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Abstract—Classification has been used for modeling many kinds of data sets, including sets of items, text documents, graphs, and

networks. However, there is a lack of study on a new kind of data, trajectories on road networks. Modeling such data is useful with the

emerging GPS and RFID technologies and is important for effective transportation and traffic planning. In this work, we study methods

for classifying trajectories on road networks. By analyzing the behavior of trajectories on road networks, we observe that, in addition to

the locations where vehicles have visited, the order of these visited locations is crucial for improving classification accuracy. Based on

our analysis, we contend that (frequent) sequential patterns are good feature candidates since they preserve this order information.

Furthermore, when mining sequential patterns, we propose to confine the length of sequential patterns to ensure high efficiency.

Compared with closed sequential patterns, these partial (i.e., length-confined) sequential patterns allow us to significantly improve

efficiency almost without losing accuracy. In this paper, we present a framework for frequent pattern-based classification for

trajectories on road networks. Our comparative study over a broad range of classification approaches demonstrates that our method

significantly improves accuracy over other methods in some synthetic and real trajectory data.

Index Terms—Trajectory classification, frequent pattern-based classification, road network analysis, sequential patterns.

Ç

1 INTRODUCTION

WITH recent improvements in GPS and RFID technol-
ogies, a tremendous amount of data about moving

objects on road networks is being collected. The tracking of
moving objects on road networks is becoming increasingly
pervasive. GPS devices embedded in vehicles or other
sensors on the streets can track a vehicle as it moves
throughout the city traffic grid. A recent proposal from the
Oregon Department of Motor Vehicles (DMV) suggests that
a tracking system should be mandatory for all newly
purchased and newly registered vehicles. Although privacy
is a major concern of consumers, one study prepared for the
US Department of Transportation says, “Less than 7 percent
of the respondents expressed concerns about recording
their vehicle’s movements.” One can expect that such
trajectory data, without linking to private information, will
become increasingly universal in the near future.

The importance of data analysis over trajectory data is

being widely recognized [1], [2], [3], [4], [5], [6], [7], [8], [9],

[10]. This paper deals with the problem of classifying vehicles’

trajectories on road networks. Trajectory classification is

defined as the process of predicting a vehicle’s class label
based on its trajectory. Trajectory classification has many
useful applications, such as city and transportation planning;
road construction, design, and maintenance; traffic conges-
tion recognition; law enforcement; and homeland security. In
addition, it can be exploited for real-time monitoring [11], e.g.,
for detecting suspicious movements of vehicles.

Example 1. Intelligent transportation systems have become
widespread in recent years. A popular objective of such
systems is solving traffic congestion. Trajectory classifi-
cation can facilitate traffic prediction [12], which is one of
the key technologies for solving traffic congestion.
Suppose many trip paths (i.e., trajectories of vehicles)
are stored in a database. Each of these trips is labeled
with its destination, such as a district of a town or a city,
and they are provided for training. The destination of a
new trip is predicted by providing a partial trajectory to
the trained classifier. Then, the amount of traffic at
specific destinations can be predicted for the near future.
If we know that an area will be congested in the near
future, traffic can be rerouted.

Example 2. Activity recognition aims at recognizing the
actions and goals of a person from a series of observa-
tions. The Opportunity Knocks prototype [13] is an
example of activity recognition systems. A client trans-
mits GPS signals to a server, and the server makes
inferences about the behavior of the client (person) and
gives suggestions on what to do next. The system is
designed to assist cognitively impaired persons in
finding their ways through city traffic. Trajectory
classification can facilitate activity recognition since
travel paths are closely related to activities. Here, the
class label is an activity, e.g., commute, shopping, or
leisure. Such classification is also useful for marketing
since the server can send more appealing advertisements
to users according to their current activities.
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Feature-based classification has been widely used in the
fields of data mining and machine learning [14], [15], [16],
[17], [18]. In this paradigm, features are extracted from the
data points, and each data point is transformed into a
feature vector. Each feature vector represents the existence
of features in its corresponding data point. These feature
vectors are provided to a classifier such as the support
vector machine (SVM) [19] for training and prediction.

One of the most important requirements for effective
classification is discovering discriminative features. Thus,
the following question naturally arises: “What are good
feature candidates for trajectory classification?” Recently, the
approach using frequent patterns for classification has been
successfully adopted for relational data [14], [15], [20], [21],
[22], [23], text documents [18], protein sequences [17], and
graphs [16]. All of these studies demonstrate the usefulness
of frequent patterns in classification. However, to the best of
our knowledge, the question on trajectory data is yet to be
answered.

To answer this question, we first analyze the behavior of
trajectories on road networks. Intuitively, the locations where
vehicles have visited are critical features for classification.
However, we have found additionally that the order of these
visited locations is crucial for improving classification
accuracy. Based on our analysis, we assert that (frequent)
sequential patterns [24] are good feature candidates since
they preserve this order information. In experiments, we
show that using sequential patterns improves classification
accuracy significantly (by 10–15%) over a naive method that
uses only individual road segments as features.

Furthermore, we address efficiency issues in trajectory
classification because sequential pattern mining from
trajectories tends to be time consuming. The length of
sequential patterns is confined in the process of sequential
pattern mining to enhance classification efficiency. Such
length-confined sequential patterns are called partial sequen-
tial patterns. We show that, by using partial sequential
patterns instead of closed sequential patterns [25], feature
generation time is improved significantly (by up to five
times) with almost no accuracy loss.

In this paper, we present a framework of frequent pattern-
based classification for trajectories on road networks. Our
framework consists of three steps: 1) feature generation,
2) feature selection, and 3) classification model construction.
In the first step, partial sequential patterns are generated. In
the second step, highly discriminative ones are selected for
effective classification. In the third step, those selected
patterns are fed into a classifier. The effectiveness of this
framework is verified by comparing classification accuracy
and efficiency with other alternatives.

In summary, the contributions of this paper are as
follows:

. We analyze the behavior of trajectories on road
networks and investigate good feature candidates
for trajectory classification.

. We apply frequent pattern-based classification [14]
to trajectory classification. More specifically, we
present a framework of using partial sequential
patterns for trajectory classification.

. We conduct a comparative study of a broad range of
classification approaches.

