
but it has a query delay of more than OðN1=dÞ, with an
increasing rate almost proportional to the increase in the size
of range queries. DCF-CAN can support only single-attribute
range query.

PHT [7] is a solution proposed to support both single-
attribute and multiple-attribute range queries on any DHT
(including constant-degree DHTs). With the assumption
that all the keys of objects can be expressed in a binary
format, PHT builds a prefix hash tree in which leaf nodes
are keys and every internal node corresponds to a distinct
key prefix. The prefix tree is distributed among the peers by
hashing the labels of tree nodes over the underlying DHT.
A range query in PHT is performed by parallel search on
the tree, but each search step along the tree must invoke one
DHT routing. PHT is a good general scheme that can run on
any DHT, but its delay and message cost are related to the
query space and overly large. When the underlying DHT is
of constant degree, its query delay is about Oðb� logNÞ,
where b is the height of the prefix tree.

Compared with the schemes reported in [7] and [10],
Armada is delay-bounded and, given the same degree of
the underlying DHTs, the average query delay of Armada is
less than logN , much less than that of the two schemes.

2.2 Customized Range Query Schemes

Many customized range query schemes have been pro-
posed in recent years. Skip graph [11] and SkipNet [12] are
P2P networks of OðlogNÞ degree based on the skip-list data
structure. They can directly support single-attribute range
queries, but have a range query delay of OðlogN þ nÞ (n is
the number of peers that intersect with the query), which is

LI ET AL.: EFFICIENT RANGE QUERY PROCESSING IN PEER-TO-PEER SYSTEMS 79

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

dependent on the sizes of specific queries. Family tree [13]
and Rainbow skip graph [14] both are constant-degree
overlays that can support single-attribute range queries.
Family tree [13] combines the techniques of Viceroy and
SkipNet and has a range query delay of OðlogN þ nÞ in
expectation and Oðlog2N þ nÞ with high probability. Rain-
bow skip graph [14] is an adaptation of the Skip graph and
has a range query delay of OðlogNÞ with high probability.
SCRAP [15] uses the SFC to support multiple-attribute
range queries on Skip graph, but its query delay remains to
be OðlogN þ nÞ.

Mercury [16] and SWORD [17] provide multiple-
attribute range queries by indexing the data set along each
individual attribute. Liu et al. [18] propose NR-tree, which
extends R�-tree index to support range queries and
k-nearest neighbor queries in super-peer P2P systems.
MURK [15] and P-tree [19] build specific P2P networks to
support range queries, respectively, based on KD-tree [28]
and Bþ-tree. Brushwood [20] and Znet [21] provide the
multiple-attribute range query capability on Skip Graph.
Aspnes et al. [22] and Ganesan et al. [23] propose
mechanisms to improve the load balance of range queries.
Sahin et al. [24] present a scheme for caching range queries.
VBI-Tree [25] builds a framework based on a binary
balanced tree structure to support both point queries and
range queries efficiently. Skip-webs [26] improve rando-
mized distributed data structures (e.g., SkipNet and Skip
graph) and present a framework for designing efficient
distributed data structures for single-attribute or multiple-
attribute range queries. However, all the above schemes
are customized P2P overlays or need to make specific
modifications to the underlying P2P networks.

There are also some work (e.g., [32], [33], and [34]) on
P2P queries that are orthogonal to ours. Tang et al. [32]
propose pSearch to query relevant documents in CAN-
based P2P systems. Awerbuch and Scheideler [33] propose
a methodology to support prefix search for user-defined
names in P2P systems. Shen et al. [34] present a three-tier
framework to support semantic based retrieval of docu-
ments in P2P networks.

3 SYSTEM OVERVIEW

3.1 Background: FissionE

We first give an introduction to FissionE on which Armada
is built. FissionE [5] is a constant-degree DHT scheme based
on Kautz graph Kð2; kÞ [5], which is a static topology with

many desirable properties such as optimal diameter and
optimal fault tolerance.

A Kautz string � [5] of length k and base d is defined as a
string a1a2 . . . ak, where aj 2 f0; 1; 2; . . . ; dg ð1 � j � kÞ and
ai 6¼ aiþ1 ð1 � i � k� 1Þ, i.e., neighboring symbols in a
Kautz string should be different. The Kautz namespace
KautzSpaceðd; kÞ is the set containing all Kautz strings of
length k and base d. The Kautz graph Kðd; kÞ is a directed
graph in which each node is labeled with a Kautz string in
KautzSpaceðd; kÞ and has d outgoing edges: for each � 2
f0; 1; 2; . . . ; dg and � 6¼ uk, node U ¼ u1u2 . . .uk has one out-
edge to node V ¼ u2u3 . . . uk� (denoted by U ! V). For
example, node 012 in Kð2; 3Þ has two out-edges: 012! 120
and 012 ! 121. Fig. 1 shows the Kautz graph Kð2; 3Þ.

In FissionE, the identifiers of peers (i.e., PeerIDs) are
Kautz strings of base 2 and their lengths may be different.
The maximum length of PeerIDs is less than 2 logN and
the average length is less than logN . Peers are organized
into an approximate Kautz graph according to their
PeerIDs. FissionE maintains a topology rule called
neighborhood invariant which requires that the difference
between the lengths of PeerIDs of neighboring peers is
always no more than one. Therefore, PeerIDs of out-
neighbors of peer U ¼ u1u2 . . .uk are in the style of
u2u3 . . .ukq1 . . . qm with 0 � m � 2. Fig. 2 shows an exam-
ple of the topology of the FissionE overlay.

Routing in FissionE is based on the left-shifted routing
algorithm in the Kautz graph, which is accomplished by
taking the label of source node U and left shifting in
symbols of the label of the destination node V . For example,
the routing path in the Kautz graph Kð2; 3Þ from node 010
to node 120 is 010! 101! 012! 120, and the routing path
from peer 010 to peer 120 in the FissionE overlay with
topology shown in Fig. 2 is 010! 10! 012! 120.

Each object in FissionE is assigned an ObjectID by the
naming algorithm Kautz_hash. ObjectIDs are Kautz strings
distributed in the Kautz namespace KautzSpaceð2;100Þ and
are of fixed length 100, which is long enough for a P2P
system with 250 peers [5]. Each object is published onto a
unique peer whose PeerID is a prefix of its ObjectID.
FissionE adopts effective self-stabilization and fault-tolerant
mechanisms to deal with the dynamic join or leave of peers.

Analysis and simulations show that FissionE is a high-
performance constant-degree DHT. The average degree of
FissionE is 4, its diameter is less than 2 logN , its average
routing delay is less than logN , and the maintenance
message cost of peer joining or leaving is less than 3 logN .

80 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

Fig. 1. Kautz graph Kð2; 3Þ. Fig. 2. An example of the FissionE overlay.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

3.2 Armada Design

Like many other DHTs, FissionE provides support for
scalable and efficient exact-match query of distributed
objects on peers. However, it cannot support range queries
for attribute values. In this paper, we have designed a
general range query scheme, called Armada, to support
range queries on top of FissionE without modifying the
underlying FissionE DHT.

