
PAM: An Efficient and Privacy-Aware
Monitoring Framework for Continuously

Moving Objects
Haibo Hu, Jianliang Xu, Senior Member, IEEE, and Dik Lun Lee

Abstract—Efficiency and privacy are two fundamental issues in moving object monitoring. This paper proposes a privacy-aware

monitoring (PAM) framework that addresses both issues. The framework distinguishes itself from the existing work by being the first to

holistically address the issues of location updating in terms of monitoring accuracy, efficiency, and privacy, particularly, when and how

mobile clients should send location updates to the server. Based on the notions of safe region and most probable result, PAM performs

location updates only when they would likely alter the query results. Furthermore, by designing various client update strategies, the

framework is flexible and able to optimize accuracy, privacy, or efficiency. We develop efficient query evaluation/reevaluation and safe

region computation algorithms in the framework. The experimental results show that PAM substantially outperforms traditional

schemes in terms of monitoring accuracy, CPU cost, and scalability while achieving close-to-optimal communication cost.

Index Terms—Spatial databases, location-dependent and sensitive, mobile applications.

Ç

1 INTRODUCTION

IN mobile and spatiotemporal databases, monitoring con-
tinuous spatial queries over moving objects is needed in

numerous applications such as public transportation, logis-
tics, and location-based services. Fig. 1 shows a typical
monitoring system, which consists of a base station, a
database server, application servers, and a large number of
moving objects (i.e., mobile clients). The database server
manages the location information of the objects. The applica-
tion servers gather monitoring requests and register spatial
queries at the database server, which then continuously
updates the query results until the queries are deregistered.

The fundamental problem in a monitoring system is
when and how a mobile client should send location updates
to the server because it determines three principal perfor-
mance measures of monitoring—accuracy, efficiency, and
privacy. Accuracy means how often the monitored results
are correct, and it heavily depends on the frequency and
accuracy of location updates. As for efficiency, two
dominant costs are: the wireless communication cost for
location updates and the query evaluation cost at the
database server, both of which depend on the frequency of
location updates. As for privacy, the accuracy of location
updates determines how much the client’s privacy is
exposed to the server.

In the literature, very few studies on continuous query
monitoring are focused on location updates. Two commonly

used updating approaches are periodic update (every client
reports its new location at a fixed interval) and deviation
update (a client performs an update when its location or
velocity changes significantly) [24], [32], [35], [47]. However,
these approaches have several deficiencies. First, the
monitoring accuracy is low: query results are correct only
at the time instances of periodic updates, but not in between
them or at any time of deviation updates. Second, location
updates are performed regardless of the existence of
queries—a high update frequency may improve the mon-
itoring accuracy, but is at the cost of unnecessary updates
and query reevaluation. Third, the server workload using
periodic update is not balanced over time: it reaches the
peak when updates arrive (they must arrive simultaneously
for correct results) and trigger query reevaluation, but is idle
for the rest of the time. Last, the privacy issue is simply
ignored by assuming that the clients are always willing to
provide their exact positions to the server.

Some recent work attempted to remedy the privacy
issue. Location cloaking was proposed to blur the exact client
positions into bounding boxes [18], [14], [31], [26]. By
assuming a centralized and trustworthy third-party server
that stores all exact client positions, various location
cloaking algorithms were proposed to build the bounding
boxes while achieving the privacy measure such as
k-anonymity. However, the use of bounding boxes makes
the query results no longer unique. As such, query
evaluation in such uncertain space is more complicated. A
common approach is to assume that the probability
distribution of the exact client location in the bounding
box is known and well formed. Therefore, the results are
defined as the set of all possible results together with their
probabilities [14], [31], [7]. However, all these approaches
focused on one-time cloaking or query evaluation; they
cannot be applied to monitoring applications where
continuous location update is required and efficiency is a
critical concern.

404 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 3, MARCH 2010

. H. Hu and J. Xu are with the Department of Computer Science, Hong
Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR,
China. E-mail: {haibo, xujl}@comp.hkbu.edu.hk.

. D.L. Lee is with the Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong SAR, China. E-mail: dlee@cse.ust.hk.

Manuscript received 2 Apr. 2008; revised 30 July 2008; accepted 25 Mar.
2009; published online 15 Apr. 2009.
Recommended for acceptance by S. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2008-04-0175.
Digital Object Identifier no. 10.1109/TKDE.2009.86.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

In [21], we proposed a monitoring framework where the
clients are aware of the spatial queries being monitored, so
they send location updates only when the results for some
queries might change. Our basic idea is to maintain a
rectangular area, called safe region, for each object. The safe
region is computed based on the queries in such a way
that the current results of all queries remain valid as long
as all objects reside inside their respective safe regions. A
client updates its location on the server only when the
client moves out of its safe region. This significantly
improves the monitoring efficiency and accuracy com-
pared to the periodic or deviation update methods.
However, this framework fails to address the privacy
issue, that is, it only addresses “when” but not “how” the
location updates are sent.

In this paper, we take a more comprehensive approach—
instead of dealing with “when” and “how” separately like
most existing work, we propose a privacy-aware monitor-
ing (PAM) framework that incorporates the accuracy,
efficiency, and privacy issues altogether. We adapt for the
monitoring environment the privacy model that has been
employed by location cloaking and other privacy-aware
approaches. More specifically, a client encapsulates its exact
position in a bounding box, and the timing and mechanism
with which the box is updated to the server are decided by
a client-side location updater as part of PAM.

However, the integration of privacy into the monitoring
framework poses challenges to the design of PAM. First,
with the introduction of bounding boxes, the result of a
query is no longer unique. Among all possible results, we
argue that the most probable result, i.e., the one with the
highest probability, is most promising for approximating
the genuine result (the result derived based on the exact
positions). The probability is computed by assuming a
uniform distribution of the exact client position in the
bounding box. Fig. 2 shows two clients a; b together with
their bounding boxes. Both the genuine and most probable
result for the 1NN query Q are fag. However, even
monitoring only the most probable result adds great
complexity to query evaluation. As such, one of the main
contributions of this paper is to devise efficient query
processing algorithms for common spatial query types.
Second, the most probable result also adds complexity to the
definition of safe region. New algorithms must be designed
to compute maximum safe regions in order to reduce the
number of location updates, and thus, improve efficiency.
Third, as the location updater decides when and how a
bounding box is updated, its strategy determines the
accuracy, privacy, and efficiency of the framework. The
standard strategy is to update when the centroid of the bounding
box moves out of the safe region, which guarantees accuracy—
no miss of any change of the most probable result. To

optimize privacy or efficiency, however, alternative strate-
gies must be devised. Compared to the previous work, the
PAM framework has the following advantages:

. To our knowledge, this is the first comprehensive
framework that addresses the issue of location
updating holistically with monitoring accuracy,
efficiency, and privacy altogether. This framework
extends from our previous work [21] by introducing
a common privacy model, and therefore, suits
realistic scenarios.

. As for efficiency, the framework significantly re-
duces location updates to only when an object is
moving out of the safe region, and thus, is very likely
to alter the query results.

. As for accuracy, the framework offers correct
monitoring results at any time, as opposed to only
at the time instances of updates in systems that are
based on periodic or deviation location update.

. The framework is generic in the sense that it is not
designed for a specific query type. Rather, it
provides a common interface for monitoring various
types of spatial queries such as range queries and
kNN queries. Moreover, the framework does not
presume any mobility pattern on moving objects.

. The framework is flexible in that by designing
appropriate location update strategies, accuracy,
privacy, or efficiency can be optimized.

In the rest of this paper, we will explore the PAM
framework, especially on the aspects of query evaluation
and safe region computation. The remainder of this paper is
organized as follows: Section 2 reviews the related work.
Section 3 overviews the framework components, followed
by Sections 4 and 5 where query evaluation and safe region
computation are presented, with an emphasis on range and
kNN queries. Dynamic client update strategies are given in
Section 6 to optimize privacy and efficiency. Experimental
results of PAM are shown in Section 7.

2 RELATED WORK

There is a large body of research work on spatial temporal
query processing. Early work assumed a static data set and
focused on efficient access methods (e.g., R-tree [19]) and
query evaluation algorithms (e.g., [20], [37]). Recently, a lot
of attention has been paid to moving-object databases,
where data objects or queries or both of them move.

Assuming that object movement trajectories are known a
priori, Saltenis et al. [38] proposed the Time-Parameterized
R-tree (TPR-tree) for indexing moving objects, where the
location of a moving object is represented by a linear
function of time. Benetis et al. [3] developed query

HU ET AL.: PAM: AN EFFICIENT AND PRIVACY-AWARE MONITORING FRAMEWORK FOR CONTINUOUSLY MOVING OBJECTS 405

Fig. 2. Monitoring example.Fig. 1. The system architecture.

evaluation algorithms for NN and reverse NN search based
on the TPR-tree. Tao et al. [41] optimized the performance
of the TPR-tree and extended it to the TPR�-tree. Chon et al.
[10] studied range and kNN queries based on a grid model.
Patel et al. [34] proposed a novel index structure called
STRIPES using a dual transformation technique.

The work on monitoring continuous spatial queries can
be classified into two categories. The first category assumes
that the movement trajectories are known. Continuous kNN
monitoring has been investigated for moving queries over
stationary objects [40] and linearly moving objects [22], [36].
Iwerks et al. [22] extended to monitor distance semijoins for
two linearly moving data sets [23]. However, as pointed out
in [39], the known-trajectory assumption does not hold for
many application scenarios (e.g., the velocity of a car
changes frequently on road).