. We demonstrate that our frequent pattern-based
classification method significantly improves accuracy
over other methods and that feature generation can be
done efficiently owing to partial sequential patterns.

The rest of the paper is organized as follows: Section 2
presents the problem statement. Section 3 discusses why
partial sequential patterns are good feature candidates.
Section 4 introduces our trajectory classification method
based on partial sequential patterns. Section 5 presents the
results of performance evaluation. Section 6 discusses
related work. Finally, Section 7 concludes the study.

2 PROBLEM STATEMENT

We develop an accurate and efficient classification method
for trajectories on road networks. Especially, we focus on
mining discriminative patterns for trajectory classification.
Given a set of trajectories D ¼ fTR1; . . . ; TRnumtra

g, with each
trajectory associated with a class label ci 2 C ¼ fc1; . . . ; cnumcla

g,
our method generates a set of features, where the trajectory
and feature are defined as follows:

A road network is usually modeled as a graph G ðV ;EÞ,
where a vertex (i.e., node) of G represents a road junction,
an edge a road segment, and an edge weight the distance
along the road segment [26]. A trajectory is a sequence of
edges and is denoted as TRi ¼ he1; e2; . . . ; ej; . . . ; elenii
(1 � i � numtra). Here, ej (1 � j � leni) is an edge of G.

Features are extracted from the set of trajectories D. They
are categorized into single features and combined features,
which are defined in Definitions 1 and 2, respectively.

Definition 1. A single feature is an edge ej 2 E traversed by at
least one trajectory. The set of all single features is denoted as I .

Definition 2. A combined feature is a sequence of single
features and is denoted as � ¼ he�1

; e�2
; . . . ; e�j ; . . . ; e�ki

(k � 2), where 8 1 � j � k, e�j 2 I .

To define the frequency of a combined feature, we
introduce some necessary notations. Suppose there are two
sequences of edges � ¼ ha1; a2; . . . ; ami and � ¼ hb1; b2; . . . ;
bni. � contains �, denoted as � v �, iff 9 i1; i2; . . . ; im, 1 � i1 <
i2 < � � � < im � n and a1 ¼ bi1 ^ a2 ¼ bi2 ^ � � � ^am ¼ bim . D�
denotes the set of trajectories in D which contains �, i.e.,
D� ¼ fTRjTR 2 D ^ � v TRg. We now define frequent com-
bined features in Definition 3.

Definition 3. A combined feature � is frequent if � � �0, where
� ¼ jD�jjDj is the relative support of �, and �0 is the minimum
support threshold (0 � �0 � 1). The set of frequent combined
features is denoted as F .

Example 3. Fig. 1 shows a simple road network and four
vehicles’ trajectories. Road segments are represented by
light-shaded thin rectangles, and trajectories by arrow
lines. Then, the set of single features is I ¼ fe1; e2; . . . ; e9g.
If the minimum support threshold �0 is 0.5, the set of
frequent combined features is F ¼ fhe1; e3i; he1; e4ig.

Frequent pattern-based classification takes advantage of
frequent combined features. More specifically, our classifi-
cation method exploits frequent combined features as well
as single features. We note that frequent combined features
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are exactly (frequent) sequential patterns [24] except for 1-item
sets. Frequent combined features do not include 1-item sets
since they are already included in single features. Hereafter,
the term “sequential pattern” is used to mean a frequent
combined feature.

3 SYSTEMATIC ANALYSIS FOR DISCRIMINATIVE

PATTERNS

In this section, we discuss why partial sequential patterns
are good feature candidates. Our reasoning consists of two
steps. First, in Section 3.1, we explain why sequential
patterns are useful for trajectory classification. Second, in
Section 3.2, we explain why partial sequential patterns are
more beneficial to trajectory classification than closed
sequential patterns [25].

3.1 Usefulness of Sequential Patterns

Sequential patterns are useful because 1) each pattern is a
sequence of single features, and 2) they are frequent. We
explore these two reasons in detail.

3.1.1 Reason I: Sequence of Single Features

A sequential pattern is a frequent sequence of single
features, i.e., a frequent combined feature. Thus, sequential
patterns preserve the visiting order of road segments (i.e.,
edges), whereas single features do not. In other words,
sequential patterns indicate not only which road segments are
visited, but also in which order road segments are visited; in
contrast, single features indicate only which road segments
are visited.

This ordering information is indeed crucial for improving
the accuracy of trajectory classification since trajectories are
spatiotemporal data. Notice that sequential patterns capture
both spatial and temporal (i.e., ordering) information,
whereas single features capture only spatial information.

Example 4. Fig. 2 shows a bunch of vehicles’ trajectories on
a road network. Solid lines denote the trajectories of a
class c1, and dashed lines those of a class c2. The single
features e1–e6 are useless for distinguishing between the
trajectories of c1 and c2 since all e1–e6 are visited twice by
the trajectories of c1 and also twice by those of c2. In
contrast, combined features are indeed useful for
distinguishing between the trajectories of the two classes.
he5; e2; e1i and he6; e3; e4i appear only in c1, and he5; e3; e4i
and he6; e2; e1i only in c2. This simple example intuitively
demonstrates the usefulness of combined features.

Sequential patterns [24] used in this paper are different
from frequent patterns [27] used by Cheng et al. [14], [15].
The former takes account of the ordering of elements,
whereas the latter does not. Obviously, frequent patterns are
not adequate for our problem since they cannot capture the
ordering information. For example, suppose there are two
sets of vehicles driving from Chicago to Champaign and
from Champaign to Chicago, respectively. Frequent patterns
cannot distinguish between the two sets, whereas sequential
patterns can. However, the cost of mining sequential
patterns is more expensive than that of mining frequent
patterns. Thus, we address efficiency issues in Section 3.2.

3.1.2 Reason II: High Discriminative Power

The discriminative power of a pattern is closely related to
its frequency (i.e., support). Cheng et al. [14] have formally
investigated this relationship in the context of relational
data. Their results demonstrate that patterns of low support
have very limited discriminative power due to their limited
coverage in data, and patterns of very high support have
very limited discriminative power due to their commonness
in data.

