QI

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010 1

A Unified Framework for Providing
Recommendations in Social Tagging Systems
Based on Ternary Semantic Analysis

Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos

Abstract—Social Tagging is the process by which many users add metadata in the form of keywords, to annotate and categorize
items (songs, pictures, web links, products, etc.). Social tagging systems (STSs) can provide three different types of
recommendations: They can recommend 1) tags to users, based on what tags other users have used for the same items, 2) items to
users, based on tags they have in common with other similar users, and 3) users with common social interest, based on common tags
on similar items. However, users may have different interests for an item, and items may have multiple facets. In contrast to the current
recommendation algorithms, our approach develops a unified framework to model the three types of entities that exist in a social
tagging system: users, items, and tags. These data are modeled by a 3-order tensor, on which multiway latent semantic analysis and
dimensionality reduction is performed using both the Higher Order Singular Value Decomposition (HOSVD) method and the Kernel-
SVD smoothing technique. We perform experimental comparison of the proposed method against state-of-the-art recommendation
algorithms with two real data sets (Last.fm and BibSonomy). Our results show significant improvements in terms of effectiveness

measured through recall/precision.

Index Terms—Social tags, recommender systems, tensors, HOSVD.

1 INTRODUCTION

OCIAL tagging is the process by which many users add

metadata in the form of keywords, to annotate and
categorize songs, pictures, products, etc. Social tagging is
associated to the “Web 2.0” technologies and has already
become an important source of information for recommen-
der systems. For example, music recommender systems
such as Last.fm and MyStrands allow users to tag artist,
songs, or albums. In e-commerce sites such as Amazon,
users tag products to easily discover common interests with
other users. Moreover, social media sites, such as Flickr and
YouTube use tags for annotating their content. All these
systems can further exploit these social tags to improve the
search mechanisms and personalized recommendations.
Social tags carry useful information not only about the items
they label, but also about the users who tagged. Thus, social
tags are a powerful mechanism that reveal three-dimen-
sional correlations between users, tags, and items.

Several social tagging systems (STSs), e.g., Last.fm,
Amazon, YouTube, etc., recommend items to users, based
on tags they have in common with other similar users.
Traditional recommender systems use techniques such as
Collaborative Filtering (CF) [5], [15], [16], [20], which apply

e P. Symeonidis and Y. Manolopoulos are with the Department of
Informatics, Aristotle University, Thessaloniki 54124, Greece.
E-mail: {symeon, manolopo}@csd.auth.gr.

e A. Nanopoulos is with the Information Systems and Machine Learning
Lab, Marienburger Platz 22, University of Hildesheim, 31141 Hildesheim,
Germany. E-mail: nanopoulos@ismll.de.

Manuscript received 29 Apr. 2008; revised 24 Nov. 2008; accepted 25 Mar.
2009; published online 31 Mar. 2009.

Recommended for acceptance by Q. Yang.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2008-04-0228.
Digital Object Identifier no. 10.1109/TKDE.2009.85.

1041-4347/10/$26.00 © 2010 IEEE

to two-dimensional data, i.e., users and items. Thus, such
systems do not capture the multimodal use of tags. To
alleviate this problem, Tso-Sutter et al. [36] propose a
generic method that allows tags to be incorporated to
standard CF algorithms, by reducing the three-dimensional
correlations to three 2D correlations and then applying a
fusion method to reassociate these correlations.

Another type of recommendation in STSs, e.g., Facebook,
Amazon, etc., is to recommend tags to users, based on what
tags other users have provided for the same items. Tag
recommendations can expose different facets of an informa-
tion item and relieve users from the obnoxious task to come
up with a good set of tags. Thus, tag recommendation can
reduce the problem of data sparsity in STSs, which results
by the unwillingness of users to provide an adequate
number of tags. Recently, several algorithms have been
proposed for tag recommendation [17], [39], which project
the three-dimensional correlations to three 2D correlations.
Then, the two-dimensional correlations are used to build
conceptual structures similar to hyperlink structures that
are used by Web search engines.

A third type of recommendation that can be provided by
STSs is to recommend interesting users to a target user,
opting in connecting people with common interests and
encouraging people to contribute and share more content.
With the term interesting users, we mean those users who
have similar profile with the target user. If a set of tags is
frequently used by many users, then these users sponta-
neously form a group of users with common interests, even
though they may not have any physical or online connec-
tions. The tags represent the commonly interested web
contents to this user group. For example, Amazon recom-
mends to a user who used a specific tag, other new users

Published by the IEEE Computer Society

considering them as interesting ones. Amazon ranks them
based on how frequent they used the specific tag.

1.1 Motivation

The three types of recommendations in STSs (i.e., item, tag,
and user recommendations) have been so far addressed
separately by various approaches, which differ significantly
to each other and have, in general, an ad hoc nature. Since
in STSs all three types of recommendations are important,
what is missing is a unified framework that can provide all
recommendation types with a single method.

Moreover, existing algorithms do not consider the three
dimensions of the problem. In contrast, they split the three-
dimensional space into pair relations {user, item}, {user,
tag}, and {tag, item]}, that are two-dimensional, in order to
apply already existing techniques like CF, link mining, etc.
Therefore, they miss a part of the total interaction between
the three dimensions. What is required is a method that is
able to capture the three dimensions all together without
reducing them into lower dimensions.

Finally, the existing approaches fail to reveal the latent
associations between tags, users, and items. Latent associa-
tions exist due to three reasons: 1) users have different
interests for an item, 2) items have multiple facets, and
3) tags have different meanings for different users. As an
example, assume two users in an STSs for web bookmarks
(e.g., Del.icio.us, Bibsonomy). The first user is a car fan and
tags a site about cars, whereas the other tags a site about wild
cats. Both use the tag “jaguar.” When they provide the tag
“jaguar” to retrieve relevant sites, they will receive both sites
(cars and wild cats). Therefore, what is required is a method
that can discover the semantics that are carried by such
latent associations, which in the previous example can help
to understand the different meanings of the tag “jaguar.”

1.2 Contribution

In this paper, we develop a unified framework that models
the three dimensions, i.e., items, tags, and users. The three-
dimensional data are represented by three-dimensional
matricies, which are called 3-order tensors. We avoid
splitting the three-dimensional correlations and we handle
all dimensions equally. To reveal latent semantics, we
perform 3-mode analysis, using the Higher Order Singular
Value Decomposition (HOSVD) [24]. Our method reveals
latent relations among objects of the same type, as well
among objects of different types.

Moreover, the proposed method addresses the problem
that three-dimensional data are highly sparse. Sparsity
stems from the fact that users tend to tag only a very small
portion of items. Recommender systems are susceptible to
data sparsity, which affects their performance. SVD has
been proved useful to address the data sparseness problem
for traditional CF algorithms (i.e., for two-dimensional
rating data) [34]. However, sparsity is more severe in three-
dimensional data, and handling sparsity in this case is still
an open problem. In our approach, to address the
sparseness problem, we combine kernel-SVD [8], [10] with
HOSVD. This Kernel-SVD smoothing substantially im-
proves the accuracy of item and tag recommendations.

The contributions of our approach are summarized as
follows:

e For the first time to our knowledge, we provide a
unified framework for providing all three types of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010

recommendations in STSs: item, tag, and user
recommendations.

e We use a 3-order tensor to model the three types of
entities (user, item, and tag) that exist in social sites.

e We apply dimensionality reduction (HOSVD) in 3-
order tensors, to reveal the latent semantic associa-
tions between users, items, and tags. We also apply a
smoothing technique based on Kernel-SVD to
address the sparseness of data.

e We perform extensive experimental comparison of
the proposed method against state-of-the-art recom-
mendation algorithms, using Last.fm and BibSon-
omy data sets.

e Our method substantially improves accuracy of item
and tag recommendations. Moreover, we study a
problem of how to provide user recommendations,
which can have significant applications in real
systems but which have not been studied in depth
so far in related research.

The rest of this paper is organized as follows: Section 2
summarizes the related work, whereas Section 3 briefly
reviews background techniques employed in our approach.
A motivating example and the proposed approach are
described in Section 4. Experimental results are given in
Section 5. Finally, Section 6 concludes this paper.

2 RELATED WORK

In this section, we briefly present some of the research
literature related to Social Tagging. We also present related
work in tag, item, and users recommendation algorithms.
Finally, we present works that applied HOSVD in various
research domains.

Social Tagging is the process by which many users add
metadata in the form of keywords to share content. So far,
the literature has studied the strengths and the weaknesses
of STSs. In particular, Golder and Huberman [13] analyzed
the structure of collaborative tagging systems as well as
their dynamical aspects. Moreover, Halpin et al. [14]
produced a generative model of collaborative tagging in
order to understand the dynamics behind it. They claimed
that there are three main entities in any tagging system:
users, items, and tags.