The second category does not make any assumption on
object movement patterns. Xu et al. [44] and Zhang et al.
[48] suggested returning to the client both the query result
and its validity scope where the result remains the same. As
such, the query is reevaluated only when the query exits the
validity scope. However, their solutions work for stationary
objects only. For continuous monitoring of moving objects,
the prevailing approach is periodic reevaluation of queries
[24], [32], [35], [47]. Prabhakar et al. [35] proposed the
Q-index, which indexes queries using an R-tree-like
structure. At each evaluation step, only those objects that
have moved since the previous evaluation step are
evaluated on the Q-index. While this study is limited to
range queries, Mokbel et al. [32] proposed a scalable
incremental hash-based algorithm (SINA) for range and
kNN queries. SINA indexes both queries and objects, and
achieves scalability by employing shared execution and
incremental evaluation of continuous queries [32], [43].
Kalashnikov et al. and Yu et al. suggested grid-based in-
memory structures for object and query indexes to speed up
reevaluation process of range queries [25] and kNN queries
[47]. Access methods to support frequent location updates
of moving objects have also been investigated [24], [29]. Our
study falls into this category but distinguishes itself from
existing studies with a comprehensive framework focusing
on location update.

Uncertainty and privacy issues have been recently studied
in moving object monitoring. To protect location privacy,
various cloaking or anonymizing techniques have been
proposed to hide the client’s actual location. Among them
are the spatiotemporal cloaking [18], the Clique-Cloak [14],
[15], the Casper anonymizer [31], hilbASR [17], [26], and
peer-to-peer cloaking [11], [16]. In spatiotemporal cloaking,
for each location update, the server divides the space
recursively in a quad-tree-like format till a suitable subspace
is found to cloak the updated location. The CliqueCloak
algorithm constructs a clique graph to combine some clients
who can share the same cloaked spatial area. The Casper
anonymizer is associated with a query processor to ensure
that the anonymized area returns the same query result as the
actual location. In hilbASR, all user locations are sorted by
Hilbert space-filling curve ordering, and then, every k users
are grouped together in this order. Besides, location cloaking,
pseudonym, dummy, and transformation were also proposed for
privacy preservation. Pseudonym decouples the mapping
between the user identity and the location so that an
untrusted server only receives the location without the user

identity [33], [4]. Dummy generates fake user locations
(called dummies) and mixes them together with the genuine
user location into the request [28], [46], [45]. Transformation
utilizes certain one-way spatial transformations (e.g., a space
filling curve) to map the query space to another space and
resolves query blindly in the transformed space [27].

As for location uncertainty, a common model for
characterizing the uncertainty of an object is a closed region
with a predefined probability distribution of this object in the
region. Based on this probabilistic model, query processing
and indexing algorithms have been proposed to evaluate
probabilistic range queries [12], [31] and kNN queries [9].
While in these studies, the objects are uncertain, the queries
themselves are still certain. Chen and Cheng extended the
probabilistic processing to more general cases where the
queries are also uncertain [7]. Our study, on the other hand,
addresses the continuous monitoring issue. By adopting the
notion of “safe region,” the frequency of query reevaluation
on uncertain location information is reduced, and hence, the
system efficiency and scalability are improved.

Distributed approaches have been investigated to moni-
tor continuous range queries [6], [13] and continuous kNN
queries [42]. The main idea is to shift some load from the
server to the mobile clients. Monitoring queries have also
been studied for distributed Internet databases [8], data
streams [1], and sensor databases [30]. However, these
studies are not applicable to monitoring of moving objects,
where a two-dimensional space is assumed.

3 FUNDAMENTALS OF PAM FRAMEWORK

3.1 Privacy-Aware Location Model

In this paper, we assume that the clients are privacy
conscious. That is, the clients do not want to expose their
genuine point locations to the database server to avoid
spatiotemporal correlation inference attack [14], by which an
adversary may infer users’ private information such as
political affiliations, alternative lifestyles, or medical pro-
blems. For example, knowing that a user is inside a heart
specialty clinic during business hours, the adversary can
infer that the user might have a heart problem. This has been
cited as a major privacy threat in location-based services and
mobile computing. To protect against it, most existing work
suggests replacing accurate point locations by bounding
boxes to reduce location resolutions [18], [14], [31], [26], [7],
[17]. With a large enough location box covering the sensitive
place (e.g., the clinic) as well as a good number of other
insensitive places, the success rate or confidence of such
spatiotemporal correlation inference can be reduced sig-
nificantly. In our monitoring framework, we take the same
privacy-aware approach. Specifically, each time a client
detects his/her genuine point location, it is encapsulated
into a bounding box. Then, the client-side location updater
decides whether or not to update that box to the server.1

Without any other knowledge about the client locations or
moving patterns, upon receiving such a box, the server can
only presume that the genuine point location is distributed
uniformly in this box. To simplify the presentation in this

406 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 3, MARCH 2010

1. The computation of a proper bounding box to satisfy a certain privacy
metric (such as k-anonymity) has been extensively studied in the literature
[14], [26], [17] and is beyond the scope of this paper. Nonetheless, the larger
the box is, the less successful and confident the adversary’s inference
becomes.

paper, we further restrict the shape of such a bounding box
to a �-by-� square (or in short �-square), where � is
customizable for each object. Our problem is therefore to
monitor result changes of spatial queries as objects move,
and monitor them as accurately as possible and at the lowest
cost of location updates.

The key idea to solving the problem is “safe region,”
which was defined in [21] as a rectangle within which the
change of object location does not change the result of any
registered spatial query. Now that locations are �-squares
instead of points, to clarify the definition of “within,” we
use the centroid point of the square as a representative, so
the safe region is essentially a safe region for the centroid of
the �-square. However, the consequence of introducing
�-square is more than that—the result of a spatial query is
no longer unique. For example, if the �-square of an object
partially overlaps with a range query, this object could be
either a result object or a nonresult object of this query. As
such, a unique definition of query result under �-squares is
a prerequisite of safe region.

Since the genuine point location of an object is distributed
uniformly in its �-square, we can define the (unique) query
result as the one with the highest probability among all
possible results. As in the previous range query example, if
the majority of the �-square falls inside the range query, that
object is most probably a result object of this query;
otherwise, that object is most probably a nonresult object.
With the notion of most probable result, we thereby define
the safe region as a rectangle within which the change of the
centroid of the object’s �-square does not change the most
probable result of any registered spatial query. The standard
update strategy of the client is therefore “to update when the
centroid of the �-square is out of the safe region.”

The reason why we exclude all other less probable
results in this definition is threefold: 1) monitoring
continuous queries usually trades accuracy for efficiency—
although the most probable result does not always align
with the genuine result (the result derived based on genuine
point locations of all objects), we will show in Section 4
that it is efficient to compute, and therefore, prevents the
server from being computationally overloaded; 2) if the
query result were defined as the set of all possible results,
the safe region would have to be extremely small to report
location updates if any of the possible results changes,
which makes the update cost overwhelmingly high; and
3) we do not want the choice of �-square—which is made
by the client—to affect query results heavily, and obviously
the most probable results are less vulnerable than other
result definitions.

3.2 Framework Overview

As shown in Fig. 3, the PAM framework consists of
components located at both the database server and the
moving objects. At the database server side, we have the
moving object index, the query index, the query processor,
and the location manager. At moving objects’ side, we have
location updaters. Without loss of generality, we make the
following assumptions for simplicity:

. The number of objects is some orders of magni-
tude larger than that of queries. As such, the query
index can accommodate all registered queries in
main memory, while the object index can only

accommodate all moving objects in secondary
memory. This assumption has been widely
adopted in many existing proposals [25], [47], [21].

. The database server handles location updates se-
quentially; in other words, updates are queued and
handled on a first-come-first-serve basis. This is a
reasonable assumption to relieve us from the issues
of read/write consistency.

. The moving objects maintain good connection with
the database server. Furthermore, the communication
cost for any location update is a constant. With the
latter assumption, minimizing the cost of location
updates is equivalent to minimizing the total number
of updates.

PAM framework works as follows (see Fig. 3): At any
time, application servers can register spatial queries to the
database server (step �1). When an object sends a location
update (step�2), the query processor identifies those queries
that are affected by this update using the query index, and
then, reevaluates them using the object index (step �3). The
updated query results are then reported to the application
servers who register these queries. Afterward, the location
manager computes the new safe region for the updating
object (step�4), also based on the indexes, and then, sends it
back as a response to the object (step�5). The procedure for
processing a new query is similar, except that in step�2 , the
new query is evaluated from scratch instead of being
reevaluated incrementally, and that the objects whose safe
regions are changed due to this new query must be notified.
Algorithm 1 summarizes the procedure at the database
server to handle a query registration/deregistration or a
location update.

Algorithm 1. Overview of Database Behavior
1: while receiving a request do

2: if the request is to register query q then

3: evaluate q;

4: compute its quarantine area and insert it into the

query index;

5: return the results to the application server;

6: update the changed safe regions of objects;

7: else if the request is to deregister query q then

8: remove q from the query index;

9: else if the request is a location update from object p

then

10: determine the set of affected queries;

11: for each affected query q0 do

HU ET AL.: PAM: AN EFFICIENT AND PRIVACY-AWARE MONITORING FRAMEWORK FOR CONTINUOUSLY MOVING OBJECTS 407

Fig. 3. PAM framework overview.

12: reevaluate q0;
13: update the results to the application server;

14: recompute its quarantine area and update the

query index;

15: update the safe region of p;

It is noteworthy that although in this paper, the most
probable result is used, this framework can also adapt to
other query result definitions such as over a probability
confidence (e.g., “returns objects that have 90 percent
probability inside the query range”). The only changes
needed to reflect the new result definition are the query
evaluation algorithms in the query processor and safe
region computation in the location manager. In the rest of
this paper, we stick to the definition of the most probable
result and leave the modification details for other defini-
tions to interested readers.

The following sections explain the components at the
database server in detail, and Section 6 describes the update
strategy of the client-side location updater.