Fig. 3 shows two types of nondiscriminative patterns,
which are illustrated by dark-shaded road segments. Type-I
represents the patterns of low support, and Type-II those of
very high support. Type-I patterns can be caused by drivers’
mistakes (e.g., by taking a wrong path inadvertently) or by
the errors of GPS devices. Type-II patterns often occur at
bridges or highways since most vehicles may have to pass
some bridges or highways to reach a certain place.

Sequential patterns are likely to have high discriminative
power since they do not contain Type-I nondiscriminative
patterns. By using a proper support threshold, we are able
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Fig. 1. An example of single and combined features.

Fig. 2. An advantage of using combined features.

Fig. 3. Two types of nondiscriminative patterns in road networks.

(a) Type-I: low support. (b) Type-II: very high support.



to filter out less frequent sequential patterns. Sequential
patterns, however, still contain Type-II nondiscriminative
patterns. Type-II patterns will be removed by feature
selection.

3.2 Benefits of Partial Sequential Patterns

Although sequential patterns are found to be very useful for
trajectory classification, mining sequential patterns from
trajectories could take a long time. This problem is mainly
caused by long sequential patterns since trajectories can be
very long. Unfortunately, when mining long sequential
patterns or when using a very low support threshold, the
performance of sequential pattern mining algorithms often
degrades drastically [25].

Example 5. Fig. 4 shows a typical case where long
sequential patterns occur. The thick rectangle represents
a long popular road or highway, e.g., I-90/94 in Chicago.
Thin rectangles represent small roads that join with this
long road. A lot of vehicles are running along the long
road, and vehicles are continuously merging onto or
going out of the long road. As a result, many long
sequential patterns exist, e.g., he1; e2; e3; . . . ; e98; e99; e100i,
he2; e3; . . . ; e98; e99; e100i, he2; e3; . . . ; e98; e99i, etc.

To ensure high efficiency in sequential pattern mining,
we confine the length of sequential patterns. We define
partial sequential patterns in Definition 4, which are derived
from a closed sequential pattern. A sequential pattern � is
closed if there exists no sequential pattern �0 such that � v �0
as well as � and �0 have the same support [25]. Notice that
closed sequential patterns are chosen as a basis since they
are not redundant.

Definition 4. Suppose � ¼ he1; e2; . . . ; eni is a closed sequential
pattern. The set of k-partial sequential patterns (k � n) of � is
defined as f�j� ¼ hep1

; ep2
; . . . ; epki; 1 � p1 < p2 < � � � <

pk � ng. Here, k is called the length of partial sequential
patterns.

Example 6. Suppose � ¼ he1; e2; e3; e4; e5i is a closed
sequential pattern. Then, the set of 4-partial sequential
patterns of � is fhe1; e2; e3; e4i, he1; e2; e3; e5i, he1; e2; e4; e5i,
he1; e3; e4; e5i, he2; e3; e4; e5ig.

We claim that using partial sequential patterns achieves
high efficiency in feature generation and, at the same time,
high accuracy almost identical to the accuracy of using closed
sequential patterns. Informally, many of the partial sequen-
tial patterns are likely to have the same discriminative
power as their closed sequential patterns. However, if the
length of partial sequential patterns is too short, some of
them are likely to be shared by multiple closed sequential
patterns of different classes. In this case, partial sequential

patterns may not preserve the discriminative power of their
closed sequential patterns. Please see Appendix for theore-
tical analysis on our intuition.

Example 7. Fig. 5 shows four vehicles’ trajectories on a road
network. Let the minimum support threshold be 0.5.
Two closed sequential patterns he1; e2; e3; e4; e7; e8i and
he1; e2; e5; e6; e7; e8i are found. All of 5-partial sequential
patterns, e.g., he1; e2; e3; e4; e7i, have the same discrimi-
native power as their closed sequential patterns. This
condition holds for some of 2-partial sequential patterns,
e.g., he3; e4i and he5; e6i, but not for some of them, e.g.,
he1; e2i and he7; e8i. Hopefully, we expect that a large
proportion of partial sequential patterns will preserve
their original discriminative power unless their length is
too short.

One might argue that partial sequential patterns of
limited discriminative power, e.g., he1; e2i and he7; e8i, could
harm classification accuracy. This is partly true, but most of
nondiscriminative ones can be removed by feature selec-
tion. Thus, accuracy should still be high in most cases with
appropriate feature selection. This has been verified by our
experiments. Hereafter, we call partial sequential patterns
simply as sequential patterns unless we have to distinguish
between them.

4 TRAJECTORY CLASSIFICATION BASED ON

SEQUENTIAL PATTERNS

In this section, we present the framework of frequent
pattern-based classification. This framework consists of
three steps: 1) feature generation, 2) feature selection, and
3) classification model construction. We describe these three
steps through Sections 4.1, 4.2, and 4.3, respectively. The
classification algorithm is summarized in Section 4.4. We
finally discuss an extension to use numerical attributes for
classification in Section 4.5.

Before proceeding, we summarize the notation to be
used throughout the paper in Table 1.

4.1 Feature Generation

We perform sequential pattern mining over the set of
trajectories D for feature generation. In principle, any
sequential pattern mining algorithms can be employed for
this step. Obviously, we can benefit from the state-of-the-art
algorithms.

A very important objective is not to miss any sequential
patterns whose discriminative power exceeds a given
threshold. We take the information gain to measure discrimi-
native power. The information gain threshold is usually
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Fig. 4. An example of long sequential patterns.

Fig. 5. The discriminative power of partial sequential patterns.



given by a user, and a number of strategies on how to set it up
have been developed in feature selection methods [28]. The
remaining task is to convert the information gain threshold
into a minimum support threshold, so that the latter can be
provided to sequential pattern mining algorithms. We
summarize our strategy for determining the minimum
support threshold min sup in Section 4.1.1.

Another important objective is to guarantee highly
efficient feature generation. This objective is accomplished
by confining the length of sequential patterns. We present a
simple heuristic for determining the maximum length
max len of partial sequential patterns in Section 4.1.2. In
fact, this parameter is effective only when the length of a
closed sequential pattern xclosed is greater than max len. In
this case, max len-partial sequential patterns are extracted
instead of xclosed. Otherwise, xclosed itself is generated as a
feature. Therefore, the length of every sequential pattern is
guaranteed to be less than or equal to max len.

