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Deriving Concept-based User Profiles from
Search Engine Logs

Kenneth Wai-Ting Leung, Dik Lun Lee

Abstract—User profiling is a fundamental component of any personalization applications. Most existing user profiling strategies are
based on objects that users are interested in (i.e. positive preferences), but not the objects that users dislike (i.e. negative preferences).
In this paper, we focus on search engine personalization and develop several concept-based user profiling methods that are based
on both positive and negative preferences. We evaluate the proposed methods against our previously proposed personalized query
clustering method. Experimental results show that profiles which capture and utilize both of the user’s positive and negative preferences
perform the best. An important result from the experiments is that profiles with negative preferences can increase the separation
between similar and dissimilar queries. The separation provides a clear threshold for an agglomerative clustering algorithm to terminate
and improve the overall quality of the resulting query clusters.

Index Terms—Negative preferences, personalization, personalized query clustering, search engine, user profiling.
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1 INTRODUCTION

Most commercial search engines return roughly the same

results for the same query, regardless of the user’s real interest.

Since queries submitted to search engines tend to be short

and ambiguous, they are not likely to be able to express

the user’s precise needs. For example, a farmer may use the

query “apple” to find information about growing delicious

apples, while graphic designers may use the same query to

find information about Apple Computer.

Personalized search is an important research area that aims

to resolve the ambiguity of query terms. To increase the

relevance of search results, personalized search engines create

user profiles to capture the users’ personal preferences and as

such identify the actual goal of the input query. Since users are

usually reluctant to explicitly provide their preferences due to

the extra manual effort involved, recent research has focused

on the automatic learning of user preferences from users’

search histories or browsed documents and the development

of personalized systems based on the learned user preferences.

A good user profiling strategy is an essential and fundamen-

tal component in search engine personalization. We studied

various user profiling strategies for search engine person-

alization, and observed the following problems in existing

strategies.

• Most personalization methods focused on the creation

of one single profile for a user and applied the same

profile to all of the user’s queries. We believe that

different queries from a user should be handled differently

because a user’s preferences may vary across queries. For

example, a user who prefers information about fruit on

the query “orange”, may prefer the information about

Apple Computer for the query “apple”. Personalization
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strategies such as [1], [2], [8], [10], [13], [15], [17], [18]

employed a single large user profile for each user in the

personalization process.

• Existing clickthrough-based user profiling strategies can

be categorized into document-based and concept-based
approaches. They both assume that user clicks can be

used to infer users’ interests, although their inference

methods and the outcomes of the inference are different.

Document-based profiling methods try to estimate users’

document preferences (i.e., users are interested in some

documents more than others) [1], [2], [8], [10], [15],

[18].1 On the other hand, concept-based profiling methods

aim to derive topics or concepts that users are highly

interested in [13], [17]. These two approaches will be

reviewed in Section 2. While there are document-based

methods that consider both users’ positive and negative

preferences, to the best of our knowledge, there are no

concept-based methods that considered both positive and

negative preferences in deriving user’s topical interests.

• Most existing user profiling strategies only consider doc-

uments that users are interested in (i.e. users’ positive

preferences) but ignore documents that users dislike (i.e.

users’ negative preferences). In reality, positive prefer-

ences are not enough to capture the fine-grain interests

of a user. For example, if a user is interested in “apple”

as a fruit, he/she may be interested specifically in apple

recipes, but less interested in information about growing

apples, while absolutely not interested in information

about the company Apple Computer. In this case, a good

user profile should favor information about apple recipes,

slightly favor information about growing apple, while

downgrade information about Apple Computer. Profiles

built on both positive and negative user preferences can

1. In general, document-based profiling methods may also estimate the
properties of the documents that are likely to arouse users’ interest, e.g.,
whether or not the documents match the queries in their titles, URLs, etc.
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represent user interests at finer details. Personalization

strategies such as [10], [15], [18] include negative pref-

erences in the personalization process, but they all are

document-based and thus cannot reflect users’ general

topical interests.

In this paper, we address the above problems by proposing

and studying seven concept-based user profiling strategies that

are capable of deriving both of the user’s positive and negative

preferences. All of the user profiling strategies are query-

oriented, meaning that a profile is created for each of the

user’s queries. The user profiling strategies are evaluated and

compared with our previously proposed personalized query

clustering method. Experimental results show that user profiles

which capture both the user’s positive and negative preferences

perform the best among all of the profiling strategies studied.

Moreover, we find that negative preferences improve the

separation of similar and dissimilar queries, which facilitates

an agglomerative clustering algorithm to decide if the optimal

clusters have been obtained. We show by experiments that the

termination point and the resulting precision and recalls are

very close to the optimal results.

The main contributions of this paper are:

• We extend the query-oriented, concept-based user pro-

filing method proposed in [11] to consider both users’

positive and negative preferences in building users pro-

files. We proposed six user profiling methods that exploit

a user’s positive and negative preferences to produce a

profile for the user using a Ranking SVM (RSVM).

• While document-based user profiling methods pioneered

by Joachims [10] capture users’ document preferences

(i.e., users consider some documents to be more relevant

than others), our methods are based on users’ concept

preferences (i.e., users consider some topics/concepts to

be more relevant than others).

• Our proposed methods use an RSVM to learn from con-

cept preferences weighted concept vectors representing

concept-based user profiles. The weights of the vector

elements, which could be positive or negative, represent

the interestingness (or uninterestingness) of the user on

the concepts. In [11], the weights that represent a user’s

interests are all positive, meaning that the method can

only capture user’s positive preferences.

• We conduct experiments to evaluate the proposed user

profiling strategies and compare it with a baseline pro-

posed in [11]. We show that profiles which capture both

the user’s positive and negative preferences perform best

among all of the proposed methods. We also find that the

query clusters obtained from our methods are very close

to the optimal clusters.

The rest of the paper is organized as follows. Section 2

discusses the related works. We classify the existing user

profiling strategies into two categories, and review methods

among the categories. In Section 3, we review our personalized

concept-based clustering strategy to exploit the relationship

among ambiguous queries according to the user conceptual

preferences recorded in the concept-based user profiles. In Sec-

tion 4, we present the proposed concept-based user profiling

TABLE 1
An Example of Clickthrough for the Query “apple”

Doc Clicked Search Results Extracted Concepts
d1

√
Apple Computer macintosh

d2 Apple Support product
d3 Apple Inc. Official mac os

Downloads
d4 Apple Store (U.S.) apple store,

iPod
d5

√
The Apple Store apple store,

macintosh
d6 Apple Hill Growers fruit, apple hill
d7 Apple Corps fruit
d8

√
Macintosh Products macintosh,
Guide catalog

strategies. Experimental results comparing our user profiling

strategies are presented in Section 5. Section 6 concludes the

paper.

2 RELATED WORK

User profiling strategies can be broadly classified into two

main approaches: document-based and concept-based ap-

proaches. Document-based user profiling methods aim at cap-

turing users’ clicking and browsing behaviors. Users’ doc-

ument preferences are first extracted from the clickthrough

data and then used to learn the user behavior model which

is usually represented as a set of weighted features. On

the other hand, concept-based user profiling methods aim at

capturing users’ conceptual needs. Users’ browsed documents

and search histories are automatically mapped into a set of

topical categories. User profiles are created based on the users’

preferences on the extracted topical categories.

