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Authenticated Multi-Step Nearest Neighbor 
Search 

Stavros Papadopoulos, Lixing Wang, Yin Yang, Dimitris Papadias, Panagiotis Karras 

Abstract — Multi-step processing is commonly used for nearest neighbor (NN) and similarity search in applications involving high-
dimensional data and/or costly distance computations. Today, many such applications require a proof of result correctness. In this 
setting, clients issue NN queries to a server that maintains a database signed by a trusted authority. The server returns the NN set 
along with supplementary information that permits result verification using the dataset signature. An adaptation of the multi-step NN 
algorithm incurs prohibitive network overhead due to the transmission of false hits, i.e., records that are not in the NN set, but are 
nevertheless necessary for its verification. In order to alleviate this problem, we present a novel technique that reduces the size of 
each false hit. Moreover, we generalize our solution for a distributed setting, where the database is horizontally partitioned over 
several servers. Finally, we demonstrate the effectiveness of the proposed solutions with real datasets of various dimensionalities. 

Index Terms — Query Authentication, Multi-step Nearest Neighbors, Similarity Search.  

1 INTRODUCTION

et DB be a D dimensional dataset. Each record P DB
can be thought of as a point in the space defined by the

D attribute domains, and in the sequel we use the term
record and point interchangeably. Given a point Q, a
nearest neighbor (NN) query retrieves the record {P DB :
DST(Q, P) DST(Q, P ) P DB}, where DST(Q, P)
denotes the distance between Q and P. Likewise, a kNN
query returns the k closest points to Q. NN and kNN
queries are common in similarity retrieval. Specifically, since
similarity between records is inversely proportional to their
distance, a kNN query returns the k most similar records to
Q. The multi step framework [11], [19] has been proposed
for NN and similarity retrieval in domains that entail high
dimensional data (e.g., in Time Series, Medical, Image,
Biological and Document Databases), expensive distance
functions (e.g., Road Network Distance, Dynamic Time
Warping), or a combination of both factors.

In this paper, we focus on authenticated multi step NN
search for applications that require a proof of result
correctness. For instance, [3] argues that the most cost
effective way for medical facilities to maintain radiology
images is to outsource all image management tasks to
specialized commercial providers. Clients issue similarity
queries to a provider. The latter returns the result set and
additional verification information, based on which the
client establishes that the result is indeed correct; i.e., it
contains exactly the records of DB that satisfy the query
conditions, and that these records indeed originate from
their legitimate data source (i.e., the corresponding medical
facility). A similar situation occurs for data replication, i.e.,
when a data owner stores DB at several servers. Clients
issue their queries to the closest (in terms of network

latency) server, but they wish to be assured that the result
is the same as if the queries were sent to the original source
of DB. In other cases, correctness is guaranteed by a trusted
third party. For instance, notarization services [20] have been
proposed to safeguard against tampering in document
databases (the motivating example being Enron).
Authenticated query processing ensures the client that the
received result complies with the validated DB.

Initially, we study the problem assuming that the entire
DB resides at a single server. Our first contribution is AMN,
an adaptation of a multi step algorithm that is optimal in
terms of DST computations. AMN requires transmissions
of false hits, i.e., records that are not in the result, but are
nevertheless necessary for its verification. In addition to the
network overhead, false hits impose a significant burden to
the client, which has to verify them. The second
contribution, C AMN, alleviates this problem through an
elaborate scheme that reduces the size false hits. Finally, we
consider a distributed setting, where the database is
horizontally partitioned over several servers. Our third
contribution, ID AMN, incrementally retrieves data,
gradually eliminating servers that cannot contribute results.

The rest of the paper is organized as follows. Section 2
surveys related work. Section 3 presents the indexing
scheme and the query algorithms of AMN. Section 4
focuses on C AMN and minimization of the false hits.
Section 5 deals with distributed servers and ID AMN.
Section 6 contains an extensive experimental evaluation
with real datasets, and Section 7 concludes the paper.

2 BACKGROUND 
Section 2.1 describes multi step query processing. Section
2.2 overviews similarity search for high dimensional data.
Section 2.3 surveys background on authenticated queries.
Section 2.4 focuses on the MR Tree, which is used by the
proposed techniques.
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2.1 MULTI-STEP NN FRAMEWORK 
The multi step NN framework is motivated by applications
that entail expensive distance computations. Specifically,
let DST(Q, P) be the actual distance between a query Q and
a data point P DB. The applicability of the multi step
framework rests on the existence of a filter distance metric
dst, which is cheap to evaluate and satisfies the lower
bounding property, i.e., for every possible Q and P: dst(Q, P)
DST(Q, P). Multi step NN search was introduced in [11].

Subsequently, Seidl and Kriegel [19] proposed the
algorithm of Figure 1, which is optimal in terms of DST
computations. In order to provide a concrete context, our
explanation focuses on road networks [18], where DST and
dst refer to the network and Euclidean distance,
respectively. Compared to Euclidean distance (dst),
network distance (DST) computations are significantly
more expensive because they entail shortest path
algorithms in large graphs. Moreover, the Euclidean kNNs
can be efficiently retrieved using conventional NN search
on a spatial index.

Assuming that DB is indexed by an R* tree [1], the
multi step kNN algorithm first retrieves the k Euclidean
NNs of Q using an incremental algorithm (e.g., [7]). These
points are inserted into a result set RS, and their network
(DST) distances are computed. Let DSTmax be the network
distance1 between Q and its current kth NN Pk. The next
Euclidean NN P is then retrieved. As long as dst(Q, P) <
DSTmax, the algorithm computes DST(Q, P) and compares it
against DSTmax. If DST(Q, P) < DSTmax, P is inserted into RS,
the previous Pk is expunged, and DSTmax is updated. The
loop of Lines 5 9 terminates when dst(Q, P) DSTmax;
because of the lower bounding property of the Euclidean
distance, any point lying further in the Euclidean space
cannot be closer than DSTmax in the network.

AlgorithmMultistepNN(Q, k)
1. Retrieve the k NNs {P1, ..., Pk} of Q according to dst
2. RS = {P1, ..., Pk}, sorted according to DST
3. DSTmax = DST(Q, Pk) // the current kth NN DST
4. P = next NN of Q according to dst
5. While dst(Q, P) < DSTmax
6. If DST(Q, P) < DSTmax
7. Insert P into RS and remove previous kth NN
8. Update DSTmax over RS
9. P = next NN of Q according to dst

Fig. 1 Optimal multi-step kNN processing 

Independently of the application domain, the algorithm
of Figure 1 performs the minimum number of DST
computations. Specifically, in addition to RS, the DST
distances are computed only for false hits, i.e., the set of
points FH = {P DB RS: dst(Q, P) DST(Q, Pk)}, where Pk is
the final kth nearest neighbor. The rest of the records are not
accessed at all (if they reside in pruned nodes of the R*
tree), or they are eliminated using their dst to Q.

1 To avoid tedious details, in our discussion we assume that all data
distances to the query point are different.

2.2 HIGH-DIMENSIONAL SIMILARITY SEARCH USING MULTI-
STEP NN 
Several applications including Image, Medical, Time Series
and Document Databases involve high dimensional data.
Similarity retrieval in these applications based on low
dimensional indexes, such as the R* Tree [1], is very
expensive due to the dimensionality curse [2]. Specifically,
even for moderate dimensionality (i.e., D = 20) a sequential
scan that computes DST(Q, P) for every P DB is usually
cheaper than conventional NN algorithms using the index.
Consequently, numerous specialized structures have been
proposed for exact [8] and approximate [22] kNN search in
high dimensions.