4.1.1 The Minimum Support Threshold

We first derive the theoretical information gain upper
bound as done by Cheng et al. [14]. For a pattern
represented by a random variable X and classes repre-
sented by a random variable C, the information gain is
defined as (1). Here, HðCÞ is the entropy, and HðCjXÞ is the
conditional entropy. Since HðCÞ is constant for a given data
set, the upper bound IGub of the information gain is defined
as (2). Here, HlbðCjXÞ means the lower bound of HðCjXÞ

IGðCjXÞ ¼ HðCÞ �HðCjXÞ; ð1Þ
IGubðCjXÞ ¼ HðCÞ �HlbðCjXÞ: ð2Þ

HðCjXÞ is defined in (3). Here, we introduce the notation
for HðCjXÞ. P ðxÞ means the probability of a pattern x, and
P ð�xÞ that of the absence of x. That is, P ðxÞ is equal to the
relative support � of x. P ðciÞmeans the probability of a class
ci. P ðcijxÞ means the probability of ci if 9 TR 2 D, x v TR,
and P ðcij�xÞ that of ci if :9 TR 2 D, x v TR. That is, P ðcijxÞ
indicates what proportion of the trajectories that contain the
pattern x belongs to the class ci

HðCjXÞ ¼�P ðxÞ
Xnumcla

i¼1

P ðcijxÞ logP ðcijxÞ

� P ð�xÞ
Xnumcla

i¼1

P ðcij�xÞ logP ðcij�xÞ:
ð3Þ

HðCjXÞ reaches its lower bound when the pattern x

occurs in as fewer classes as possible. For ease of exposition,
suppose that � � max ðP ðciÞÞ and that the pattern x exists
only in a class ci. Then, HlbðCjXÞ is formulated by (4). If

� > max ðP ðciÞÞ, HlbðCjXÞ can be derived similarly
(although more complex)

HlbðCjXÞjP ðcijxÞ¼1^P ðcjjxÞjj 6¼i¼0

¼ �P ð�xÞ P ðciÞ � P ðxÞ
P ð�xÞ log

P ðciÞ � P ðxÞ
P ð�xÞ þ

�
X
j6¼i

P ðcjÞ
P ð�xÞ log

P ðcjÞ
P ð�xÞ

!

¼ �ðP ðciÞ � �Þ log
P ðciÞ � �

1� � �
X
j6¼i

P ðcjÞ log
P ðcjÞ
1� � :

ð4Þ

Example 8. Suppose there are three classes c1, c2, and c3

with P ðc1Þ ¼ 0:4, P ðc2Þ ¼ 0:3, and P ðc3Þ ¼ 0:3. To make
the conditional entropy minimum, a pattern x should
appear in only one class. Let’s say it is c1. Then, (4) is
formulated as below:

HlbðCjXÞ ¼ �ð0:4� �Þ log
0:4� �
1� � � 2 � 0:3 log

0:3

1� � :

min sup is derived from an information gain threshold
IG0 [14]. We first compute the theoretical information gain
upper bound as a function IGubð�Þ1 of the support �. This
function involves only the class label distribution. Next, we
choose IG0 and find �� ¼ arg max�ðIGubð�Þ � IG0Þ. Finally,
we mine sequential patterns using min sup ¼ ��. Combined
features with the support � < �� can be removed early on
because IGð�Þ � IGubð�Þ < IGubð��Þ � IG0. In this way,
sequential patterns are generated efficiently without miss-
ing any feature candidates with respect to IG0.

4.1.2 The Length of Partial Sequential Patterns

We take account of classification accuracy and feature
generation time in determining max len of partial sequential
patterns. The former might get worse as max len decreases.
In contrast, the latter is improved as max len decreases
since sequential pattern mining can be completed earlier.
Thus, the optimal max len is the smallest one that has
almost no accuracy loss. Finding the optimal max len is
complicated. We do not consider it here, leaving it as the
topic of a future paper. Fortunately, classification accuracy
is shown to be rather insensitive to max len.

Instead, we use a simple heuristic that increases max len
as long as sequential pattern mining is completed in a
reasonable time. This heuristic prevents possible loss of
classification accuracy. Our experience indicates that
max len is usually determined to be around 5. Please see
Appendix for theoretical analysis.

4.2 Feature Selection

The objective of the feature selection step is to select highly
discriminative sequential patterns. We primarily filter out
Type-II nondiscriminative patterns shown in Fig. 3b. They
have very limited discriminative power despite very high
support. Notice that we perform feature selection over only
the set of sequential patterns FðIÞ. Feature selection over
the set of single features I can improve classification
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TABLE 1
The Summary of the Notation

1. IGubð�Þ stands for the upper bound of the information gain when the
argument is assigned to the value of �.



accuracy to some extent, but we observe that the improve-
ment is marginal in many cases. In principle, any feature
selection algorithms can be employed for this step.

We adopt the feature selection method using the F-score
[29].2 The F-score is a variant of the Fisher score. The F-score3

of the ith feature is

F � scoreðiÞ ¼
ð�aðþÞi � �aiÞ2 � ð�að�Þi � �aiÞ2

1
nþ�1

Pnþ

k¼1ða
ðþÞ
k;i � �a

ðþÞ
i Þ

2 � 1
n��1

Pn�

k¼1ða
ð�Þ
k;i � �a

ð�Þ
i Þ

2

; ð5Þ

where nþ (or n�) is the number of positive (or negative)
instances; �ai is the average of the ith feature of all instances;
�a
ðþÞ
i (or �a

ð�Þ
i ) is the average of the ith feature of positive (or

negative) instances; and a
ðþÞ
k;i (or a

ð�Þ
k;i ) is the ith feature of the

kth positive (or negative) instance.
Equation (5) is intuitively described as follows [29]: “The

numerator indicates the discrimination between the posi-
tive and negative sets, and the denominator indicates the
one within each of the two sets.” The larger the F-score is,
the more likely this feature is discriminative. Hence, we use
this score as a feature selection criterion.