2.1 Document-Based Methods
Most document-based methods focus on analyzing users’

clicking and browsing behaviors recorded in the users’ click-

through data. On web search engines, clickthrough data is an

important implicit feedback mechanism from users. Table 1 is

an example of clickthrough data for the query “apple”, which

contains a list of ranked search results presented to the user,

with identification on the results that the user has clicked on.

The bolded documents d1, d5 and d8 are the documents that

have been clicked by the user. Several personalized systems

that employ clickthrough data to capture users’ interest have

been proposed [1], [2], [10], [15], [18].

Joachims [10] proposed a method which employs preference

mining and machine learning to model users’ clicking and

browsing behavior. Joachims’ method assumes that a user

would scan the search result list from top to bottom. If a

user has skipped a document di at rank i before clicking on

document dj at rank j, it is assumed that he/she must have scan

the document di and decided to skip it. Thus, we can conclude

that the user prefers document dj more than document di

(i.e. dj <r′ di, where r′ is the user’s preference order of

the documents in the search result list). Using Joachims’
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TABLE 2
Document Preference Pairs obtained using Joachims’

Method

Preference Pairs Preference Pairs Preference Pairs
containing d1 containing d5 containing d8

Empty Set d5 <r′ d2 d8 <r′ d2

d5 <r′ d3 d8 <r′ d3

d5 <r′ d4 d8 <r′ d4

d8 <r′ d6

d8 <r′ d7

TABLE 3
An Example of User Profile as a Set of Weighted

Features

Feature Weight Feature Weight
query abstract cosine 0.60 top10count 3 0.19

top10 google 0.48 top10 yahoo 0.16
query url cosine 0.24 ... ...

top1count 1 0.24 url length -0.17
top10 msnsearch 0.24 top10count 0 -0.32

host citeseer 0.22 top1count 0 -0.38

proposition and the example clickthrough data in Table 1, a

set of document preference pairs as shown in Table 2 can be

obtained. After the document preference pairs are obtained,

a Ranking SVM (RSVM) [10] is employed to learn the user

behavior model as a set of weighted features. Table 3 shows

an example of Joachims’ user profile, which consists of a set

of weighted features.

Ng et al. [15] proposed an algorithm which combines a

spying technique together with a novel voting procedure to

determine users’ document preferences from the clickthrough

data. They also employed the RSVM algorithm to learn the

user behavior model as a set of weight features. More recently,

Agichtein et al. [1] suggested that explicit feedback (i.e.

individual user behavior, clickthrough data, etc) from search

engine users is noisy. One major observation is the bias of user

click distribution toward top ranked results. To resolve the bias,

Agichtein suggested to clean up the clickthrough data with the

aggregated “background” distribution. RankNet [6], a scalable

implementation of neural networks, is then employed to learn

the user behavior model from the cleaned clickthrough data.

2.2 Concept-Based Methods

Most concept-based methods automatically derive users’ top-

ical interests by exploring the contents of the users’ browsed

documents and search histories. Liu et al. [13] proposed a user

profiling method based on users’ search history and the Open

Directory Project (ODP) [16]. The user profile is represented

as a set of categories, and for each category, a set of keywords

with weights. The categories stored in the user profiles serve

as a context to disambiguate user queries. If a profile shows

that a user is interested in certain categories, the search can

be narrowed down by providing suggested results according

to the user’s preferred categories.

Gauch et al. [9] proposed a method to create user profiles

from user browsed documents. User profiles are created using

concepts from the top four levels of the concept hierarchy

created by Magellan [14]. A classifier is employed to clas-

sify user browsed documents into concepts in the reference

ontology. Xu et al. [20] proposed a scalable method which

automatically builds user profiles based on users’ personal

documents (e.g. browsing histories and emails). The user

profiles summarize users’ interests into hierarchical structures.

The method assumes that terms exist frequently in user’s

browsed documents represent topics that the user is interested

in. Frequent terms are extracted from users’ browsed docu-

ments to build hierarchical user profiles representing users’

topical interests.

Liu et al. and Gauch et al. both use a reference ontology

(e.g. ODP) to develop the hierarchical user profiles, while

Xu et al. automatically extracts possible topics from users’

browsed documents and organizes the topics into hierarchical

structures. The major advantage of dynamically building a

topic hierarchy is that new topics can be easily recognized and

extracted from documents and added to the topic hierarchy,

whereas a reference ontology such as ODP is not always up-

to-date. Thus, all of our proposed user profiling strategies rely

on a concept extraction method as described in Section 3.1.1,

which extracts concepts from web-snippets2 to create accurate

and up-to-date user profiles.

3 PERSONALIZED CONCEPT-BASED QUERY
CLUSTERING
Our personalized concept-based clustering method consists of

three steps. First, we employ a concept extraction algorithm,

which will be described in Section 3.1.1, to extract concepts

and their relations from the web-snippets returned by the

search engine. Second, seven different concept-based user

profiling strategies, which will be introduced in Section 4,

are employed to create concept-based user profiles. Finally,

the concept-based user profiles are compared with each other

and against as baseline our previously proposed personalized

concept-based clustering algorithm [11], which is reviewed in

Section 3.2.

3.1 Concept Extraction
3.1.1 Extracting Concepts from Web-snippets
After a query is submitted to a search engine, a list of

web-snippets are returned to the user. We assume that if a

keyword/phrase exists frequently in the web-snippets of a

particular query, it represents an important concept related

to the query because it co-exists in close proximity with the

query in the top documents. Thus, we employ the following

support formula, which is inspired by the well-known problem

of finding frequent item sets in data mining [7], to measure

the interestingness of a particular keyword/phrase ci extracted

from the web-snippets arising from q: interestingness of a

particular keyword/phrase ci with respect to the query q:

support(ci) =
sf(ci)

n
· |ci| (1)

2. “web-snippet” denotes the title, summary and URL of a Web page
returned by search engines.
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TABLE 4
Example Concepts Extracted for the Query “apple”

Concept ci support(ci) Concept ci support(ci)
mac 0.1 apple store 0.06
iPod 0.1 slashdot apple 0.04

iPhone 0.1 picture 0.04
hardware 0.09 music 0.03
mac os 0.06 apple farm 0.02

where sf(ci) is the snippet frequency of the keyword/phrase

ci (i.e. the number of web-snippets containing ci), n is the

number of web-snippets returned and |ci| is the number of

terms in the keyword/phrase ci. If the support of a key-

word/phrase ci is greater than the threshold s (s = 0.03 in

our experiments), we treat ci as a concept for the query q.

Table 4 shows an example set of concepts extracted for the

query “apple”. Before concepts are extracted, stopwords, such

as “the”, “of”, “we”, etc., are first removed from the snippets.

The maximum length of a concept is limited to seven words.

These not only reduce the computational time but also avoid

extracting meaningless concepts.

3.1.2 Mining Concept Relations
We assume that two concepts from a query q are similar if

they co-exist frequently in the web-snippets arising from the

query q. According to the assumption, we apply the following

well-known signal-to-noise formula from data mining [7] to

establish the similarity between terms t1 and t2:

sim(t1, t2) = log
n · df(t1 ∪ t2)
df(t1) · df(t2)

/ log n (2)

where n is the number of documents in the corpus, df(t) is the

document frequency of the term t and df(t1 ∪ t2) is the joint

document frequency of t1 and t2. The similarity sim(t1, t2)
obtained using the above formula always lies between [0,1].