The GEMINI framework [6], [11] follows a different
approach, combining multi step search with a dimensionality
reduction technique that exhibits the lower bounding
property. Specifically, each record P DB is mapped to a
low dimensional representation p in d dimensions (d << D).
The resulting d dimensional dataset db is indexed by an R*
tree, or any low dimensional index. The query Q is also
transformed to a d dimensional point q and processed
using a multi step method. For instance, in the algorithm of
Figure 1, DST (resp. dst) computations involve high (low)
dimensional points. The index prunes most nodes and
records using the cheap, filter (dst) distances2, whereas the
expensive DST computations are necessary only for the
points in result RS and false hit set FH.

GEMINI is the most common approach for performing
similarity search over high dimensional data, and
especially time series. Numerous dimensionality reduction
methods have been used extensively including Discrete
Fourier Transform (DFT), Singular Value Decomposition (SVD),
Discrete Wavelet Transform (DWT), Piecewise Linear
Approximation (PLA), Piecewise Aggregate Approximation
(PAA), Adaptive Piecewise Constant Approximation (APCA),
and Chebyshev Polynomials (CP). Their effectiveness is
measured by the number of records that they can prune
using only the low dimensional representations (i.e., it is
inversely proportional to the cardinality of FH). Ding et al.
[5] experimentally compare various techniques, concluding
that their effectiveness depends on the data characteristics.

2.3 AUTHENTICATED QUERY PROCESSING 
In authenticated query processing, a server maintains a
dataset DB signed by a trusted authority (e.g., the data
owner, a notarization service). The signature sig is usually
based on a public key cryptosystem (e.g., RSA [16]). The
server receives and processes queries from clients. Each
query returns a result set RS DB that satisfies certain
predicates. Moreover, the client must be able to establish
that RS is correct, i.e., that it contains all records of DB that
satisfy the query conditions, and that these records have
not been modified by the server or another entity. Since sig
captures the entire DB (including records not in the query

2 Note that in GEMINI DST and dst may be based on the same definition
(e.g., they may both be Euclidean distances). In this case, dst is cheaper
because of the lower dimensionality.
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result), in addition to RS, the server returns a verification
object (VO). Given the VO, the client can verify RS based on
sig and the signer’s public key.
VO generation at the server is usually performed using

an authenticated data structure (ADS). The most influential
ADS is the Merkle Hash Tree (MH Tree) [15], a main
memory binary tree, originally proposed for single record
authentication. Each leaf in the MH Tree stores the digest
of a record, calculated using a one way, collision resistant
hash function h( ), such as SHA 1 [16]. An inner node stores
a digest computed on the concatenation of the digests in its
children. The trusted authority signs the root digest. Figure
2 illustrates an MH Tree over 16 records. Assume that a
client requests record P6. When traversing the tree to locate
P6, the server produces a VO that contains the digests
(shown in grey) of the siblings of the visited nodes: VO =
[[h25 [[h5 P6] h20]] h30]. Tokens ‘[’ and ‘]’ signify the scope of a
node. VO and sig are transmitted to the client, which
subsequently simulates a reverse tree traversal. Specifically,
from h5 and P6 it computes h19, then h26 (using h19 and h20), h29
(using h25 and h26), and finally h31 (using h29 and h30). Due to
the collision resistance of the hash function, if P6 is
modified, then the digest h31 re constructed by the client
will not match sig; hence, the verification will fail.

sig

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

h17 h18 h19 h20 h21 h22 h23 h24

h25 h26 h27 h28

h29 h30
h31

P6requested record

included in the VO computed by the client

Fig. 2 MH-Tree example 

The MH Tree constitutes the basis of a large number of
subsequent ADSs that support: (i) range queries on a single
attribute [13], (ii) multi dimensional ranges [23], (iii)
continuous queries on data streams [24], (iv) search in
generalized directed acyclic graphs [14], (v) search over
peer to peer networks [21], (vi) XML queries [12], and (vii)
similarity based document retrieval [17]. In the following,
we focus on the MR Tree [23], the state of the art multi
dimensional ADS, which is utilized by our methods.

2.4 THE MR-TREE 
The MR Tree [23] combines the concepts of the MH Tree
and the R* Tree [1]. A leaf node contains entries elf of the
form (pgP, P), where P is an indexed point, and pgP is a
pointer to the page accommodating the record of P. An
internal node N stores entries ein of the form (pgNc, MBRNc,
hNc), where pgNc points to ein’s child node Nc. If N is at level 1
(the leafs being at level 0), MBRNc is the minimum
bounding rectangle (MBR) of the points in Nc, and hNc is a
digest computed on the concatenation of the binary
representation of the points in Nc. If N lies at higher levels,
MBRNc is the MBR of all theMBR values in Nc, and hNc is the

digest of the concatenation of all pairs (MBRi, hi) in Nc.
Figure 3 illustrates a 2 dimensional MR Tree assuming a
maximum node capacity of 3 entries per node. A signature
sig is produced on the root digest hroot = h(MBRN2 | hN2 |
MBRN3 | hN3).

|
)

Q
P1

P2

P3

P4

P5

P6

P7

P8 P9

P10

P11

P12

N1

N2

N3

N4

N5

N6

N7

N1

N2

N4 N5 N6 N7

N3

e1 e2

MR-Tree

hN4=h(P1 | P2 | P3)

hN3=h(MBRN6 | hN6
MBRN7 | hN7)

sig = sign(h(MBRN2
| hN2 | MBRN 3 | hN3)

e2= (pgN3, MBRN3, hN3

e3 e4 e5 e6

e3= (pgN4, MBRN4, hN4)

e7 e8 e9 e10 e11 e12 e16 e17 e18e13 e14 e15

e8= (pgP2, P2)
Level 0 - Leaf

Level 2 - root 

Level  1
DST

Q
R

max

Fig. 3 MR-Tree example 

Upon receiving a range query QR, the server performs a
depth first traversal of the MR Tree, using the algorithm of
Figure 4, to retrieve the set RS of points in QR. Furthermore,
it generates a VOR that contains: (i) all the points outside QR
that reside in a leaf MBR overlapping QR, and (ii) a pair
(MBRN, hN), for every node N pruned during query
processing. In the example of Figure 2, given the shaded
range QR, we have RS = {P2, P3, P7}, and VOR = [[[P1, result,
result] (MBRN5, hN5)] [[result, P8, P9] (MBRN7, hN7 )]]. The
token result signifies an object in RS according to the order
of appearance in RS. For instance, [P1, result, result]
corresponds to node N4; the first occurrence of result refers
to P2, and the second one to P3. In order to distinguish the
type of each element in the VO,MR_Range includes a header
prior to each token, digest, and point in the VO. This
header consumes 3 bits, which suffice to represent 8
different element types. For simplicity, we omit the headers
in our presentation since the element type is implied by its
name.

AlgorithmMR_Range (QR, N)
1. Append [ to VO
2. For each entry e in N // entries must be enumerated in original

order
3. If N is leaf
4. If e falls in QR
5. Insert e into RS and append a result token to VO
6. Else // e falls out of QR
7. Append e.P to VO
8. Else // N is internal node
9. If e.MBRNc overlaps Q, MR_Range(Q, e.pgNc)
10. Else append e.MBRNc, e.hNc to VO // a pruned child node
11. Append ] to VO

Fig. 4  Range query processing with the MR-tree 

The server sends RS, VO and sig to the client, which first
verifies that all points of RS indeed fall in QR. Then, it scans
VOR and re constructs hroot bottom up (using a process
similar to the MH Tree verification). In our example, the
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client initially substitutes the first two result tokens with P2

and P3 from RS, and uses P1, P2, and P3 to compute digest
hN4 = h(P1 | P2 | P3) and MBRN4. Then, it utilizes MBRN4 and
MBRN5 to evaluate hN2 = h(MBRN4 | hN4 | MBRN5 | hN5) and
MBRN2. Likewise, it subsequently calculates hN3 and MBRN3
from the partial VO [[result, P8, P9] (MBRN7, hN7)]. Eventually,
it computes hroot = h(MBRN2 | hN2 | MBRN3 | hN3). If hroot
matches sig, the client is assured that the points in RS are
sound. Furthermore, if all MBR values and points in VO lie
outside QR, then RS is complete.