Then, the remaining task is to decide how many
sequential patterns should be selected for effective classi-
fication. We adopt the strategy provided with the F-score
method. First, we calculate the F-scores of sequential
patterns, and then, pick some thresholds. As in Fig. 6,
possible thresholds are identified by plotting F-scores on a
graph and picking a few values from the interval where the
F-score begins to be stable. Next, for each threshold, we
filter out sequential patterns whose F-score is below the
threshold, and then, conduct k-fold cross validation [31] over
the filtered training data. Finally, we choose the threshold
with the lowest average validation error. The number of
sequential patterns selected is automatically determined by
this F-score threshold.

4.3 Classification Model Construction

We use the union of single features and sequential patterns
selected, i.e., I [ F sðIÞ, as features. Thus, we map each
trajectory into a feature vector in the feature space of
I [ F sðIÞ. Each entry of a feature vector corresponds to a

feature, either a single feature or a sequential pattern. The
ith entry of a feature vector is equal to the frequency that
the ith feature occurs in the trajectory. Notice that this
mapping should be performed for both the training set and
the test set although sequential patterns are discovered by
mining only the training set.

In our study, we build a classification model using the
support vector machine (SVM) [19]. This design decision
stems from two characteristics of the feature vectors
generated. First, they are high dimensional since many single
features (i.e., road segments) may exist even in a small road
network (typically, more than 1,000). Furthermore, quite a
large number of sequential patterns may be discovered from
these single features (typically, more than 10,000). Second,
they are sparse since each trajectory has only a few of these
features. The SVM is well suited for such high dimensional
and sparse data [31].

4.4 Algorithm

Fig. 74 summarizes the frequent pattern-based classification
algorithm. This algorithm is self-explanatory and goes
through three steps as discussed above.

4.5 Discussion

Our framework can be easily extended to use numerical
attributes for classification. A set of attributes can be attached
to each edge of a trajectory. Examples of such attributes
include the average speed, top speed, elapsed time, day, time-
of-day, etc. In this case, different single features are generated
from one edge depending on the values of the attributes.
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Fig. 6. An example of the F-score distribution.

Fig. 7. The frequent pattern-based classification algorithm.

2. We expect that other feature selection methods will lead to similar
results. In fact, SVM-Infoprop [30] using the weight vector of the SVM has
shown to generate quite similar results.

3. We show the definition for binary classification as in the original
literature [29]. This definition can be easily extended to accommodate
multiclass classification.

4. Some may consider to use a short sliding window or gap constraints to
confine the examination of sequential patterns with small gaps. However,
there may exist some long bridges or highway segments, and the distinct
combined patterns can only be observed by combining the segments before
entering a bridge or after getting off the bridge; thus, a small sliding
window or gap constraints may not lead to finding effective patterns.
Hence, we do not put sliding window ideas or gap constraints into our
design.



Suppose the time-of-day is an important factor for a specific
classification application. Then, if a vehicle visits an edge ei at
9 a.m. and 6 p.m., these two visits should be represented by
separate single features, e.g., ðei;morningÞ and ðei; eveningÞ.

An interesting issue is to decide a proper resolution for an
attribute. In the above example, 9 a.m. can be represented by
using various resolutions ranging from a high level to a low
level, e.g., morning or 8–10 a.m. A proper resolution needs to
be selected based on its discriminative power. Since there
are more mature studies on this issue in feature general-
ization methods [8], we can borrow their strategies and split
the attribute domain using the selected resolution.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the frequent
pattern-based classification method. We describe the experi-
mental data and environment in Section 5.1. We first report
the results for synthetic data in Sections 5.2 and 5.3. The
accuracy and efficiency results are provided in each section.
We then report the results for real data in Section 5.4.

5.1 Experimental Setting

All experiments are conducted on a Pentium 4 3.0 GHz PC
with 1 GB of main memory, running on Windows XP.
Besides, LIBSVM [32] with a linear kernel is used to build a
classifier.

5.1.1 Classification Approaches

We compare five classification approaches summarized in
Table 2. They are categorized depending on the features
used. Single_All uses all single features, and Single_DS
selected single features. Seq_All uses all single features as
well as all sequential patterns, and Seq_DS all single features
as well as selected sequential patterns. Seq_PreDS selects
single features, and then, finds sequential patterns from
these selected single features. Consequently, the sequential
patterns used in Seq_PreDS are quite different from those in
Seq_DS. Among these approaches, Seq_DS is what we
propose. The feature selection method explained in Section
4.2 is applied to both single features and sequential patterns.

5.1.2 Data Generation

For synthetic data, we use the network-based data gen-
erator5 developed by Brinkhoff [33]. It generates synthetic
trajectories on a real-world road network. The synthetic
trajectories are quite close to real traffic since they are the
fastest routes found by considering the maximum speed and
capacity of a road, other moving objects on the road, and
other external factors. The data generator, as it is, generates

essentially random traffic: starting and ending points are
randomly chosen within the network. In order to simulate
more realistic real-world data (i.e., more skewed than pure
randomness), we modify the data generator in two ways.

First, the starting (or ending) points of trajectories are
located close to each other if the trajectories belong to the
same class. For each class, six small (five-block-sized)
regions are randomly picked, and then, the starting points
and the ending points are chosen only from the nodes
within these regions. Nregion denotes the number of such
regions. In this way, we make the trajectories of the same
class share some subroutes.

Second, most trajectories are forced to pass by a small
number of “hot edges.” These hot edges are visited in a given
order for certain classes, but in a totally random order for
other classes. We believe that this data generation is reason-
able in a real environment since highways or bridges can
become hot edges. Moreover, many edges around popular
buildings can also be hot edges, and it is rather common to
visit these popular buildings in a fixed order (e.g., a hospital
! a drug store).Nhot edge denotes the distinct number of such
hot edges, and Nhot class the number of classes where the
visiting order of hot edges is specified. In this way, we control
the impact of sequential patterns on trajectory classification.

Fig. 8 shows the snapshots of 1,000 trajectories
generated for two different classes. The road network of
City of Stockton in San Joaquin County, which contains
18,496 nodes and 24,123 edges, is used. Half of trajectories
are randomly chosen for the training set, and the other
half are used for the test set.

10 basic data sets D1–D10 are generated using the
following parameter values: for D1–D5, the number of classes
= 5, the number of trajectories per class = 1,000, Nregion ¼ 6,
Nhot edge ¼ 5, and Nhot class ¼ 1; for D6–D10, the number of
classes = 10, the number of trajectories per class = 1,000,
Nregion ¼ 6, Nhot edge ¼ 5, and Nhot class ¼ 2.