3.3 The Object Index

The object index is the server-side view on all objects. More
specifically, to evaluate queries, the server must store the
spatial range, in the form of a bounding box, within which
each object can possibly locate. Note that this bounding box
is different from a �-square because its shape also depends
on the client-side location updater. That is, it must be a
function (denoted by �) of the last updated �-square and
the safe region. As such, this box is called a bbox as a mark
of distinction. In particular, for the standard update
strategy, the bbox is the safe region enlarged by �=2 on
each side, or formally, the “Minkowski sum”2 of the safe
region and a �=2-square.

With the same rationale for which we assume the
genuine point location of an updating object to distribute
uniformly in the �-square, we assume that the genuine point
locations are distributed uniformly in their respective bboxes
when queries are evaluated or reevaluated. The object index
is built on the bboxes to speed up the evaluation. While
many spatial index structures can serve this purpose, this
paper employs the R�-tree index [2], [19], which is most
widely adopted in the literature. Since the bbox changes each
time the object updates, the index is optimized to handle
frequent updates [29].

3.4 The Query Index

For each registered query, the database server stores:
1) the query parameters (e.g., the rectangle of a range
query, the query point, and the k value of a kNN query);
2) the current query results; and 3) the quarantine area of
the query. The quarantine area is used to identify the
queries whose results might be affected by an incoming
location update. It originates from the quarantine line,
which is a line that splits the entire space into two regions:
the inner region and the outer region. An object becomes a
result object if it enters the inner region; likewise, it
becomes a nonresult object once it enters the outer region.

However, the ideal quarantine line is difficult to compute,
especially in the context of the most probable result. In
addition, as object locations have extensions rather than
points, the quarantine line is not unique for a query. As
such, we allow fuzziness by relaxing the line to an area
called “quarantine area.” That is, the entire space is split
into three regions: the inner region, the quarantine area,
and the outer region. The former two are separated by the
inner bound of the quarantine area, whereas the latter two
are separated by theouter bound of the quarantine area. To
ease the computation of these two bounds, an object
becomes a result object if its �-square moves totally inside
the inner bound; on the other hand, an object becomes a
nonresult object once its �-square crosses or is outside the
outer bound. Therefore, a query Q is not affected only if
“of the updated �-square p and its last updated �-square
plst, both of them are totally inside the inner bound or
both of them cross or are outside the outer bound of the
quarantine area.”3

For a range query q, the query window can serve as an
inner bound of the quarantine area, because any object
whose �-square is fully inside q is a trivial result of q. On the
other hand, an outer bound can be the Minkowski sum of q
and a �=2-square, i.e., enlarging q by �=2 on each side. The
correctness of this bound can be verified by the observation
that for any �-square that crosses this bound, the majority of
this square must be outside q, thus making the object a
nonresult object. In case, there are different �s for different
objects, the largest � is used. Fig. 4a shows the inner and
outer bounds of q’s quarantine area.

For a kNN query, since only the distance to the query
point q matters, we set both the inner and the outer bounds
as circles centered at q. Furthermore, since the kth NN ok
determines whether other object is or is not a result object,
we set the radii of the two circles based on ok. More
specifically, the inner bound circle is set to be the minimum
distance between q and the bbox of ok so that if a �-square is
totally inside this circle, it is guaranteed to be closer to q than
ok. On the other hand, the outer bound circle is set to be the
maximum distance between q and the bbox of ok, plus �. If
dðs; tÞ denotes the distance between two points s and t,
dðS; T Þ (DðS; T Þ) denotes the minimum (maximum) distance
between a pair of points in areas S and T , then the radii of
the inner and outer circle are dðq; okÞ and Dðq; okÞ þ �,
respectively.

To quickly find all affected queries, an in-memory grid-
based index is built on the quarantine areas of all queries.

408 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 3, MARCH 2010

Fig. 4. Quarantine area. (a) Range query. (b) kNN query.

2. The Minkowski sum of two shapes A and B in euclidean space is the
result of adding every point in B to every point in A, i.e., the set
faþ bja 2 A; b 2 Bg.

3. For kNN queries, if the order of the result objects is sensitive, Q is not
affected only if both of them cross or are outside the outer region.

The index partitions the entire space into M �M uniform
grid cells, and the bucket for each cell points to those
queries whose quarantine areas overlap with or fully
enclose this cell. If we define the cell(s) that overlap with
the �-square of the updating object p as the home cell(s) of p,
then only queries pointed at by the home cell(s) of p or plst
are affected, and thus, need reevaluation.

3.5 Query Processor and Location Manager

In the PAM framework, based on the object index, the query
processor evaluates the most probable result when a new
query is registered, or reevaluates the most probable result
when a query is affected by location updates. Obviously,
the reevaluation is more efficient as it can be based on
previous results. The detailed algorithms of query evalua-
tion and reevaluation will be presented in Section 4.

The location manager computes the safe region of an
object p (denoted as p:sr). Recall that a safe region is a
rectangle within which the change of the centroid of
p’s �-square does not change the most probable result of
any registered query. As queries are independent of each
other, we can further define the safe region for a single
query Q (denoted as p:srQ) as a rectangle in which the
change of the centroid of p’s �-square does not change the
most probable result of Q. By this definition, p:srQ is a
rectangular approximation, or more accurately an inscribed
rectangle, of Q’s inner (if p is a result object) or outer (if p is
a nonresult object) regions, which are separated by the
quarantine line. The reason why the safe region is based on
the quarantine line rather than the quarantine area is that
the latter is much coarser. Furthermore, the quarantine area
is used only to filter out the queries that are not affected by
a location update, so we trade accuracy for efficiency. The
safe region, on the other hand, directly dictates the
frequency, and hence, the cost of location updates, so we
compute it based on the more accurate quarantine line.

After each individual p:srQ is computed, p:sr is simply
the intersection of these p:srQ from all registered queries. To
eliminate those queries whose safe regions do not contribute
to p:sr, the location manager further requires every p:srQ
(and thus, the p:sr) to be fully contained in the home cell(s).
Recall that the home cell(s) are the grid cell(s) of the query
index where the �-square of p is contained or overlaps. By
this means, the location manager only needs to compute the
safe regions for those queries (subsequently called relevant
queries) whose quarantine areas are contained or overlap
with the home cell(s). These relevant queries are exactly
those indexed by the home cell(s) of the query index.

The location manager recomputes the safe region of an
object p in two cases: 1) after a new query Q is evaluated
and 2) after p sends a location update. In the former case,
since no existing queries change their quarantine lines, the
new safe region p:sr0 is simply the intersection of the
current safe region p:sr and p:srQ, the safe region for this
new query Q. If p:sr0 is different from p:sr, the new safe
region should be updated to p. In the latter case, the
quarantine areas of some existing queries might change;
therefore, p:sr0 needs to be completely recomputed by
computing the p:srQ for each relevant query and then
getting the intersection.

As the objective of the PAM framework is to minimize
the number of location updates, the following theorem
shows that the safe region should be the inscribed rectangle
of the inner or outer region with the maximum perimeter:

Theorem 3.1. Assume that the object p moves in a randomly
chosen direction with a constant speed � (see Fig. 5), and that
�-square is small enough to be ignored. Given a convex safe
region R and the updated location p, the amortized location
update cost for p over time Costp is

Costp ¼ Cl �
Z 2�

0

kð�Þd�
2��

� ��1

¼: Cl � 2��
PerimeterðRÞ ;

where Cl is the cost for one location update, � is the angle
between the moving direction and the positive x-axis, kð�Þ is
the length of segment pr, r is the intersection point of this
direction and the boundary of R, in other words, r is the
location at which the next location update occurs.

Proof. First of all, r must be unique for every �. Otherwise, if

there were another r0, the points in segment rr0 do not

belong to R, which contradicts the convex assumption.

As such, given �, the elapsed time before the next location

update is kð�Þ
� . The average elapsed time over all � is

R 2�
0

kð�Þ
� d�R 2�

0 d�
¼
Z 2�

0

kð�Þd�
2��

:

Therefore, we have

Costp ¼ Cl �
Z 2�

0

kð�Þd�
2��

� ��1

¼: Cl � 2��
PerimeterðRÞ ;

because
R 2�

0 kð�Þd� ¼: PerimeterðRÞ. tu
Therefore, the optimal safe region p:srQ is the inscribed

rectangle with the longest perimeter, or shortly Ir� lp, of
Q’s inner or outer region. Section 5 will present the
detailed algorithms to compute the optimal p:srQ for each
type of query.

4 QUERY PROCESSING

In this section, we present the detailed algorithms to
evaluate or reevaluate a spatial query Q in terms of the
most probable result. Aside from the definition of the query
result, we know that Q also differs from a conventional
spatial query in that the object locations are in the form of
�-square (for updating objects) or bbox (for other objects),
both of which are rectangular. In this section, instead of
regarding Q as a special query type, we take an alternative
approach by regarding the space where the object locations
are defined as a special euclidean space. In this space,
spatial relations such as overlapping, containment, or even

HU ET AL.: PAM: AN EFFICIENT AND PRIVACY-AWARE MONITORING FRAMEWORK FOR CONTINUOUSLY MOVING OBJECTS 409

Fig. 5. Random movement.

distance are implemented differently from a conventional
euclidean space. By using the new implementations of
spatial relations, existing spatial query processing algo-
rithms can be applied directly to the new space.

In the following sections, we implement two relations
that are required for spatial queries, namely, containment
and closer.

4.1 Spatial Relations

In this new space, an object p is contained in a rectangle R if
in the euclidean space, the majority of p is in R. The
rectangle divides the enlarged safe region of any object p
into two regions: the region inside rectangle q (where p is a
result object of q) and the region outside q (where p is not a
result). The region with the larger area decides the most
probable result.

In this new space, an object p1 is closer to a point q than
object p2 if and only if in the euclidean space, for two
randomly picked points a; b from p1 and p2, respectively, a
is equally or more probably closer to q than b. The closer
relation has a nice property that it is a total order relation,
which is proved by the following preposition:

Proposition 4.1. The closer relation is a total order relation, that
is, it satisfies

1. reflexivity,
2. antisymmetry,
3. transitivity, and
4. comparability.