The basic components of Armada include two parts:
order-preserving naming and range query processing. Armada
first uses order-preserving naming algorithms to assign to
objects with close attribute values the ObjectIDs adjoining in
the Kautz namespace so as to publish them on related peers.
Then, Armada provides efficient query processing algo-
rithms to forward range queries to appropriate peers and
return query results within a bounded delay.

Based on the number of attributes that queried, range
queries can be classified as the single-attribute range
query and the multiple-attribute range query. Armada
adopts order-preserving naming algorithms Single hash

and Multiple hash, and query processing algorithms
PIRA and MIRA, to perform single-attribute and multi-
ple-attribute range queries, respectively. The components
of Armada and its relation to the underlying FissionE
DHT are shown in Fig. 3.

Like other general range query schemes [7], [8], [9], [10],
Armada is built on top of the underlying DHT. It relies on
the underlying DHT to organize its P2P overlay and
provide much of the robustness, availability, and load
balancing. Armada uses the naming algorithms to assign to
objects order-preserving ObjectIDs and efficiently propa-
gates the range queries in the overlay, while the underlying
FissionE DHT organizes the peers in an overlay and
handles the dynamic joining or leaving of peers. If a peer
fails, the underlying FissionE DHT automatically ensures
that other peers in the overlay takes over the responsibility
for the failed peer and provides graceful fail-over by using
replication or other mechanisms. And the underlying
FissionE DHT also deals with the routing and publishing
of objects according to the ObjectIDs. In some sense, the
underlying DHT shields Armada from the dynamics of

peers and the complexity of the P2P overlay, so the design
of Armada can be focused on the naming and range query
processing algorithms.

In the following sections, we describe the naming and
query processing algorithms used in Armada, respectively,
for single-attribute and multiple-attribute range queries.

4 SINGLE-ATTRIBUTE RANGE QUERY

In this section, we present the design of the single-attribute
range query scheme in Armada.

4.1 Single-Attribute Naming

FissionE uses the Kautz_hash naming algorithm, which
generates ObjectIDs by hashing keywords (or values) of
objects. However, Kautz_hash destroys the locality of
attribute values, and thus cannot support range queries.
In this section, we propose an order-preserving naming
algorithm Single hash to assign to objects with close single-
attribute values the ObjectIDs adjoining in the Kautz
namespace. According to the properties of FissionE, objects
with adjoining ObjectIDs are published on the same or
related peers.

In this paper, we assume that the entire interval of
attribute values of objects is a real-number interval ½L;H�
and use symbol � to denote the “no more than” relation
between Kautz strings in the lexicographical order. It is
fairly straightforward to extend Armada to support the
attribute values in some other forms. Below, we give some
definitions about order-preserving naming.

Definition 1. The Kautz region ½½�; ��� is defined as a subset of
Kautz namespace KautzSpaceð2; kÞ which includes all
Kautz strings between � and �, i.e., ½½�; ��� ¼ fsjs 2
KautzSpaceð2; kÞ and � � s and s � �g.

For example, ½½010; 021�� ¼ f010; 012; 020; 021g. Because the
namespace of objects is the KautzSpaceð2;100Þ and each
object is published onto the peer whose PeerID is a prefix of
its ObjectID, each peer in FissionE is in charge of a Kautz
region in the Kautz namespace KautzSpaceð2;100Þ. For
example, peer 10 owns all objects whose ObjectIDs has a
prefix 10, thus it is in charge of the Kautz region
½½101�; 102���.
Definition 2. Assume F is a surjection function from the real-

number interval D to the Kautz namespace V . F is an order-
preserving function if and only if, for any a1 and a2 in D, if
a1 � a2, then F ða1Þ � F ða2Þ.

Definition 3. Assume F is an order-preserving function from the
real-number interval D to the Kautz namespace V . F is an
interval-preserving function if and only if, for any subinterval
½a; b� of D, the corresponding range of function F is the Kautz
region ½½F ðaÞ; F ðbÞ��.

If the Single hash naming algorithm is designed to be an
interval-preserving function from attribute-value interval
½L;H� to KautzSpaceð2; kÞ (k is 100 in FissionE or Armada),
any attribute-value subinterval can be mapped to a Kautz
region in the charge of some related peers. Then, range
queries can be performed by forwarding queries to the
appropriate peers.

LI ET AL.: EFFICIENT RANGE QUERY PROCESSING IN PEER-TO-PEER SYSTEMS 81

Fig. 3. Components of Armada and its relation to FissionE.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

We propose a partition tree P ð2; kÞ model to help design
the Single hash algorithm. The structure of the partition tree
P ð2; kÞ is similar to that of a complete binary tree, but
different in labels of edges and branches of the root. The
partition tree P ð2; kÞ has kþ 1 levels with the root node at the
0th level. The root node has three child nodes, while other
intermediate nodes have only two children. Labels of edges
from a father node to its children can be 0 or 1 or 2, increasing
from left to right, but they should be different from in-edge’s
label of the father node. The label of the root node is null, and
the label of any other node is the concatenation of the labels
of the edges on the path from the root to it. It is easy to see
that the labels of the leaf nodes in P ð2; kÞ contain all Kautz
strings in KautzSpaceð2; kÞ and they increase from left to
right in the order of � . In Armada, k is set to be 100 because
the length of ObjectIDs is 100. Fig. 4 shows an example of the
partition tree P ð2; 4Þ.

We partition the entire interval of attribute values ½L;H�
onto the partition tree P ð2; kÞ. The root node represents the
entire interval ½L;H�, and other nodes represent subintervals
of ½L;H�. Each child node evenly partitions the subinterval
represented by its father node. In the example shown in
Fig. 4, the entire interval of attribute values is [0, 1]. NodesA,
B, and C, with labels 0, 1, and 2, respectively, are children of
the root and evenly partition the interval [0, 1]. Thus, nodes
A, B, and C represent subintervals [0, 1/3], (1/3, 2/3], and
(2/3, 1], respectively.

Since leaf nodes in P ð2; kÞ and Kautz strings in
KautzSpaceð2; kÞ are biunique, the interval ½L;H� can be
partitioned into some subintervals, each of which is
represented by a unique Kautz string. Thus, we can design
the naming algorithm Single hash to map the attribute
values in ½L;H� to Kautz strings inKautzSpaceð2; kÞ based on
the partition tree. It works as follows: Suppose the attribute
value of objectO is c ðc 2 ½L;H�Þ, c surely lies in a subinterval
represented by a leaf node in the partition tree. Suppose the
label of the leaf node is S, then the Kautz string S is assigned
as O’s ObjectID, i.e., Single hashðc; L;H; kÞ ¼ S. In the
example shown in Fig. 4, the attribute value 0.1 is in the
subinterval represented by the leaf node P with label 0120;
thus, the Kautz string 0120 is assigned as the ObjectID of the
object with attribute value 0.1 by the Single hash algorithm.
The pseudocode of the Single hash algorithm is shown in
Fig. 5.