5.1.3 The Minimum Support Threshold

The minimum support threshold is derived from the
information gain threshold IG0 which is given empirically.
A good value of IG0 ranges around 0.2 for our data sets
according to our experience. For D1–D5, IG0 is set to be
0.25, and the function IGubð�Þ is formulated by (6). The
function is plotted as Fig. 9, so the minimum support
threshold is determined to be 0.1

IGubð�Þ ¼ �5 � 0:2 log 0:2�

�ð0:2� �Þ log
0:2� �
1� � � 4 � 0:2 log

0:2

1� �

� �
:
ð6Þ
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TABLE 2
Five Classification Approaches Compared

Fig. 8. Snapshots of 1,000 trajectories generated for two different
classes.

5. http://www.fhoow.de/institute/iapg/personen/brinkhoff/
generator/.



By using the same strategy, the minimum support

threshold for D6–D10 is set to be 0.06, and that for the real

data set in Section 5.4 to be 0.2.

5.1.4 Feature Generation and Selection

We use the CloSpan [25] algorithm to find sequential
patterns. CloSpan has been regarded as the state-of-the-art
algorithm for closed sequential pattern mining. The imple-
mentation of CloSpan is slightly modified so as to generate
partial sequential patterns. At the time when CloSpan tries to
extend sequences, the length of a candidate sequence is
additionally checked whether it reaches max length.

Table 3 shows the number of features (i.e., single features

and sequential patterns) obtained through feature genera-

tion and feature selection. We set the maximum length of

sequential patterns to be 5.

5.2 Accuracy Results

5.2.1 Overall Results

Table 4 shows the overall results for accuracy. These results

are summarized as follows:

. Seq_DS performs the best as discussed in Section 3.1.
Seq_DS improves accuracy by up to 15 percent over
Single_All. This is exactly the advantage of using
sequential patterns, which we propose in this paper.

. Single_All shows low accuracy since single features
cannot capture the order of road segments that
vehicles have visited.

. Single_DS outperforms Single_All if many of single
features are not discriminative. In contrast, Sin-
gle_DS could decrease accuracy if many of single
features are highly discriminative.

. Seq_All shows low accuracy since not all sequential
patterns are discriminative. That is, sequential
patterns still contain Type-II nondiscriminative
patterns in Fig. 3b.

. Seq_PreDS performs worse than Seq_DS does be-
cause in Seq_PreDS, some single features are
removed too early. As shown in Example 4,
sequences of single features can be really useful for
classification although these single features them-
selves are not. Seq_PreDS could miss such sequences.

5.2.2 Varying the Length of Sequential Patterns

Fig. 10 shows the classification accuracy of Seq_DS as the
length of sequential patterns, denoted as max len, is varied
for the data set D3. We observe that we can obtain the near-
optimal accuracy when max len � 3. Here, the accuracy
loss is as small as 1 percent. As discussed in Section 3.2,
many partial sequential patterns are likely to have the same
discriminative power as their closed sequential patterns.
However, if length is too short (e.g., max len ¼ 2), some
partial sequential patterns are likely to be shared by
multiple closed sequential patterns of different classes. This
sharing obviously decreases classification accuracy.

5.2.3 Varying the Number of Selected Features

Fig. 11 shows the classification accuracy of Seq_DS as the
number of selected features is varied for the data set D9.
Classification accuracy increases as more sequential pat-
terns with high discriminative power are included. After
classification accuracy reaches the maximum, it begins to
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Fig. 9. The plot of IGubð�Þ for D1–D5.

TABLE 3
The Number of Features Used

TABLE 4
Classification Accuracy (Percent)

Fig. 10. The effects of the length of sequential patterns on accuracy.



decrease since the remaining sequential patterns have
limited discriminative power. The optimal number of
selected features, i.e., 21,317, coincides with the one chosen
by our heuristic. The heuristic chooses the one with the
lowest average validation error of k-fold cross validation.
This result indeed verifies our analysis that not all
sequential patterns have high discriminative power.

5.2.4 Varying the Parameters Nhot edge and Nhot class

Fig. 12 shows the classification accuracy of Seq_DS as the

two parameters Nhot edge and Nhot class are varied for the data

set D5. We set Nhot class to be 1 in Fig. 12a and Nhot edge to be

5 in Fig. 12b. We can easily expect that classification

accuracy will increase as these parameters get larger. When

Nhot edge gets larger, sequential patterns of hot edges are

more likely to appear only in the classes where a visiting

order has been specified. Hence, those sequential patterns

become more discriminative. On the other hand, when

Nhot class gets larger, more sequential patterns of hot edges

are generated.

5.3 Efficiency Results

5.3.1 Training Time

Table 5 shows the training time of the five approaches.

Training time is heavily dependent on the number of

features used. Thus, Single_DS is the best in terms of

training time. We note that the training time of Seq_DS is

comparable to that of Single_All. That is, training time is

even decreased or increased only by less than 10 percent in

most cases. The reason is that not many sequential patterns

are necessary to increase classification accuracy.

5.3.2 Prediction Time

Table 6 shows the prediction time of the five approaches.
The trend in Table 6 is the same as that in Table 5. Again,
the prediction time of Seq_DS is comparable to that of
Single_All.

5.3.3 Feature Generation Time

Fig. 13 shows feature generation time as the length of
sequential patterns is varied for the data set D3. We do not
include the time for reading an input file since this time is the
same regardless of the length of sequential patterns. Feature
generation time for 3-partial sequential patterns is shown to
be as small as 20 percent of that for closed sequential patterns.
Nevertheless, accuracy is still high as shown in Fig. 10. This
result indeed indicates the advantage of partial sequential
patterns. If we use a larger data set, feature generation for
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Fig. 11. The effects of the number of selected features on accuracy.

Fig. 12. The effects of Nhot edge and Nhot class on accuracy. (a) Nhot edge.
(b) Nhot class.

TABLE 5
Training Time (Seconds)

TABLE 6
Prediction Time (Seconds)

Fig. 13. Feature generation time depending on the length of sequential
patterns.



closed sequential patterns might not even terminate in a
reasonable time. In such cases, the advantage of partial
sequential patterns becomes more prominent.