In the search engine context, two concepts ci and cj could

co-exist in the following situations: 1) ci and cj coexist in the

title, 2) ci and cj co-exist in the summary and 3) ci exists

in the title while cj exists in the summary (or vice versa).

Similarities for the three different cases are computed using

the following formulas:

simR,title(ci, cj) = log
n · sftitle(ci ∪ cj)

sftitle(ci) · sftitle(cj)
/ log n (3)

simR,sum(ci, cj) = log
n · sfsum(ci ∪ cj)

sfsum(ci) · sfsum(cj)
/ log n (4)

simR,other(ci, cj) = log
n · sfother(ci ∪ cj)

sfother(ci) · sfother(cj)
/ log n (5)

where sftitle(ci ∪ cj)/sfsum(ci ∪ cj) are the joint snippet

frequencies of the concepts ci and cj in web-snippets’ ti-

tles/summaries, sftitle(c)/sfsum(c) are the snippet frequencies

of the concept c in web-snippets’ titles/summaries, sfother(ci∪
cj) is the joint snippet frequency of the concepts ci in a web-

snippet’s title and cj in a web-snippet’s summary (or vice

versa), and sfother(c) is the snippet frequency of concept

c in either web-snippets’ titles or summaries. The following

formula is used to obtain the combined similarity simR(ci, cj)
from the three cases, where α + β + γ = 1 to ensure that

simR(ci, cj) lies between [0,1].

simR(ci, cj) = α · simR,title(ci, cj) + β · simR,summary(ci, cj)
+γ · simR,other(ci, cj)

(6)

Figure 1(a) shows a concept graph built for the query

“apple”. The nodes are the concepts extracted from the query

“apple”, and the links are created between concepts having

simR(ci, cj) > 0. The graph shows the possible concepts and

their relations arising from the query “apple”.

3.2 Query Clustering Algorithm
We now review our personalized concept-based clustering

algorithm [11] with which ambiguous queries can be classified

into different query clusters. Concept-based user profiles are

employed in the clustering process to achieve personalization

effect. First, a query-concept bipartite graph G is constructed

by the clustering algorithm with one set of nodes corresponds

to the set of users’ queries, and the other corresponds to the

sets of extracted concepts. Each individual query submitted

(a) The concept space derived for the query “apple”.

(b) An example of user profile in which the user is interested in the
concept ”macintosh”.

Fig. 1. An example of a concept space and the corre-
sponding user profile.
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by each user is treated as an individual node in the bipartite

graph by labeling each query with a user identifier. Concepts

with interestingness weights (defined in Equation 1) greater

than zero in the user profile are linked to the query with the

corresponding interestingness weight in G.

Second, a two-step personalized clustering algorithm is

applied to the bipartite graph G, to obtain clusters of similar

queries and similar concepts. Details of the personalized clus-

tering algorithm is shown in Algorithm 1. The personalized

clustering algorithm iteratively merges the most similar pair

of query nodes, and then the most similar pair of concept

nodes, and then merge the most similar pair of query nodes,

and so on. The following cosine similarity function is em-

ployed to compute the similarity score sim(x, y) of a pair

of query nodes or a pair of concept nodes. The advantages

of the cosine similarity are that it can accommodate negative

concept weights and produce normalized similarity values in

the clustering process.

sim(x, y) =
Nx · Ny

‖ Nx ‖‖ Ny ‖ (7)

where Nx is a weight vector for the set of neighbor nodes

of node x in the bipartite graph G, the weight of a neighbor

node nx in the weight vector Nx is the weight of the link

connecting x and nx in G, Ny is a weight vector for the

set of neighbor nodes of node y in G, and the weight of a

neighbor node ny in Ny is the weight of the link connecting

y and ny in G.

Algorithm 1 Personalized Agglomerative Clustering
Input: A Query-Concept Bipartite Graph G
Output: A Personalized Clustered Query-Concept Bipartite

Graph Gp

// Initial Clustering
1: Obtain the similarity scores in G for all possible pairs of

query nodes using Equation (7).

2: Merge the pair of most similar query nodes (qi,qj) that

does not contain the same query from different users. Assume

that a concept node c is connected to both query nodes qi

and qj with weight wi and wj , a new link is created between

c and (qi, qj) with weight w = wi + wj .

3: Obtain the similarity scores in G for all possible pairs of

concept nodes using Equation (7).

4: Merge the pair of concept nodes (ci,cj) having highest

similarity score. Assume that a query node q is connected

to both concept nodes ci and cj with weight wi and wj ,

a new link is created between q and (ci, cj) with weight

w = wi + wj .

5. Unless termination is reached, repeat Steps 1-4.

// Community Merging
6. Obtain the similarity scores in G for all possible pairs of

query nodes using Equation (7).

7. Merge the pair of most similar query nodes (qi,qj) that

contains the same query from different users. Assume that a

concept node c is connected to both query nodes qi and qj

with weight wi and wj , a new link is created between c and

(qi, qj) with weight w = wi + wj .

8. Unless termination is reached, repeat Steps 6-7.

The algorithm is divided into two steps, initial clustering
and community merging. In initial clustering, queries are

grouped within the scope of each user. Community merging

is then involved to group queries for the community. A more

detailed example is provided in our previous work [11] to

explain the purpose of the two steps in our personalized

clustering algorithm.

A common requirement of iterative clustering algorithms

is to determine when the clustering process should stop to

avoid over-merging of the clusters. Likewise, a critical issue

in Algorithm 1 is to decide the termination points for initial

clustering and community merging. When the termination

point for initial clustering is reached, community merging

kicks off; when the termination point for community merging

is reached, the whole algorithm terminates.

Good timing to stop the two phases is important to the

algorithm, since if initial clustering is stopped too early

(i.e., not all clusters are well formed), community merging

merges all the identical queries from different users , and thus

generates a single big cluster without much personalization

effect. However, if initial clustering is stopped too late, the

clusters are already overly merged before community merging

begins. The low precision rate thus resulted would undermine

the quality of the whole clustering process.

The determination of the termination points was left open

in [11]. Instead, it obtained the optimal termination points

by exhaustively searching for the point at which the resulting

precision and recall values are maximized. Most existing clus-

tering methods such as [5], [19] and [4] used a fixed criteria

which stops the clustering when the intra-cluster similarity

drops beyond a threshold. However, since the threshold is

either fixed or obtained from a training data set, the method is

not suitable in a personalized environment where the behaviors

of users are different and change from time to time. In

Section 5.4, we will study a simple heuristic that determines

the termination points when the intra-cluster similarity shows

a sharp drop. Further, we show that methods that exploit

negative preferences produce termination points that are very

close to the optimal termination points obtained by exhaustive

search.

4 USER PROFILING STRATEGIES

In this section, we propose six user profiling strategies which

are both concept-based and utilize users’ positive and neg-

ative preferences. They are PJoachims−C , PmJoachims−C ,

PSpyNB−C , PClick+Joachims−C , PClick+mJoachims−C and

PClick+SpyNB−C . In addition, we use PClick, which was

proposed in [11], as the baseline in the experiments. PClick is

concept-based but cannot handle negative preferences.