Notice that the partition tree is only a visual assistant
model to help design the Single hash algorithm, and
Armada does not need to maintain any structure for or
information about it. We can use the Single hash algorithm
as shown in Fig. 5 directly. Meanwhile, as each object is
published onto the peer whose PeerID is a prefix of the
object’s ObjectID, the subinterval that a real physical peer
P is in charge of can be determined by the partition tree (or
the Single hash algorithm). In the example shown in Figs. 2
and 4, the ObjectID of any object with an attribute value in
[0, 1/24] is 0101 and the ObjectID of any object with an

82 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

Fig. 4. Partition tree P ð2; 4Þ for attribute-value interval [0, 1].

Fig. 5. The pseudocode of the Single hash algorithm.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

attribute value in (1/24, 1/12] is 0102. Thus, the sub-
interval that peer 010 is in charge of is the real-number
interval [0, 1/12].

Theorem 1. The Single hash algorithm is an interval-
preserving function from the attribute-value interval ½L;H�
to the Kautz namespace KautzSpaceð2; kÞ.

The proof of Theorem 1 is straightforward and shown in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2008.99. In the example shown in Fig. 4,
the range of [0.1, 0.24] by the Single hash algorithm is the
Kautz region ½½0120; 0202��, which contains four adjoining
Kautz strings 0120, 0121, 0201, and 0202.

4.2 Object Publishing

With the naming algorithm Single hash, the procedure of
object publishing in Armada works as follows: if peer P
wants to publish an object O with attribute value c, it first
obtains O’s ObjectID S by using the Single hash algo-
rithm (i.e., S ¼ Single hashðc; L;H; kÞ). It then invokes a
FissionE DHT routing to reach Kautz string S. By the
characteristics of FissionE [5], the routing will stop at a
unique peer W whose PeerID is a prefix of S. Then, object
O is published onto peer W and the average delay of
publishing is less than logN hops [5]. Armada also adopts
the self-stabilization and fault-tolerant mechanisms of the
underlying FissionE DHT to deal with the dynamic join
and leave of peers.

4.3 Single-Attribute Range Query Processing

When a peer P invokes a range query ½LowV ;HighV �, it
first acquires Kautz strings LowT and HighT : LowT ¼
Single hashðLowV ;L;H; kÞ and

HighT ¼ Single hashðHighV ; L;H; kÞ:

Because the Single hash algorithm is interval-preserving,
objects with attribute values in the interval ½LowV ;HighV �
are published exactly onto peers that are in charge of the
Kautz region ½½LowT;HighT ��. Now, we discuss the search
algorithm for these destination peers.

In FissionE, PeerIDs of out-neighbors of peer P ¼
u1u2 . . .ub are u2 . . .ubv1 . . . vq ð0 � q � 2Þ. Based on the
topology properties of FissionE, we can form a forward
routing tree (FRT) for any peer P . The FRT of peer P ¼
u1u2 . . .ub is formed by using the following four rules:

1. The root is peer P .
2. Each node in the FRT is a peer in FissionE.
3. For each node in the FRT, its child nodes at the next

level are its out-neighbors in FissionE, and they are
sorted from left to right in the increasing order of �
defined over PeerIDs.

4. The FRT has ðbþ 1Þ levels with the root node at the
0th level.

According to these rules, the ith level ð0 � i � b� 1Þ of the
FRT contains all the peers whose PeerIDs have a prefix
uiþ1 . . .ub and the last level (bth level) contains all the peers
whose PeerIDs do not have ub as the first symbol.

Fig. 6 shows the FRT of peer 212 with the FissionE
topology shown in Fig. 2. The FRT of peer 212 has four

levels, and nodes at the first and second levels,
respectively, have a common prefix 12 and 2, which are
both suffixes of 212.

Based on the FRT, Armada uses PIRA to perform a
pruning search in the FRT for all the destination peers
that are in charge of the Kautz region ½½LowT;HighT ��.
Suppose the Kautz strings LowT and HighT have a
common prefix (if they have no common prefix, we can
divide ½½LowT;High�� into several (at most three) subre-
gions with common prefixes and deal with each sub-
region, respectively), then all the destination peers are at
the same level of the FRT. Let ComT denote the longest
common prefix of LowT and HighT , and ComS the
longest Kautz string which is both the prefix of ComT
and the suffix of the root peer P ’s PeerID. Suppose the
length of ComS is f , then all the destination peers are
adjoining nodes at the ðb� fÞth level of the FRT. For
example, in the FRT shown in Fig. 6, if peer 212 performs
a pruning search for all the destination peers that are in
charge of the Kautz region ½½2010; 2021��, we have ComT ¼
20 and ComS ¼ 2. Thus, b ¼ 3 and f ¼ 1, and all
destination peers are at the second level of the FRT.

When a peer B at the ith ð0 � i � b� 1Þ level of the FRT
receives the search message, the PeerID ofB is uiþ1 . . .ub�fX.
Consider any out-neighbor C ¼ uiþ2 . . .ub�fXY of peer B,
peerC is at the ðiþ 1Þth level of the FRT. By the properties of
the FRT, PeerIDs of C’s descendants at the ðb� fÞth level of
the FRT have a prefixXY . If the Kautz region ½½LowT;HighT ��
includes a Kautz string that has a prefix XY , descendants of
C in the FRT will contain part of the destination peers, and
peer B should forward the search message to peer C. The
pseudocode of PIRA is shown in Fig. 7.

From the above discussion, it is easy to see that PIRA can
forward any single-attribute range query exactly to all the
destination peers that intersect with the query.

Fig. 8 shows an example of using PIRA for search in the
FRT shown in Fig. 6. In the example, peer 212 issues a range
query [0.1, 0.24], the entire attribute-value interval is [0, 1]
and k ¼ 4. By the Single hash algorithm, we can get
LowT ¼ 0120 and HighT ¼ 0202. Thus, the destination
peers are all at the third level of the FRT. The dashed lines
with arrows in Fig. 8 show search paths of PIRA.

4.4 Dynamic Maintenance and Load Balancing

Design of range query support in P2P systems should take
into account the dynamics and load balancing of peers. As

LI ET AL.: EFFICIENT RANGE QUERY PROCESSING IN PEER-TO-PEER SYSTEMS 83

Fig. 6. An example of the FRT.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

Armada is a general range query scheme built on top of the
underlying DHT, it can make use of the dynamic
maintenance and failure recovery mechanisms of the
underlying DHT to deal with the join/leave/fail of peers.
When some peers in the query path fail, Armada can make
use of the fault-tolerant routing mechanism of the under-
lying DHT [5] to forward the query messages. Armada can
also take advantage of the replication techniques employed
by the underlying DHT to deal with the loss of objects due
to the failure of peers.