5.4 Results for Real Data

Real-world data are used to test the effectiveness of our
classification method. 24 days of taxi data in the San
Francisco area were collected during the month of July in
2006. In all, there were over 800,000 separate trips, 33 million
road-segment traversals, and 100,000 distinct road seg-
ments. Each trajectory represents a trip from when a driver
picks up passengers to when the driver drops them off. The
name of the taxi company cannot be revealed for con-
fidentiality reasons.

Since there is originally no labeling on the data, we select
part of the data and prepare two-class data sets as follows:
The most frequently visited road segments are first
identified, and two of them are chosen for each data set.
The trajectories of one class include the two road segments
in a given order, but those of the other class in the opposite
order. The data set R1 is generated using Bayshore Freeway
and Market Street,6 and the data set R2 using Interstate 280
and US Route 101. The number of trajectories in R1 and R2
are 1,123 and 2,455, respectively. In addition to R1 and R2, a
four-class data set R3 is generated by just combining R1 and
R2. Two classes each from R1 and R2 constitute four classes.

Table 7 shows the number of features used in the three
data sets R1, R2, and R3. The difference between Single_All
and Seq_DS is typically small, which means that only a
small number of highly discriminative sequential patterns
are necessary to increase classification accuracy. The
number of sequential patterns in R3 is smaller than that in
R1 because the same relative minimum support is used for
R1, R2, and R3.

Figs. 14a and 14b show the classification accuracy of the
five approaches for the two data sets R1 and R2. Seq_DS
performs the best also in real data sets. Seq_DS improves
accuracy by about 4 percent over Single_All. This result is
very natural. In the data set R1, one class mainly represents
traffic into downtown San Francisco, and the other class
traffic out of downtown San Francisco. Both classes contain
Market Street, its nearby road segments, and some segments
of Bayshore Freeway, but the visiting sequences of these
road segments are different for the two classes. Thus,
Single_All may not distinguish between the two classes,
whereas Seq_DS can.

In Fig. 14c, the result for the four-class data set R3 is
presented. This result is shown to be very similar to Figs. 14a
and 14b, but the overall accuracy is slightly reduced. It is

common that classification accuracy decreases as the
number of classes increases. Our method Seq_DS still
outperforms other approaches.

6 RELATED WORK

6.1 Classification

The concept of frequent pattern-based classification has
been introduced in associative classification. Representative
methods include CBA [22], CMAR [21], CPAR [23], and
RCBT [20]. In these methods, association rules are gener-
ated and analyzed for use in classification. The methods
search for strong associations between frequent patterns
(conjunctions of attribute-value pairs) and class labels.
Classification is done by evaluating a set of rules in the
form of “p1 ^ p2 ^ � � � ^ pl ) Aclass ¼ C.” In many studies,
associative classification has been found to be more accurate
than some traditional classification methods such as C4.5.

Cheng et al. [14] have proposed a frequent pattern-
based classification method for relational data. Efficiency
issues have also been addressed in subsequent work [15].
This method uses frequent patterns as combined features,
whereas ours uses sequential patterns. According to our
categorization using the type of features in Table 2, this
method falls into I [ F sðIÞ. The authors have provided
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6. Market Street is a major street and important thoroughfare in
downtown San Francisco.

TABLE 7
The Number of Features Used in R1 and R2

Fig. 14. Classification accuracy for real data sets. (a) R1: the Bayshore-
Market data set. (b) R2: the I280-US101 data set. (c) R3: the combined
four-class data set.



in-depth analysis on why frequent patterns provide a
good solution for classification and investigated the
relationship between discriminative power and pattern
frequency. By using this relationship, the authors have
developed a formal strategy for determining the minimum
support threshold. Our method is based on this work.

A number of frequent pattern-based classification meth-
ods have been developed in different domains. Lodhi et al.
[18] have proposed a classification method for text docu-
ments, Leslie et al. [17] for protein sequences, and Deshpande
et al. [16] for graphs, where phrases, substrings, and
subgraphs are used as features. According to our categoriza-
tion, these methods fall into FðIÞ or F sðIÞ. In all these
studies, frequent patterns are generated, and the data are
mapped to a higher dimensional feature space. Data which
are not separable in the original space become linearly
separable in the mapped space. These methods, however, are
not tailored to trajectory classification as opposed to ours.

Fraile and Maybank [11] have applied a hidden Markov
model (HMM) [34] to classifying vehicles’ trajectories. This
method is similar to ones successfully applied to speech
recognition. The measurement sequence is first divided into
overlapping segments. In each segment, the trajectory of a
vehicle is approximated by a smooth function, and then,
assigned to one of the four categories: ahead, left, right, or
stop. In this way, the list of segments is reduced to a string of
symbols drawn from the set fa; l; r; sg. The string of symbols
is classified using the HMM. That is, an HMM for the motion
of the vehicle is constructed, and the Viterbi [34] algorithm is
used to find the sequence of internal states for which the
observed behavior of the vehicle has the highest probability.
This method, however, cannot exploit a sequence of visited
locations because, in the Markov chain, the probability of
each state xi depends only on the value of xi�1. In contrast,
discriminative patterns could be many states apart.

There are more methods developed for time series and
general trajectories. The method in [35] basically belongs to
Single_DS which is one of our alternatives. Thus, it is
already covered by the current experiments. The method in
[36] is not appropriate for the trajectories on road networks
since it performs classification using the distance between
entire time series. There is no well-defined distance measure
between two entire trajectories on road networks. Moreover,
discriminative features are likely to exist on some parts of
the trajectories. The method in [37] is not appropriate either
since it assumes that the trajectories are generated by
continuous functions. The sequences of road segments are
hard to be modeled by continuous functions.

6.2 Trajectory Pattern Mining

In this section, we briefly review recent studies on trajectory
pattern mining. Please notice that these studies are on
mining different trajectory patterns, but not on classification
based on trajectory patterns. Moreover, our framework is
general enough to adopt new kinds of trajectory patterns
with proper extensions.