In the area of item recommendations, many recommen-
der systems already use CF to recommend items based on
preferences of similar users, by exploiting a two-way
relation of users and items [5]. In 2001, Item-based algorithm
was proposed, which is based on the items’ similarities for a
neighborhood generation [29]. However, because of the
ternary relational nature of Social Tagging, two-way CF
cannot be applied directly, unless the ternary relation is
reduced to a lower dimensional space. Jaschke et al. [19], in
order to apply CF in Social Tagging, considered for the
ternary relation of users, items, and tags two alternative two-
dimensional projections. These projections preserve the user
information, and lead to log-based like recommender
systems based on occurrence or nonoccurrence of items, or
tags, respectively, with the users. Another recently proposed
state-of-the-art item recommendation algorithm is tag-aware
Fusion [36]. They propose a generic method that allows tags

SYMEONIDIS ET AL.: A UNIFIED FRAMEWORK FOR PROVIDING RECOMMENDATIONS IN SOCIAL TAGGING SYSTEMS BASED ON... 3

to be incorporated to standard CF algorithms, by reducing
the three-dimensional correlations to three 2D correlations
and then applying a fusion method to reassociate these
correlations.

In the area of tag recommendation, there are algorithms
which are based on conceptual structures similar to the
hyperlink structures used in Search Engines. For example,
Collaborative Tag Suggestions algorithm [39], also known
as Penalty-Reward algorithm (PR), uses an authority score
for each user. The authority score measures how well each
user has tagged in the past. This authority score can be
computed via an iterative algorithm similar to HITS [22].
Moreover, the PR algorithm “rewards” the high correlation
among tags, whereas it “penalizes” the overlap of concepts
among the recommended tags to allow high coverage of
multiple facets for an item. Another state-of-the-art tag
recommendation algorithm is FolkRank [17]. FolkRank
exploits the conceptual structures created by people inside
the STSs. Their method is inspired by the seminal PageRank
[28] algorithm, which reflects the idea that a web page is
important, if there are many pages linking to it, and if those
pages are important themselves. FolkRank employs the
same underlying principle for Web Search and Ranking in
Social Tagging. The key idea of FolkRank algorithm is that
an item which is tagged with important tags by important
users becomes important itself. The same holds for tags and
users; thus, we have a tripartite graph of vertices which
mutually reinforcing each other by spreading their weights.
FolkRank is like the Personalized PageRank, which is a
modification of global PageRank, and was first proposed for
personalized Web search in [28]. Finally, Xu et al. [38]
proposed a method that recommends tags by using
HOSVD. However, their method does not cover all three
types of recommendations in STSs and misses the compar-
ison with state-of-the-art algorithms. In contrast, our
approach proposes a unified framework for all recommen-
dation types in STSs. We also combine HOSVD with Kernel-
SVD to handle data sparsity, attaining significant improve-
ments in the accuracy of recommendations in comparison
with simple HOSVD, as will be shown experimentally.

In the area of discovering shared interests in social
networks there are two kinds of existing approaches [25].
One is user-centric, which focuses on detecting social
interests based on the online connections among users; the
other is object-centric, which detects common interests
based on the common objects fetched by users in a social
community. In the user-centric approach, recently Ali-
Hasan and Adamic [2] analyzed user’s online connections
to discover users with particular interests for a given user.
Different from this kind of approach, we aim to find the
people who share the same interest no matter whether they
are connected by a social graph or not. In the object-centric
approach, Sripanidkulchai et al. [31] explored the common
interests among users based on the common items they
fetched in peer-to-peer networks. However, they cannot
differentiate the various social interests on the same items,
due to the fact that users may have different interests for an
information item and an item may have multiple facets. In
contrast, our approach focuses on directly detecting social

interests and recommending users by taking advantage of
social tagging, by utilizing users’ tags.

Differently from existing approaches, our method devel-
ops a unified framework to concurrently model all three
dimensions. Usage data are modeled by a 3-order tensor, on
which latent semantic analysis is performed using the
HOSVD [24]. Moreover, to address the sparseness problem,
we propose the combination of Kernel-SVD [8], [10] with
HOSVD, which substantially improves the accuracy of item
and tag recommendations.

HOSVD is a generalization of singular value decomposi-
tion (SVD) and has been successfully applied in several
areas. In particular, Wang and Ahuja [37] present a novel
multilinear algebra-based approach to reduced dimension-
ality representation of multidimensional data, such as
image ensembles, video sequences, and volume data. In
the area of Data Clustering, Chen et al. [7] used also a high-
order tensor. However, they transform the initial tensor
(through Clique Expansion algorithm) into lower dimen-
sional spaces, so that clustering algorithms (such as
k-means) can be applied. Finally, in the area of Personalized
Web Search, Sun et al. proposed CubeSVD [32] to improve
Web Search. They claimed that as the competition of Web
Search increases, there is a high demand for personalized
Web search. Therefore based on their CubeSVD analysis,
Web Search activities can be carried out more efficiently.

3 PRELIMINARIES—TENSORS AND HOSVD

In this section, we summarize the HOSVD procedure. In the
following, we denote tensors by calligraphic uppercase
letters (e.g., A, B), matrices by uppercase letters (e.g., A, B),
scalars by lowercase letters (e.g., a,b), and vectors by bold
lowercase letters (e.g., a, b).

SVD and Latent Semantic Indexing. The SVD [3] of a
matrix F7,«7, can be written as a product of three matrices,
as shown in (1):

_ T
FI1><]2 - U11><I1 : SIIXIQ : ‘/}2><IQ7 (1)

where U is the matrix with the left singular vectors of F, V7
is the transpose of the matrix V with the right singular
vectors of F, and S is the diagonal matrix of (ordered)
singular values of F.

By preserving only the largest ¢ < min{l;, >} singular
values of S, SVD results to matrix F, which is an
approximation of F. In Information Retrieval, this techni-
que is used by Latent Semantic Indexing (LSI) [12], to deal
with the latent semantic associations of terms in texts and to
reveal the major trends in F.

Tensors. A tensor is a multidimensional matrix. An
N-order tensor A is denoted as A € R''Iv, with elements
a;,,..iy- In this paper, for the purposes of our approach, we
only use 3-order tensors.

HOSVD. The high-order singular value decomposition
[24] generalizes the SVD computation to multidimensional
matrices. To apply HOSVD on a 3-order tensor 4, three
matrix unfolding operations are defined as follows [24]:

Al c R11X12]:;7 A2 c RIZXIL]J’ A3 c RfleXI:;’

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010

0_+0

—T2] 4
L2 1 2 1 2 0 0
5 BENE 4 1 2 -1 -2 2 4
oo . 2 4 0 0 2 4

Fig. 1. An example tensor A and its 1-mode matrix unfolding A;.

where A, A,, and Az are called the 1-mode, 2-mode, and 3-
mode matrix unfoldings of A, respectively. Each
A,, 1 <n <3, is called the n-mode matrix unfolding of A
and is computed by arranging the corresponding fibers of A
as columns of A,,. The left part of Fig. 1 depicts an example
tensor, whereas the right part its 1-mode matrix unfolding
A, € Ri*EE | where the columns (1-mode fibers) of A are
being arranged as columns of A;.

Next, we define the n-mode product of an N-order
tensor A€ RiIv by a matrix U € R/, which is
denoted as A X, U. The result of the n-mode product is
an (I1 x Iy x -+ x I,y X J, X 11 x -+ x Iy)-tensor, the
entries of which are defined as follows:

(A)iy i i in = D Qi i in Wi (2)
in
Since we focus on 3-order tensors, n € {1,2,3}, we use
1-mode, 2-mode, and 3-mode products.
In terms of n-mode products, SVD on a regular two-

dimensional matrix (i.e., 2-order tensor), can be rewritten as
follows [24]:

F=58xUYx,U?, (3)

where U = (ugl)ugl) . ..u%l)) is a wunitary (I, x I;)-matrix,
U® — (u§2>u(22> ... u?) is a unitary (I x I;)-matrix, and S is
a (I x Iy)-matrix with the properties of:

1. pseudodiagonality: S = diag(oy,09,..
and
2. ordering: oy > 02 > -+ 2 Oyini1,.1} = 0.
By extending this form of SVD, HOSVD of 3-order tensor
A can be written as follows [24]:

-5 Omin{I, A,I-Z})

A=8x,UY x U? x5 U0, (4)

where UW, U®), and U® contain the orthonormal vectors
(called the 1-mode, 2-mode, and 3-mode singular vectors,
respectively) spanning the column space of the A;, A;, and
A3 matrix unfoldings. S is the core tensor and has the
property of all orthogonality.

4 THE PROPOSED APPROACH

We first provide the outline of our approach, which we
name Tensor Reduction, through a motivating example.
Next, we analyze the steps of the proposed algorithm.
Finally, we apply a smoothing scheme in our approach.

4.1 Outline

In this section, we elaborate on how HOSVD is applied
on tensors and on how the recommendation of items is

O50-@
/ BMW http://www.cars.com
@@

JAGUAR http://www.automobiles.com

® 6 @

http://www.animals.com
Fig. 2. Usage data of the running example.

performed according to the detected latent associations.
Note that a similar approach is followed for the tag and
user recommendations.