The MR Tree can also process NN queries [23]. Assume,
for instance, a query asking for the three NNs of point Q in
Figure 3. The server: (i) retrieves the kNNs of Q (i.e., P2, P3
and P7) using any conventional algorithm; (ii) computes the
distance DSTmax of the kth NN (i.e., DSTmax = DST(Q, P7)), and
(iii) it finally executes MR_Range treating (Q, DSTmax) as the
range. For this example, the VO is identical to that of QR in
Figure 3 since both the resulting points and accessed nodes
are the same. The verification process of the client is also
identical to the one performed for range queries. However,
as an adaptation of the R* tree, the MR Tree also suffers
from the dimensionality curse [2]. Therefore, the
application of the afore mentioned method on high
dimensional data has very limited pruning power.
Specifically, for numerous dimensions, nearly all leaf nodes
must be visited (leading to high server cost); consequently,
the majority of points are inserted in the VO (leading to
high communication overhead); finally, the client has to
verify almost the entire dataset.

3 AUTHENTICATED MULTI-STEP NN 
Our work adopts the GEMINI framework because (i) it has
been proven effective in non authenticated similarity
retrieval, especially for numerous (i.e., D > 100) dimensions,
where even high dimensional indexes fail3; (ii) it can be
extended to authenticated query processing based on a low
dimensional ADS, i.e., the MR Tree, whereas, currently
there are no authenticated high dimensional structures; (iii)
it is general, i.e., it can also be applied when the expensive
distance computations are due to the nature of the distance
definition (e.g., network distance), rather than the data
dimensionality (in which case D = d).

We assume a client server architecture, where the server
maintains data signed by a trusted authority. There are two
versions of the signed dataset: a D dimensional DB and a d
dimensional db (d << D), produced from DB using any
dimensionality reduction technique that satisfies the lower
bounding property. For instance, DB may be a set of high
dimensional time series and db their low dimensional
representations obtained by DFT. There is a single

3 High dimensional indexes for exact NN retrieval, such as the state of
the art i Distance [8], are designed for up to about 50 dimensions, whereas
we perform experiments with D up to 1024.

signature sig, generated by a public key cryptosystem (e.g.,
RSA), that captures both DB and db. DST (dst) refers to the
distance metric used in the D(d) dimensional space. For
ease of illustration, we use Euclidean distance for both the
DST and dst metrics. Nevertheless, the proposed
techniques are independent of these metrics, as well as of
the underlying dimensionality reduction technique.

The proposed Authenticated Multi step NN (AMN)
extends the multi step nearest neighbor algorithm of [19] to
our setting. As opposed to optimizing the processing cost
at the server, the major objective of AMN (and any query
authentication technique, in general) is to minimize (i) the
network overhead due to the transmission of the
verification object (VO), and (ii) the verification cost at the
client (which is assumed to have limited resources
compared to the server). Section 3.1 describes the indexing
scheme of AMN, while Section 3.2 presents the query
processing and verification algorithms. Table 1 summarizes
the most important symbols used throughout the paper.

3.1 INDEXING SCHEME 
The server indexes db using an MR Tree. Since
authentication information should capture both low and
high dimensional representations, AMN necessitates the
following modifications on the structure of the MR Tree.
Each leaf (level 0) entry elf has the form (pgP, p, hP), where p
db is the reduced representation of P DB, and hP is the

digest of the binary representation of P. Pointer pgP points
to the disk page(s) storing P. An intermediate MR Tree
node entry ein has the form (pgNc, hNc,MBRNc), where pgNc is a
pointer to a child node (let Nc), and MBRNc is the MBR of
the points in Nc. The value hNc depends on the level. For
level 1, hNc = h(hp1 | hP1 | hp2 | hP2 | … | hpf | hPf), where hpi (hPi)
denotes the digest of p (resp. P) in the ith entry in Nc. At
higher levels, hNc is computed as in the traditional MR Tree.
Observe that the digests of both reduced and original points
in the tree are incorporated into the root digest hroot. The
trusted authority generates a signature sig by signing hroot.
The server maintains DB, the MR tree and sig. Figure 5
outlines the indexing scheme of AMN, assuming the data
points and node structure of Figure 3. Note that the
proposed techniques are independent of the underlying
index. For instance, an authenticated high dimensional
index (if such an ADS existed), would permit higher values
of d (compared to the MR Tree).

TABLE I
Summary of symbols

Symbol Description
DB (db) Dataset in the original (reduced) space
D (d) Dimensionality (reduced dimensionality)
P (p) Original data point (reduced representation)
Q (q) Query (reduced representation)
RS (FH) Set of the actual kNNs (false hits) of Q
VOR (VOP) VO that authenticates range R (point P)

N MR Tree node
hP / hp / hN Digest of P / p / N
DST (dst) Distance metric in the original (reduced) space
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(leaves)

Level 2 
(root)
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Fig. 5 Indexing scheme in AMN

3.2 QUERY PROCESSING AND VERIFICATION 
Let Q be a D dimensional query point received at the
server. The goal of AMN is to return to the corresponding
client the kNNs of Q, in a verifiable manner. The server
starts processing Q by reducing it to a d dimensional point
q, using the same dimensionality reduction technique as for
DB. Figure 6 provides the pseudo code for AMN at the
server for arbitrary values of k. Initially (Lines 1 4), the
algorithm (i) extracts the k closest points {p1, …, pk} to q
using an incremental NN algorithm (e.g., [7]) on the MR
Tree; (ii) it retrieves their high dimensional representations
P1,…, Pk from the disk, following the pointers from the leaf
entries in the MR Tree, (iii) it initializes a false hit set FH =

and a result set RS = {P1, …, Pk}, and computes DSTmax, i.e.,
the DST of the current kth NN Pk; (iv) it obtains the next NN
(i.e., the (k+1)th NN) point p of q from the tree.

Algorithm AMN_server(Q, k)
// Q is the query and q its reduced representation
1. Retrieve the k NNs {p1, ..., pk} of q in d dimensional space
2. Retrieve the respective {P1, ..., Pk} in D dimensional space
3. Set FH = , RS = {P1, ..., Pk}, and compute DSTmax over RS
4. p = next NN of q in d dimensional space
5. While (dstmin = dst(q, p)) < DSTmax
6. Retrieve P // D dimensional representation of p
7. If DST(Q, P) > DSTmax, Insert P into FH
8. Else
9. Insert P into RS
10. Remove Pk from RS and insert it into FH
11. Update DSTmax over RS
12. p = next NN of q in d dimensional space
13. VOR = MR_Range((q, DSTmax), root)
14. Send RS, FH, VOR and sig to the client

Fig. 6 Authenticated kNN processing at the server 

The procedure then enters the loop of Lines 5 12, where
it computes distance dstmin = dst(q, p). Observe that dstmin is
the minimum distance between q and any point p, whose
high dimensional representation has not yet been retrieved.
If dstmin > DSTmax, the algorithm terminates. Otherwise, it
retrieves the true representation P of p from the disk. If
DST(Q, P) > DSTmax, then P is a false hit and appended to
FH; else, P is a candidate result and is inserted into RS. This
causes the deletion of the current kth NN Pk from RS, and its
insertion into FH. The algorithm updates DSTmax over the

new RS, and proceeds to retrieve the next NN of q in the
tree. After the NN loop terminates, Line 13 performs the
authenticated range query qR = (q, DSTmax) using the most
updated value of DSTmax. This produces a VOR that contains
(i) a pair (hN,MBRN) for every pruned node N, (ii) a pair (hP,
p) for every point p in a leaf node that intersects qR, but
whose P representation is not in RS FH, (iii) a result
(false_hit) token for every index point whose true point is in
RS (FH).