4.1 Click-Based Method (PClick)
The concepts extracted for a query q using the concept extrac-

tion method discussed in Section 3.1.1 describe the possible

concept space arising from the query q. The concept space may

cover more than what the user actually wants. For example,

when the user searches for the query “apple”, the concept
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space derived from our concept extraction method contains

the concepts “macintosh”, “ipod” and “fruit”. If the user is

indeed interested in “apple” as a fruit and clicks on pages

containing the concept “fruit”, the user profile represented

as a weighted concept vector should record the user interest

on the concept “apple” and its neighborhood (i.e., concepts

which having similar meaning as “fruit”), while downgrading

unrelated concepts such as “macintosh”, “ipod” and their

neighborhood. Therefore, we propose the following formulas

to capture a user’s degree of interest, wci
, on the extracted

concepts ci, when a web-snippet sj is clicked by the user

(denoted by click(sj)):

click(sj) ⇒ ∀ci ∈ sj , wci
= wci

+ 1 (8)

click(sj) ⇒ ∀ci ∈ sj , wcj
= wcj

+ simR(ci, cj)
if simR(ci, cj) > 0

(9)

where sj is a web-snippet, wci
represents the user’s degree of

interest on the concept ci, and cj is the neighborhood concept

of ci.

When a web-snippet sj has been clicked by a user, the

weight wci
of concepts ci appearing in sj is incremented

by 1. For other concepts cj that are related to ci on the

concept relationship graph, they are incremented according to

the similarity score given in Equation (9). Figure 1(b) shows

an example of a click-based profile PClick in which the user

is interested in information about “macintosh”. Hence, the

concept “macintosh” receives the highest weight among all of

the concepts extracted for the query “apple”. The weights wti

of the concepts “mac os”, “software”, “apple store”, “iPod”,

“iPhone”, and “hardware” are increased based on Equation

(9), because they are related to the concept “macintosh”. The

weights wci
for concepts “fruit”, “apple farm”, “juice”, and

“apple grower” remain zero, showing that the user is not

interested in information about “apple fruit”.

4.2 Joachims-C Method (PJoachims−C)

Joachims [10] assumed that a user would scan the search

results from top to bottom. If a user skipped a document di

before clicking on document dj (where rank of dj > rank of

di), he/she must have scanned di and decided not to click on it.

According to the Joachims’ original proposition as discussed

in Section 2.1, it would extract the user’s document preference

as dj <r′ di.

Joachims’ original method was based on users’ document

preferences. If a user has skipped a document di at rank i
before clicking on document dj at rank j, he/she must have

scanned the document di and decided to skip it. Thus, we

can conclude that the user prefers document dj more than

document di (i.e., dj <r′ di, where r′ is the user’s preference

order of the documents in the search result list).

We extended Joachims’ method, which is a document-based

method, to a concept based method (Joachims-C). Instead of

obtaining the document preferences dj <r′ di, Joachims-C as-

sumes that the user prefers the concepts C(dj) associated with

document dj to the concepts C(di) associated with document

di, and produces the corresponding concept preferences. The

idea is captured in the following proposition.

Proposition 1 (Joachims-C Skip Above): Given a list of

search results for an input query q, if a user clicks on the

document dj at rank j, all the concepts C(di) in the unclicked
documents di above rank j are considered as less relevant

than the concepts C(dj) in the document dj , i.e., (C(dj) <r′

C(di), where r′ is the user’s preference order of the concepts

extracted from the search results of the query q).

Using the example in Table 1, the user did not click

on d2, d3, and d4, but clicked on d5. Thus, according to

Proposition 1, we can conclude that the concepts C(d5) is

more relevant to the user than the concepts in the other three

unclicked documents (i.e., C(d2), C(d3) and C(d4)). The

concept preference pairs extracted using Joachims-C method

are shown in Table 5.

Fig. 2. Ordering of concepts “macintosh”, “mac os”,
“iPod”, “iPhone”, and “fruit” using weight vectors −→w1 and−→w2.

After the concept preference pairs are identified using

Proposition 1, a ranking SVM algorithm [10] is employed

to learn the user’s preferences, which is represented as a

weighted concept vector. Given a set of concept preference

pairs T , ranking SVM aims at finding a linear ranking function

f(q, c) to rank the extracted concepts so that as many concept

preference pairs in T as possible are satisfied. f(q, c) is defined

as the inner product of a weight vector −→w and a feature vector

of query-concept mapping φ(q, c), which describes how well

a concept c matches the user’s interest for a query q.

Figure 2 is an example showing how the weight vector −→w
affects the ordering of the extracted concepts, where the target

user concept preferences is (“macintosh” <r∗ “mac os” <r∗

“iPod” <r∗ “iPhone” <r∗ “fruit”). We can see that −→w1 is

better than −→w2, because −→w1 correctly ranks the concepts as

(“macintosh” <w1 “mac os” <w1 “iPod” <w1 “iPhone” <w1

“fruit”), while −→w2 ranks the concepts as (“fruit” <w2 “mac os”

<w2 “iPhone” <w2 “macintosh” <w2 “iPod”).

The feature vector φ(q, c) = [Feature c1, Feature c2, ...,

Feature cn] for the ranking SVM training is composed of all

the extracted concepts for a query q. For each concept ci, we

create a feature vector φ(q, ci) = [Feature c1, Feature c2,

..., Feature cn] which is defined as follows.
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TABLE 5
Concept Preference Pairs obtained using Joachims-C Methods

Concept Preference Pairs for d1 Concept Preference Pairs for d5 Concept Preference Pairs for d8

Empty Set apple store <r′ product macintosh <r′ product
macintosh <r′ product catalog <r′ product
apple store <r′ mac os macintosh <r′ mac os
macintosh <r′ mac os catalog <r′ mac os

macintosh <r′ apple store macintosh <r′ apple store
apple store <r′ iPod catalog <r′ apple store
macintosh <r′ iPod macintosh <r′ iPod

catalog <r′ iPod
macintosh <r′ fruit

catalog <r′ fruit
macintosh <r′ apple hill

catalog <r′ apple hill
macintosh <r′ fruit

catalog <r′ fruit

Feature ck =

⎧⎪⎨
⎪⎩

1 if k = i

simR(ci, cj) if simR(ci, ck) > 0
0 otherwise

(10)

The concept preference pairs together with the feature

vectors serve as the input to the ranking SVM algorithm. The

ranking SVM algorithm outputs a weight vector −→w such that

the maximum number of the following inequalities holds:

∀(ci, cj) ∈ r′k, (1 ≤ k ≤ n) : −→w · φ(qk, ci) > −→w · φ(qk, cj)
(11)

where (ci, cj) ∈ r′k is a concept pair corresponding to the

concept preference pair (ci <r′
k

cj) of the query qk, which

means that ci should rank higher than cj in the target concept

ordering of r′k.
The weight vector −→w = (wFeature c1 , wFeature c2 , ...,

wFeature cn
) determines the user preferences on the ex-

tracted concepts. For all the concepts c1, c2, ..., ci ex-

tracted for the query q, the user preferences are stored in

the corresponding weight values wFeature c1 , wFeature c2 ,

..., wFeature cn
, creating a concept preference profile

PJoachims−C = (wFeature c1 , wFeature c2 , ..., wFeature cn
)

for the query q. Table 6 shows an example of feature weights

resulted from RSVM Training for the query q = apple (where

the user’s topical preferences are ”fruit” and ”farm”) using

Joachims-C method from our experiments.