When using a social tagging system, to be able to retrieve
information items easily, a user u tags an item ¢ with a tag t.
After some time of usage, the tagging system accumulates a
collection of usage data, which can be represented by a set
of triplets {u,i,t}.

Our Tensor Reduction approach applies HOSVD on the
3-order tensor constructed from these usage data. In
accordance with the HOSVD technique introduced in
Section 3, the Tensor Reduction algorithm uses as input
the usage data of A and outputs the reconstructed tensor A.
A measures the associations among the users, items, and
tags. Each element of A can be represented by a quadruplet
{u,1,t,p}, where p measures the likeliness that user u will
tag item 4 with tag t. Therefore, items can be recommended
to u according to their weights associated with {u,t} pair.

In this section, in order to illustrate how our approach
works, we apply the Tensor Reduction algorithm to a
running example. As illustrated in Fig. 2, three users tagged
three different items (weblinks). In Fig. 2, the part of an
arrow line (sequence of arrows with the same annotation)
between a user and an item represents that the user tagged
the corresponding item, and the part between an item and a
tag indicates that the user tagged this item with the
corresponding tag. Thus, the annotated numbers on the
arrow lines gives the correspondence between the three
types of objects. For example, user U; tagged item I; with
tag “BMW,” denoted as 7). The remaining tags are
“Jaguar,” denoted as T, and “CAT,” denoted as T5.

From Fig. 2, we can see that users U; and U, have
common interests on cars, while user Us is interested in cats.
A 3-order tensor A € R¥*3*3, can be constructed from the
usage data. We use the co-occurrence frequency (denoted as
weight) of each triplet user, item, and tag as the elements of
tensor 4, which are given in Table 1. Note that all
associated weights are initialized to 1.

TABLE 1
The Elements of the Example Tensor
Arrow Line | User | Item | Tag | Weight
1 Uy Iy A 1
2 Us I Ty 1
3 Us I Ty 1
4 Us I3 Ty 1

SYMEONIDIS ET AL.: A UNIFIED FRAMEWORK FOR PROVIDING RECOMMENDATIONS IN SOCIAL TAGGING SYSTEMS BASED ON... 5

TABLE 2
The Elements of the Reconstructed Tensor
Arrow Line | User | Item | Tag | Weight

1 Uy I T 0.72
2 Uz I T 1.17
3 Us I T> 0.72
4 Us I3 Ts 1

5 U, I T2 0.44

After performing the Tensor Reduction analysis (details
of how to do this are given in the following section), we can
get the reconstructed tensor of A, which is presented in
Table 2, whereas Fig. 3 depicts the contents of A
graphically (the weights are omitted). As shown in Table 2
and Fig. 3, the output of the Tensor Reduction algorithm for
the running example is interesting, because a new associa-
tion among these objects is revealed. The new association is
between Uy, I, and T5. This association is represented with
the last (bold faced) row in Table 2 and with the dashed
arrow line in Fig. 3).

If we have to recommend to U; an item for tag 75, then
there is no direct indication for this task in the original
tensor A. However, we see that in Table 2 the element of A
associated with {Uy, Ty, Ir} is 0.44, whereas for U; there is no
other element associating other tags with I,. Thus, we
recommend item I, to user U;, who used tag 75.

The resulting recommendation is reasonable, because U;
is interested in cars rather than cats. That is, the Tensor
Reduction approach is able to capture the latent associa-
tions among the multitype data objects: user, item, and tags.
The associations can then be used to improve the item
recommendation procedure, as will be verified by our
experimental results.

Moreover, for purposes of tag recommendations, we can
view our tensor from a different perspective. In particular,
our tensor equivalently represents a quadruplet {u,i,t,p}
where p is the likeliness that user v will tag item ¢ with tag .
Therefore, tags can be recommended to u according to their
weights associated with {u, ¢} pair. In our running example,
if user U, is about to tag I, he will be recommended tag 7.

Finally, for recommending users, our tensor can be
viewed as a quadruplet {t,i,u,p}, where p is the likeliness
that tag ¢ will be used to label item ¢ by the user u. Therefore,
new users can be recommended for a tag ¢, according to their
total weight, which results by aggregating all items, which
are labeled with the same tag by the target user. In our

1 1,2
U1 —_—

/ BMW http://www.cars.com
@@

JAGUAR http://www.automobiles.com

4
@ 4
CAT http://www.animals.com

Fig. 3. lllustration of the Tensor Reduction Algorithm output for the
running example.

0 1 - : 0 1
1 0 -
0 O 0 --------------
ot
O 0 0 -------------------

Fig. 4. The tensor construction of our running example.

running example, if user U, tagged item I, with tag 715, he
would receive user U; as user recommendation.

4.2 The Tensor Reduction Algorithm

The Tensor Reduction algorithm initially constructs a
tensor, based on usage data triplets {u,t,4} of users, tags,
and items. The motivation is to use all three entities that
interact inside a social tagging system. Consequently, we
proceed to the unfolding of .4, where we build three new
matrices. Then, we apply SVD in each new matrix. Finally,
we build the core tensor S and the resulting tensor A. All
these can be summarized in six steps, as follows.

4.2.1 The Initial Construction of Tensor A

From the usage data triplets (user, tag, and item), we
construct an initial 3-order tensor A € R™*! where u, t,
and ¢ are the numbers of users, tags, and items, respectively.
Each tensor element measures the preference of a (user u,
tag t) pair on an item i. Fig. 4 presents the tensor
construction of our running example.

4.2.2 Matrix Unfolding of Tensor A

As described in Section 3, a tensor A can be matricized, i.e., to
build matrix representations in which all the column (row)
vectors are stacked one after the other. In our approach, the
initial tensor A is matricized in all three modes. Thus, after
the unfolding of tensor A for all three modes, we create three
new matrices A;, A, and Aj;. In Fig. 5, we present the matrix
unfoldings of our running example.

4.2.3 Application of SVD on Each Mode
We apply SVD on the three matrix unfoldings A, As, and As:

T

A, = U™ . g0 . (V(")) , 1<n<3. (5)

For the running example, Figs. 6, 7, and 8 present these
matrixes with the left singular vectors and the matrixes with
the singular values for the decomposition in each mode (to

A, € RluxIiTi A, € Rl Iuli Ay € RIulixi
b d b d

100000000 110000000 110000000
A ={100010000| ,A, =|000010000|,A;=1(000010000
000000001 000000001 000000001

Fig. 5. The tensor 1-mode, 2-mode, and 3-mode matrix unfoldings of our
running example.

6
-053 | 0 | -0.85 1.62 | O 0
-085 | O 0.53 0 1 0
0 1 0 0 0 | 0.62

(@) (b)

Fig. 6. Example of (a) UV and (b) SU.
0
0
i

T]0 4T 00
0|1 0 | 1]0
00 0 |01
(@) (b)
Fig. 7. Example of (a) U® and (b) S.
T]0]0 T41 [0] 0
0[1]0 0 | 1]0
001 0 |01

(a) (b)

Fig. 8. Example of (a) U® and (b) S®.

ease presentation, we omit the corresponding matrixes with
the right singular vectors).

4.2.4 Computing the Low-Rank Approximations

In matrix dimensionality reduction, low-rank approxima-
tion is used to filter out the small singular values that
introduce “noise.” Thus, SVD is truncated to the first
¢ higher singular values and the corresponding singular
vectors. This operation is called thin-SVD and is used in LSI
[12]. The resulting matrix is denoted as rank-c approxima-
tion and SVD is optimal in the sense that it computes the
rank-c approximation with the minimum Frobenious norm.
In the case of tensor dimensionality reduction, we have
to compute a rank-cy, ¢, c3 approximation tensor, where
¢; is the number of dimensions maintained for i-mode. To
compute the rank-ci,c,c3 approximation, we retain
¢; singular values and the corresponding left singular
vectors from U, when applying SVD on the unfolded
matrix A; of i¢-mode. The selection of ¢, ¢, and c3
determines the final dimensionality of the core tensor S.
Since each of the three diagonal singular matrices S @)
and S© are calculated by applying SVD on matrices A;, As,
and Aj, respectively, we use a different ¢; value for each
matrix U® (1 < i < 3). This results to (U(Ef)) matrixes, which
denote the ¢;-dimensionally reduced U matrix (1 < i < 3).
Determining the ¢;, ¢;, and ¢3 parameters in Tucker
models (like HOSVD) is a tedious task [1]. A practical option
is to use ranks indicated by SVD on unfolded data in each
mode. This way, c¢i, ¢, and c3 are chosen by preserving a
percentage of information of the original S, S?), and S©)
matrices after appropriate tuning. Our experimental results
indicate that a 70 percent of the original diagonal of S, 5,
and S® matrices can give good approximations of A;, A,
and Aj; matrices. Notice that a percentage of the original
diagonal can be obtain by summing the singular values of
S matrix and then by keeping those singular values of S
matrix that give us the wanted percentage. In our running
example, the diagonal of (') matrix (see Fig. 6) sums to 3.24
(1.62 4 1 + 0.62). Thus, by setting ¢; parameter equal to 2, we
keep 80 percent (2.62/3.24) of the original diagonal of matrix
SW . Due to its simplicity and its efficiency, this approach has

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010

T]0]O0 T[0]0
[053 [085 [0 | 010 0[T1]o0
[0 [0 [1] 001 001
(T (2T (T

Wey") (Ue;)) Wey')

Fig. 9. The transposes of the dimensionally reduced U} matrices.