We illustrate AMN using Figure 7 and assuming that
k=1 and d=2. Lines 1 3 (in Figure 6) set FH = , RS = {P1} and
DSTmax = DST(Q, P1). Let SR (search region) be the area
within distance (dst(q, p1), DSTmax) from q, i.e., the shaded
area in Figure 7a. Only points in SR are candidate results.
The server proceeds by retrieving the next NN p2 of q in db,
and its high dimensional representation P2. Assuming that
DST(Q, P2) < DST(Q, P1) (= DSTmax), P2 becomes the new NN
of Q and it is inserted into RS. Moreover, P1 becomes a false
hit, and is moved from RS to FH. The server then updates
DSTmax to DST(Q, P2), which leads to the shrinking of the SR
as shown in Figure 7b. The next NN p3 of q falls out of SR,
and NN retrieval terminates with RS = {P2} and FH = {P1}.
Next, the server performs an authenticated range query qR =
(q, DSTmax), where DSTmax = DST(Q, P2). The result of qR
contains the low dimensional representations of p1 and p2.
Considering that the MR Tree in Figure 7 consists of root
node N1, and its two children N2 and N3, the VO of qR is VOR
= [[result, false_hit, (p3, hP3)] (hN3,MBRN3)], i.e., it is computed
as in the traditional MR Tree, with two differences: (i) p3 is
inserted along with its associated digest hP3 (since this is
necessary for computing hroot), and (ii) two tokens are used
as placeholders, one corresponding to the reduced
representation of an actual result (result), and one of a false
hit (false_hit). Note that it is redundant to provide p1 and p2
because the client can derive them from P1 and P2 included
in RS FH. Signature sig, RS, FH and VOR are transmitted
to the client.

q
p1dst(q,p1)DSTmax = 

DST(Q, P1)

p2

p3

N2
dstmin =
dst(q,p2)

q p1
dst(q,p2)

DSTmax = 
DST(Q,P2 )

p2

p3

N3

N2

dstmin = 
dst(q,p3)

N3N1 N1

(a) 1st NN candidate  (b) 2nd NN candidate 

Fig. 7 Finding the 1NN 

Having RS, FH and VOR, the client can re construct the
signed digest hroot using the verification algorithm of the
MR Tree with two alterations: (i) it derives the reduced
point p and digest hP of every point P in RS (FH), and
substitutes its corresponding result (false_hit) token in VOR
with (p, hP); (ii) it computes the level 1 digests as in Figure 5.
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Figure 8 provides the pseudo code for the verification
algorithm. After re constructing and matching hroot against
sig, the procedure computes DSTmax over RS. It then
establishes that the points in FH are indeed false hits.
Finally, it confirms that all points and MBRs in VOR (other
than the result/false_hit tokens) lie further than DSTmax from
q. In the running example, the client first computes p1 and
p2 from P1 and P2, and MBRN2 using p1, p2 and p3. Then, it
generates hN2 = h(hp1 | hP1 | hp2 | hP2 | hp3 | hP3), and
subsequently hroot = (hN2 | MBRN2 | hN3 | MBRN3). If hroot
matches sig, the client evaluates DSTmax = DST(Q, P2) and
ascertains that DST(Q, P1) > DSTmax. Eventually, it
establishes that the distance of p3 from q, as well as the
minimum distance between MBRN3 and q, is indeed larger
than DSTmax.

Algorithm AMN_client (R, VOR)
1. MR_verify (RS, FH, VOR)
2. Compute DSTmax over RS
3. For each point Pi in FH, Verify DST(Q, Pi) > DSTmax
4. For each point pi (MBRi) in VOR,
5. Verify dst(q, pi) > DSTmax (mindist(q,MBRi) > DSTmax)

Fig. 8 kNN verification at the client 

Proof of Correctness. We distinguish two cases: (i) the
server returns to the client a set RS , which is derived from
the correct RS after substituting a point P with another P
that does not exist in DB (i.e., P is bogus). Since the
signature does not incorporate authentication information
about P , the re constructed hroot does not match sig due to
the collision resistance of the hash function and, thus, the
client is alarmed. (ii) The server returns to the client a set
RS , which is derived from RS after substituting a point P
with another P that belongs to DB (i.e., P is legitimate).
Let DSTmax (DST max) denote the distance between Q and its
kth NN in RS (RS ). Since P is not a true result, DST max >
DSTmax. The server also generates a VOR which verifies RS ,
i.e., it authenticates range qR = (q, DST max). Point p lies in
range qR because dst(q, p) DST(Q, P) DSTmax < DST max.
Given that P is not in RS , it must be included in FH
(otherwise, the verification of VOR will fail). Thus, Line 3 of
algorithm AMN_client detects the violation and the client is
alarmed. �

Since AMN follows the optimal framework of Figure 1,
it is also optimal in terms of DST distance computations. A
more important question in our setting regards its
performance in terms of the communication overhead and
the verification cost at the client. Recall that, along with the
result, the client needs a representation for each P FH in
order to verify that indeed P is a false hit. For typical data
series applications, D can be up to 1 3 orders of magnitude
larger than d. Therefore, FH emerges as the most important
performance factor in authenticated NN search, especially
for very high dimensional data. However, as we show next,
FH does not have to include the complete representations
of false hits.

4 COMMUNICATION-EFFICIENT AMN 
Depending on the dimensionality reduction technique, the
values D, d, and k, and the dataset characteristics, there
may be numerous false hits in FH, each containing
hundreds or thousands (i.e., D) values. Next, we propose
communication efficient AMN (C AMN), which decreases
the size of the false hits, significantly reducing the
transmission and verification cost without compromising
the security of AMN. Section 4.1 explains the main
concepts of C AMN, whereas Section 4.2 presents the
concrete algorithm for false hit reduction.

4.1 GENERAL FRAMEWORK 
We illustrate the main idea of C AMN through Figure 9,
where (i) Q, P1, P2 are 16 dimensional time series (i.e., D =
16), (ii) q, p1, p2 are their 2 dimensional representations
obtained by taking the first two coefficients of the DFT
decomposition (i.e., d = 2), and (iii) DST and dst correspond
to Euclidean distances. The coefficients and distances are
computed using the real values of Q, P1, and P2. Since
DST(Q, P2) < DST(Q, P1), P2 is the 1NN of Q. Furthermore,
dst(q, p2) > dst(q, p1), which signifies that P1 is a false hit;
thus, all its 16 values are included in FH by AMN.

Full Representations
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Q: 5 6 10 3 7 40 2 2 5 20 25 10 5 3 3 7
P1: 25 6 10 4 7 20 2 5 5 20 25 10 5 3 13 7
P2: 24 15 11 3 22 40 1 0 4 18 20 20 6 5 4 7

Reduced Representations
q: 9.5625 2.1908
p1: 10.4375 0.1698
p2: 12.5 0.0279

Distances
DST(Q, P1) = 30. 1662 dst(q, p1) = 2.2023

DST(Q, P2) = 28.443 (DSTmax) dst(q, p2) = 3.6479
Fig. 9 Representations of Q, P1, P2, q, p1, p2 (of Figure 6) 

Let P[i] (1 i D) be the ith value of P (e.g., P1[2] = 6 in
Figure 8), and SP be an ordered subset of P values, e.g., SP1

= (P1[1], P1[6], P1[15]) = (25, 20, 13). SQ1 contains the values
of Q in the same positions as SP1, e.g., SQ1 = (Q[1], Q[6],
Q[15]) = (5, 40, 3). Then, DST(SQ1, SP1) = 28.4605 > DST(Q,
P2) (= 28.443). Thus, instead of the complete P1, it suffices
for the server to include into FH only SP1. The client
computes SQ1 from Q, establishes that DST(Q, P2) <
DST(SQ1, SP1) DST(Q, P1), and confirms P1 as a false hit.
Assuming that each value has size Sv = 8 bytes, SP1
consumes 24 bytes, as opposed to 128 bytes for P1. By
sending SP1 to the client, the server reduces the
communication cost significantly (this is the largest
possible reduction for the current example). However, it
must also prove that SP1 is not falsified.