4.3 mJoachims-C Method (PmJoachims−C)
mJoachims extends Joachims, which only considers unclicked

pages above a clicked page, by considering unclicked pages

both above and below a clicked page [15]. As with Joachims-

C, we extend mJoachims into mJoachims-C by deriving

concept-preference pairs from page-preference pairs.
Proposition 2. (mJoachims-C Skip Above+Skip Next):

Given a set of search results for a query, if documents di at

rank i is clicked, dj is the next clicked document right after di

(no other clicked links between di and dj), and document dk at

rank k between di and dj (i < k < j) is not clicked, then con-

cepts C(dk) in document dk is considered less relevant than

TABLE 6
Example Feature Weights obtained from RSVM Training

for the Query q = apple

Feature Weight Weight Weight
(Joachims-C) (mJoachims-C) (SpyNB-C)

entertainment -0.369 -0.275 -0.029
traveler -0.092 -0.030 -0.022

kid -0.196 -0.350 -0.228
recipe -0.333 -0.272 -0.435

program -0.076 -0.202 -0.188
orchard -0.939 -0.851 -0.824

directory -0.335 -0.274 -0.043
fruit 1.941 1.871 1.765
farm 2.048 2.629 1.497
art 0.420 -0.240 -0.247

music 0.243 -0.247 0.243
restaurant 0.212 0.134 -0.005

the concepts C(dj) in document dj (C(dj) <r′ C(dk)) where

r′ is the user’s preference order of the concepts extracted from

the search results of the query q). The predictions obtained are

combined with those obtained from Proposition 1 (Joachims-C

method) above.

Table 7 shows the concept preference pairs extracted using

mJoachims-C method with the clickthrough in Table 1. The

concept preference pairs obtained using Proposition 2 are input

to the ranking SVM algorithm, same as in PJoachims−C de-

scribed in Section 4.2, to create the user profile PmJoachims−C

on the concepts c1, c2, ..., ci extracted for the query q.

Table 6 shows an example of feature weights resulted from

RSVM Training for the query q = apple (where the user’s

topical preferences are ”fruit” and ”farm”) using mJoachims-

C method from our experiments.

4.4 SpyNB-C Method (PSpyNB−C)
Both Joachims and mJoachims are based on a rather strong

assumption that pages scanned but not clicked by the user are

considered uninteresting to the user and hence irrelevant to the

user’s query. SpyNB does not make this assumption [15], but

instead assumes that unclicked pages could be either relevant

or irrelevant to the user. Therefore, SpyNB treats clicked
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TABLE 7
Concept Preference Pairs obtained using mJoachims-C Method

Concept Preference Pairs for d1 Concept Preference Pairs for d5 Concept Preference Pairs for d8

macintosh <r′ product apple store <r′ product macintosh <r′ product
macintosh <r′ product catalog <r′ product

macintosh <r′ mac os apple store <r′ mac os macintosh <r′ mac os
macintosh <r′ mac os catalog <r′ mac os

macintosh <r′ apple store macintosh <r′ apple store macintosh <r′ apple store
macintosh <r′ iPod apple store <r′ iPod catalog <r′ apple store

macintosh <r′ iPod macintosh <r′ iPod
catalog <r′ iPod

apple store <r′ fruit macintosh <r′ fruit
macintosh <r′ fruit catalog <r′ fruit

apple store <r′ apple hill macintosh <r′ apple hill
macintosh <r′ apple hill catalog <r′ apple hill

apple store <r′ fruit macintosh <r′ fruit
macintosh <r′ fruit catalog <r′ fruit

pages as positive samples and unclicked pages as unlabeled

samples in the training process. The problem of finding user

preferences becomes one of identifying from the unlabeled set

reliable negative documents that are considered irrelevant to

the user.

The “Spy” technique incorporates a novel voting procedure

into a Naı̈ve Bayes classifier [12] to derive reliable negative

examples from the unlabeled set. Let “+” and “-” denote the

positive and negative classes, and D = d1, d2, ..., dn a set

of N documents in the search result list. For each search

result, SpyNB first extracts the words that appear in the title,

abstract and URL, creating a word vector (w1, w2, ..., wM ).
Then, a Naı̈ve Bayes classifier is built by estimating the

prior probabilities (Pr(+) and Pr(−)) and likelihoods

(Pr(wj |+) and Pr(wj |−)). The detail of the Naı̈ve Bayes

Algorithm is presented in [15].

The training data only contains positive and unlabeled

examples (without negative examples). Thus, the “Spy” tech-

nique is employed to learn a Naı̈ve Bayes classifier. A set

of positive examples S is selected from P and moved into

U as “spies” to train a classifier using the Naı̈ve Bayes

algorithm above. The resulting classifier is then used to assign

probabilities Pr(+|d) to each example in U ∪ S, and an

unlabeled example in U is selected as a predicted negative

example (PN ) if its probability is less than Ts.

Unfortunately, in the search engine context, most users

would only click on a few documents (positive examples) that

are relevant to them. Thus, only a limited number of positive

examples can be used in the classification process, lowering

the reliability of the predicted negative examples (PN ). To

resolve the problem, every positive example pi in P is used

as a spy to train a Naı̈ve Bayes classifier. Consequently, n
predicted negative sets (PN1,PN2,...,PNn) are created with

the n Naı̈ve Bayes classifiers. Finally, a voting procedure is

used to combine the PNi into the final PN . The detail of the

SpyNB algorithm is discussed in [15].

After obtaining the positive and predicted negative samples

from the SpyNB, page preferences can be obtained. As with

Joachims-C and mJoachims-C, SpyNB-C generalizes page

preferences into concept preferences. Specifically, concept

preference pairs are obtained by assuming that concepts C(dj)
in the positive sample dj are more relevant than concept C(di)
in the predicted negative sample dj (i.e., C(dj) <r′ C(di)).
Finally, RSVM training, which is similar to the one used

in Joachims-C method, is applied on the extracted concept

preferences to learn a user profile PSpyNB−C which is

represented as a set of weight features. Table 6 shows an

example of feature weights obtained from RSVM training in

our experiment for the query q = apple (where the user’s

topical preferences are “fruit” and “farm” using the SpyNB-C

method.

4.5 Click+Joachims-C Method (PClick+Joachims−C)

In our previous work [11], we observed that PClick is good

in capturing user’s positive preferences. In this paper, we

integrate the click-based method, which captures only positive

preferences, with the Joachims-C method, with which negative

preferences can be obtained. We found that Joachims-C is

good in predicting users’ negative preferences. Since both

the user profiles PClick and PJoachims−C are represented as

weighted concept vectors, the two vectors can be combined

using the following formula:

w(C + J)ci
= w(C)ci

+ w(J)ci
if w(J)ci

< 0
w(C + J)ci

= w(C)ci
otherwise

(12)

where w(C + J)ci ∈ PClick+Joachims−C , w(C)ci ∈ PClick,

and w(J)ci
∈ PJoachims−C . If a concept ci has a negative

weight in PJoachims−C (i.e., w(J)ci
< 0), the negative weight

will be added to w(C)ci
in PClick (i.e., w(J)ci

+ w(C)ci
)

forming the weighted concept vector for the hybrid profile

PClick+Joachims−C .