Fig. 10. The resulting core tensor S for the running example.

been followed in several related works that use tensor
decompositions [23], [33]. For this reason we follow this
approach too. In our running example, ¢, is equal to 2, ¢; is
equal to 3, and c3 is equal to 3. Fig. 9 presents the transposes
of the dimensionally reduced U matrixes.

Nevertheless, it is worth of describing more systematic
methods for determining these parameters. Cichocki et al.
[9] proposed flexible cost functions to derive an optimal
choice of a free parameter (parameter a) for the automatic
rank approximation of a tensor. This method is proposed for
dense tensors and signal processing applications (like image
analysis), where the optimal choice of a depends [9] on the
statistical distribution of data and the additive noise. For
example, the optimal choice of the a parameter is different
for the normal distribution (a = 1) and the Poisson distribu-
tion (a — 0). However, this method cannot be directly used
in STSs, because STSs’s data are boolean and sparse and do
not follow widely used statistical distributions. DIFFIT [35]
is another approach, which enumerates all possible models
and uses the differences between model fits to determine the
¢1, ¢2, and c3 parameters. However, DIFFIT requires high
computational complexity, a fact that makes it infeasible for
most practical applications. Improvements of DIFFIT have
been proposed [21], [6], which compare approximate model
fit values rather than exact model fits.

Despite the existence of approximate methods, there is
no straightforward way to find the optimal values for ¢y, ¢,
and c3 [6] and, thus, several diagnostics should be used to
have a true understanding of the structure of a multiway
data set. For all the aforementioned reasons, we consider
such an examination to comprise an open research problem
of its own that is outside the scope of this manuscript.

4.2.5 The Core Tensor S Construction
The core tensor S governs the interactions among user, item

and tag entities. From the initial tensor .4 we proceed to the
construction of the core tensor S, as follows:
S=Ax; (U(§3>)T s (Uéf))T s (U(‘S))T. (6)

c3

Fig. 10 presents the core tensor S for the running example.

4.2.6 The Tensor A Construction

Finally, tensor A is built by the product of the core tensor S
and the mode products of the three matrices UV, U(?, and
U as follows:

SYMEONIDIS ET AL.: A UNIFIED FRAMEWORK FOR PROVIDING RECOMMENDATIONS IN SOCIAL TAGGING SYSTEMS BASED ON... 7

................... — .
............... =
e i
0 0.72 0 (])
: e
..............
:
...................

Fig. 11. The resulting A tensor for the running example.

For the current example, the resulting A tensor is
presented in Fig. 11.

4.2.7 The Generation of the Recommendations

The reconstructed tensor A measures the associations
among the users, tags, and items, so that each element of
A represents a quadruplet {u, ¢, 4, p}, where p is the likeliness
that user u will tag item ¢ with tag t¢.

On this basis, items can be recommended to u according
to their weights associated with {u, t} pair. However, we see
that in Fig. 11, the element of A associated with {U;, I3, T} is
0.44, whereas for U, there is no other element associating
other tags with I,. Thus, in our running example, we
recommend to user U; item I, for tag 7,. Analogous
approach can be applied for the recommendation of tags or
users, as already described in Section 4.1.

4.2.8 Execution Requirements for Tensor Reduction

To provide recommendations, our approach contains an
offline part, which computes the HOSVD, and an online
part, for retrieving weights from the reconstructed tensor
and forming the recommendations. The latter part, which
affects the actual experience of users in real applications,
can be done in real time.

Regarding the offline part, in real applications (with
large number of users, items, and tags), a key characteristic
is sparsity, meaning that most of entries in the tensor are
zeros. Therefore, the computation of HOSVD problem boils
down to: 1) calculating the leading singular vectors of large,
sparse mode unfolding matrixes, and 2) the computation of
product of a sparse tensor times a series of dense matrices
(for the reconstructed tensor).

The bottleneck of memory overflow during this procedure
has been addressed by Kolda and Sun [23], who proposed an
implementation framework, called MET, which maximizes
the computation speed while optimally utilizing the avail-
able memory. This way, very large tensors can be stored
using only moderate hardware. Based on the results reported
by Kolda and Sun [23], we validated that for very large, 100K-
by-100K-by-100K random tensors with 1M nonzero ele-
ments, the computation of HOSVD requires less than 200 sec
and 4 MB of RAM. For the real data sets we examined, since
their size is moderate, execution times were less than half
minute. For real-world applications, the use of parallel
architectures can further reduce execution times [23].

4.3 Smoothing with Kernel SVD

In Section 4.2.3, we described the application of SVD on the
three matrix unfoldings A;, As, and A3, which results to the

three matrixes UM, U®, and U® that contain the
orthonormal vectors (left singular vectors) for each mode.
As already mentioned, sparsity is a severe problem in three-
dimensional data and it can affect the outcome of SVD. To
address this problem, instead of SVD we can apply kernel-
SVD [8], [10] in the three unfolded matrices. Kernel-SVD is
the application of SVD in the Kernel-defined feature space.

For each unfolding A; (1 <14 < 3) we have to nonlinearly
map its contents to a higher dimensional space using a
mapping function ¢. Therefore, from each A; matrix we can
derive an F; matrix, where each element a,,, of A; is mapped
to the corresponding element f,, of Fj, ie., fi, = ¢(azy).
Next, we can apply SVD and decompose each F; as follows:

F=y®Hgt (V(i))T. (8)

The resulting U") matrixes are then used to construct the
core tensor, that is, the procedure continues as described in
Section 4.2.4.

Nevertheless, to avoid the explicit computation of F;, all
computations must be done in the form of inner products.
In particular, as we are interested to compute only the
matrixes with the left singular vectors, for each mode ¢ we
can define a matrix B; as follows:

B, = FF!. (9)

As B; is computed using inner products from F;, we can
substitute the computation of inner products with the results
of a kernel function. This technique is called the “kernel
trick” [10] and avoids the explicit (and expensive) computa-
tion of F}. As each U and V") are orthogonal and each S is
diagonal, it easily follows from (8) and (9) that [26]

B, = (UWs® (VU))T) (U5 (V<7¢))T)T —y® (5(11))?([]01))?
(10)

Therefore, each required U') matrix can be computed by
diagonalizing each B; matrix (which is square) and taking
its eigen-vectors.

Regarding the kernel function, in our, experiments we
use the Gaussian kernel K(z,y) = e , which is com-
monly used in many applications of kernel SVD. As
Gaussian Kernel parameter ¢, we use the estimate for

standard deviation in each matrix unfolding.

4.4 Inserting New Users, Tags, or Items

As new users, tags, or items are being introduced to the
system, the A tensor, which provides the recommendations,
has to be updated. The most demanding operation for this
task is the updating of the SVD of the corresponding mode
in (5)-(7). We can avoid the costly batch recomputation of
the corresponding SVD, by considering incremental solu-
tions [30], [4]. Depending on the size of the update (ie.,
number of new users, tags, or items), different techniques
have been followed in related research. For small update
sizes we can consider the folding-in technique [12], [30],
whereas for larger update sizes we can consider Incre-
mental SVD techniques [4]. Both techniques are described in
the following. (Notice that recently Sun et al. [33] described
an incremental procedure, which however applies when

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010

100000000
A, =/100010000
000000001

(@) (b)

Fig. 12. Example of folding in a new user. (a) The insertion of a new user
in the tensor. (b) The new 1-mode unfolded matrix A;.

new tensors arrive as time passes, not for new users, items,
or tags within a single tensor.)

4.4.1 Update by Folding-in

Given a new user, we first compute the new 1-mode matrix
unfolding A;. It is easy to see that the entries of the new
user result to the appending of a new row in A;. This is
exemplified in Fig. 12. Fig. 12a shows the insertion of a new
user in the tensor of the current example (the new values
are presented with red color). Notice that to ease the
presentation, the new user’s tags and items are identical
with those of user Us.

Let u denote the new row that is appended to A,. Fig. 12b
presents the new A, i.e., the 1-mode unfolded matrix, where
it is shown that the contents of u (highlighted with red color)
have been appended as a new row in the end of A;.

Since A; changed, we have to compute its SVD, as given
by (5). To aV01d batch SVD recomputation, we can use the
existing basis U of left singular vectors, to project the u
row onto the reduced cl-dimensional space of users in the
A, matrix. This projection is called folding-in and is
computed by using the following equation [12]:

Upew — U ‘/(;(11)) (S((i))_l (11)

In (11), upew denotes the mapped row, which will be
appended to Uﬁ), whereas Vc(ll) and (SS))_1 are the
dimensionally reduced matrixes derived when SVD was
originally applied to A, i.e., before the insertion of the new
user. In the current example, the computation of upew is
described in Fig. 13.