We next demonstrate a solution to this problem,
assuming, for simplicity, that D is a power of 2. The server
maintains an MH Tree over P1 as shown in Figure 10.
Recall that in AMN, the digest hP1 included in the MR Tree
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leaf accommodating p1 is computed on the concatenation of
the binary representation of the values of P1, i.e., hP1 = h(P1[1]
| P1[2] | … | P1[16]). Instead, in C AMN, hP1 is the digest h31
in the root of the MH Tree, which summarizes
authentication information about the entire P1. The rest of
the MR Tree structure remains the same. Returning to our
running example, after producing SP1, the server constructs
a VO (denoted as VOSP1) that can verify SP1. VOSP1 contains
the necessary components for re constructing hP1. These
components are highlighted in dark grey in Figure 10:
VOSP1 = [[[[25 h2] h18] [[h5 20] h20]] [h27 [h23 [13 h16]]]]. Note that
the positions4 of SP1 values can be computed based on the
structure of VOSP1. For example, prior to 20 in VOSP1, there is
one value (25), two level 0 digests (h2, h5) and a level 1
digest (h18). This implies that 20 is the 6th value in P1.

25 6 10 4 7 20 2 5 5 20 25 10 5 3 13 7

5 6 10 3 7 40 2 2 5 20 25 10 5 3 3 7Q:
P1:

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

h17 h18 h19 h20 h21 h22 h23 h24

h25 h26 h27 h28

h29 h30

h31

Minimal cost considering 
authentication overhead

Minimal cost NOT considering 
authentication overhead

Fig. 10 MH-Tree over P1 

Given VOSP1, the client produces hP1 by performing
successive hash operations on the contents of
corresponding ‘[’ and ‘]’ tokens as explained in Section 2.3.
Finally, recall that the digest of p1, hp1, is needed for
computing the level 1 digest of N2, hN2 = h(hp1 | hP1 | hp2 | hP2
| hp3 | hP3). In AMN, the client could compute hp1 by first
reducing P1 (fully included in FH) to p1 and then calculating
hp1 = h(p1). In C AMN, however, the client does not have the
entire P1, and it cannot generate p1 from SP1. Therefore, the
server must send hp1 to the client as well. The additional
authentication information increases the communication
overhead. Continuing the example, and assuming that a
digest has size Sh= 20 bytes (a typical value), VOSP1 and hp1
consume a total of 184 bytes, which is larger than P1 (128
bytes). This is due to the fact that the values of SP1 are
dispersed in the MH Tree, causing the insertion of
numerous digests in VOSP1. Consider now that we modify
SP1 to include values P1[1] P1[8]. In this case, DST(SQ1, SP1)
= 28.46 > DSTmax, and VOSP1 = [[[[25 6][10 4]][[7 20][2 5]]] h30]
contains a single digest, h30 (light grey in Figure 9). The
total cost is now 106 bytes, which is actually the lowest
possible in this example. Note that for simplicity, we omit
the headers of the VO elements (see Section 2.4) in the size
computations because their space consumption is
negligible.

Summarizing, C AMN aims at replacing each false hit P
with a verifiable representation SP that consumes less

4 The positions of the P1 values used in SP1 are necessary so that the client
can compute SQ1 from Q.

space. C AMN necessitates some modifications over the
AMN indexing scheme: (i) for every P DB, the server
maintains a MH Tree, and (ii) each digest hP at the leaf level
of the MR Tree is set to the root digest of the MH Tree of P.
Query processing at the server proceeds as in Figure 6, but
after computing RS, FH and VOR, the server calls a function
ReduceFH to replace every false hit P with a pair (VOSP, hp),
where VOSP contains the subset SP of P that proves that P is
a false hit, along with verification information, and hp is the
digest of P’s indexed point p.

Verification at the client is similar to AMN_client (Figure
8), with the following alterations: (i) MR_verify computes,
for every pair (VOSP, hp) FH, the digest hP of the
corresponding false hit P, simply simulating the initial
calculation of hroot in the MH Tree of P. (ii) For every VOSP in
FH, Line 3 extracts SP from VOSP, computes the respective
SQ of Q, and verifies that DST(SQ, SP) > DSTmax. The proof
of correctness of C AMN is identical to that in AMN, given
that there is no way for the server to falsify SP (otherwise
the re constructed hroot would not match sig due to the
collision resistance property of the hash function).

4.2 FALSE HIT REDUCTION ALGORITHM 
Ideally, for each false hit P, ReduceFH should derive the
subset SP with the minimum length. Intuitively, this task is
at least as difficult as the Knapsack Problem; we need to
select a subset of items (SP of P values), each assigned a
cost (communication overhead) and a weight (distance
DST(SQ, SP)), such that the sum of costs is minimized and
the sum of weights exceeds DSTmax. An additional
complication is that, when we select one item, the cost of
the rest changes (i.e., unlike knapsack, where the cost is
fixed).

Theorem 1. Determining the optimal subset SP of P, which
leads to the minimal VOSP under the constraint that DST(SQ,
SP) > DSTmax, is NP hard.

Proof. This can be proven by a straightforward polynomial
reduction from the NP Hard Precedence Constraint Knapsack
Problem [9]. �

We next propose a greedy version of ReduceFH. Let disti =
(P[i] Q[i])2 be the contribution of P[i] to DST(SQ,SP), and
commi the additional cost if P[i] is inserted in the current
VOSP. To assist the iterative decisions of our greedy
algorithm, we assign to each unselected value P[i] a benefit
B[i] = disti / commi that captures the potential gain if P[i] is
included in SP. For example, in Figure 9, suppose that SP1 =
(P1[6]); hence, VOSP1 = [[h25 [[h5 20] h20]] h30]. If we insert P1[1]
in SP1, the new VOSP1 verifying SP1 = (P1[1], P1[6]) becomes
[[[[20 h2] h18] [[h5 20] h20]] h30]. The increase of VOSP1 due to
the insertion of P1[1] is comm1 = Sh + Sv = 28 ([[20 h2] h18]
substitutes h25 in VOSP1). At each step, the unselected P[i]
with the highest benefit B[i] is greedily inserted in SP.
Intuitively, we prefer values with large dist (to satisfy
DST(SQ, SP) > DSTmax with as few values as possible), and
small comm (to keep VOSP as small as possible). After
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inserting P[i] in SP, we set B[i] = 0 (so that it cannot be
selected again). We also update (if necessary) the benefits
of the yet unselected P values, since comm depends on the
VOSP verifying the current SP. The algorithm terminates
when the condition DST(SQ, SP) > DSTmax is satisfied.