Load balancing is another important and widely studied
problem in DHT-based systems. Many mechanisms, such as
ID selection [37], virtual servers [38], and item balancing
[39], have been proposed to improve load balancing of
DHTs. In Armada, when the distribution of objects’
attribute values is skewed, the distribution of ObjectIDs
generated by the Single hash algorithm may not be uni-
form, and thus the load across the peers may become

unbalanced. Armada uses two mechanisms to balance load
across peers: 1) ObjectID balancing: a Probability-based lOad
Balancing Mechanism (POBM) is used to generate uniform
ObjectIDs when the distribution of attribute values is
known in advance and 2) runtime balancing: each peer in
Armada houses multiple virtual servers and the load is
balanced by transferring virtual servers from heavily
loaded peers to lightly loaded peers. Armada can build
on the underlying DHT the mechanisms to achieve the
runtime balancing [38], [39]. In this paper, we give a brief
introduction to POBM and leave the detail of the runtime
balancing mechanisms in our future work.

The basic idea of POBM is to partition the entire

attribute-value interval ½L;H� onto the partition tree

according to the probability distribution of the attribute

values and to ensure that the probability distribution of the

attribute values in the subinterval represented by each node

at the same level of the partition tree is equal. Suppose the

probability density function (PDF) of the attribute values in

interval ½L;H� is �ðxÞ (obvious
RH
L �ðxÞ ¼ 1). If node A

representing a subinterval ½a; b� in the partition tree has

f child nodes, then the subinterval ½ai; bi� represented by

any child node satisfies
R bi
ai
�ðxÞ ¼

R b
a �ðxÞ=f . Based on

POBM, we can propose a new naming algorithm

Balance hash to replace the Single hash algorithm to assign

ObjectIDs to objects. For any object with attribute value

v, we have Balance hashðvÞ ¼ Single hashð
R v
L �ðxÞ; 0; 1; kÞ.

POBM also makes a slight revision to PIRA by replacing

Single hash with Balance hash in the pseudocode of PIRA.
In some applications, the exact PDF of attribute values is

unknown in advance, but it is possible to obtain the
probability distribution in certain subintervals by historical
statistic. For example, it is known that 20 percent attribute
values are distributed in a subinterval ½c1; c2�. Generally, if
we have known p points ðv1; F1Þ; . . . ; ðvp; FpÞ of the
probability distribution function F ðxÞ, for any object O
with attribute value v, we can calculate the function value
F ðvÞ by using Newton interpolation method [31]. Then,
POBM can use Single hashðF ðvÞ; 0; 1; kÞ to generate the
ObjectID of object O.

5 MULTIPLE-ATTRIBUTE RANGE QUERY

Many applications require the support for multiple-attribute
range query on DHTs, e.g., the query “15 � age � 18 and

84 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

Fig. 8. An example of PIRA.

Fig. 7. The pseudocode of PIRA.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

80:5 � score � 95” in P2P data management systems. Next,
we describe Armada’s naming and query processing algo-
rithms for multiple-attribute range queries.

5.1 Multiple-Attribute Naming

Assume that there are m attributes A0; A1; . . . ; and Am�1 and
the entire attribute-value interval of Ai is ½Li;Hi�. The
multiple-attribute value of an object is denoted by a tuple
� ¼ <v0; v1; . . . ; vm�1> , where vi ð0 � i � m� 1Þ is the
value of attribute Ai. The multiple-attribute value space,
called multiple-attribute space, is an m-dimensional subspace
and denoted by a tuple ! ¼ <r0; r1; . . . ; ri; . . . ; rm�1> , where
ri is a subinterval of the value of attribute Ai (e.g.,
ri ¼ ðxi; yi�). We then give the definition of the partial-order
/ between multiple-attribute values.

Definition 4. For two multiple-attribute values �1 ¼ <u0;
u1; . . . ; um�1> and �2 ¼ <v0; v1; . . . ; vm�1> in multiple-
attribute space, �1 / �2 if and only if, for each 0 � i < m� 1,
ui � vi.

Definition 5. Assume that F is a surjection function from the
multiple-dimensional space D to the Kautz namespace V . F is
a multiple-attribute partial-order preserving function if and
only if, for any �1 and �2 in D, if �1 / �2, then F ð�1Þ � F ð�2Þ.

Some algorithms have been proposed, including SFC [27],
KD-tree [28], and Z-curve [29], for mapping from a
multiple-dimensional space to a line. But these algorithms
cannot generate the Kautz strings needed in FissionE. We
again use the partition tree to help design the multiple-
attribute naming algorithm, Multiple hash, to assign to
objects partial-order preserving ObjectIDs. We partition the
entire multiple-attribute space <½L0; H0�; . . . ; ½Li;Hi�; . . . ;
½Lm�1; Hm�1�> onto the partition tree along attributes
A0; A1; . . . ; and Am�1 in a round-robin style. Each node in
the partition tree represents a multiple-attribute subspace
and the root node represents the entire space <½L0; H0�; . . . ;
½Li;Hi�; . . . ; ½Lm�1; Hm�1�> . For any node P at the jth level
with f child nodes, let i denote the value of jmodm. Then,
the subspace ! represented by node P is evenly divided
into f pieces along the ith attribute (i.e., attribute Ai), and
each of the f child nodes represents one piece. Thus, each

node at the same level of the tree represents a multiple-
attribute subspace of the same size and the union of all such
subspaces is the entire multiple-attribute space. Fig. 9
shows an example of the partition tree P ð2; 4Þ that
represents the 2D ðm ¼ 2Þ multiple-attribute space
<½0; 6�; ½0; 8�>.

There can be several ways to partition the attributes over
the partition tree levels, but the round-robin style is simple
and scalable for the number of attributes or the scale of the
Armada system. The round-robin style is helpful to produce
ObjectIDs that reflect the objects’ attribute values of each
dimension. It can also be effective to utilize the query
condition of each attribute to reduce the number of peers
searched during the range query processing.

Based on the partition tree for multiple-attribute space,
the naming algorithm, Multiple hash, can be designed. It
works as follows: For any object O with the multiple-
attribute value V ¼< v0; v1; . . . ; vm�1 > , V is surely in a
subspace represented by a leaf node in the partition tree.
Then, the label of the leaf node is assigned as O’s ObjectID.
The idea of the Multiple hash algorithm is similar to the
Single hash algorithm, and its pseudocode can be found in
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2008.99.

Theorem 2. The Multiple hash algorithm is a multiple-
attribute partial-order preserving function from the multiple-
attribute space to the Kautz namespace KautzSpaceð2; kÞ.

The proof of Theorem 2 is straightforward. Once an object
is assigned ObjectID by the Multiple hash algorithm,
publishing the object is the same as that in Section 4.2
and omitted here.

5.2 Multiple-Attribute Range Query Processing

Suppose a peer P ¼ u1u2 . . .ub issues a multiple-attribute
range query! ¼ <½x0; y0�; . . . ; ½xi; yi�; . . . ; ½xm�1; ym�1�>. Let �1

denote <x0; x1; . . . ; xm�1> and �2 denote <y0; y1; . . . ; ym�1> ,
and let LowT ¼Multiple hashð�1; L;H; kÞ and HighT ¼
Multiple hashð�2; L;H; kÞ. Because the Multiple hash algo-
rithm is a multiple-attribute partial-order preserving func-
tion, the codomain of ! byMultiple hash is the Kautz region

LI ET AL.: EFFICIENT RANGE QUERY PROCESSING IN PEER-TO-PEER SYSTEMS 85

Fig. 9. Partition tree P ð2; 4Þ for multiple-attribute space < ½0; 6�; ½0; 8� > .