Proof sketch. Cases 1 and 2 are trivial.
3. Transitivity: if p1 is closer than p2 and p2 is closer

than p3, then a (from p1) is more probably closer to q than
b (from p2), which is, in turn, more probably closer to q
than c (from p3). As such, p1 is closer than p2.

4. Comparability: 8p1; p2, either p1 is closer than p2, or
p2 is closer than p1. tu

Therefore, the most probable result of kNN query q is
defined as the top-k objects of all objects in the closer order
of their enlarged safe regions.

To implement the “closer” relation, we present an
efficient algorithm that is based on finding out which object
has more portion of area closer to point q. Instead of
computing the exact shape of such area, which is forbid-
dingly costly, the algorithm is based on the divide-and-
conquer paradigm. It maintains a priority queue Q whose
elements are pairs of subrectangles of p1 and p2 that have
not yet been compared. Initially, the pair <p1; p2> is
inserted into Q and the portion of area where p1 (or p2) is
closer is 0. Each time an element <p01; p

0
2> pops up from Q

(where p01 is a subrectangle of p1 and p02 is a subrectangle of
p2), the algorithm checks if any point in p01 (or p02) is always
closer than any point in p02 (or p01). If this is the case (case 1),
the multiple of the area p01 (or p02) is added to the portion of
area where p1 (or p2) is closer. If this is not the case (case 2),
p01 or p02, whichever is larger, is split into four equal
subrectangles, and thus, four new pairs are inserted to Q.
The reason to split the larger rectangle is that the resulted
pairs are more probable to become pairs of case 1. The
algorithm continues until either the portion of area where p1

(or p2) is closer exceeds 0.5, or the queue Q becomes empty.
It is noteworthy that the portion of area where p1 (or p2) is
closer is essentially the probability that p1 (or p2) is closer.
As such, this algorithm always returns the correct result. On
the other hand, the algorithm is efficient because it
terminates as soon as one portion of area exceeds 0.5. In
order to let the portion of area converge to the actual
probability more quickly, we use the multiple portions of
area as the key to sort the pairs in Q.

4.2 Query Evaluation and Reevaluation on Object
Index

In conventional euclidean space, a new range query is
evaluated as follows: We start from the index root and
recursively traverse down the index entries that overlap
with the query window until the leaf entries storing the
objects are reached. Then, we test each object using the
containment relation in the new space.

Reevaluation of an existing range query q is even
simpler—only the �-square of the updating object needs to
be tested on the containment relation.

The best-known algorithm to evaluate a kNN query q in
conventional euclidean space is the best-first search (BFS)
[20]. It uses a priority queue H to store the to-be-explored
index entries which may contain kNNs. The entries in H
are sorted by their minimum distances to the query point q.
BFS works by always popping up the top entry from H,
pushing its child entries into H, and then, repeating the
process all over. When a leaf entry, i.e., an entry of a leaf
node, is popped, the corresponding object is returned as a
nearest neighbor. The algorithm terminates if k objects have
been returned.

In the new space, the query is evaluated similarly, which
is shown in Algorithm 2. However, the algorithm maintains
an additional priority queue H besides H. It is a priority
queue of objects sorted by the “closer” relation. The reason
to introduce H is that when an object p is popped from H, it
is not guaranteed a kNN in the new space. Therefore, H is
used to hold p until it can be guaranteed a kNN. This occurs
when another object p0 is popped from H, and its minimum
distance to q (dðq; p0Þ) is larger than the maximum distance
of p to q (Dðq; pÞ). In general, when an object u is popped
from H, we need to do the following. If dðq; uÞ is larger than
Dðq; vÞ, where v is the top object inH, then v is guaranteed a
kNN and removed from H. Then, dðq; uÞ is compared with
the next Dðq; vÞ until it is no longer the larger one. Then, u
itself is inserted to H and the algorithm continues to pop up
the next entry from H. The algorithm continues until
k objects are returned.

Algorithm 2. Evaluating a new kNN Query

Input: root: root node of object index

q: the query point

Output: C: the set of kNNs

Procedure:

1: initialize queue H and H;
2: enqueue hroot; dðq; rootÞi into H;

3: while jCj < k and H is not empty do

4: u ¼ H.pop();

5: if u is a leaf entry then

6: while dðq; uÞ > Dðq; vÞ do

410 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 3, MARCH 2010

7: v = H.pop();
8: insert v to C;

9: enqueue u into H;

10: else if u is an index entry then

11: for each child entry v of u do

12: enqueue hv; dðv; qÞi into H;

To reevaluate an existing kNN query that is affected by
the updating object p, the first step is to decide whether p
is a result object by comparing p with the kth NN using
the “closer” relation: if p is closer, then it is a result object;
otherwise, it is a nonresult object. This then leads to three
cases: 1) case 1: p was a result object but is no longer so;
2) case 2: p was not a result object but becomes one; and
3) case 3: p is and was a result object.4 For case 1, there
are fewer than k result objects, so there should be an
additional step of evaluating a 1NN query at the same
query point to find a new result object u. The evaluation
of such a query is almost the same as Algorithm 2, except
that all existing kNN result objects are not considered.
The final step of reevaluation is to locate the order of new
result object p in the kNN set. This is done by comparing
it with other existing objects in the kNN set using the
“closer” relation. For cases 1 and 2, since this object is a
new result object, the comparison should start from the
kth NN, then k-1th NN, and so on. However, for case 3,
since p was in the set, the comparison can start from
where p was. Algorithm 3 shows the pseudocode of kNN
query reevaluation, where p� denotes the starting position
of the comparison.

Algorithm 3. Reevaluating a kNN Query

Input: C: existing set of kNNs

p: the updating object

Output: C: the new set of kNNs

Procedure:

1: if p is closer to the k-th NN then

2: if p 2 C then

3: p� ¼ the rank of p in C;

4: else

5: p� ¼ k;

6: enqueue p into C;

7: else

8: if p 2 C then

9: evaluate 1NN query to find u;

10: p� ¼ k;

11: remove p and enqueue u into C;

12: relocate p or u in C, starting from p�;

5 SAFE REGION COMPUTATION

As mentioned in Section 3, the location manager computes
the optimal safe region for an individual query Q, which is
the inscribed rectangle with the longest perimeter (Ir� lp)
of Q’s inner or outer region, separated by the quarantine
line. Therefore, the safe region is obtained in two steps:
finding the quarantine line, and then, finding the Ir� lp. It
is noteworthy that the safe region must contain the

updating object p (i.e., its centroid), because otherwise, this
object has to send an immediate location update after it
receives this safe region. In this section, we present the
detailed algorithms to compute the quarantine line, and
hence, the safe region for various types of queries.

5.1 Safe Region for Range Query

We first consider the case when object p is a result object.
Fig. 6b shows an example of range query where q is the
centroid of the query. The gray box shows the �-square of p.
Without loss of generality, let us consider the first quadrant,
and let the same p (ðx; yÞ) denote the centroid of the
�-square. Fig. 6a is the close-up image of Fig. 6b. According
to the definition of the most probable result, more than half
of the �-square must reside in the query window. To obtain
the quarantine line, we only need to consider the special
case when exactly half of the square resides in the query
window, which can be further divided into two subcases. In
the first subcase, p is “on” the window border as box “1”
shows, we have either “y ¼ b and xþ �=2 � b” or “x ¼ a and
yþ �=2 � a.” In the second subcase, p is not on the border as
box “2” shows, we have ð�=2þ a� xÞð�=2þ b� yÞ 	 �2=2.
The two subcases give us the quarantine line in the first
quadrant (the bold curve in Fig. 6a), which is defined by the
following formulae:

x ¼ a; if y � b� �=2; or
y ¼ b; if x � a� �=2; or
ð�=2þ a� xÞð�=2þ b� yÞ ¼ �2=2; otherwise:

8<
:

ð1Þ

And the inner region in the first quadrant is therefore the
shaded shape. Summing up all the four quadrants, the total
inner region of this query is the bold shape in Fig. 6b.

The second step is to find the Ir� lp of the inner region.

For any inscribed rectangle whose corner point in the first

quadrant is ðs; tÞ, the perimeter is 2sþ 2t. On the other

hand, since ðs; tÞ must also be on the quarantine line, x ¼
s; y ¼ t must be a solution to (1). This equation shows that

the perimeter 2sþ 2t is maximized at p� when �
2þ a� x ¼

�
2þ b� y ¼ �ffiffi

2
p . Thus, the optimal safe region is the solid

rectangle whose corner point is p� (see Fig. 6b). However,

this safe region may not contain the centroid of the

updating object p. For example, in Fig. 6b, if the centroid

is at p0, then all inscribed rectangles that contain p lie

between the two dotted rectangles whose horizontal sides

and vertical sides pass p0. In this case, the optimal safe

region is one of the two dotted rectangles with longer

HU ET AL.: PAM: AN EFFICIENT AND PRIVACY-AWARE MONITORING FRAMEWORK FOR CONTINUOUSLY MOVING OBJECTS 411

Fig. 6. Safe region for range query. (a) Quarantine line. (b) The optimal

safe region.

4. There is a fourth case where p was not and is not a result object. In this
case, the reevaluation is completed by doing nothing.

perimeter. Therefore, we reach the following proposition on

the safe region for a result object:

Proposition 5.1. For a result object p of a range query (size 2a-
by-2b), the corner of the safe region is:

ðx; yÞ ¼

a�
ffiffi
2
p
�1

2 �; b�
ffiffi
2
p
�1

2 �
� �

; if p:x � a�
ffiffi
2
p
�1

2 �;

& p:y � b�
ffiffi
2
p
�1

2 �;

p:x; �2

2ðaþ�=2�p:xÞ � 2bþ�
2

� �
;

or �2

2ðbþ�=2�p:yÞ � 2aþ�
2 ; p:y

� �
; otherwise:

8>>>>>><
>>>>>>:

If p is a nonresult object, the safe region is an inscribed
rectangle of the outer region. Such rectangle has the longest
perimeter when its corner point p� is at ða; 0Þ or ð0; bÞ.
Similar to the case when p is a result object, this rectangle
can serve as the safe region only if it contains the centroid of
updating object p; otherwise, the safe region is chosen from
the two dotted rectangles that has a longer perimeter.