The most expensive operation is the update of the
benefits at each step. A naive algorithm would take O(D2)
time in overall; upon each selection, it would scan all
unselected P values and update their benefits as necessary.
We next present an implementation with complexity
O(D logD). We demonstrate the process on P1 of our
running example using Figure 11. The algorithm initially
sets SP1 = , and VOSP1 = . Moreover, it assigns commi = 4
Sh + Sv = 84 for all P1[i], since inserting any P1[i] in VOSP1
would cause its increase by four digests and one value.
Subsequently, it calculates the benefit vector B of P1, and
constructs an auxiliary binary tree on B where: (i) each leaf
node ni stores B[i], and (ii) inner nodes are created bottom
up, storing the maximum value in their sub tree. In the first
step, ReduceFH performs a root to leaf traversal of the tree,
visiting always the node with the maximum value. In
Figure 11a, the leaves with the maximum benefits are n1
and n6 because they have the largest distances to Q1[1] and
Q1[6], respectively. Suppose that the algorithm (randomly)
visits n6; it inserts P1[6] = 20 into SP1, and updates the value
of n6 to 0 (so that n6 will not be selected in the future). VOSP1
becomes [[h25 [[h5 20] h20] h30], and DST(SQ, SP1) = 20 <
DSTmax. Therefore, the algorithm continues.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16

n17 n18 n19 n20 n21 n22 n23 n24

n25 n26 n27 n28

n29 n30
n31

0 0 .012 0 .107 0 0 0 0 0 1.19 0

0 0

4.76

4.76

4.76

4.76

4.76

4.76

4.76

4.76 0

0

0

1.19

1.19

1.19

.012

0

.107

(a) Choosing to include P1[6] in SP1  

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16

n17 n18 n19 n20 n21 n22 n23 n24

n25 n26 n27 n28

n29 n30
n31

0 0 .042 0 0 0 0 0 2.27 0

0 0

16.7

16.7

16.7

.042

0

0

0

2.27

2.27

2.27
Cutoff
level

0

(b) After inserting P1[6] 

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16

n17 n18 n19 n20 n21 n22 n23 n24

n25 n26 n27 n28

n29 n30
n31

0 0 0 0 0 2.27 0

0 0

0 0

0

0

2.27

2.27

2.27
Cutoff
level

0 0

0 0 0 0

0

(c) After inserting P1[5], P1[7], P1[8] and P1[1] in SP1 

Fig. 11 Using the auxiliary tree of ReduceFH 

The next action regards the updating of the benefits in
the rest of the tree. Observe that, if after the inclusion of
P1[6] in SP1, we also insert P1[5], digest h5 in VOSP1 will be
replaced by a value. Thus, the size of VOSP1 will decrease

because Sh (20 bytes) is larger than Sv (8 bytes). In general,
depending on the relative size of Sh and Sv, there is a cutoff
level cl, such that, if a value P[i] is inserted in SP, all the
benefits in the same sub tree as ni rooted at cl will become
negative because of the reduction of the communication
cost. To include the corresponding values in SP, we set
their respective benefits to . In our example cl = 2, and the
selection of P1[6] will assign to the benefits of nodes n5, n7,
n8, n19, n20, n26, n29, n31. The benefits of the remaining nodes
are updated as shown in Figure 11b.

In the three next steps, ReduceFH follows the nodes with
benefit and inserts P1[5], P1[7], and P1[8] into SP1,

updating their corresponding benefits (as well as the values
of their ancestors) to 0. Observe that these insertions do not
influence the benefits of the nodes in the sub trees rooted at
n25 and n30. The general rule is that commi changes, only if
the insertion of a P[j] into SP causes the substitution (in
VOSP) of a digest that was taken into account in commi. Note
that each such digest corresponds to a sub tree of the
auxiliary tree in ReduceFH, since the latter has a one to one
correspondence with the MH Tree of P. For example, in
Figure 11b (i.e., after P1[6] has been inserted in SP1), comm9

considers digests h10, h22 and h28, corresponding to nodes n10,
n22 and n28, respectively. After the insertion of P1[5], comm9

still involves the above digests and, thus, does not change.
ReduceFH marks every visited node of the tree during the
selection of the next P1 value.

The marked nodes in Figure 11 are highlighted in grey
color. A marked node signifies that there is at least one leaf
ni in its sub tree such that P1[i] is in SP1. In each new
traversal, if a visited node n is not marked, then the benefits
in the sub tree of n’s sibling ns must be updated. For
instance, in Figure 11b, comm9 takes into account h28
corresponding to n28, which is not marked. If n28 is visited,
the benefit of n9 (i.e., of P1[9]), and of all leaves in the sub
tree rooted at n27, will change. Returning to our example, at
this point, SP1 = (P1[6], P1[5], P1[7], P1[8]) = (20, 7, 2, 5), and
DST(SQ, SP1) = 20.224 < DSTmax. In the next step, the
procedure inserts P1[1] = 25 into SP1 (it has the largest
benefit), and updates the benefits of n2, n3, n4, n18, n25, n29, n31
to , as shown in Figure 11c. Subsequently, P1[2], P1[3], P1[4]
are inserted because their benefit is . The resulting SP1 =
(P1[6], P1[5], P1[7], P1[8], P1[1], P1[2], P1[3], P1[4]) = (20, 7, 2, 5,
25, 6, 10, 4) satisfies the constraint DST(SQ, SP1) = 28.461 >
DSTmax. Its corresponding VO is equal to VOSP1 = [[[[25 6][10
4]][[7 20][2 5]]] h30]. Observe that SP1 and VOSP1 are the same
as the ones we constructed for Figure 9, and are optimal for
this example.

Figure 12 provides the generalized pseudo code of
ReduceFH. Function ConstructTree in Line 2 computes the
initial benefit vector B of P and builds a binary tree over it.
The loop in Lines 3 5 first calls function FindNextValue,
which retrieves the next value P_v with the maximum
benefit. It also updates the benefits of the affected nodes.
As soon as the condition in Line 3 is satisfied, Lines 6 8
include the values with benefit into SP as well. ReduceFH
eventually returns SP.
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Algorithm ReduceFH(P, Q, DSTmax)
1. Set SP =
2. nroot = ConstructTree(P)
3. While DST(SQ, SP) DSTmax
4. P_v = FindNextValue(nroot)
5. Insert P_v in SP
6. While nroot.B =
7. P_v = FindNextValue(nroot)
8. Insert P_v in SP
9. Return SP

Fig. 12 Algorithm ReduceFH 

Complexity Analysis. The construction of the tree takes
O(D) time. Furthermore, the loops in Lines 3 5 and 6 8
involve O(D) steps. FindNextValue involves two operations:
(i) finding the value with the maximum benefit, which
takes O(logD) time, and updating the benefits of the
affected nodes. Instead of calculating the latter cost in each
step of FindNextValue, we will compute it collectively in the
entire execution of ReduceFH. We mentioned that the
benefit of a node ni is updated, only when the sub tree
corresponding to a digest involved in commi is marked for
the first time. Since the maximum number of digests
entailed in commi is log D, the total time required for
updating all values is O(D logD), which is also the
complexity of ReduceFH for each false hit.

5 AMN IN DISTRIBUTED SERVERS 
In this setting we assume that the database is horizontally
partitioned and distributed over m (>1) servers. Specifically,
each server Si stores a subset DBi such that: DB1 .. DBm
= DB and DBi DBj = , 1 i, j m. In addition, Si
maintains an MR Tree on the corresponding reduced data
set dbi, which is signed by a signature sigi. A query result
comprises the kNNs over all servers. Minimization of
transmissions (of the high dimensional data) is particularly
important for this setting, especially for large values of m.
Section 5.1 presents SD AMN (short for simple distributed
AMN), used as a benchmark in our experimental
evaluation. Section 5.2 proposes ID AMN (short for
incremental distributed AMN), a more elaborate method,
which quickly eliminates servers that cannot contribute
results.

5.1 SIMPLE DISTRIBUTED AMN 
In SD AMN, a client sends its kNN query Q to all servers.
Each server Si retrieves the partial result RSi on the local
DBi using the conventional multi step algorithm of Figure 1,
and generates a vector kDST i with the distance values of the
kNN set RSi in Si. The client collects the vectors from the
servers and determines the global kth nearest distance
DSTmax over all m k collected distances. Then, it transmits a
range qR = (q, DSTmax). Each server Si executes qR using its
MR Tree and returns VO i

R, RSi and FHi. VO i
R has the same

meaning as in centralized processing, i.e., it is the VO of qR.
RSi (resp. FHi) is a set of results (resp. false hits), i.e., points
of dbi that fall in qR and whose high dimensional

representations have distance from Q smaller (resp. larger)
than DSTmax. The size of FH can be reduced through C
AMN.