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

½½LowT;HighT ��. However, Multiple hash does not have the

interval-preserving property that Single hash has, thus the

range of ! may be only a proper subset of ½½LowT;HighT ��. In

the example shown in Fig. 9, when ! ¼ <½1:2; 1:8�; ½1; 5�>,

�1 ¼ <1:2; 1> , and �2 ¼ <1:8; 5>. Thus, ½½LowT;HighT �� ¼
½½0120; 0210��, which contains five leaf nodesP ,R,W ,S, andM,

while nodesW andS do not intersect with the query. It is easy

to see that any mapping from a multiple-dimensional space to

a 1D space cannot be interval-preserving, thus we cannot

improve Multiple hash to achieve that. If we use PIRA to

forward multiple-attribute range queries to all the peers that

are in charge of ½½LowT;HighT ��, PIRA may search many peers

that do not intersect with the query.
Therefore, we propose a new algorithm, called MIRA, to

process multiple-attribute range queries. MIRA follows the
basic idea of PIRA to perform pruning search on the FRT of
peer P ¼ u1u2 . . .ub that issues the range query !, as PIRA
introduced in Section 4.3. However, when forwarding the
query to a node in the FRT, MIRA needs to determine
whether some descendants of the node in the FRT intersect
with the query !, while PIRA only needs to determine the
relation between the PeerID and the Kautz region
½½LowT;HighT ��. The pseudocode of MIRA can be found in
Appendix C, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2008.99, and omitted here due to the limit
on paper length. Below, we only discuss MIRA about the
case in which the Kautz strings LowT and HighT have a
common prefix.

In this case, peers that are in charge of Kautz region

½½LowT;HighT �� are at the same level of the FRT, but they

may be not adjoining. Suppose ComS of length f is the

longest Kautz string which is both the prefix of LowT and

HighT and the suffix of the root P ’s PeerID. Then, all the

peers that intersect with query ! are at the ðb� fÞth level of

the FRT. MIRA can perform a pruning search on the FRT to

reach exactly all the destination peers as follows: When peer

B ¼ uiþ1 . . .ub�fX at the ith level of the FRT receives the

query, any out-neighbor C ¼ uiþ2 . . .ub�fXY of peer B is at

the ðiþ 1Þth level of the FRT. By the properties of the FRT,

PeerIDs of C’s descendants that are at the ðb� fÞth level of

the FRT have a prefix XY . If the subspace represented by

the node with label XY in the partition tree intersects with

!, descendants of node C in the FRT contain a part of the

destination peers, and peer B should forward the query to

peer C.
Fig. 10 shows an example of using MIRA for multiple-

attribute range query in the FRT shown in Fig. 6. In the

example in Fig. 10, we set m ¼ 2, k ¼ 4 and the multiple-

attribute space is < ½0; 6�; ½0; 8� > (these parameters are set

to be the same as that in Fig. 9), and peer 212 issues a

multiple-attribute range query < ½1:2; 1:8�; ½1; 5� > . By the

Multiple hash algorithm, we can get LowT ¼ 0120 and

HighT ¼ 0210. Therefore, the destination peers are all at the

third level of the FRT. The dashed lines with arrows in

Fig. 10 show the search paths of MIRA. The search message

is not forwarded to peer 2020 because there is no

intersection between its descendants and the destination

peers.

5.3 Discussions

Same as the single-attribute range query scheme, the multi-
ple-attribute range query scheme of Armada can make use of
the underlying DHT functionalities to deal with the join/
leave/fail of peers. Also, POBM and other runtime balancing
mechanism introduced in Section 4.4 can be easily extended
to the multiple-attribute range query scheme.

The multiple-attribute and single-attribute range query
schemes are much similar since they both use the partition
tree to help design the naming algorithms and propagate
the queries along the FRT. However, the multiple-attribute
naming need to reflect the object’s attribute value of each
dimension, and it generate symbols of ObjectIDs along
attributes in a round-robin style. The single-attribute
naming is order preserving and the destination peers that
intersect a specific single-attribute range query are adjoin-
ing peers at certain level of the FRT. While the multiple-
attribute naming is not order preserving but partial-order
preserving, and the destination peers that intersect a
specific multiple-attribute range query may be not adjoin-
ing at certain level of the FRT. Those factors lead to the
different designs of PIRA and MIRA.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
algorithms in Armada by both analysis and simulations. As
Amada is built on the underlying FissionE DHT [5], the cost
of constructing and maintaining the overlay network, as well
as publishing the object in Armada, is determined by the
underlying FissionE DHT and discussed thoroughly in [5].

6.1 Theoretical Analysis

We first present the lower bounds on query delay and
message cost for range queries performed on top of
constant-degree DHTs without requiring the modification
of the underlying DHTs.

Theorem 3. In an N-peer P2P system, the lower bounds on the
maximum query delay and message cost of general range query
schemes on constant-degree DHTs are OðlogNÞ and
OðlogNÞ þ n� 1, respectively (n is the number of destination
peers that intersect with the query).

Proof. It has been shown [30] that the lower bound on the
diameter of constant-degree DHT overlays is OðlogNÞ.
For any range query, there are some destination peers.
The delay of the range query is no less than the number
of hops that the query needs to propagate from the initial

86 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

Fig. 10. An example of MIRA.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

peer invoking the query to the farthest destination peer.
Thus, the maximum delay of range queries is no less
than the diameter of the dynamic DHT overlays, and the
lower bound on the maximum delay of range queries on
top of constant-degree DHTs is OðlogNÞ.

The range query should reach n peers, so its message
cost is no less than the sum of the message cost of the
query reaching one destination peer and the message
cost for reaching the other n� 1 destination peers.
Therefore, the lower bound on maximum message cost
for range queries on top of constant-degree DHTs is
OðlogNÞ þ n� 1. tu

Next, we analyze the query delay and message cost of
Armada.

Theorem 4. In an N-peer P2P system, the maximum query delay
of PIRA or MIRA is less than 2 logN hops and the average
delay of them is less than logN hops.

Proof. The query delay of PIRA or MIRA is no more than
the height of the FRT, which is equal to the length of the
PeerID of the root peer. By the properties of FissionE [5],
the maximum length of PeerIDs is always less than
2 logN and the average length is less than logN in the
dynamic FissionE system. Thus, Theorem 4 holds. tu

From Theorem 4, it can be inferred that both PIRA and
MIRA are delay-bounded because they can return all query
results within 2 logN hops, regardless of the size of the
query space or the specific range queried, and their delays
both reach the lower bound OðlogNÞ.

Theorem 5 below analyzes the message cost of PIRA. In
FissionE, the lengths of most PeerIDs are equal. Consider-
ing the case that all PeerIDs are of the same length, then the
FRT of any peer would be a complete binary tree and its
average height is less than logN . In this case, if the
destination peers of a range query are n adjoining nodes
at mth ð1 � m < logNÞ level of the FRT, the operation that
PIRA performs will be a pruning search for n adjoining leaf
nodes in an ðmþ 1Þ-level complete binary tree. Theorem 5
gives the message cost of PIRA under this case.