4.6 Click+mJoachims-C Method
(PClick+mJoachims−C)

Similar to Click+Joachims-C method, a hybrid method which

combines PClick and PmJoachims−C is proposed. The two

profiles are combined using the following formula
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w(C + mJ)ci = w(C)ci + w(mJ)ci if w(mJ)ci < 0
w(C + mJ)ci = w(C)ci otherwise

(13)

where w(C + mJ)ci
∈ PClick+mJoachims−C , w(C)ci

∈
PClick, and w(mJ)ci

∈ PmJoachims−C . If a concept ci has

a negative weight in PmJoachims−C (i.e., w(mJ)ci < 0),

the negative weight will be added to w(C)ci
in PClick (i.e.,

w(mJ)ci
+ w(C)ci

) forming the weighted concept vector for

the hybrid profile PClick+mJoachims−C .

4.7 Click+SpyNB-C Method (PClick+SpyNB−C)

Similar to Click+Joachims-C and Click+mJoachims-C meth-

ods, the following formula is used to create a hybrid profile

PClick+SpyNB−C that combines PClick and PSpyNB−C :

w(C + sNB)ci = w(C)ci + w(sNB)ci if w(sNB)ci < 0
w(C + sNB)ci

= w(C)ci
otherwise

(14)

where w(C +sNB)ci
∈ PClick+SpyNB−C , w(C)ci

∈ PClick,

and w(sNB)ci ∈ PSpyNB−C . If a concept ci has a negative

weight in PSpyNB−C (i.e., w(sNB)ci
< 0), the negative

weight will be added to w(C)ci
in PClick (i.e., w(sNB)ci

+
w(C)ci

) forming the weighted concept vector for the hybrid

profile PClick+SpyNB−C .

5 EXPERIMENTAL RESULTS

In this section, we evaluate and analyze the seven concept-

based user profiling strategies (i.e., PClick, PJoachims−C ,

PmJoachims−C , PSpyNB−C , PClick+Joachims−C ,

PClick+mJoachims−C and PClick+SpyNB−C). Our previous

work had already shown that concept-based profiles are

superior to document-based profiles [11]. Thus, the evaluation

between concept-based and document-based profiles is

skipped in this paper. The seven concept-based user profiling

strategies are compared using our personalized concept-

based clustering algorithm [11]. In Section 5.1, we first

describe the setup for clickthrough collection. The collected

clickthrough data are used by the proposed user profiling

strategies to create user profiles. We evaluate the concept

preference pairs obtained from Joachims-C, mJoachims-C and

SpyNB-C methods in Section 5.2. In Section 5.3, the seven

concept-based user profiling strategies are compared and

evaluated. Finally, in Section 5.4, we study the performance

of a heuristic for determining the termination points of initial

clustering and community merging based on the change of

intra-cluster similarity. We show that user profiling methods

that incorporate negative concept weights return termination

points that are very close to the optimal points obtained by

exhaustive search.

TABLE 8
Topical Categories of the Test Queries

1 Automobile Repairing 6 Computer Science Research
2 Cooking 7 Dining
3 Computer Gaming 8 Internet Shopping
4 Computer Hardware 9 Music
5 Computer Programming 10 Traveling

TABLE 9
Statistics of the Collected Clickthrough Data

Number of users 100
Number of test queries 500
Number of unique queries 406
Number of queries assigned to each user 5
Number of URLs retrieved 47,543
Number of concepts retrieved 42,328
Number of unique URLs retrieved 36,567
Number of unique concepts retrieved 12,853
Maximum number of retrieved URLs for a query 100
Maximum number of extracted concepts for a query 168

5.1 Experimental Setup

The query and clickthrough data for evaluation are adopted

from our previous work [11]. To evaluate the performance

of our user profiling strategies, we developed a middleware

for Google3 to collect clickthrough data. We used 500 test

queries, which are intentionally designed to have ambiguous

meanings (e.g. the query “kodak” can refer to a digital camera

or a camera film). We ask human judges to determine a

standard cluster for each query. The clusters obtained from

the algorithms are compared against the standard clusters

to check for their correctness. 100 users are invited to use

our middleware to search for the answers of the 500 test

queries (accessible at [3]). To avoid any bias, the test queries

are randomly selected from 10 different categories. Table 8

shows the topical categories in which the test queries are

chosen from. When a query is submitted to the middleware,

a list containing the top 100 search results together with

the extracted concepts are returned to the users, and the

users are required to click on the results they find relevant

to their queries. The clickthrough data together with the

extracted concepts are used to create the seven concept-

based user profiles (i.e., PClick, PJoachims−C , PmJoachims−C ,

PSpyNB−C , PClick+Joachims−C , PClick+mJoachims−C and

PClick+SpyNB−C). The concept mining threshold is set to 0.03

and the threshold for creating concept relations is set to zero.

We chose these small thresholds so that as many concepts as

possible are included in the user profiles. Table 9 shows the

statistics of the clickthrough data collected.

The user profiles are employed by the personalized clus-

tering method to group similar queries together according to

users’ needs. The personalized clustering algorithm is a two-

phase algorithm which composes of the initial clustering phase

to cluster queries within the scope of each user, and then the

3. The middleware approach is aimed at facilitating experimentation. The
techniques developed in this paper can be directly integrated into any search
engine to provide personalized query suggestions.
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community merging phase to group queries for the community.

We define the optimal clusters to be the clusters obtained

by the best termination strategies for initial clustering and

community merging (i.e., steps 6 and 8 in Algorithm 1). The

optimal clusters are compared to the standard clusters using

standard precision and recall measures, which are computed

using the following formulas:

precision(q) =
|Qrelevant

⋂
Qretrieved|

|Qretrieved| (15)

recall(q) =
|Qrelevant

⋂
Qretrieved|

|Qrelevant| (16)

where q is the input query, Qrelevant is the set of queries that

exists in the predefined cluster for q, and Qretrieved is the set

of queries generated by the clustering algorithm. The precision

and recall from all queries are averaged to plot the precision-

recall figures, comparing the effectiveness of the user profiles.

5.2 Comparing Concept Preference Pairs Obtained
using Joachims-C, mJoachims-C and SpyNB-C Meth-
ods

In this Section, we evaluate the pairwise agreement be-

tween the concept preferences extracted using Joachims-C,

mJoachims-C and SpyNB-C methods. The three methods are

employed to learn the concept preference pairs from the

collected clickthrough data as described in Section 5.1. The

learned concept preference pairs from different methods are

manually evaluated by human evaluators to derive the fraction

of correct preference pairs. We discard all the ties in the

resulted concept preference pairs (i.e., pairs with the same

concepts) to avoid ambiguity (i.e., both ci > cj and cj > ci

exist) in the evaluation.

Table 10 shows the precisions of the concept preference

pairs obtained using Joachims-C, mJoachims-C and SpyNB-

C methods. The precisions obtained from the 10 different

users together with the average precisions are shown. We

observe that the performance of Joachims-C and mJoachims-C

is very close to each other (average precision for Joachims-

C method = 0.5965, mJoachims-C method = 0.6130), while

SpyNB-C (average precision for SpyNB-C method = 0.6925)

outperforms both Joachims-C and mJoachims-C by 13-16%.

SpyNB-C performs better mainly because it is able to discover

more accurate negative samples (i.e., results that do not

contain topics interesting to the user). With more accurate

negative samples, a more reliable set of negative concepts

can be determined. Since the set of positive samples (i.e., the

clicked results) are the same for all of the three methods, the

method (i.e., SpyNB-C) with a more reliable set of negative

samples/concepts would outperform the others. RSVM is then

employed to learn user profiles from the concept preference

pairs. The performance of the resulted user profiles will be

compared in Section 5.3.