5.2 Safe Region for kNN Query

We first consider the case when object p is the ith NN
(denoted by oi) of the query. By definition, its �-square must
be closer than the bbox of oiþ1, but farther than the bbox of
oi�1. However, the exact quarantine line (and hence, the
inner or outer region) for p based on this line is complex. In
what follows, we approximate the inner region with a ring
centered at the query point q.

As the first step, we show that a circle centered at q splits
a �-square into inside and outside parts, and their areas are
dependent on the angle of the �-square to q.

Lemma 5.2. Among all squares of the same size and the same
distance to q, the diagonal square, whose diagonal coincides
with the line of pq, has the smallest inside part, while the side
square, whose sides are parallel to pq, has the largest inside
part. (refer Fig. 7a).

On the other hand, the area of the inside part also depends
on the length of pq. For example, in Fig. 7b, the two �-squares
are of the same angle, but the square that is closer to q has a
larger inside part (area I) than the farther square (area II).

Lemma 5.3. For squares of the same angle to q, the closer p to q,
the larger the inside part.

Applying these two lemmas, we can define the lower and
upper bounding circles for an object o. In Fig. 8, there are two
circles, plotted by solid arcs, that touch the near and the far
endpoints of the bbox of o. Then, there must be a diagonal

square and a side square that are split by these two arcs into
inside and outside parts of equal area, respectively. The
lower and upper bounding circles, plotted by dotted arcs,
are the circles that cross the centers of these two squares. By
this definition, as long as the centroid of p’s �-square is
within the lower bounding circle, p is always closer than o;
on the other hand, as long as the centroid is beyond the
upper bounding circle, p is always farther than o. The
following proposition proves the correctness:

Proposition 5.4. Any �-square whose centroid is within (beyond)
the lower (upper) bounding circle for object o must be closer
(farther) to q than o.

Proof. Since any point in the inside part of the diagonal
square (i.e., area II) is always closer than any point in the
bbox of o, and since the inside part is half of the square, by
definition, the diagonal square is closer than the bbox of o.
On the other hand, by Lemmas 5.2 and 5.3, any square
whose center is closer than that of the diagonal square
must be closer than the diagonal square. Applying the
transitivity of the “closer” relation, any square whose
centroid is within the lower bounding circle is closer to q
than o. The proof for the upper bound is similar. tu

Based on Proposition 5.4, the inner region for p (i.e., oi)
can be approximated by a ring that is formed by the lower
bounding circle for oiþ1 and the upper bounding circle for
oi�1. To find the radii of the upper and lower bounding
circles, we further adopt an approximation algorithm as
follows: As shown in Fig. 9, to compute the lower bounding
circle, the diagonal square is first partitioned into
M �M (e.g., 4� 4) subsquares. Then, the distance between
q and the farthest endpoint (the small hollow or solid circles
in the figure) of each subsquare is computed. The medium
(i.e., the M2

2 th shortest) distance is set to the radius for the
lower bounding circle. This bounding circle is guaranteed to
satisfy Proposition 5.4 because the subsquares of the first
M2

2 shortest distances (their farthest endpoints are shown as
hollow circles) must be inside the bounding circle, and these
subsquares already account for half of the total area.

412 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 3, MARCH 2010

Fig. 7. Lemmas on squares. (a) Diagonal and side squares. (b) q and
inside part.

Fig. 8. Upper and lower bounding circles.

Fig. 9. Bounding circle.

Therefore, this circle can serve as an approximation of the
lower bounding circle. The same approximation can be
applied to upper bounding circles. Obviously, better
approximation can be achieved using larger M, which is at
the cost of higher computation overhead.

Once the ring is obtained, the safe region is the inscribed
rectangle of the ring that has the longest perimeter (Ir� lp).
In [21], we showed the following proposition (see Fig. 10a):

Proposition 5.5. The Ir-lp of a ring that is centered at q with
inner radius r and outer radius R is the one of the following
two Ir-lp which has a longer perimeter. The perimeter of the
first (horizontal) Ir-lp is 4Rsin�1 þ 2ðRcos�1 � rÞ, where �1 is

�1 ¼
arctg2; if �x � arctg2 � �y; or
�x; if �x < arctg2; or
�y; if arctg2 < �y;

8<
:

where �x ¼ arcsin p:x�q:x
R and �y ¼ arccos q:y�p:yR . The peri-

meter of the second (vertical) Ir-lp is 4Rcos�2 þ 2ðRsin�2 � rÞ,
where �2 is

�2 ¼
arcctg2; if �x � arcctg2 � �y; or
�x; if �x < arcctg2; or
�y; if arcctg2 < �y:

8<
:

Finally, we reach the following proposition on the safe
region for a result object oi:

Proposition 5.6. The safe region of the ith NN oi is the Ir-lp of
the ring that consists of the upper bounding circle for oi�1 and
the lower bounding circle for oiþ1.

It is noteworthy that for the first NN (i.e., i ¼ 1), the ring
degenerates to a circle. On the other hand, if object p is a
nonresult object, we can approximate the outer region by
the complement of the upper bounding circle of ok. As such,
the safe region is the Ir� lp of the complement of a circle. In
[21], we showed that (see Fig. 10b):

Proposition 5.7. The Ir-lp of the complement of a circle centered
at q with radius r is the inscribed rectangle with one corner
being the cell corner corresponding to p and the opposite corner
is x. x is either on the 1=4 circle whose � is

� ¼
�=4; if �y � �=4 � �x; or
�x; if �x < �=4; or
�y; if �y > �=4;

8<
:

where �x ¼ arcsin p:x�q:x
r and �y ¼ arccos p:y�q:yr .

6 DYNAMIC CLIENT UPDATE STRATEGY

The standard update strategy, which updates when the
centroid of �-square is out of the safe region, guarantees
100 percent monitoring accuracy in the context of the most
probable result. This is a static strategy where the decision
is made independent of previous decisions. In this section,
we discuss two dynamic strategies that achieve objectives
other than monitoring accuracy.

6.1 Mobility-Aware Update Strategy

Previously, we ignore the fact that the server receives a
series of location updates from an object. Although the
server cannot speculate the genuine object location from an
individual �-square, by considering consecutive updates
with certain background knowledge about the object’s
mobility, the server might produce better speculations.

Figs. 11a and 11b show two examples where the maximum
speed vm or the exact direction of the movement is known,
respectively. In these examples, a �-square is updated at time
t0, then at time t1, the object must reside in the dotted shape,
which is called the reachable area from t0. In Fig. 11a, the
reachable area is the Minkoski sum of the �-square at t0 and a
circle with a radius of vmðt1 � t0Þ, i.e., the �-square expanded
by the circle at each point. Likewise, in Fig. 11b, the reachable
area is the half-open space formed by the rays whose ends are
from the �-square. If the �-square at t1 overlaps with the
reachable area, then the object can only locate in the part that
is inside the area (shaded in Figs. 11a and 11b).

To prevent the server from narrowing down the object
location like this, we propose the following mobility-
aware strategy:

Definition 6.1 (Mobility-aware update strategy). Update
when the centroid of �-square is out of the safe region and the
�-square is completely inside the reachable area of all previous
�-squares.

The intuitive version of this strategy must maintain the
entire set of historic �-squares. However, due to its dynamic
property, we show in the following lemma that it is sufficient
to maintain only the reachable area for the last �-square:

Lemma 6.1. For a set of �-squares of ft0; t1; . . . ; tng and
i � j � n, the reachable area of tj is completely inside that
of ti as long as the �-square of any ti is completely inside the
reachable area of ti�1ði 	 1Þ.

In what follows, we develop an algorithm to test
whether a �-square at t1 is completely inside the reachable

HU ET AL.: PAM: AN EFFICIENT AND PRIVACY-AWARE MONITORING FRAMEWORK FOR CONTINUOUSLY MOVING OBJECTS 413

Fig. 10. Computing Ir-lp. (a) Ring. (b) Complement of a circle.

Fig. 11. Problems with mobility knowledge. (a) Known maximum speed.
(b) Known direction.

area of t0 when the direction is known in the range of
ð�l; �hÞ. This is a general case for Fig. 11b. The idea is to take
an analytic view of this area. As is illustrated in Fig. 12, let o
with coordinates ða; bÞ denote a point in the �-square of t0,
and let p with coordinates ðx; yÞ denote a point in the
�-square of t1. Then, the condition that line op falls in
between direction ð�l; �hÞ is equivalent to the inequality
tgð�lÞ � ðy� bÞ=ðx� aÞ � tgð�hÞ (we consider only the first
quadrant for simplicity). Therefore, to test whether the
�-square at t1 (xl � x � xh; yl � y � yh) is completely inside
the reachable area of t0 is equivalent to testing whether any
of the following two sets of inequalities with regard to
x; y; a; b can be satisfied simultaneously:

�ðx� aÞtgð�lÞ þ ðy� bÞ � 0;
0 � a � �; 0 � b � �;
xl � x � xh; yl � y � yh;

8<
:

and

ðx� aÞtgð�hÞ � ðy� bÞ � 0;
0 � a � �; 0 � b � �;
xl � x � xh; yl � y � yh:

8<
:

Either of them can be regarded as the set of linear
constraints in a linear programming (LP) problem regard-
ing variables x; y; a; b. We build two LP problems P1; P2

with a (dummy) objective function C ¼ 0 and the same
linear constraints as above. Determining whether any of the
two sets of inequalities can be satisfied simultaneously is
then equivalent to testing whether P1 or P2 has a feasible
solution. The feasibility can be tested by any LP solver such
as the classic Simplex or Ellipsoid method. The �-square of
t1 is completely inside the reachable area of t0 only if neither
P1 nor P2 is feasible.