Giannotti et al. [2] have developed an algorithm of
mining trajectory patterns. A T-pattern is T ¼ ðS;AÞ, where
S ¼ hs0; . . . ; sni is a sequence of nþ 1 locations, and A ¼
h�1; . . . ; �ni is a sequence of transition times between
consecutive locations. When generating T-patterns, similar

locations should be considered as being the same since the
exactly same location usually never occurs. To handle
spatial similarity, regions of interest (i.e., popular regions) are
discovered based on density. Then, T-patterns are repre-
sented using only these regions.

Gudmundsson and Kreveld [4] have proposed methods
of finding longest duration flocks in trajectory data. A flock
in a time interval I, where the duration of I is at least k,
consists of at least m entities such that for every point in
time within I, there is a disk of radius r that contains all the
m entities. Compared with T-patterns, intermediate paths
between consecutive regions and absolute times are im-
portant in flocks, whereas they are not in T-patterns. Flocks
could be used as features for trajectory classification.
However, there is no need to find the longest duration
flocks for classification.

T-patterns and flocks are designed to support general
trajectories, i.e., sequences of ðx; y; tÞ, but are not tailored to
trajectories on road networks. To the best of our knowledge,
most data mining algorithms for trajectories on road
networks assume the environment where raw trajectories
are already transformed to sequences of road segments by
map matching algorithms. This environment is natural
since the sequences of road segments are much more
intuitive and concise than those of GPS points. Further-
more, the output of map matching is very reliable in recent
days. Therefore, there is no need to use the algorithms for
general trajectories in our paper.

Mamoulis et al. [9] and Cao et al. [1] have proposed
methods of discovering periodic patterns in spatiotemporal
sequences. A periodic pattern is defined as a T -length
sequence of the form r0r1 . . . rT�1, where ri is a spatial region
or � (the whole spatial universe). Although periodic patterns
could be used as features, the patterns found in this work are
within the trajectory of a single moving object. In order to be
useful for classification, the patterns should be within the
trajectories of many moving objects in the same class. This
work is not tailored to trajectories on road networks either.

Zheng et al. [10] have proposed a method of mining
interesting locations and travel sequences from GPS
trajectories. The main idea is to exploit users’ travel
experiences. A user’s visit to a location is regraded as a
direct link from the user to the location. Then, an HITS-
based model is used to infer the user’s travel experience and
the interest of the location. However, high interestingness
does not necessarily mean high discriminative power since
interestingness increases as the location is visited more
often. Recall that Type-II patterns in Fig. 3b have limited
discriminative power. This work is not tailored to trajec-
tories on road networks either.

Gidófalvi and Pedersen [3] have proposed methods of
mining long, sharable patterns (LSP) from trajectories on
road networks. Since their main target is a ride-sharing
application, long patterns are definitely preferable for their
purposes. However, long patterns are not very critical to
classification accuracy as proven in our paper. The LSP
mining algorithm tries to mine frequent patterns (not
sequential patterns) mainly due to performance issues since
patterns in trajectories could be extremely long. Thus, LSPs
are not suitable for classification purposes as discussed in
Section 3.1.1.
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7 CONCLUSIONS

In this paper, we have presented a framework of frequent
pattern-based classification for trajectories on road net-
works. We have performed systematic analysis about the
behavior of trajectories on road networks. Our analysis
leads to the conclusion that partial sequential patterns are
good feature candidates.

We have conducted extensive experiments by comparing
classification accuracy and efficiency of five classification
approaches. Experimental results show that Seq_DS im-
proves classification accuracy by up to 15 percent over
Single_All. At the same time, training time and prediction
time are shown to increase only by less than 10 percent, and
feature generation time is shown to decrease significantly
with classification accuracy losing by as small as 1 percent.
Also, in real data sets, Seq_DS achieves the highest
classification accuracy among the five approaches. These
results indeed demonstrate the effectiveness of trajectory
classification using partial sequential patterns.

Overall, we believe that we have provided a practical
framework for trajectory classification which can be used in
a real environment. Also, we believe that the methodology
developed here tells us that using sophisticated patterns can
be quite useful in classification. Further study on efficient
and effective methods for pattern-based classification with
more sophisticated patterns is an interesting direction for
future research.

APPENDIX

We theoretically show that a large proportion of partial
sequential patterns will preserve their original discrimina-
tive power unless their length is too short. For ease of
exposition, binary classification is used for our theoretical
analysis. X denotes a random variable for a pattern, and C
that for a class. Suppose X 2 f0; 1g and C 2 f0; 1g due to
binary classification. Table 8 summarizes the notation for
this analysis.

The conditional entropy of a closed sequential pattern is
formulated by (7). The information gain can be easily
obtained by (1) and is employed as the measure of
discriminative power

HðCjXÞ ¼ ��q log q � �ð1� qÞ logð1� qÞ

þ ð�q � pÞ log
p� �q
1� �

þ ð�ð1� qÞ � ð1� pÞÞ log
ð1� pÞ � �ð1� qÞ

1� � :

ð7Þ

If a k-partial sequential pattern is used instead of a closed
sequential pattern, q needs to be changed accordingly as (8).
One of k-permutations from a closed sequential pattern in
the other class may match the k-partial sequential pattern,
which makes q decrease by that probability. Equation (8) is
a simplified formulation, but it is enough for a ballpark
analysis. We assume �k �� �closed though �k will actually get a
little larger. p is the same regardless of the length of a partial
sequential pattern

qk ¼ qclosed �
nð1� pÞ

lPk
: ð8Þ

We plot the information gain of a k-partial sequential
pattern in Fig. 15 with k varied from 10 down to 2. Other
variables are set reasonably as follows: � ¼ 0:5, p ¼ 0:5,
q ¼ 0:9, n ¼ 100, and l ¼ 10. The information gain is kept
high when k � 4, drops rapidly when k ¼ 3, and becomes
very low when k ¼ 2. Thus, if we set k to be 2, classification
accuracy would not be as good. This analysis coincides very
well with Fig. 10 in Section 5.2.2.

It turns out that this analysis is very helpful for determin-
ing max len. We can draw a graph just like Fig. 15 by using
the information of a given data set. Then, it is required to find
the length where the information gain decreases signifi-
cantly, e.g., k ¼ 3 in Fig. 15. max len can be the smallest value
larger than the length. Our experience indicates that
max len ¼ 5 is a good configuration, in general.
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