TABLE 10
Average Precisions of Concept Preference Pairs
Obtained using Joachims-C, mJoachims-C and

SpyNB-C Methods

Average Precision
Joachims-C 0.5965
mJoachims-C 0.6130
SpyNB-C 0.6925

5.3 Comparing PClick, PJoachims−C , PmJoachims−C ,
PSpyNB−C , PClick+Joachims−C , PClick+mJoachims−C and
PClick+SpyNB−C

Figure 3 shows the precision and recall values of PJoachims−C

and PClick+Joachims−C with PClick shown as the baseline.

Likewise, Figures 4 and 5 compare, respectively, the precision

and recall of PmJoachims−C and PClick+mJoachims−C , and

that of PSpyNB−C and PClick+SpyNB−C , with PClick as the

baseline.

An important observation from these three figures is that

even though PJoachims−C , PmJoachims−C and PSpyNB−C

are able to capture users’ negative preferences, they yield

worse precision and recall ratings comparing to PClick. This

is attributed to the fact that PJoachims−C , PmJoachims−C and

PSpyNB−C share a common deficiency in capturing users’

positive preferences. A few wrong positive predictions would

significantly lower the weight of a positive concept. For

example, assume that a positive concept ci has been clicked

many times, a preference cj <r′ ci can still be generated

by Joachims/mJoachims propositions, if there ever exists one

case in which the user did not click on ci but clicked on

another document that was ranked lower in the result list.

Since PJoachims−C , PmJoachims−C and PSpyNB−C cannot

effectively capture users’ positive preferences, they perform

worse than the baseline method PClick. On the other hand,

PClick captures positive preferences based on user clicks, so

Fig. 3. Precision vs recall when performing per-
sonalized clustering using PClick, PJoachims−C , and
PClick+Joachims−C .
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Fig. 4. Precision vs recall when performing per-
sonalized clustering using PClick, PmJoachims−C , and
PClick+mJoachims−C .

Fig. 5. Precision vs recall when performing personalized
clustering using PClick, PSpyNB−C , and PClick+SpyNB−C .

an erroneous click made by users has little effect on the final

outcome as long as the number of erroneous clicks is much

less than that of correct clicks.

Although PJoachims−C , PmJoachims−C and PSpyNB−C are

not ideal for capturing user’s positive preferences, they can

capture negative preferences from users’ clickthroughs very

well. For example, assume that a concept ci has been skipped

by a user many times, preferences ck1 <r′ ci, ck2 <r′ ci, ...,

ckn <r′ ci (where ck1, ck2, ..., ckn are the clicked concepts

below ci) would be generated by these methods. Hence, the

concept ci would be considered less relevant than the clicked

concepts ck1, ck2, ..., ckn and assigned a lower or even negative

weight.

Since PJoachims−C , PmJoachims−C and PSpyNB−C are

able to capture negative preferences from users’ clickthroughs

while PClick is good at capturing positive preferences, we

propose three user profiling strategies, PClick+Joachims−C ,

TABLE 11
Best F-Measure Values when Performing Personalized
Clustering using PClick, PJoachims−C , PmJoachims−C ,

PSpyNB−C , PClick+Joachims−C , PClick+mJoachims−C and
PClick+SpyNB−C

Precision Recall F-Measure
PClick 0.7726 0.6567 0.7100
PJoachims−C 0.6408 0.6276 0.6339
PmJoachims−C 0.6191 0.6565 0.6373
PSpyNB−C 0.6217 0.75 0.6798
PClick+Joachims−C 0.8300 0.8700 0.8495
PClick+mJoachims−C 0.8200 0.8500 0.8347
PClick+SpyNB−C 0.8700 0.900 0.8847

PClick+mJoachims−C and PClick+SpyNB−C , to integrate

the predicted negative preferences from PJoachims−C ,

PmJoachims−C and PSpyNB−C with the positive pref-

erences from PClick. In Figures 3, 4 and 5, we ob-

serve that PClick+Joachims−C , PClick+mJoachims−C and

PClick+SpyNB−C produce significantly better precision

and recall ratings than that of PClick, PJoachims−C ,

PmJoachims−C and PSpyNB−C . From the F-measure values

in Table 11, we can observe that PClick+SpyNB−C performs

the best with an improvement of 25% over the baseline

PClick; PClick+Joachims−C and PClick+mJoachims−C tie at

the second position, with improvement of 18-20% over the

baseline. As discussed in Section 5.2, SpyNB-C produces

a more reliable set of negative concepts compared to the

others. With a more accurate set of negative preferences,

PClick+SpyNB−C achieves better precision and recall results

comparing to PClick+Joachims−C and PClick+mJoachims−C .

The performance results support our belief that the three

integrated user profiles benefit from the positive preferences of

PClick that help to group similar queries together and negative

preferences derived from Joachims/mJoachims/SpyNB method

that help to separate dissimilar queries into different clusters.

Thus, they achieve better precision and recall results compared

to PClick, PJoachims−C , PmJoachims−C and PSpyNB−C . Fi-

nally, the precisions of all methods drop sharply if community

merging is over-performed. Initial clustering is employed to

prepare the query clusters within the scope of each individual

user. Community merging is then employed to merge the

similar clusters resulted from initial clustering across different

users. If two big clusters from initial clustering are wrongly

merged because over-performing community merging, the

precision will drop sharply without improving recall. Thus, a

good terminating point is required for community merging to

improve the recall, while maintaining good precision. Section

5.4 provides the details on how to obtain such a terminating

point.

5.4 Termination Points for Individual Clustering to
Community Merging
As initial clustering is run, a tree of clusters will be built

along the clustering process. The termination point for initial

clustering can be determined by finding the point at which the

cluster quality has reached its highest (i.e., further clustering
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steps would decrease the quality). The same can be done for

determining the termination point for community merging. The

change in cluster quality can be measured by 	Similarity,

which is the change in the similarity value of the two most

similar clusters in two consecutive steps. For efficiency reason,

we adopt the single-link approach to measure cluster similarity.

As such, the similarity of two cluster is the same as the

similarity between the two most similar queries across the two

clusters. Formally, 	Similarity is defined as:

	Similarity(i) = simi(Pqm
, Pqn

) − simi+1(Pqo
, Pqp

)
(17)

where qm and qn are the two most similar queries in the

ith step of the clustering process, P (qm) and P (qn) are the

concept-based profiles for qm and qn, qo and qp are the two

most similar queries in the i + 1th step of the clustering

process, P (qo) and P (qp) are the concept-based profiles for

qm and qn, and sim() is the cosine similarity. Note that a

Fig. 6. Change in similarity values when performing
personalized clustering using PClick.

Fig. 7. Change in similarity values when performing
personalized clustering using PClick+Joachims−C .

positive 	Similarity means that step i+1 is producing worse

clusters than that of step i.

In our previous work [11], it is not easy to determine

where to cut the clustering tree in PClick, because the

similarity values decrease uniformly during the clustering

process. Figures 6, 7, 8 and 9 show the change in sim-

ilarity values when performing initial clustering and com-

munity merging of the personalized clustering algorithm us-

ing PClick, PClick+Joachims−C , PClick+mJoachims−C and

PClick+SpyNB−C ,

In Figure 6, we can observe that similarity decreases quite

uniformly in PClick. The uniform decrease in similarity values

from PClick makes it difficult for the clustering algorithm

to determine the termination points for initial clustering and

community merging (the triangles are the optimal termination

points for initial clustering to community merging).