6.2 Minimum-Cost Update Strategy

In previous sections, we use a rectangular safe region to
approximate the ideal safe area in which the change of the
centroid p of a �-square does not change the most probable
result of any query. Fig. 13 illustrates the relation between a
safe region and the ideal safe area. The gap between them is
inevitable and could be arbitrarily large due to the
following reasons: 1) a safe region for an individual query
is already a rectangular approximation of the inner or outer
region for this query and 2) the whole safe region is
obtained by intersecting the safe regions for all individual
queries, which makes it far smaller than the ideal safe area.

To guarantee 100 percent monitoring accuracy on the
most probable result, the standard strategy updates when-
ever p moves out of the safe region, but this could be an
unnecessary update as p might still be in the ideal safe area.
We therefore believe that in applications where 100 percent

accuracy is not mandatory and location update costs are
serious issues, a strategy that can trade accuracy with costs
is desirable. In this section, we develop such a strategy that
tries to minimize the cost by adding a �-rule to the standard
strategy to filter out unnecessary updates.

More specifically, symbol � is the probability of p
moving out of the ideal safe area. Let costp denote the cost
of not updating p in this case. As p causes a result change,
costp is essentially the penalty of loss of monitoring
accuracy. On the other hand, let costu denote the cost of
updating p. Therefore, to minimize the expected cost, the
�-rule updates only if costu < ��costp, i.e., � > costu=costp.

To test whether � at p is larger than costu=costp without
sending it to the server, we need to know an additional
point p0 inside the ideal safe area (see Fig. 13). To find p0, we
continue to use the standard strategy. If the next updated
location p� causes no result changes (a feedback from the
server), p� is regarded as p0. Otherwise, if p� changes the
result, the ideal safe area changes as well, so we continue to
find p0 for the new ideal safe area. In general, the �-rule is
only applicable after two consecutive location updates by
the standard strategy, and the second update must cause no
result changes from the first update. This prerequisite is
useful in filtering out those ideal safe areas that are not
significantly larger than their safe regions.

If we regard the space as a space of � values, � ¼ 0 when p
is in the safe region and gradually increases as pmoves away
from the safe region. As � at any point is independent of the
� values at other points, the movement of � from the border
of the safe region to p can be regarded as a discrete random
walk for simplicity (see Fig. 13). Initially, at the border � ¼ 0,
and by taking steps of length �, it walks away from the
border toward p. In each step, � is increased by �� with a
probability � , and not increased with probability 1� � . As
such, the total number of steps N ¼ distðp;RÞ=�. Since the
maximum value for � is 1, �� ¼ 1=N . In any step, if the �-
rule is satisfied, the rule must also be satisfied at p, because �
is monotonously increasing as it moves. Thus, the strategy
updates the location and stops the walk in any step when the
�-rule is satisfied. On the other hand, if the �-rule is not
satisfied till the last step, then the strategy does not update
the location.

We are yet to estimate � . As p0 is known to be inside the

ideal safe area, a random walk to p0 can be conducted in the

same way as above. By the maximum likelihood estimation, we

should maximize the probability that � at p0 does not satisfy

the �-rule, i.e., the probability of � � costu=costp. By the

theory of Bernoulli process, � at p0 follows a Binomial

414 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 3, MARCH 2010

Fig. 12. Reachable area.

Fig. 13. Minimum-cost update strategy: �-rule.

distribution whose cumulative distribution function is

bounded by expð�2 ðN0��b�NcÞ2
N0

Þ. The function reaches the

maximum when N0� ¼ b�Nc. Putting � ¼ costu=costp, we

have � ¼ bcostuN=costpcN0
.

The state transition diagram of this strategy is illustrated
in Fig. 14 where the shaded texts mean rule satisfaction and
unshaded texts mean otherwise. There are four states in this
strategy: “initial state,” “no update,” “first update,” and
“second update.” The �-rule is applicable only at “second
update” and “no update” where p0 is obtained. To transit to
“second update,” there must be two location updates, and
the latter (regarded as p0) must cause no result changes.
Once the strategy decides to update, the �-rule is suspended
and the state is reset to “first update” to wait for the next p0.

7 PERFORMANCE EVALUATION

To evaluate the monitoring performance, we implement a
simulation test bed, where N moving objects move within a
unit-square space [0..1, 0..1]. Each object detects its point
location at frequency f , encapsulates it into a �-square, and
forwards the square to the location updater. Each object has
an individual � and it follows a normal distribution with
mean value 	. We compare our PAM framework with two
other frameworks, namely, the optimal monitoring (denoted
as OPT) and the periodic monitoring (denoted as PRD). In
optimal monitoring, every object has the perfect knowledge
of the registered queries and the �-squares of other moving
objects at any time. Therefore, it knows precisely when the
most probable result of any query changes, and only then
does it send a location update to the server. OPT serves as
the lower bound for all monitoring frameworks. In periodic
monitoring, all objects periodically send out location
updates simultaneously and the server reevaluates all
registered queries based on these updates. Obviously, its
monitoring accuracy and cost depend on the updating
interval. In this paper, we test PRD with updating intervals
0.1 and 1, denoted as PRD(0.1) and PRD(1) hereafter.

7.1 Simulation Setup

In the simulation test bed, each object moves according to
the random waypoint mobility model: the client chooses a
random point in the space as its destination and moves to
it at a speed randomly selected from the range ½0; 2v
;
upon arrival or expiration of a constant movement period

(randomly picked from the range ½0; 2tv
), it chooses a
new destination and repeats the same process. This is a
well accepted and studied model in the mobile comput-
ing literature [5].

The workload consists of W queries, half of which are
range queries and half are kNN queries. For range queries,
the query rectangle is a square and its side length is
uniformly distributed in a range of [0:5qlen; 1:5qlen]. For kNN
queries, the query points are randomly distributed and k
ranges from 1 to kmax. In all the three frameworks, the
database server maintains an in-memory grid index
(M �M cells) on the queries and an R�-tree index [2] on
the objects. The database server is simulated on a Pentium 4
2.4 GHz PC with 1 GB RAM running WinXP SP2. Table 1
summarizes the default parameter settings.

To eliminate the effect from hardware configuration, the
simulation uses logical time units instead of clock time
units. Each simulation run lasts for 5,000 time units or until
the measured value stabilizes (for those simulations that
take 12 hours or more).

The performance metrics for comparison include:

. Monitoring accuracy: The monitoring accuracy at

time t, maðtÞ 2 f0; 1g, is defined as whether the

monitored results for all queries accord with the

results from the OPT framework. Note that the latter

are the most probable results based on the �-squares

of all objects at t. The monitoring accuracy for a time

period ½tb; te
 is defined as the amortized accuracy

over time, i.e., maðtb; teÞ ¼ 1
te�tb

R te
tb
maðtÞdt.

. Wireless communication cost: It is the amortized
number of location updates sent by a moving object
over time.

. CPU time: This is measured by the amortized server
CPU time, which includes the time for query
evaluation and safe region computation.

7.2 Validity of Most Probable Result

The first set of experiments is to validate the definition of
most probable result. Under various 	 (the mean of �) and f
(the location detection frequency), we compare the most
probable result from the OPT framework with the genuine
result (the result as if all the point locations were known) for
all W queries. Fig. 15a shows the consistency rate, i.e., the
proportion of time when the two results are the same. As 	
or f increases, the consistency rate drops. However, the
curve is not linear: the drop becomes slower when 	 and f
become larger. As such, even when 	 or f is very large, the
consistency rate is above 70 percent. This justifies our claim
that the most probable result is a nice approximation of the
genuine result for monitoring tasks.

HU ET AL.: PAM: AN EFFICIENT AND PRIVACY-AWARE MONITORING FRAMEWORK FOR CONTINUOUSLY MOVING OBJECTS 415

Fig. 14. State transition diagram.

TABLE 1
Simulation Parameter Settings

7.3 Overall Performance

The next set of experiments evaluates the overall perfor-
mance of three frameworks with default parameter settings.
Fig. 15b shows the monitoring accuracy and communication
cost (normalized by the cost of OPT). As is guaranteed, our
PAM framework achieves 100 percent accuracy, while PRD
gets only 80-90 percent. Obviously, PRD(0.1) is more
accurate than PRD(1) but the performance gap is less than
10 percent. Further, it is at the cost of 10 times higher
communication overhead. On the other hand, the commu-
nication cost of PAM is much smaller than PRD and
remains close to OPT.

7.4 Effects of �

In this section, we evaluate the effect of � on the
performance. We vary 	 (the mean of �) from 0 to 0.01
and Fig. 16a shows the corresponding monitoring accuracy.
While PAM achieves 100 percent accuracy, the accuracy of
PRD(1) and PRD(0.1) drops significantly as 	 increases. The
drop is mainly caused by the increasing spatial vagueness
introduced by the �-square. However, the rate of the drop
decreases as 	 increases, which, in turn, verifies the fact that
the most probable result is stable for even large �-squares.

Fig. 16b shows the communication cost. The cost for OPT
is almost the same for all settings, because the change of 	
(and thus, �) merely changes the query results, not
necessarily the frequency of result changes. Similarly,
PRD(1) and PRD(0.1) (not plotted) have constant costs of
1 and 10, respectively. On the other hand, the cost of PAM
consistently grows as 	 increases, but even for 	 ¼ 0:01,
which is already large in practice, it still outperforms
PRD(1) by more than 40 percent. Furthermore, the rate of
the increase drops as 	 increases, which indicates that the
approximation ratio of the safe region to the quarantine area
becomes steady.