We demonstrate SD AMN using the example of Figure
13a, assuming a 3NN query Q. There are four servers, each
containing four points. For ease of illustration, we sort
these points on their distance to Q and display their DST,
e.g., P21 is the first point in S2 and DST(Q, P21) = 3. The
diagram also includes the distances in the reduced space,
e.g., dst(q, p21) = 2. Given kDST 1= (1, 2, 5), kDST 2= (3, 6, 12),
kDST 3 = (5, 7, 10) and kDST 4= (7, 8, 9), the client computes
DSTmax = 3 (the first two NNs are in S1, and the third one in
S3) and transmits the range qR = (q, 3). S1 returns VO1

R, RS1
= {P11 , P12 } and FH1 = {P13, P14}. P13 and P14 are necessary, in
order for the client to establish that they are indeed false
hits. At the other extreme, S4 returns VO4

R, RS4 = FH4 = , as
it does not contain results or false hits (for all points in S4,
their dst from q exceeds 3). If each VO i

R is verified
successfully, and for every point P in each FHi it holds
DST(Q, P) DSTmax, then the client is assured that RS is
correct.

1,2,5,6

3,6,12,15

5,7,10,11

7,8,9,13

S 1

S 2

S 3

S 4

1,1,2,2

2,2,11,10

2,4,9,9

5,7,6,10

DST dst

P 1
1 1
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P 2
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3
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6
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(a) Distances to query (b) ID-AMN after 1st round 

6
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7,8,9,13

DST

1

2

5
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5

S 1

S 2

S 3

S 4

6

6,12,15

7,10,11

7,8,9,13

DST

1

2

3

Client
kDST

3

S 1

S 2

S 3

S 4

(c) ID-AMN after 2nd round (d) ID-AMN after 3rd round 

Fig. 13 Distributed authenticated kNN processing 

Proof of Correctness. In SD AMN, the client computes a
DSTmax (e.g., 3 in Figure 13a) such that the range (Q, DSTmax)
contains exactly k high dimensional points in DB1 ..
DBm. At the last step of SD AMN all servers perform a
verifiable range qR = (q, DSTmax), during which they cannot
cheat. Thus, they can only misreport the distance vectors
kDSTi, leading the client to compute a DST max that is
different from the real DSTmax. We distinguish two cases
with respect to the relationship between DST max and the
DSTmax. If DST max> DSTmax, the client will obtain all results
(possibly, in addition to more points) through the verifiable
range (q, DST max), and will detect the discrepancy between
DST max and DSTmax. If DST max < DSTmax, the client receives
fewer than k objects in RS1 .. RSm and is alarmed.
Therefore, it can always establish result correctness. �

As an example, suppose that in Figure 13a S2 misreports
DST(Q, P21) as 4 (instead of 3). Consequently, the client
computes the distance to its 3rd NN as DST’max = 4 > DSTmax,
and receives a VO for range (q, 4) from every server. S2 will
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then have to return P21 as a result, and the difference
between the reported and actual DST(Q, P21 ) will be
revealed. For the second case, consider that that server S2
misreports DST(Q, P21) as 2, leading the client to compute
DST’max = 2 < DSTmax. Upon receiving the VOs for range (q, 2)
from all servers, it discovers that there are only 2 points
(P11,P12) in RS1 .. RS4. Note that servers can misreport
distances of points in DB RS FH without being caught,
provided that the false DST reported are larger than DSTmax.
In the example of Figure 13a, there are no low dimensional
objects of S4 within (q, 3). Therefore, S4 can send to the
client any vector that contains distances larger than 3
because the verification of (q, 3) does not involve the
transmission of any point (RS4 = FH4 = ). Clearly, this type
of false values does not affect the result.

5.2 INCREMENTAL DISTRIBUTED AMN 
SD AMN is optimal in terms of high dimensional point
transmissions because the client receives D dimensional
representations only for points in qR. All these points
(results and false hits) are necessary to establish correctness
anyway. However, it must transmit Q to all servers.
Moreover, each server Si has to compute RSi although none
of the points of RSi may participate in the global result (e.g.,
S4 in Figure 12). ID AMN avoids these problems by
gradually eliminating servers that cannot contribute results.
Specifically, ID AMN incrementally retrieves distance
values from servers to compute the final DSTmax,
postponing local NN computations at the servers until they
are required. We present the pseudo code of ID AMN (at
the client) in Figure 14, and explain its functionality by
continuing the example of Figure 13 (k = 3).

Initially, the client marks each server Si as a candidate,
and transmits q to Si, which responds with two values: the
dsti (kdsti) of its 1st (kth) NN in the low dimensional space.
For instance, in Figure 13, the client receives (1, 2), (2, 11), (2,
9), (5, 7) from S1, S2, S3, S4, respectively. Intuitively, a low
kdsti implies a promising server that may contain k good
results. DSTi and dsti are used for server pruning and
selection, to be discussed shortly. Let Sj, be the server (e.g.,
S1) with the minimum kdstj. The client directs Q to Sj and
obtains a vector kDST with the distance values of the kNN
set RSj in Sj. DSTmax is set to the kth distance in kDST and Sj
ceases to be a candidate. Continuing the example, kDST =
(1, 2, 5), DSTmax = 5. Figure 13b illustrates the server to
client transmissions during these steps.

The while loop (Lines 8 17) starts by eliminating each
server such that DST i DSTmax (initially DST i = dst i). For
instance, DST 4 = 7 DSTmax = 5, and the client discards S4
without sending Q. Since the subsequent verification of S4
does not require Q either, there is no transmission of high
dimensional data (query, or points) between the client and
S4. Line 11 selects the candidate server Si with the
minimum DST i, and asks for the distance DSTnew of the next
NN in Si. If DSTnew DSTmax, Si is purged. Assuming that the
selected server is S 3 (DST 3 = DST 2 = 2), then DST(Q, P31 ) = 5

DSTmax= 5, causing the elimination of S3 without changing
kDST. Figure 13c shows the pruned servers S1, S3, S4 in grey.
The next iteration of the loop selects the last candidate S2,
and retrieves DSTnew = 3. Since 3 < DSTmax, DSTnew is inserted
into kDST, and DSTmax changes to 3. The loop terminates
because all servers have been eliminated (Figure 13d).
Lines 18 20 simply verify the range qR = (q, DSTmax) in each
server. All the result points (RSi), as well as false hits (FHi)
are transmitted during this step. The client generates the
final result RS locally from the union of all RSi. C AMN can
be applied to reduce the size of false hits. Note that Line 12
may call get_next_ smallest_DST multiple times on the same
server Si. In this case, the client needs to transmit the full
query Q only the first time; for subsequent requests, it
suffices to send the query ID.

Algorithm ID AMN_client (Q, k)
1. For each server Si
2. Set Candidate[i]=1;
3. (dsti, kdsti,)= get_ smallest_dist(q, Si)
4. DSTi = dsti
5. Let Sj be the server with the minimum kdstj
6. Set vector kDST = get_k_smallest_DSTs(Q, Sj)
7. Set DSTmax = maximum value in kDST; Set Candidate[j]=0
8. While there are candidate servers
9. For each server Si
10. If DSTi DSTmax , Set Candidate[i]=0
11. Select candidate server Si with minimum DSTi
12. Set DSTnew = get_next_ smallest_DST(Q, Si) from server Si
13. If DSTnew DSTmax, Set Candidate [i]=0
14. Else // DSTnew < DSTmax
15. Insert DSTnew into kDST
16. Set DSTmax = maximum value in kDST ;
17. DSTi = DSTnew
18. For each server Si

19. (VO iR, RSi, FHi) =MR_Range((q, DSTmax), rooti)

20. Verify(VO iR) and incorporate RSi into RS

Fig. 14 Incremental distributed AMN (client) 