Theorem 5. Suppose PIRA searches for n adjoining leaf nodes
in an ðmþ 1Þ-level complete binary tree (with the root at the
0th level). When n is a power of 2, the average message cost
of PIRA is less than mþ 2n� 2.

The proof of Theorem 5 is long, and it is put in
Appendix D, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2008.99. From Theorem 5 and the fact that
1 � m < logN , we can know that the upper bound of
PIRA’s average message cost is less than logN þ 2n� 2
under the case that all PeerIDs are of the same length and n
is a power of 2. For the general case, simulations in next
section also show that the average message cost of PIRA is
about logN þ 2n� 2, which is close to the lower bound
OðlogNÞ þ n� 1 on message cost of range queries on
constant-degree DHTs.

For MIRA in Armada, the destination peers of a multiple-
attribute range query may be disjoining nodes at the same
level of the FRT and the distribution of their places is
difficult to get. We therefore evaluate the message cost of
MIRA by simulations.

6.2 Simulations

We have implemented Armada on the FissionE simulator [5].

In the simulations, the Armada P2P system is formed by the

continuous joining and leaving of peers. Initially, there are

only three peers in the system and, as the system size

increases, the joining/leaving ratio (i.e., the ratio of the

number of joining peers to the number of leaving peers) is set

to be 4. Once the system size reaches the predefined value,

the joining/leaving ratio is set to be 1. There are two

parameters involved in range queries: the number of peers in

the system (i.e., network size) and the size of queried range

(i.e., range size). We varied these parameters, one at a time,

and measured the query delay and message cost. The entire

interval of each attribute value is set to [0, 1,000]. For each

measurement, the result is averaged over 1,000 range queries

that are randomly selected from the interval [0, 1,000] and

invoked by a random peer.
Besides the delay and message cost, we also evaluated

the following metrics:

1. Destpeers. The number of destination peers that
intersect with the query. These peers need to query
their local information to return query results.

2. MesgRatio. Defined as Messages/Destpeers, where
Messages is the total number of messages produced
by the query. MesgRatio is used to evaluate the
average message cost per destination peer.

3. IncreRatio. Defined as

ðMessages� logNÞ=ðDestpeers� 1Þ:

Similar to MesgRatio, IncreRatio is used to evaluate
the increasing rate of messages when the number of
destination peers increases, excluding the impact of
the first destination peer (whose message cost is
about logN). IncreRatio can also be used to evaluate
the analytical results in Section 6.1.

6.2.1 Single-Attribute Range Query

Among the well-known general range query schemes, only
PHT [7], DCF-CAN [10], and Armada can support single-
attribute range queries on constant-degree DHTs. Since the
delay and message cost of PHT [7] is much larger than
that of Armada (see Section 2.1), we only compared the
single-attribute range query scheme of Armada (i.e., PIRA)
with DCF-CAN when the degree of the underlying DHT is
equal (i.e., the parameter d is set to be 2 in DCF-CAN). The
DCF-CAN scheme uses CAN [2] as the underlying DHT.
When a peer P invokes a range query ½l; u� in DCF-CAN, it
first routes the query to the peer in charge of the median
value (i.e., ðlþ uÞ=2) and then starts two “waves” of
propagation. In the first wave, the current peer propagates
the query only to the neighbors that intersect the query
and have a “higher” interval than the current peer. Then,
the current peer propagates the query to the neighbors
with a “lower” interval.

Figs. 11 and 12 show the evaluation results about the
impact of range size on range queries. In the simulations,
the number of peers is set to 2,000 and the range size varies
from 2 to 300. From Fig. 11, it can be observed that the query
delay of DCF-CAN is much larger than that of PIRA. When

LI ET AL.: EFFICIENT RANGE QUERY PROCESSING IN PEER-TO-PEER SYSTEMS 87

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

the size of queried range increases, the average delay of

DCF-CAN increases remarkably, while PIRA is delay-

bounded: its average delay is always less than logN ,

regardless of the range size.
Fig. 12 shows the message cost and related parameters of

PIRA when the range size varies. From Fig. 12a, it can be

observed that the message costs of PIRA and DCF-CAN are

close, and PIRA is slightly better. Therefore, PIRA can

achieve delay-bounded property without imposing overly

large message cost. Fig. 12a also shows Destpeers of PIRA,

which is about one half of the number of messages. From

Fig. 12b, it can be inferred that MesgRatio and IncreRatio are

close to 2, and IncreRatio is almost always no more than 2.

From the definitions of these two parameters, we can get

that the increase ratio of messages is about twice that of

destination peers. Thus, it validates our analytical result

about the message cost of PIRA in Section 6.1.

Figs. 13 and 14 show the evaluation results of the impact
of network size on range query. In the simulations, the
network size varies from 1,000 to 8,000, and the range size is
always 20. From Fig. 13, it can be inferred that the delay of
PIRA is less than that of DCF-CAN, and the advantage of
PIRA over DCF-CAN becomes more remarkable as the
network size increases. Fig. 13 also shows that the average
delay of PIRA is always less than logN with different values
of the network size N . Fig. 14 shows the message cost and
related parameters of PIRA when the network size varies.
From Fig. 14a, it can be observed that the message costs of
PIRA and DCF-CAN are close, and PIRA is slightly better
than DCF-CAN. From Fig. 14b, we can observe that
MesgRatio and IncreRatio are close to 2. And it again
validates our analytical result about PIRA.

Fig. 15 shows the simulation results of the load balancing

property of Armada. In the simulations, the number of

peers is 2,000, and 600,000 random objects are generated

with attribute values following a Zipf distribution with PDF

88 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

Fig. 11. The impact of range size on query delay.

Fig. 12. The impact of range size on message cost. (a) Number of

messages. (b) Parameters about message cost of PIRA.

Fig. 13. The impact of network size on query delay.

Fig. 14. The impact of network size on message cost. (a) Number of

messages. (b) Parameters about message cost of PIRA.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

�ðxÞ ¼ c�x�a, a ¼ 2:5, x 2 ½1; 11�, where c is a normalized
constant. The objects are assigned ObjectIDs by POBM and
are published onto peers. Then, we calculate the load (the
number of objects) of each peer. We sort the peers in
decrease order by their load, and, respectively, calculate the
total load of first 5 percent, 10 percent, 20 percent, . . . ,
90 percent peers. And we deal with the attribute values in
the same way. From Fig. 15, it can be inferred that the
distribution of peers’ load can be almost uniform while the
distribution of attribute values is much skewed (50 percent
objects have about 5 percent attribute values).

6.2.2 Multiple-Attribute Range Query

Among the well-known general range query schemes, only
PHT [7] and Armada can support multiple-attribute range
queries on constant-degree DHTs. Since the delay and
message cost of PHT is obviously larger than that of
Armada (see Section 2.1), we did not compare PHT in the
simulations. Armada uses MIRA to perform multiple-
attribute range queries, and we present the evaluation of
MIRA when either the range size or the network size varies.