Fig. 16c shows the CPU cost of PRD and PAM. PAM
increases faster than PRD(1) and PRD(0.1), because the
increase for PAM arises from two aspects—more location
updates and more complex query reevaluation (especially
for kNN queries), whereas the increase for PRD arises only
from the latter. Nonetheless, even for 	 ¼ 0:01, PAM is still
about 1=20 that of PRD(1). Therefore, we can conclude that
PAM is robust and efficient for various privacy settings.

7.5 Scalability

This section evaluates the scalability of all frameworks in
terms of the server’s CPU time and communication cost.
Fig. 17a shows the CPU time when the number of registered
queries (W) increases from 10 to 1,000. PAM only increases
by less than 10 times because the grid-based query index
filters out most of the unaffected and irrelevant queries.
However, for PRD(1) and PRD(0.1), the CPU time is linear
to W , as they need to reevaluate every query at each batch
of location updates. When W ¼ 1;000, for one logical time
unit, the server needs 1.6 CPU seconds to monitor the
100,000 moving objects using PAM, 53 seconds using
PRD(1), and 217 seconds using PRD(0.1). As PRD updates
locations periodically, the high CPU cost imposes on it a

416 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 3, MARCH 2010

Fig. 16. � versus monitoring accuracy, communication, and CPU cost.

(a) Accuracy. (b) Communication cost. (c) CPU cost.

Fig. 17. Performance versus query numbers (W). (a) CPU time.
(b) Communication cost.

Fig. 15. Performance evaluation. (a) Consistency of most probable
result. (b) The overall performance.

maximum update frequency: in this example, the update
frequency is at most once every 21.7 seconds. PAM has no
such limitation. In terms of communication cost, although
PAM increases linearly with respect to W , it is still less than
double of OPT. All the above results suggest that PAM is
robust under various W settings.

Similarly, we conduct simulations to vary the number of
objects (N) from 100 to 100,000. Fig. 18a shows that the CPU
cost only increases by about 40 times when N increases by
1,000 times, due to the R�-tree index which is incrementally
maintained. In contrast, PRD(1) and PRD(0.1) both increase at
least linearly toN , as they need to build a new R�-tree at each
update to reevaluate all queries. Similarly, Fig. 18b shows
that the communication cost of PAM only increases by about
200 times whenN increases by 1,000 times. This suggests that
although a denser object distribution makes safe regions
shrink, only a decreasing portion of objects affects the
quarantine area of any query, and hence, the safe region of
any object. In summary, PAM is more scalable than PRD in
terms of CPU and communication cost.

7.6 Effects of Query Types

In this section, we study the performance of PAM on range
and kNN queries separately. We vary the average query
length qlen of range queries andkmax—the maximumkof kNN
queries. The communication costs are plotted in Figs. 19a and
19b, respectively. We observe that for any parameter setting,
PAM’s communication cost is at most three times as much as
that of OPT. For range queries, as qlen increases, the
communication cost of OPT always increases at a steady
pace. However, the communication cost of PAM increases
more slowly when qlen is relatively small (at 0.001) or large
(0:01). This can be explained by the fact that when qlen is
relatively small or large, the safe regions are determined more

by the home cell than by the relevant queries. Since the size of a
cell is fixed, the cost tends to saturate. On the other hand, for
kNN queries, as kmax increases, the costs of both OPT and
PAM grow steadily. Even so, PAM manages to narrow the
gap when kmax becomes larger. This suggests that for a heavy
workload when results change frequently, the safe region
achieves even better approximation to the ideal safe area.

7.7 Sensitivity of PAM

In this section, we study the sensitivity of PAM to other
influential factors, namely, the average moving speed (v)
and the average constant movement period (tv) for the
moving objects. Fig. 20a shows the communication cost
when v varies from 0.001 to 1 per logical time unit. The costs
of both PAM and OPT increase linearly as v increases,
because the time of an object staying in a safe region is
inversely proportional to v. To eliminate this effect, we also
plot the communication cost per distance unit on the
secondary y-axis in the same figure, and observe that this
cost is independent of v. In other words, the update cost of
PAM is not heavily dependent on the speed of object
movement on a trajectory, but on the length of the
trajectory. The CPU time shows a similar trend, and hence,
is not plotted. In Fig. 20b, we also vary tv from 0.001 to
1 time unit and find that it has little effect on the
performance of PAM. As such, we conclude that PAM is
robust to various moving parameters.

The next influential factor is the M �M grid partitioning
of the query index. We vary M from 5 to 100 and plot both
the communication cost and CPU time in Fig. 21. The larger
is the value of M, the smaller is the grid cell size. The
communication cost increases monotonously with M
because the grid cell sets the largest possible safe region
of an object. Nonetheless, the cost difference between M ¼ 5
and M ¼ 50 is not significant but there is a sharp increase
from M ¼ 50 to M ¼ 100. The explanation is the same as in

HU ET AL.: PAM: AN EFFICIENT AND PRIVACY-AWARE MONITORING FRAMEWORK FOR CONTINUOUSLY MOVING OBJECTS 417

Fig. 19. Performance versus query types. (a) Range queries. (b) kNN
queries.

Fig. 20. Communication cost versus v and tv. (a) v. (b) tv.

Fig. 21. Performance versus grid partitioning.

Fig. 18. Performance versus object numbers (N). (a) CPU time.
(b) Communication cost.

Section 7.6, which is, when M is small and moderate, the
safe regions are determined more by the relevant queries
than by the grid cell, but when M is large, the cell becomes
dominate. On the other hand, the CPU time decreases
monotonously because the number of relevant queries in
the cell decreases, and hence, the safe region computation is
faster. In this figure, M ¼ 50 yields a fairly low commu-
nication cost as well as a fairly low CPU time. From this
experiment, we can see that it is advantageous to adapt the
cell size to the server’s workload: we first use a large M to
partition the grid, and later if the workload turns out to be
low, we enlarge the cell size by merging the cell where the
update occurs with its neighboring cells within a certain
distance. In this way, we can take full advantage of the CPU
resource and reduce the communication cost (by enlarging
the safe region) as much as possible.

7.8 Dynamic Update Strategy

The last set of experiments is conducted to evaluate the
minimum cost update strategy. We vary the threshold for
the �-rule, i.e., costu=costp from 0.01 to 1. Figs. 22a and 22b
show the monitoring accuracy and communication cost in
comparison with the standard strategy. The two curves of
PAM show a similar trend as � increases, which means that
through �, the strategy effectively trades accuracy for
communication cost, or vice versa. Interestingly, when
� � 0:1, the decrease of the communication cost is accom-
panied by almost the same decrease of accuracy; however,
when � > 0:1, the accuracy drops more slowly than the
communication cost. This shows that most ideal safe area is
far larger than the safe region, so even an aggressive � can
still keep the object inside the ideal safe area.

8 CONCLUSIONS

This paper proposes a framework for monitoring contin-
uous spatial queries over moving objects. The framework is
the first to holistically address the issue of location updating
with regard to monitoring accuracy, efficiency, and privacy.
We provide detailed algorithms for query evaluation/
reevaluation and safe region computation in this frame-
work. We also devise three-client update strategies that
optimize accuracy, privacy, and efficiency, respectively. The
performance of our framework is evaluated through a series
of experiments. The results show that it substantially
outperforms periodic monitoring in terms of accuracy and
CPU cost while achieving a close-to-optimal communica-
tion cost. Furthermore, the framework is robust and scales

well with various parameter settings, such as privacy

requirement, moving speed, and the number of queries

and moving objects.
As for future work, we plan to incorporate other types of

queries into the framework, such as spatial joins and

aggregate queries. We also plan to further optimize the

performance of the framework. In particular, the minimum-

cost update strategy shows that the safe region is a crude

approximation of the ideal safe area, mainly because we

separately optimize the safe region for each query, but not

globally. A possible solution is to sequentially optimize the

queries but maintain the safe region accumulated by the

queries optimized so far. Then, the optimal safe region for

each query should depend not only on the query, but also

on the accumulated safe region.

ACKNOWLEDGMENTS

This work was supported by the Research Grants Council,

Hong Kong SAR, China under Project No. HKBU211206,

HKBU211307, HKBU210808, HKBU1/05C, HKBU/FRG08-

09/II-48, RGC GRF 615806, and CA05/06.EG03.

REFERENCES

[1] S. Babu and J. Widom, “Continuous Queries over Data Streams,”
Proc. ACM SIGMOD, 2001.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*-
Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD, pp. 322-331, 1990.

[3] R. Benetis, C.S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
Neighbor and Reverse Nearest Neighbor Queries for Moving
Objects,” Proc. Int’l Database Eng. and Applications Symp. (IDEAS),
2002.

[4] A. Beresford and F. Stajano, “Location Privacy in Pervasive
Computing,” IEEE Pervasive Computing, vol. 2, no. 1, pp. 46-55,
Jan.-Mar. 2003.

[5] J. Broch, D.A. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, “A
Performance Comparison of Multi-Hop Wireless Ad Hoc Net-
work Routing Protocols,” Proc. ACM/IEEE MobiCom, pp. 85-97,
1998.

[6] Y. Cai, K.A. Hua, and G. Cao, “Processing Range-Monitoring
Queries on Heterogeneous Mobile Objects,” Proc. IEEE Int’l Conf.
Mobile Data Management (MDM), 2004.

[7] J. Chen and R. Cheng, “Efficient Evaluation of Imprecise Location-
Dependent Queries,” Proc. IEEE Int’l Conf. Data Eng. (ICDE),
pp. 586-595, 2007.

[8] J. Chen, D. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A Scalable
Continuous Query System for Internet Databases,” Proc. ACM
SIGMOD, 2000.

[9] R. Cheng, D.V. Kalashnikov, and S. Prabhakar, “Querying
Imprecise Data in Moving Object Environments,” IEEE Trans.
Knowledge and Data Eng., vol. 16, no. 9, pp. 1112- 1127, Sept. 2004.