The unew vector should be appended in the end of the
U() matrix. For the current example appending should be
done to the previously U matrix, whose transpose is
shown in Fig. 10. Notice that in this example, Upew is
identical with the second column of the transpose of U(Ell).
The reason is that the new user has identical tags and items

.................. E—
............... e D
........ ; 0 g
0.72 |
071 0|0
0 0 -
e
A

Fig. 14. The resulting A tensor of the running example after the insertion
of the new user.

with user U; and we mapped them on the same space
(recall that the folding-in technique maintains the same
space computed originally by SVD).

Finally, to update the A tensor, we have to perform the
products given in (9). Notice that only U has been
modified in this equation. Thus, to optimize the insertion of
new users, as mode products are interchangeable we can
perform this product as [S X3 Ulﬂf) X3 Ucf’)] 1 UL 1>, where
the left factor (inside the brackets), which is unchanged, can
be prestored so as to avoid its recomputation. For the
current example, the resulting A tensor is shown in Fig. 14.

Analogous insertion procedure can be followed for the
insertion of a new item or tag. For a new item insertion, we
have to apply (11) on the 2-mode matrix unfolding (As) of
tensor A, while for a new tag we apply (11) on the 3-mode
matrix unfolding (Asz) of tensor A.

4.4.2 Update by Incremental SVD
Folding-in incrementally updates SVD, but the resulting
model is not a perfect SVD model, because the space is not
orthogonal [30]. When the update size is not big, loss of
orthogonality may not be a severe problem in practice.
Nevertheless, for larger update sizes, the loss of orthogon-
ality may result into an inaccurate SVD model. In this case,
we need to incrementally update SVD so as to ensure
orthogonality. This can be attained in several ways. Next, we
describe how to use the approach proposed by Brand [4].

Let M,., be a matrix, upon which we apply SVD and
maintain the first r singular values, i.e.,

Mqu - Up)(y S’I"

xrV, ,><q

Assume that each column of matrix C,x. contains the
additional elements. Let L = U\C = U”C be the projection
of C onto the orthogonal basis of U. Let also H =
(I —UUT)C =C — UL be the component of C orthogonal
to the subspace spanned by U (I is the identity matrix).

085 10

0 |0

0 | 0|

0 |0

053 [0

0 |0

0 |0

0 |0 062 [0|
[085 [0] = [T[0JO0JOJ1]0J0]0]0] 0 [1 L0 [1]

Unew u x vy x (s

Fig. 13. The result of folding-in for the current example.

SYMEONIDIS ET AL.: A UNIFIED FRAMEWORK FOR PROVIDING RECOMMENDATIONS IN SOCIAL TAGGING SYSTEMS BASED ON... 9

Finally, let J be an orthogonal basis of H and let K =
J\H = J"H be the projection of C onto the subspace
orthogonal to U. Consider the following identity:

vafy Gl o

S UTCHV o]T
0 K |Jlo I

= [U(I -UUT)C/K) {
=[UsvT C) =M C].

Like an SVD, the left and right matrixes in the product are
unitary and orthogonal. The middle matrix, denoted as @, is
diagonal. To incrementally update the SVD, @ must be
diagonalized. If we apply SVD on @ we get

Q=Usw"".
Additionally, define U”, S”, and V" as follows:

U=, 8" =9, V”:[‘g ﬂv

Then, the updated SVD of matrix [M C] is
M) =[UsvT ¢l =U"s"(Vv")!.

This incremental update procedure takes O((p + ¢)r* + pc?)
time [4].

Returning to the application of incremental update for
new users, items, or tags, as described in Section 4.4.1, in
each case, we result with a number of new rows that are
appended in the end of the unfolded matrix of the
corresponding mode. Therefore, we need an incremental
SVD procedure in the case where we add new rows,
whereas the aforementioned method works in the case
where we add new columns. In this case, we simply swap U
for V and U” for V".

5 EXPERIMENTAL EVALUATION

In this section, in the area of item recommendations, we
compare experimentally our approach with state-of-the-art
item recommendation algorithms. Henceforth, our pro-
posed approach is denoted as Tensor Reduction. We use in
the comparison the tag-aware Fusion algorithm [36] and the
Item-based CF algorithm [29], denoted as Fusion and Item
based, respectively. We also include in the comparison a CF
algorithm based on Latent Semantic Indexing [34], denoted
as Matrix SVD. Moreover, in the area of tag recommenda-
tions, we compare our approach with state-of-the-art tag
recommendation algorithms. We use in the comparison the
Folkrank [17] and the Collaborative Tag Suggestions [39]
(known as Penalty-Reward algorithm) algorithms, denoted
as FolkRank and PR, respectively. Finally, in the area of user
recommendations, we compare our approach with a base-
line algorithm similar to Amazon.com’s user recommenda-
tion method, denoted as BaseLine algorithm (BL).

Our experiments were performed on a 3 GHz
Pentium IV, with 1 GB of memory, running Windows XP.
The tensor construction and processing is implemented in
Matlab. All algorithms were implemented in C++ and their
parameters were tuned according to the original papers.

To evaluate the examined algorithms, we have chosen
real data sets from two different STSs: BibSonomy and
Last.fm, which have been used as benchmarks in past
works [17].

BibSonomy. We used a snapshot of all users, items (both
publication references and bookmarks) and tags publicly
available on April 30, 2007. From the snapshot, there are
excluded the posts from the DBLP computer science
bibliography since they are automatically inserted and all
owned by one user and all tagged with the same tag (dblp).
The number of users, items and tags is 1,037, 28,648, and
86,563, respectively.

Last.fm. The data for Lastfm were gathered during
October 2007, partly through the web services API (collect-
ing user nicknames), partly crawling the Last.fm site. Here,
the items correspond to artist names, which are already
normalized by the system. There are 12,773 triplets in the
form user-artist-tag. To these triplets correspond 4,442 users,
1,620 artists, and 2,939 tags.

Following the approach of [17] to get more dense data,
we adapt the notion of a p-core to tripartite hypergraphs.
The p-core of level k has the property, that each user, tag,
and item has/occurs in at least k posts. For both data sets,
we used k = 5. Thus, for the Bibsonomy data set there are
105 users, 246 items, and 591 tags, whereas for the Last.fm
data set there are 112 users, 234 items, and 567 tags.

5.1 Experimental Protocol and Evaluation Metrics

For the item and tag recommendations, all algorithms had
the task to predict the items/tags of the users’ postings in the
test set. We performed fourfold cross validation, thus, each
time we divide the data set into a training set and a test set
with sizes 75 and 25 percent of the original set, respectively.

Based on the approach of [18], [16], a more realistic
evaluation of recommendation should consider the division
of tags/items of each test user into two sets: 1) the past tags/
items of the test user, and 2) the future tags/items of the test
user. Therefore, for a test user we generate the recommen-
dations based only on the tags/items in his past set. The
default sizes of the past and future sets are 50 and
50 percent, respectively, of the number of tags posted by
each test user.

As performance measures for item and tag recommen-
dations, we use the classic metrics of precision and recall.
For a test user that receives a list of N recommended tags
(top-N list), precision and recall are defined as follows:

e Precision is the ratio of the number of relevant tags in
the top-N list (i.e., those in the top-V list that belong
in the future set of tags posted by the test user) to V.

e Recall is the ratio of the number of relevant tags in
the top-N list to the total number of relevant tags (all
tags in the future set posted by the test user).

For the user recommendations, we do not use precision-
recall metrics because there is no information in the data
sets about which users are similar with who. That is, our
data sets do not include explicitly for a target user his
similar users. Thus, we cannot verify our recommendation
results with metrics such as precision and recall.

To evaluate the effectiveness of Tensor Reduction and BL
algorithms in recommending interesting users, we compute

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010

Fig. 15. Precision of Tensor Reduction as dimensions of core tensor
vary for BibSonomy data set.

the item similarity within the recommended users [25]. This
evaluation is based on the fact that users with shared
interests are very likely to tag similar items.

A metric to evaluate this characteristic of each Neighbor-
hood N of recommended users is to compute the average
cosine similarity (ACS) of all item pairs inside the
Neighborhood of users with common social interest [25]:

Zu,’uEN Zie[('u),.jel(rly) szm(z,])
ZU,UEN |I(U) | |I(U)| ’

where for a user u,I(u) denotes the items tagged by u.
ACSy evaluates the tightness or looseness of each Neigh-
borhood or recommended users.

5.2

ACSy =

Influence of the Core Tensor Dimensions and
the Smoothing Scheme

We first conduct experiments to study the influence of the
core tensor dimensions on the performance of our Tensor
Reduction algorithm. If one dimension of the core tensor is
fixed, we can find the recommendation accuracy varies as
the other two dimensions change, as shown in Fig. 15. The
vertical axes denote the precision and the other two axes
denote the corresponding dimensions. For the leftmost
figure, the tag dimension is fixed at 200 and the other two
dimensions change. For the middle figure, the item
dimension is fixed at 105. For the rightmost figure, the
user dimension is fixed at 66.