Figs. 16 and 17 show the results of evaluating the
impact of the range size on the performance of MIRA. In
the simulations, the number of peers is 6,000, the number
of attributes is 6 (i.e., m ¼ 6), and the range size of each
attribute varies from 50 to 400. From Fig. 16, it can be
observed that the query delay of MIRA is always less
than logN , regardless of the range size. This demonstrates
the delay-bounded property of MIRA. Fig. 17 shows the
message cost and related parameters of MIRA when the
range size varies. From Fig. 17b, it can be observed that

MesgRatio and IncreRatio are close to 4. By the definitions
of these two parameters, we can see that the increasing
rate of message cost is about four times of that of
destination peers, and thus, the average message cost of
MIRA is about logN þ 4ðn� 1Þ, where n is the number of
peers that intersect with the query.

Figs. 18 and 19 illustrate the results of evaluating the
impact of network size on the performance of MIRA. In the
simulations, the network size varies from 1,000 to 8,000, the
number of attributes is 6, and the queried range of each
attribute is 200. From Fig. 18, it can be inferred that the
average delay of Armada is always less than logN when the
network size N varies. From Fig. 19b, it can be observed
again that MesgRatio and IncreRatio are close to 4.

7 CONCLUSION

In this paper, we have proposed a delay-bounded general

range query scheme, called Armada. Built on top of

FissionE which is a high-performance constant-degree

LI ET AL.: EFFICIENT RANGE QUERY PROCESSING IN PEER-TO-PEER SYSTEMS 89

Fig. 15. The load balancing property of Armada.

Fig. 16. The impact of range size on query delay.

Fig. 17. The impact of range size on message cost of MIRA. (a) Number

of messages. (b) Parameters about message cost of MIRA.

Fig. 18. The impact of network size on query delay.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

DHT, Armada supports single-attribute and multiple-

attribute range queries. Both analytical and simulation

results demonstrated that Armada is delay-bounded and

highly efficient. The average query delay is less than logN

and the maximum delay is less than 2 logN , independent of

the size of query space and specific queries. The average

message cost of single-attribute queries is about logN þ
2n� 2 (n is the number of peers that intersect with the

query), which is very close to the lower bound on message

cost of range queries on constant-degree DHTs. Armada has

been used for resource discovery in the iVCE [35] system.
Our ongoing work includes improving the runtime load

balancing of Armada and relieving query hotspots. Further-
more, we are extending Armada to support attribute values
in various forms and provide other complex query
capabilities such as the top-k query and fuzzy query.

APPENDIX
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2008.99, shows the proof of Theorem 1.
Appendices B and C, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2008.99, present the pseudocode of the
Multiple hash algorithm and MIRA, respectively. Appendix
D, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2008.99, shows the proof of Theorem 5.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their critical and constructive comments on this paper.

This work was supported in part by the National Natural

Science Foundation of China under Grants 60703072 and

60673167, the National Basic Research Program of China

(973) under Grant 2005CB321800, the Hunan Provincial

Natural Science Foundation of China under Grant 08JJ3125,

and the Hong Kong University Grant Council under the

CERG Grant PolyU 5103/06E. Some preliminary results of

this work were presented at the ICDCS ’06 [36].

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 17-32, Feb. 2003.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A Scalable Content-Addressable Network,” Proc. ACM
SIGCOMM ’01, pp. 149-160, 2001.

[3] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and
J.D. Kubiatowicz, “Tapestry: A Resilient Global-Scale Overlay
for Service Deployment,” IEEE J. Selected Areas in Comm., vol. 22,
no. 1, pp. 41-53, 2004.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms (Middleware ’01),
pp. 329-350, Nov. 2001.

[5] D.S. Li, X.C. Lu, and J. Wu, “FissionE: A Scalable Constant Degree
and Low Congestion DHT Scheme Based on Kautz Graphs,” Proc.
IEEE INFOCOM ’05, pp. 1677-1688, 2005.

[6] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu, “OpenDHT: A Public DHT
Service and Its Uses,” Proc. ACM SIGCOMM ’05, Aug. 2005.

[7] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarcay,
S. Shenker, and J. Hellersteinz, “A Case Study in Building
Layered DHT Applications,” Proc. ACM SIGCOMM ’05,
Aug. 2005.

[8] A. Gupta, D. Agrawal, and A.E. Abbadi, “Approximate Range
Selection Queries in Peer-to-Peer Systems,” Proc. First Biennial
Conf. Innovative Data Systems Research (CIDR ’03), Jan. 2003.

[9] C. Schmidt and M. Parashar, “Enabling Flexible Queries with
Guarantees in P2P Systems,” IEEE Internet Computing, vol. 8, no. 3,
pp. 19-26, 2004.

[10] A. Andrzejak and Z.C. Xu, “Scalable Efficient Range Queries for
Grid Information Services,” Proc. Second IEEE Int’l Conf. Peer-to-
Peer Computing (P2P ’02), Sept. 2002.

[11] J. Aspnes and G. Shah, “Skip Graphs,” Proc. 14th Ann. ACM-SIAM
Symp. Discrete Algorithms (SODA ’03), pp. 384-393, 2003.

[12] N.J.A. Harvey, M.B. Jone, S. Saroiu, M. Theimer, and A. Wolman,
“SkipNet: A Scalable Overlay Network with Practical Locality
Properties,” Proc. Fourth USENIX Symp. Internet Technologies and
Systems (USITS ’03), Mar. 2003.

[13] K.C. Zatloukal and N.J.A. Harvey, “Family Trees: An Ordered
Dictionary with Optimal Congestion, Locality, Degree, and Search
Time,” Proc. 15th Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA ’04), pp. 301-310, 2004.

[14] M.T. Goodrich, M.J. Nelson, and J.Z. Sun, “The Rainbow Skip
Graph: A Fault-Tolerant Constant-Degree Distributed Data
Structure,” Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA ’06), pp. 384-393, 2006.

[15] P. Ganesan, B. Yang, and H. Garcia-Molina, “One Torus to Rule
Them All: Multidimensional Queries in P2P Systems,” Proc.
Seventh Int’l Workshop Web and Databases (WebDB ’04), June 2004.

[16] A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. ACM SIGCOMM,
2004.

[17] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat,
“Distributed Resource Discovery on Planetlab with SWORD,”
Proc. First Workshop Real, Large Distributed Systems (WORLDS ’04),
Dec. 2004.

[18] B. Liu, W.C. Lee, and D.L. Lee, “Supporting Complex Multi-
Dimensional Queries in P2P Systems,” Proc. 25th Int’l Conf.
Distributed Computing Systems (ICDCS), 2005.

[19] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram,
“P-Tree: A P2P Index for Resource Discovery Applications,” Proc.
13th Int’l World Wide Web Conf. (WWW ’04), May 2004.

90 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

Fig. 19. The impact of network size on message cost of MIRA.