[10] H.D. Chon, D. Agrawal, and A.E. Abbadi, “Range and kNN
Query Processing for Moving Objects in Grid Model,” ACM/
Kluwer MONET, vol. 8, no. 4, pp. 401-412, 2003.

[11] C.-Y. Chow, M.F. Mokbel, and X. Liu, “A Peer-to-Peer Spatial
Cloaking Algorithm for Anonymous Location-Based Services,”
Proc. ACM Int’l Symp. Geographic Information Systems (GIS),
pp. 171-178, 2006.

[12] D. Pfoser and C.S. Jensen, “Capturing the Uncertainty of Moving-
Objects Representations,” Proc. Int’l Conf. Scientific and Statistical
Database Management (SSDBM), 1999.

[13] B. Gedik and L. Liu, “MobiEyes: Distributed Processing of
Continuously Moving Queries on Moving Objects in a Mobile
System,” Proc. Int’l Conf. Extending DataBase Technology (EDBT),
2004.

[14] B. Gedik and L. Liu, “Location Privacy in Mobile Systems: A
Personalized Anonymization Model,” Proc. IEEE Int’l Conf.
Distributed Computing Systems (ICDCS), pp. 620-629, 2005.

418 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 3, MARCH 2010

Fig. 22. Minimum cost strategy versus standard strategy. (a) Accuracy.
(b) Communication cost.

[15] B. Gedik and L. Liu, “Protecting Location Privacy with Persona-
lized k-Anonymity: Architecture and Algorithms,” IEEE Trans.
Mobile Computing, vol. 7, no. 1, pp. 1-18, Jan. 2008.

[16] G. Ghinita, P. Kalnis, and S. Skiadopoulos, “Mobihide: A Mobile
Peer-to-Peer System for Anonymous Location-Based Queries,”
Proc. Int’l Symp. Spatial and Temporal Databases (SSTD), 2007.

[17] G. Ghinita, P. Kalnis, and S. Skiadopoulos, “Prive: Anonymous
Location-Based Queries in Distributed Mobile Systems,” Proc. Int’l
World Wide Web Conf. (WWW ’07), pp. 371-380, 2007.

[18] M. Gruteser and D. Grunwald, “Anonymous Usage of Location-
Based Services through Spatial and Temporal Cloaking,” Proc.
MobiSys, 2003.

[19] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD, 1984.

[20] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, 1999.

[21] H. Hu, J. Xu, and D.L. Lee, “A Generic Framework for Monitoring
Continuous Spatial Queries over Moving Objects,” Proc. ACM
SIGMOD, pp. 479-490, 2005.

[22] G. Iwerks, H. Samet, and K. Smith, “Continuous k-Nearest
Neighbor Queries for Continuously Moving Points with Up-
dates,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2003.

[23] G.S. Iwerks, H. Samet, and K. Smith, “Maintenance of Spatial
Semijoin Queries on Moving Points,” Proc. Int’l Conf. Very Large
Data Bases (VLDB), 2004.

[24] C.S. Jensen, D. Lin, and B.C. Ooi, “Query and Update Efficient B+-
Tree Based Indexing of Moving Objects,” Proc. Int’l Conf. Very
Large Data Bases (VLDB), 2004.

[25] D.V. Kalashnikov, S. Prabhakar, and S.E. Hambrusch, “Main
Memory Evaluation of Monitoring Queries over Moving Objects,”
Distributed Parallel Databases, vol. 15, no. 2, pp. 117-135, 2004.

[26] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing
Location-Based Identity Inference in Anonymous Spatial
Queries,” IEEE Trans. Knowledge and Data Eng., vol. 19, no. 12,
pp. 1719-1733, Dec. 2007.

[27] A. Khoshgozaran and C. Shahabi, “Blind Evaluation of Nearest
Neighbor Queries Using Space Transformation to Preserve
Location Privacy,” Proc. Int’l Symp. Spatial and Temporal Databases
(SSTD), 2007.

[28] H. Kido, Y. Yanagisawa, and T. Satoh, “An Anonymous
Communication Technique Using Dummies for Location-Based
Services,” Proc. Second Int’l Conf. Pervasive Services (ICPS), 2005.

[29] M.-L. Lee, W. Hsu, C.S. Jensen, B. Cui, and K.L. Teo, “Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), 2003.

[30] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “TAG:
A Tiny Aggregation Service for Ad-Hoc Sensor Networks,” Proc.
USENIX Symp. Operating Systems Design and Implementation
(OSDI), 2002.

[31] M.F. Mokbel, C.-Y. Chow, and W.G. Aref, “The New Casper:
Query Processing for Location Services without Compromising
Privacy,” Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 763-
774, 2006.

[32] M.F. Mokbel, X. Xiong, and W.G. Aref, “SINA: Scalable
Incremental Processing of Continuous Queries in Spatio-Temporal
Databases,” Proc. ACM SIGMOD, 2004.

[33] G. Myles, A. Friday, and N. Davies, “Preserving Privacy in
Environments with Location-Based Applications,” Pervasive Com-
puting, vol. 2, no. 1, pp. 56-64, 2003.

[34] J.M. Patel, Y. Chen, and V.P. Chakka, “STRIPES: An Efficient
Index for Predicted Trajectories,” Proc. ACM SIGMOD, 2004.

[35] S. Prabhakar, Y. Xia, D.V. Kalashnikov, W.G. Aref, and S.E.
Hambrusch, “Query Indexing and Velocity Constrained Indexing:
Scalable Techniques for Continuous Queries on Moving Objects,”
IEEE Trans. Computers, vol. 51, no. 10, pp. 1124-1140, Oct. 2002.

[36] K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos, “Fast
Nearest-Neighbor Query Processing in Moving Object Data-
bases,” GeoInfomatica, vol. 7, no. 2, pp. 113-137, 2003.

[37] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD, 1995.

[38] S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez,
“Indexing the Positions of Continuously Moving Objects,” Proc.
ACM SIGMOD, 2000.

[39] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu, “Prediction and
Indexing of Moving Objects with Unknown Motion Patterns,”
Proc. ACM SIGMOD, 2004.

[40] Y. Tao, D. Papadias, and Q. Shen, “Continuous Nearest Neighbor
Search,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2002.

[41] Y. Tao, D. Papadias, and J. Sun, “The TPR*-Tree: An Optimized
Spatio-Temporal Access Method for Predictive Queries,” Proc.
Int’l Conf. Very Large Data Bases (VLDB), 2003.

[42] W. Wu, W. Guo, and K.-L. Tan, “Distributed Processing of
Moving k-Nearest-Neighbor Query on Moving Objects,” Proc.
IEEE Int’l Conf. Data Eng. (ICDE), 2007.

[43] X. Xiong, M.F. Mokbel, and W.G. Aref, “SEA-CNN: Scalable
Processing of Continuous k-Nearest Neighbor Queries in Spatio-
Temporal Databases,” Proc. IEEE Int’l Conf. Data Eng. (ICDE),
2005.

[44] J. Xu, X. Tang, and D.L. Lee, “Performance Analysis of Location-
Dependent Cache Invalidation Schemes for Mobile Environ-
ments,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 2,
pp. 474-488, Mar./Apr. 2003.

[45] M.L. Yiu, C.S. Jensen, X. Huang, and H. Lu, “Spacetwist:
Managing the Trade Offs among Location Privacy, Query
Performance, and Query Accuracy in Mobile Services,” Proc. IEEE
Int’l Conf. Data Eng. (ICDE ’08), 2008.

[46] T.-H. You, W.-C. Peng, and W.-C. Lee, “Protect Moving
Trajectories with Dummies,” Proc. Int’l Workshop Privacy-Aware
Location-Based Mobile Services, 2007.

[47] X. Yu, K.Q. Pu, and N. Koudas, “Monitoring k-Nearest Neighbor
Queries over Moving Objects,” Proc. IEEE Int’l Conf. Data Eng.
(ICDE), 2005.

[48] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D.L. Lee, “Location-
Based Spatial Queries,” Proc. ACM SIGMOD, 2003.

Haibo Hu received the PhD degree in computer
science from the Hong Kong University of
Science and Technology (HKUST) in 2005. He
is an assistant professor in the Department of
Computer Science, Hong Kong Baptist Univer-
sity (HKBU). Prior to this, he held several
research and teaching posts at HKUST and
HKBU. His research interests include mobile
and wireless data management, location-based
services, and privacy-aware computing. He has

published 20 research papers in international conferences, journals, and
book chapters. He is also the recipient of many awards, including the
ACM Best PhD Paper Award and Microsoft Imagine Cup.

Jianliang Xu received the BEng degree in
computer science and engineering from Zhejiang
University, Hangzhou, China, in 1998, and the
PhD degree in computer science from the Hong
Kong University of Science and Technology in
2002. He is an associate professor in the
Department of Computer Science, Hong Kong
Baptist University. He was a visiting scholar in
the Department of Computer Science and
Engineering, Pennsylvania State University, Uni-

versity Park. His research interests include data management, mobile/
pervasive computing, wireless sensor networks, and distributed sys-
tems. He has published more than 70 technical papers in these areas,
most of which appeared in prestigious journals and conference
proceedings. He currently serves as a vice chairman of ACM Hong
Kong Chapter. He is a senior member of the IEEE.

Dik Lun Lee received the BSc degree in
electronics from the Chinese University of Hong
Kong, and the MS and PhD degrees in computer
science from the University of Toronto, Canada.
He is currently a professor in the Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology. He was
an associate professor in the Department of
Computer Science and Engineering, Ohio State
University, Columbus. He was the founding

conference chair for the International Conference on Mobile Data
Management and served as the chairman of the ACM Hong Kong
Chapter in 1997. His research interests include information retrieval,
search engines, mobile computing, and pervasive computing.

HU ET AL.: PAM: AN EFFICIENT AND PRIVACY-AWARE MONITORING FRAMEWORK FOR CONTINUOUSLY MOVING OBJECTS 419