Our experimental results indicate that a 70 percent of the
original diagonal of S, S, and S®) matrices can give
good approximations of A, Ay, and Az matrices. Thus, the
numbers ¢, ¢, and c3 of left singular vectors of matrices
UW, U®, and U® after appropriate tuning are set to 66,
105, and 200 for the BibSonomy data set, whereas are set to
40, 80, and 190 for the Last.fm data set.

Next, we study the influence of the proposed Kernel
smoothing scheme on the recommendation accuracy of our
Tensor Reduction algorithm in terms of precision. We
present our experimental results in Figs. 16a and 16b, for
both the BibSonomy and Last.fm data sets. As shown, our
smoothing Kernel method can improve the performance
accuracy. The results are consistent in both data sets.

5.3 ltem Recommendations

5.3.1 Algorithms’ Settings

For each of the algorithms of our evaluation we will now
describe briefly the specific settings used to run them:

e Fusion algorithm: We have varied the A parameter
from 0 to 1 by an interval of 0.1 and the neighborhood

% Precision

- -
0.7

Smooth_Kernel

Smooth_None

% Precision

) -
0.75

Smooth_Kernel

Smooth_None

(b)

Fig. 16. Precision of Tensor Reduction with and without smooth scheme
for (a) BibSonomy and (b) Last.fm.

k parameter from 10 to 150 by an interval of 10. We
have found the best A to be 0.3 and k to be 20.

e Matrix SVD algorithm: Regarding the application of
SVD on user-item matrix, we preserved, each time, a
different fraction of principal components of the
SVD model. More specifically, we preserve 90, 70,
and 50 percent of the total information of initial user-
item matrix. Our results show that 50 percent is
adequate for producing a good approximation of the
original matrix. Then, in the reduced model, we
apply the user-based CF algorithm.

e Item-based algorithm: We have varied the neigh-
borhood k parameter from 10 to 300 by an interval of
10. We found the best k to be 40.

e Tensor Reduction algorithm: Our tensor reduction
algorithm is modified appropriately to recommend
items to a target user. In particular, our tensor
represents a quadruplet {u,t,i,p} where p is the
likeliness that user u will tag item ¢ with tag .

5.3.2 Results

In this section, we proceed with the comparison of Tensor
Reduction with Fusion, Matrix SVD, and Item based, in
terms of precision and recall. This reveals the robustness of
each algorithm in attaining high recall with minimal losses
in terms of precision. We examine the top-N ranked list,
which is recommended to a test user, starting from the top
item. In this situation, the recall and precision vary as we
proceed with the examination of the top-N list.

For the BibSonomy data set (IV is between [1..5]), in
Fig. 17a, we plot a precision versus recall curve for all three
algorithms. As shown, all algorithms’ precision falls as N
increases. In contrast, as N increases, recall for all five
algorithms increases too. Tensor Reduction algorithm attains
80 percent precision, when we recommend a top-1 list of tags.
In contrast, Fusion gets a precision of almost 60 percent.
Moreover, Tensor Reduction is more effective than Fusion

SYMEONIDIS ET AL.: A UNIFIED FRAMEWORK FOR PROVIDING RECOMMENDATIONS IN SOCIAL TAGGING SYSTEMS BASED ON... 11

Tensor Reduction -e-Fusion
—Matrix SVD —&-Item-based

precision
o
k=)

10 20 30 40 50 60 70
Recall
(@)
Tensor Reduction -e-Fusion
—-Matrix SVD -5 Item-based
100 -
920
80 -
g 70 -
2 60
7 50 -
o 40
H 30 -
20 -
10
0 T |
10 20 30 40 50 60 70

Recall

(b)

Fig. 17. Comparison of Tensor Reduction, Fusion, Matrix SVD, and
ltem-based algorithms for the (a) BibSonomy data set and (b) Last.fm
data set.

getting a maximum recall of 64 percent, while the latter’s is
36 percent. This experiment shows that Tensor Reduction is
more robust in finding relevant tags for the test user. The
reason is that Tensor Reduction exploits all information that
concerns the three objects (users, items, and tags), and
through HOSVD, it addressed sparsity and finds latent
associations. Item-based and Matrix SVD algorithms present
the worst results, because they do not exploit all the existing
information (they are applied in two-dimensional data).

For the Last.fm data set (/N is between [1..5]), in Fig. 17b,
we plot also a precision versus recall curve for all three
algorithms. Tensor Reduction algorithm again attains the
best performance. Despite the different nature of the two
data sets (the one is for bibliographic data and the other for
musical data), we observe similar behavior of algorithms for
both data sets. It is important that Tensor Reduction
provides more accurate recommendations in both cases.

5.4 Tag Recommendations

5.4.1 Algorithms’ Settings

For each of the algorithms of our evaluation, we will now
describe briefly the specific settings used to run them:

e FolkRank algorithm: We set the damping factor d =
0.7 and stopped computation after 100 iterations or
when the distance between two consecutive weight
vectors was less than 107%. For the preference vector
p, we gave higher weights to the user and the item
from the post which was chosen. While each user,
tag, and resource got a preference weight of 1, the
user and resource from that particular post got a
preference weight of 1 4 |U| and 1 + |I|, respectively.

e PR algorithm: Initially, we set the uniform authority
score for each user equal to 1.0. The authority score
a(u) is computed via an iterative algorithm similar
to HITS.

|-+ Tensor Reduction - FolkRank - PR|

| | I |
5 10 15 20 25 30 35 40 45 50
Recall

(a)

Tensor Reduction -4 FolkRank PR

9

g0

8,20 -
10

T T T T
5 10 15 20 25 30 35 40 45 50
Recall

(b)

Fig. 18. Comparison of Tensor Reduction, Folkrank, and PR algorithms
for the (a) BibSonomy data set and (b) Last.fm data set.

e Tensor Reduction algorithm: Our tensor reduction
algorithm is modified appropriately to recommend
tags to a target user. In particular, our tensor
represents a quadruplet {u,i,t,p}, where p is the
likeliness that user u will tag item 4 with tag .

5.4.2 Results

In this section, we proceed with the comparison of Tensor
Reduction with FolkRank, and PR, in terms of precision
and recall.

For the BibSonomy data set (IV is between [1..5]), in
Fig. 18a, we plot a precision versus recall curve for all
three algorithms. Tensor Reduction algorithm attains
68 percent precision, when we recommend a top-1 list
of tags. In contrast, FolkRank gets a precision of
42 percent. Moreover, Tensor Reduction is more effective
than FolkRank getting a maximum recall of 44 percent,
while the latter’s is 36 percent. The reason is that Tensor
Reduction exploits all information that concerns the three
objects (users, items, and tags), and through HOSVD, it
addressed sparsity and finds latent associations.

For the Last.fm data set (/V is between [1..5]), in Fig. 18b,
we plot also a precision versus recall curve for all three
algorithms. Tensor Reduction algorithm again attains the
best performance.

5.5 User Recommendations
5.5.1 Algorithms’ Settings

For each of the algorithms of our evaluation, we will now
describe briefly the specific settings used to run them:

e Baseline algorithm (BL): BL algorithm is quite
similar to Amazon.com’s method to recommend
interesting users to a target user. BL logic is as follows:
if a user uses a specific tag for item search, then he is
recommended (except of recommended items) also
interesting users, whose profiles are considered
similar to him. These recommended users must have

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010

—-intra-Neighborhood

\ —— inter-Neighborhood

12 3 456 7 8 910111213 141516 17 18 19 20
Neighborhood Rank

(@)

0.6
0.5
0.4
0.22
0.2 4

0.1

0.03

0 I
intra-Neighborhood

(b)

Fig. 19. Comparison of intra-Neighborhood and inter-Neighborhood
similarity of Tensor Reduction Algorithm for the BibSonomy data set.

inter-Neighborhood

used the specific tag and are ranked based on how
many times they used it. The basic idea behind this
simple algorithm is that a tag corresponds in a topic of
common interest. Thus, users that use the same tag
could be interested in a common topic, forming a
community of common interest.

e Tensor Reduction algorithm: Our tensor reduction
algorithm is modified appropriately to recommend
Neighborhoods of users to a target user. In parti-
cular, our tensor represents a quadruplet {¢,7,u,p}
where p is the likeliness that tag ¢ will be used to
label item ¢ by the user w.

5.5.2 Results

In this section, we evaluate the effectiveness of Tensor
Reduction and BL algorithms in recommending interesting
users. We compute the item similarity within the recom-
mended neighborhoods of users [25]. This evaluation is
based on the fact that users with shared interests are very
likely to tag similar items. Note that, some of the
recommended neighborhoods can be consisted of users
that are quite related, while others are consisted of users
that are less related.