(a) Number of messages. (b) Parameters about message cost of MIRA.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

[20] C. Zhang, A. Krishnamurthy, and R.Y. Wang, “Brushwood:
Distributed Trees in Peer-to-Peer Systems,” Proc. Fourth Int’l
Workshop Peer-to-Peer Systems (IPTPS), 2005.

[21] Y. Shu, B.C. Ooi, K.L. Tan, and A. Zhou, “Supporting Multi-
Dimensional Range Queries in Peer-to-Peer Systems,” Proc. Fifth
IEEE Int’l Conf. Peer-to-Peer Computing (P2P), 2005.

[22] J. Aspnes, J. Kirsch, and A. Krishnamurthy, “Load Balancing and
Locality in Range-Queriable Data Structures,” Proc. 23rd ACM
Symp. Principles of Distributed Computing (PODC ’04), July 2004.

[23] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Sys-
tems,” Proc. 30th Int’l Conf. Very Large Data Bases (VLDB), 2004.

[24] O.D. Sahin, A. Gupta, D. Agrawal, and A.E. Abbadi, “A Peer-to-
Peer Framework for Caching Range Queries,” Proc. 20th IEEE Int’l
Conf. Data Eng. (ICDE ’04), Apr. 2004.

[25] H.V. Jagadish, B.C. Ooi, Q.H. Vu, R. Zhang, and A. Zhou,
“VBI-Tree: A Peer-to-Peer Framework for Supporting Multi-
Dimensional Indexing Schemes,” Proc. 22nd IEEE Int’l Conf.
Data Eng. (ICDE), 2006.

[26] L. Arge, D. Eppstein, and M.T. Goodrich, “Skip-webs: Efficient
Distributed Data Structures for Multi-Dimensional Data Sets,”
Proc. 24th ACM Symp. Principles of Distributed Computing (PODC),
2005.

[27] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier, “Space
Filling Curves and Their Use in Geometric Data Structures,”
Theoretical Computer Science, vol. 181, pp. 3-15, 1997.

[28] J.L. Bentley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Comm. ACM, vol. 18, no. 9, pp. 509-517,
Sept. 1975.

[29] J.A. Orenstein and T.H. Merrett, “A Class of Data Structures for
Associative Searching,” Proc. Third ACM SIGACT-SIGMOD Symp.
Principles of Database Systems (PODS), 1984.

[30] J. Xu, A. Kumar, and X. Yu, “On the Fundamental Tradeoffs
between Routing Table Size and Network Diameter in Peer-to-
Peer Networks,” IEEE J. Selected Areas in Comm., vol. 22, no. 1,
Jan. 2004.

[31] M. Schatzman, Numerical Analysis: A Mathematical Introduction.
Clarendon Press, 2002.

[32] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-Peer Information
Retrieval Using Self-Organizing Semantic Overlay Networks,”
Proc. ACM SIGCOMM ’03, Aug. 2003.

[33] B. Awerbuch and C. Scheideler, “Peer-to-Peer Systems for Prefix
Search,” Proc. 22nd ACM Symp. Principles of Distributed Computing
(PODC), 2003.

[34] H.T. Shen, Y.F. Shu, and B. Yu, “Efficient Semantic-Based Content
Search in P2P Network,” IEEE Trans. Knowledge and Data Eng.,
vol. 16, no. 7, pp. 813-826, July 2004.

[35] X.C. Lu, H.M. Wang, and J. Wang, “Internet-Based Virtual
Computing Environment (iVCE): Concepts and Architecture,”
Science in China, Series F: Information Sciences, vol. 49, no. 6,
pp. 681-701, Dec. 2006.

[36] D.S. Li, J.N. Cao, X.C. Lu, K.C.C. Chan, B.S. Wang, J.S. Su,
H.V. Leong, and A.T.S. Chan, “Delay-Bounded Range Queries
in DHT-Based Peer-to-Peer Systems,” Proc. 26th Int’l Conf.
Distributed Computing Systems (ICDCS), 2006.

[37] G.S. Manku, “Balanced Binary Trees for ID Management and
Load Balance in Distributed Hash Tables,” Proc. 23rd ACM
Symp. Principles of Distributed Computing (PODC ’04), pp. 197-205,
June 2004.

[38] P.B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” Proc. IEEE INFOCOM ’05, Mar. 2005.

[39] D. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Theory of Computing
Systems, vol. 39, pp. 787-804, Oct. 2006.

Dongsheng Li received the BSc and PhD
degrees (both with honors) in computer science
from National University of Defense Technology
(NUDT), Changsha, Hunan, China, in 1999 and
2005, respectively. He was a visiting student at
the Hong Kong Polytechnic University in 2005.
He is currently an associate professor in the
National Lab for Parallel and Distributed Proces-
sing, NUDT. His research interests include peer-
to-peer computing, grid computing, computer

network, and pervasive computing.

Jiannong Cao received the BSc degree in
computer science from Nanjing University,
Nanjing, China, in 1982 and the MSc and PhD
degrees in computer science from Washington
State University, Pullman, in 1986 and 1990,
respectively. He is currently a professor in the
Department of Computing, Hong Kong Poly-
technic University (PolyU), Hung Hom, Kowloon,
Hong Kong. Before joining PolyU in 1997, he
has been on the faculty of computer science in

James Cook University, the University of Adelaide in Australia, and the
City University of Hong Kong. His research interests include mobile and
pervasive computing, wireless networking, parallel and distributed
computing, fault tolerance, and distributed software architecture and
programming. He has served as an associate editor and a member of
editorial boards of several international journals, and also as a chair and
a member of organizing program committees for many international
conferences. He is a senior member of the IEEE.

Xicheng Lu received the BSc degree in
computer science from Harbin Military Engi-
neering Institute, Harbin, China, in 1970. He
was a visiting scholar at the University of
Massachusetts between 1982 and 1984. He is
currently a professor in the College of Compu-
ter, National University of Defense Technology,
Changsha, Hunan, China. His research inter-
ests include distributed computing, computer
networks, and parallel computing. He has

served as a member of editorial boards of several journals and has
cochaired many professional conferences. He is a joint recipient of
more than a dozen academic awards, including four First Class
National Scientific and Technological Progress Prize of China. He is an
academician of the Chinese Academy of Engineering.

Keith C.C. Chan received the BMath degree
(with honors) in computer science and statistics
and the MASc and PhD degrees in systems
design engineering from the University of
Waterloo, Ontario, Canada. Before joining the
Hong Kong Polytechnic University (PolyU),
Hung Hom, Kowloon, Hong Kong, he was with
the IBM Canada Laboratory, Toronto, where he
was involved in the development of Image and
Multimedia software as well as software devel-

opment tools. He was an associate professor in the Department of
Electrical and Computer Engineering, Ryerson Polytechnic University,
Ontario in 1993. He is currently a professor and the head of the
Department of Computing, PolyU. His research interests include
software engineering, data mining, and computational intelligence.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: EFFICIENT RANGE QUERY PROCESSING IN PEER-TO-PEER SYSTEMS 91

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 00:52 from IEEE Xplore. Restrictions apply.