We observe from the figures that PClick+Joachims−C ,

PClick+mJoachims−C and PClick+SpyNB−C each exhibits a

clear peak in the initial clustering process. It means that at

Fig. 8. Change in similarity values when performing
personalized clustering using PClick+mJoachims−C .

Fig. 9. Change in similarity values when performing
personalized clustering using PClick+SpyNB−C .
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TABLE 12
Comparison of Distances, Precision and Recall Values at Algorithmic and Manually Determined Optimal Points

Manually Determined Algorithmic
Terminating Step# Precision Recall Terminating Step# Precision Recall

PClick+Joachims−C 34 0.8200 0.7244 33 0.8200 0.6844
Initial Clustering (IC)
PClick+Joachims−C 3 0.8300 0.8700 2 0.8300 0.8300
Community Merging (CM)
PClick+mJoachims−C (IC) 34 0.8300 0.7244 33 0.8300 0.6944
PClick+mJoachims−C (CM) 3 0.8200 0.8500 2 0.8300 0.8300
PClick+SpyNB−C (IC) 36 0.8200 0.8200 36 0.8400 0.7144
PClick+SpyNB−C (CM) 3 0.8700 0.9000 2 0.8200 0.8700

TABLE 13
Example of PClick and PClick+Joachims−C for Two

Different Users

“info” “computer” “banana” “fruit”

PClick 1 1 0 0
apple(u1)
PClick 1 0 0 1
apple(u2)

PClick+Joachims−C 1 1 -1 -1
apple(u1)
PClick+Joachims−C 1 -1 0 1
apple(u2)

the peak the quality of the clusters is highest but further

clustering steps beyond the peak would combine dissimilar

clusters together. Compared to PClick, the peaks in these three

methods are much more clearly identifiable, making it easier

to determine the termination points for initial clustering and

community merging.

In Figures 7, 8 and 9, we can see that the similarity values

obtained using PClick+Joachims−C , PClick+mJoachims−C and

PClick+SpyNB−C decrease sharply at the optimal points (the

triangles in Figure 7, 8 and 9. The decrease in similarity values

is due to the negative weights in the user profiles, which

help to separate the similar and dissimilar queries into distant

clusters. Dissimilar queries would get lower similarity values

because of the different signed concept weights in the user

profiles, while similar queries would get high similarity values

as they do in PClick. Table 12 show the distances between

the manually determined optimal points and the algorithmic

optimal points, and the comparison of the precision and recall

values at the two different optimal points. We observe that the

algorithmic optimal points for initial clustering and community

merging usually are only one step away from the manually

determined optimal points. Further, the the precision and recall

values obtained at the algorithmic optimal points are only

slightly lower than those obtained at the manually determined

optimal points.

The example in Table 13 helps illustrate the effect of

negative concept weights in the user profiles. Table 13 shows

an example of two different profiles for the query “apple”

from two different users u1 and u2, where u1 is interested

in information about “apple computer” and u2 is interested

in information about “apple fruit”. With only positive pref-

TABLE 14
Average Similarity Values for Similar/Dissimilar Queries

Computed using PClick, PJoachims−C , PmJoachims−C ,
PSpyNB−C , PClick+Joachims−C , PClick+mJoachims−C and

PClick+SpyNB−C

Similar Queries Dissimilar Queries

PClick 0.3217 0.0746
PJoachims−C 0.1056 -0.0154
PmJoachims−C 0.1143 -0.0032
PSpyNB−C 0.1044 -0.0059
PClick+Joachims−C 0.2546 0.0094
PClick+mJoachims−C 0.2487 0.0087
PClick+SpyNB−C 0.2673 0.0091

erences (i.e., PClick), the similarity values for “apple(u1)”

and “apple(u2)” is 0.5, showing the rather high similarity of

the two queries. However, with both positive and negative

preferences (i.e., PClick+Joachims−C), the similarity value

becomes -0.2886, showing that the two queries are actually

different even when they share the common “noise” concept

“info”. With a larger separation between the similar and

dissimilar queries, the cutting point can be determined easily

by identifying the place where there is a sharp decrease in

similarity values.

To further study the effect of the negative concept weights

in the user profiles, we reverse the experiments by first

grouping similar queries together according to the prede-

fined clusters, and then compute the average similarity values

for pairs of queries within the same cluster (i.e., similar

queries) and pairs of queries not in the same cluster (i.e., dis-

similar queries) using PClick, PJoachims−C , PmJoachims−C ,

PSpyNB−C , PClick+Joachims−C , PClick+mJoachims−C and

PClick+SpyNB−C . The results are shown in Table 14. We

observe that PClick achieves a high average similarity

value (0.3217) for similar queries, showing that the pos-

itive preferences alone from PClick are good for iden-

tifying similar queries. PJoachims−C , PmJoachims−C and

PSpyNB−C achieve negative average similarity values (-

0.0154, -0.0032 and -0.0059) for dissimilar queries. They

are good in predicting negative preferences to distinguish

dissimilar queries. However, as stated in Section 5.3, the

wrong positive predictions significantly lower the correct

positive preferences in the user profiles, and thus lower-

ing the average similarities (0.1056, 0.1143 and 0.1044)
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for similar queries. PClick+Joachims−C , PClick+mJoachims−C

and PClick+SpyNB−C achieve high average similarity values

(0.2546, 0.2487 and 0.2673) for similar queries, but low

average similarities (0.0094, 0.0087 and 0.0091) for dis-

similar queries. They benefit from both the accurate posi-

tive preferences of PClick, and the correctly predicted neg-

ative preferences from PJoachims−C , PmJoachims−C and

PSpyNB−C . Thus, PClick+Joachims−C , PClick+mJoachims−C

and PClick+SpyNB−C perform the best in the personalized

clustering algorithm among all the proposed user profiling

strategies.

6 CONCLUSIONS

An accurate user profile can greatly improve a search engine’s

performance by identifying the information needs for individ-

ual users. In this paper, we proposed and evaluated several user

profiling strategies. The techniques make use of clickthrough

data to extract from web-snippets to build concept-based

user profiles automatically. We applied preference mining

rules to infer not only users’ positive preferences but their

negative preferences, and utilized both kinds of preferences

in deriving users profiles. The user profiling strategies were

evaluated and compared with the personalized query clustering

method that we proposed previously. Our experimental results

show that profiles capturing both of the user’s positive and

negative preferences perform the best among the user profiling

strategies studied. Apart from improving the quality of the

resulting clusters, the negative preferences in the proposed user

profiles also help to separate similar and dissimilar queries

into distant clusters, which helps to determine near-optimal

terminating points for our clustering algorithm.

We plan to take on the following two directions for future

work. First, relationships between users can be mined from the

concept-based user profiles to perform collaborative filtering.

This allows users with the same interests to share their profiles.

Second, the existing user profiles can be used to predict the

intent of unseen queries, such that when a user submits a new

query, personalization can benefit the unseen query. Finally,

the concept-based user profiles can be integrated into the

ranking algorithms of a search engine so that search results

can be ranked according to individual users’ interests.
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