We focus only on the BibSonomy data set, because in this
data set users tag web pages, for which we can apply a
commonly used similarity measure. Specifically, we
crawled for each web site the first page and preprocess it
to create a vector of terms. Preprocessing involved the
removal of stop words, stemming, and TE/IDF. Then, we
find correlation between two web sites based on the
keyword terms they include. We compute the similarity
between two web sites with the inner product, i.e., the
cosine similarity of their TF/IDF keyword term vectors [25].

For each user’s neighborhood, we compute the ACS of
all web site pairs inside the neighborhood (20 nearest
neighbors), called intra-Neighborhood similarity. We also
randomly select 20 neighborhood pairs among the 105 user
neighborhoods and compute the average pairwise web site

- intra-Nelghborhood

0.5 - — inter-Neighborhood

O - e e
[B
0 P —
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Neighborhood Rank

(@)

e ——

0.1 0.06

. =
0 ‘ —

intra-Neighborhood

inter-Neighborhood
(b)

Fig. 20. Comparison of intra-Neighborhood and inter-Neighborhood
similarity of BL Algorithm for the BibSonomy data set.

similarity between every two neighborhoods, called inter-
Neighborhood similarity.

Fig. 19a shows the comparison between the intra-
Neighborhood and the inter-Neighborhood similarity of
our Tensor Reduction Algorithm. In this figure, « axis is the
rank of neighborhoods similarity, sorted by the descending
order of their intra-Neighborhood similarities. y-axis shows
the intra-Neighborhood similarity of each neighborhood and
the corresponding average inter-Neighborhood similarity of
this neighborhood with other 20 randomly selected neighbor-
hoods. As we can see, for all users’ neighborhoods, the intra-
Neighborhood similarity is consistently higher than the
average inter-Neighborhood. As also shown in Fig. 19b, the
average intra-Neighborhood similarity across all neighbor-
hoods is 0.22 with standard deviation equal to 0.091, while the
average of inter-Neighborhood similarities is only 0.03 with
standard deviation equal to 0.017.

Corresponding to Figs. 19a and 19b, we show for the
BL algorithm the comparison of intra- and inter-Neighbor-
hood similarity for each neighborhood, and the average
intra- and inter-Neighborhood similarity for all neighbor-
hoods in Figs. 20a and 20b, respectively. As we can see, BL's
intra- and inter-Neighborhood similarity values are very
close. This means, that BL fails to recommend coherent and
related neighborhoods of users. In addition, our Tensor
Reduction algorithm attains at least three times higher ACS
than BL. That is, our approach recommends neighborhoods
of users that are more related, while BL recommends users
which are less relevant.

5.6 Discussion

In real-world social tagging systems, the size of the resulting
3-order tensor, despite its sparsity, may be potentially huge.
By analyzing the Tensor Reduction algorithm, we can find
that most time is consumed when SVD is performed on the
three unfolded matrices. If the tensor scale is very large, this
step is time consuming. However, this computation can be
performed offline in advance. In cases of large scale tensors,
it is also interesting to examine randomized tensor

SYMEONIDIS ET AL.: A UNIFIED FRAMEWORK FOR PROVIDING RECOMMENDATIONS IN SOCIAL TAGGING SYSTEMS BASED ON... 13

factorization algorithms, like the ones proposed by Drineas
and Mahoney [11], which can handle very large tensors with
a guaranteed quality-of-approximation bound. More re-
cently, Tensor-CUR decomposition has been proposed [27]
that expresses the original tensor in terms of a basis
consisting of underlying subtensors. This method can
comprise an alternative solution to tensor factorization,
which can handle tensors with large size.

Matrix (i.e., 2-order tensor) factorization has been
applied to recommender systems [30], [34]. The results in
Section 5.3.2 (see Figs. 17a and 17b) indicate the superiority
of tensor factorization over matrix factorization in terms of
accuracy, as the former exploits the ternary relation of data
and captures the latent associations among the multitype
objects. This result is in accordance to existing results in
other application domains of tensor factorization [32], [38],
which show its superiority against matrix factorization
methods (LSI or SVD).

Finally, regarding the online incremental updating meth-
ods that are described in Section 4.4, the folding-in method
performs fast updating but may result in loss of orthogon-
ality. Existing results in [30] study the implications of this
issue for the case of matrix (user-item) based recommenda-
tions, showing that accuracy is not affected much. Analogous
conclusions are expected for the case of tensors, but due to
lack of space, we do not elaborate further on this case.
However, we have to note that the incremental SVD method
is also fast and preserves the orthogonality. Therefore, it has
guaranteed accuracy while offering time efficiency.

6 CONCLUSIONS

Social tagging systems provide recommendations to users
based on what tags other users have used on items. In this
paper, we developed a unified framework to model the
three types of entities that exist in a social tagging system:
users, items, and tags. We examined multiway analysis on
data modeled as 3-order tensor, to reveal the latent semantic
associations between users, items, and tags. The multiway
latent semantic analysis and dimensionality reduction is
performed by combining the HOSVD method with the
Kernel-SVD smoothing technique. Our approach improves
recommendations by capturing users multimodal percep-
tion of item/tag/user. Moreover, we study a problem of
how to provide user recommendations, which can have
significant applications in real systems but which have not
been studied in depth so far in related research. We also
performed experimental comparison of the proposed
method against state-of-the-art recommendations algo-
rithms, with two real data sets (Last.fm and BibSonomy).
Our results show significant improvements in terms of
effectiveness measured through recall/precision. As future
work, we intend to examine different methods for extend-
ing SVD to high-order tensors such as the Parallel Factor
Analysis. We also indent to apply different weighting
methods for the initial construction of a tensor. A different
weighting policy for the tensor’s initial values could
improve the overall performance of our approach.

ACKNOWLEDGMENTS

The authors thank Mr. Tat-Jun Chin for providing his
implementation of Kernel SVD method. The second

author gratefully acknowledge the partial cofunding of
his work through the European Commission FP7 project
MyMedia (www.mymediaproject.org) under the grant
agreement no. 215006.

REFERENCES

[1] E. Acar and B. Yener, “Unsupervised Multiway Data Analysis: A
Literature Survey,” IEEE Trans. Knowledge and Data Eng., vol. 21,
no. 1, pp. 6-20, Jan. 2009.

N. Ali-Hasan and A. Adamic, “Expressing Social Relationships on
the Blog through Links and Comments,” Proc. Int’l Conf. Weblogs
and Social Media (ICWSM), 2007.

M. Berry, S. Dumais, and G. O’Brien, “Using Linear Algebra for
Intelligent Information Retrieval,” SIAM Rev., vol. 37, no. 4,
pp- 573-595, 1994.

M. Brand, “Incremental Singular Value Decomposition of Un-
certain Data with Missing Values,” Proc. European Conf. Computer
Vision (ECCV ’02), 2002.

J. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of
Predictive Algorithms for Collaborative Filtering,” Proc. Conf.
Uncertainty in Artificial Intelligence, pp. 43-52, 1998.

E. Ceulemans and H.A.L. Kiers, “Selecting among Three-Mode
Principal Component Models of Different Types and Complex-
ities: A Numerical Convex-Hull Based Method,” British |. Math.
and Statistical Psychology, vol. 59, no. 1, pp. 133-150, 2006.

S. Chen, F. Wang, and C. Zhang, “Simultaneous Heterogeneous
Data Clustering Based on Higher Order Relationships,” Proc.
Workshop Mining Graphs and Complex Structures (MGCS '07), in
conjunction with IEEE Int’l Conf. Data Mining (ICDM "07), pp. 387-
392, 2007.

T. Chin, K. Schindler, and D. Suter, “Incremental Kernel SVD for
Face Recognition with Image Sets,” Proc. Int’l Conf. Automatic Face
and Gesture Recognition (FGR), pp. 461-466, 2006.

A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S. Amari,
“Non-Negative Tensor Factorization Using Alpha and Beta
Divergences,” Proc. IEEE Int’l Conf. Acoustics, Speech and Signal
Processing (ICCASP '07), 2007.

N. Cristianini and J. Shawe-Taylor, Kernel Methods for Pattern
Analysis. Cambridge Univ. Press, 2004.

P. Drineas and M.W. Mahoney, “A Randomized Algorithm for a
Tensor-Based Generalization of the Singular Value Decomposi-
tion,” Technical Report YALEU/DCS/TR-1327, 2005.

G. Furnas, S. Deerwester, and S. Dumais, “Information Retrieval
Using a Singular Value Decomposition Model of Latent Semantic
Structure,” Proc. ACM SIGIR Conf., pp. 465-480, 1988.

S. Golder and B. Huberman, “The Structure of Collaborative
Tagging Systems,” technical report, 2005.

H. Halpin, V. Robu, and H. Shepherd, “The Complex Dynamics of
Collaborative Tagging,” Proc. 16th Int’l Conf. World Wide Web
(WWW ’07), pp. 211-220, 2007.

J. Herlocker, J. Konstan, and J. Riedl, “An Empirical Analysis
of Design Choices in Neighborhood-Based Collaborative Filter-
ing Algorithms,” Information Retrieval, vol. 5, no. 4, pp. 287-310,
2002.

J. Herlocker, J. Konstan, L. Terveen, and]. Riedl, “Evaluating
Collaborative Filtering Recommender Systems,” ACM Trans.
Information Systems, vol. 22, no. 1, pp. 5-53, 2004.

A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme, “Information
Retrieval in Folksonomies: Search and Ranking,” The Semantic
Web: Research and Applications, pp. 411-426, Springer, 2006.

Z. Huang, H. Chen, and D. Zeng, “Applying Associative Retrieval
Techniques to Alleviate the Sparsity Problem in Collaborative
Filtering,” ACM Trans. Information Systems, vol. 22, no. 1, pp. 116-
142, 2004.

R. Jaschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G.
Stumme, “Tag Recommendations in Folksonomies,” Proc. Knowl-
edge Discovery in Databases (PKDD '07), pp. 506-514.

G. Karypis, “Evaluation of Item-Based Top-N Recommendation
Algorithms,” Proc. ACM Conf. Information and Knowledge Manage-
ment (CIKM), pp. 247-254, 2001.

H.A.L. Kiers and A.D. Kinderen, “A Fast Method for Choosing the
Numbers of Components in Tucker3 Analysis,” British |. Math. and
Statistical Psychology, vol. 56, no. 1, pp. 119-125, 2003.

J. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” |. ACM, vol. 46, no. 5, pp. 604-632, 1999.

(2]

B3]

4

[5]

[6]

(]

(8]

]

(10]

(1]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

Q3

Q4

Q5

Q6

(23]

[24]

(23]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

(38]

(39]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010

T. Kolda and J. Sun, “Scalable Tensor Decompositions for Multi-
Aspect Data Mining,” Proc. IEEE Int’l Conf. Data Mining (ICDM
"08), 2008.

L.D. Lathauwer, B.D. Moor, and J. Vandewalle, “A Multilinear
Singular Value Decomposition,” SIAM]. Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253-1278, 2000.

X. Li, L. Guo, and Y. Zhao, “Tag-Based Social Interest Discovery,”
Proc. ACM World Wide Web (WWW) Conf., 2008.

Y. Li, Y. Du, and X. Lin, “Kernel-Based Multifactor Analysis for
Image Synthesis and Recognition,” Proc. IEEE Int’l Conf. Computer
Vision, 2005.

M.W. Mahoney, M. Maggioni, and P. Drineas, “Tensor-Cur
Decompositions for Tensor-Based Data,” Proc. ACM Conf. Knowl-
edge Discovery and Data Mining (KDD '06), pp. 327-336, 2006.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pagerank
Citation Ranking: Bringing Order to the Web,” technical report,
1998.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-Based
Collaborative Filtering Recommendation Algorithms,” Proc. World
Wide Web (WWW) Conf., pp. 285-295, 2001.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Incremental
Singular Value Decomposition Algorithms for Highly Scalable
Recommender Systems,” Proc. Int’l Conf. Computer and Information
Science, 2002.

K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Systems,”
Proc. IEEE INFOCOM, 2003.

J. Sun, D. Shen, H. Zeng, Q. Yang, Y. Lu, and Z. Chen, “Cubesvd:
A Novel Approach to Personalized Web Search,” Proc. World Wide
Web Conf., pp. 382-390, 2005.

J. Sun, D. Tao, and C. Faloutsos, “Beyond Streams and Graphs:
Dynamic Tensor Analysis,” Proc. ACM Conf. Knowledge Discovery
and Data Mining (KDD), pp. 374-383, 2006.

P. Symeonidis, A. Nanopoulos, A. Papadopoulos, and Y.
Manolopoulos, “Scalable Collaborative Filtering Based on Latent
Semantic Indexing,” Proc. 21st Assoc. for Advancement of Artificial
Intelligence (AAAI) Workshop Intelligent Techniques for Web Persona-
lization (ITWP "06), pp. 1-9, 2006.

M.E. Timmerman and H.A.L. Kiers, “Three Mode Principal
Components Analysis: Choosing the Numbers of Components
and Sensitivity to Local Optima,” J. Math. and Statistical Psychology,
vol. 53, no. 1, pp. 1-16, 2000.

K. Tso-Sutter, B. Marinho, and L. Schmidt-Thieme, “Tag-Aware
Recommender Systems by Fusion of Collaborative Filtering
Algorithms,” Proc. ACM Symp. Applied Computing (SAC) Conf.,
2008.

H. Wang and N. Ahuja, “A Tensor Approximation Approach to
Dimensionality Reduction,” Int’l J. Computer Vision, vol. 76, no. 3,
pp- 217-229, 2008.

Y. Xu, L. Zhang, and W. Liu, “Cubic Analysis of Social
Bookmarking for Personalized Recommendation,” Frontiers of
WWW Research and Development—APWeb ‘06, pp. 733-738, Spring-
er, 2006.

Z. Xu, Y. Fu, J. Mao, and D. Su, “Towards the Semantic Web:
Collaborative Tag Suggestions,” Proc. Collaborative Web Tagging
Workshop at World Wide Web (WWW "06), 2006.

Panagiotis Symeonidis received the bachelor’s
degree in applied informatics in 1996, and the
MSc degree in information systems in 2004, from
Macedonia University, Greece. He received the
PhD degree in web mining from Aristotle
University of Thessaloniki, Greece, in 2008.
Currently, he is working as a postdoctoral
researcher at Aristotle University of Thessaloni-
ki, Greece. He is the coauthor of more than 20
articles in international journals and conference
proceedmgs His articles have received more than 40 citations from other
scientific publications. His articles have received more than 600 citations
from other scientific publications. He teaches courses on databases in
the University of Western Macedonia and courses on data mining and
data warehousing in a postgraduate program in Aristotle University of
Thessaloniki. His main research interests include data mining and
machine learning with applications in databases and information
retrieval. His other research interests include web mining, information
retrieval, recommender systems, and social tagging systems.

Alexandros Nanopoulos received the BSc and
PhD degrees from the Department of Infor-
matics of Aristotle University of Thessaloniki,
Greece, where he taught as a lecturer from 2004
to 2008 courses on data mining and databases.
From 2005 to 2008, he taught courses on
databases in the Hellenic Open University. His
main research interests include data mining and
machine learning with applications in databases
and information retrieval. He is the coauthor of
more than 60 articles in international journals and conference proceed-
ings. His articles have received more than 600 citations from other
scientific publications. He has also coauthored the monographs
Advanced Signature Indexing for Multimedia and Web Applications
and R-Trees: Theory and Applications, both published by Springer
Verlag. He has also coedited the volume Wireless Information High-
ways, published by Idea Group, Inc. In 2008, he has served as a cochair
of the European Conference of Atrtificial Intelligence (ECAI) Workshop
on Mining Social Data and, in 2006 and 2007, as a cochair of the
Advances in Databases and Information Systems (ADBIS) Workshops
on Data Mining and Knowledge Discovery. He has also served as a
program committee member of several international conferences on
data mining and databases.

Yannis Manolopoulos received the BEng
degree (1981) in electrical engineering and the
PhD degree (1986) in computer engineering,
from Aristotle University of Thessaloniki. Cur-
rently, he is a professor in the Department of
Informatics at Aristotle University of Thessaloni-
ki. He has been with the Department of
Computer Science at the University of Toronto,
the Department of Computer Science at the
Laaw University of Maryland at College Park, and the
Department of Computer Science at the University of Cyprus. He has
published about 200 papers in refereed scientific journals and
conference proceedings. He is the coauthor of the following books:
Advanced Database Indexing and Advanced Signature Indexing for
Multimedia and Web Applications published by Kluwer, as well as
Nearest Neighbor Search: A Database Perspective and R-Trees: Theory
and Applications published by Springer. His published work has received
more than 1,700 citations from more than 450 institutional groups. He
served/serves as a general/PC chair/cochair of the Eighth National
Computer Conference (2001), the Sixth ADBIS Conference (2002), the
Fifth WDAS Workshop (2003), the Eighth SSTD Symposium (2003), the
First Balkan Conference in Informatics (2003), the 16th SSDBM
Conference (2004), the Eighth ICEIS Conference (2006), and the
10th ADBIS Conference (2006). His research interests include data-
bases, data mining, web and geographical information systems,
bibliometrics/webometrics, and performance evaluation of storage
subsystems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Ql.
Q2.

Q3.

Q4.
Qs.

Qo.

Queries to the Author

Please check and confirm that the affiliations are OK as typeset.

There are some references to color in Fig. 12. Kindly rephrase the specific mentions if you would like the figure to be
published in black and white.

The acronyms in conference titles have been set in full in References [2], [7]-[9], [19], [20], [25], [29], [33], [34], [36],
and [39]. Please check and confirm that they are correct.

References [17] and [38] have been set as book-type references. Please check and confirm that they are set correctly.
The name of the second author and the year information in Reference [30] have been included as per the published
data available on the Internet. Please check and confirm that they are correct.

The bibliographic details in Reference [37] have been set as per the published data available on the Internet. Please
check and confirm that they are correct.