Proof of Correctness. The client obtains all results and
false hits at the end through the verifiable range (Lines 18
20). As shown in the proof SD AMN, any DST
misreporting that leads to the computation of a DST’max
DSTmax can be detected by the client. Let us now consider
that some server Si sends false dsti and kdsti. The value of
kdsti is only used as an estimator for the selection of the
initial server (Line 5), and it only affects the efficiency (but
not the correctness) of the algorithm. For instance, if S3
reports kdst3 = 1 (instead of 9), it will become the initial
server, increasing the communication overhead (S4 cannot
be immediately eliminated), without however altering the
result. Moreover, as discussed in Section 5.1, any false
distance smaller than DSTmax will be caught by the
verification. Similarly, dsti is used as a lower bound for
DSTi. If Si sends a value of dsti lower than the actual one, it
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can only be selected earlier than necessary during the while
loop without affecting correctness. On the other hand, if the
transmitted dsti exceeds the actual one, (i) Si is selected later
during the loop, or (ii) eliminated altogether if the reported
dsti exceeds DSTmax. Case (i) only affects the efficiency,
whereas case (ii) is detected during the verification because
Si has to send objects within the range qR = (q, DSTmax). �

Similar to SD AMN, ID AMN is optimal in terms of data
point transmissions. Now let us consider query
transmissions. Ideally, an optimal algorithm would send
the complete query Q only to servers that contribute
nearest neighbours (S1, S2 in Figure 13) because the
distances of these NNs are necessary for obtaining the final
value of DSTmax. Additionally, ID AMN sends Q to some
false candidates (e.g., S3) that cannot be eliminated.
Specifically, let DST i1 be the distance of the 1st NN in Si. Si is
a false candidate, if dsti < DSTmax< DST i1. Regarding the CPU
cost, in ID AMN some eliminated servers (e.g., S4) do not
perform any high dimensional distance computations.
False candidates return a single DST i1; thus, they need to
retrieve the first local NN (which may involve multiple
DST computations, if there are false hits). The rest of the
servers must retrieve either ki or (ki+1) NNs, where ki ( k) is
the contribution of Si to the final kNN set. The distance of
the additional (+1) NN is sometimes required to eliminate
Si. In comparison, SD AMN, transmits Q to all servers, and
each server performs the necessary computations to obtain
the k local NNs.

6 EXPERIMENTAL EVALUATION 
We use four real datasets that capture different
combinations of dimensionality D, cardinality N, and
application domain: (i) Corel (D = 64, N = 68040), (ii)
Chlorine (D = 128, N = 4310), (iii) Stock (D = 512, N = 10000),
and (iv) Mallat (D = 1024, N = 2400). Corel 5 can be
downloaded from archive.ics.uci.edu/ml/, while the rest are
available at: www.cs.ucr.edu/~eamonn/time_series_data/. We
decrease the dimensionality of each dataset using
Chebyshev polynomials [4]. The value of d is a parameter
with range [2, 16] and default value 8. Each reduced dataset
is indexed by an MR Tree using a page size of 4KB. Every
digest is created by SHA 1 [16]. We assume that both DST
and dst are based on the Euclidean distance. Section 6.1
compares AMN and C AMN considering a single server.
Section 6.2 evaluates SD AMN and ID AMN assuming
multiple servers.

6.1 SINGLE SERVER 
The measures of interest are the communication overhead,
and the CPU cost at the server and the client. We assess the
communication overhead based on the verification
information sent to the client. The transmission of the
query and the result is omitted because it is necessary in

5 Corel has four attribute sets. We use the first two sets (Color Histogram and 
Color Histogram Layout, of 32 attributes each) to derive the 64D dataset used in 
the experiments. 

any method. The CPU cost is measured in terms of the
elementary distance computations. Specifically, D elementary
computations are required to derive the Euclidean distance
of two D dimensional points. We exclude the I/O cost at the
server because it is identical for both AMN and C AMN
(and similar to that of the conventional multi step
algorithm) since in any case, we have to retrieve the low
dimensional NNs using the MR Tree. For each experiment
we select a random data point as the query, and report the
average results over 10 queries.

Figure 15 fixes the number k of NNs to 8, and
investigates the effect of d on the communication overhead
of the verification information. Specifically, the overhead is
measured in Mbytes, assuming that each value consumes
Sv=8 bytes (a double precision number) and each digest is
Sh=20 bytes (typical size for SHA 1). We indicate the
number |FH| of false hits below the x axis. As d increases,
|FH| drops because the reduced representation captures
more information about the corresponding point. In all
cases, C AMN leads to a significant decline of the overhead.
The savings grow with D, and exceed an order of
magnitude for Mallat, because long series provide more
optimizations opportunities. On the other hand, the gains
decrease as d grows due to the smaller FH. In order to
demonstrate the effect of the false hits, we include inside
each column of the diagrams, the contribution of FH as a
percentage of the total overhead. For high D and low d, FH
constitutes the dominant factor, especially for AMN (e.g., at
least 98% in Mallat), corroborating the importance of C
AMN.

The absolute overhead is lower (in both AMN and C
AMN) for high values of d due to the decrease of |FH|. The
exception is Corel, where the communication cost actually
grows when d exceeds a threshold (8 for AMN, 4 for C
AMN). This is explained as follows. A typical record (i.e.,
image) in Corel has very low values (<0.005) on most (>60)
dimensions, and relatively large values (>0.1) on the rest.
Furthermore, the large values of different records usually
concentrate on different dimensions. Dimensionality
reduction using Chebyshev polynomials [4] captures
effectively those important dimensions even for low d.
Consequently, there is a small number of false hits (for d=2,
|FH| 0.28% of N, whereas in the other datasets |FH| is
50 75% of N). As d grows, |FH| does not drop significantly;
on the other hand, the verification information transmitted
to the client contains more boundary records and node
MBRs, increasing the VO size.

Figure 16 illustrates the communication overhead as a
function of the nearest neighbors k to be retrieved (d=8).
Note that the minimum value of k is 2 because the query is
also a data point, i.e., its first NN is itself. The number of
false hits increases with k, leading to higher transmission
cost. However, compared to Figure 15, the difference is
rather small because k has a lower impact on |FH| than d.
For the same reason, the absolute performance of both
methods is rather insensitive to k. The benefits of C AMN
are again evident, especially if D 128.
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Figure 17 investigates the elementary distance
computations at the server as a function of d. C AMN is
always more expensive than AMN due to the additional
cost of ReduceFH. This cost drops with increasing d because
there are fewer false hits to be reduced. The numbers inside
each column denote the CPU time (in milliseconds) using a
Pentium Intel Core 2 Duo 2.33GHz processor. For Corel, the

CPU time is too low to be accurately measured. However,
for Chlorine, Stock and Mallat it may reach several seconds
due to the large values of D, and |FH|.

Figure 18 shows the server computations versus the
number of required neighbors. The cost increases slightly
with k, but similar to Figure 16, the effect is not as
pronounced as that of d. Note that the diagrams do not

AMN C-AMN
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(a) Corel (D=64, N=68040) (b) Chlorine (D=128, N=4310) (c) Stock (D=512, N=10000) (d) Mallat (D=1024, N=2400) 
Fig. 15 Communication overhead vs. d (k=8) 
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Fig. 16 Communication overhead vs. k (d=8) 

(a) Corel (D=64, N=68040) (b) Chlorine (D=128, N=4310) (c) Stock (D=512, N=10000) (d) Mallat (D=1024, N=2400) 
Fig. 17 Server computations vs. d (k=8) 

(a) Corel (D=64, N=68040) (b) Chlorine (D=128, N=4310) (c) Stock (D=512, N=10000) (d) Mallat (D=1024, N=2400) 
Fig. 18 Server computations vs. k (d=8) 

(a) Corel (D=64, N=68040) (b) Chlorine (D=128, N=4310) (c) Stock (D=512, N=10000) (d) Mallat (D=1024, N=2400) 
Fig. 19 Client computations vs. d (k=8) 

(a) Corel (D=64, N=68040) (b) Chlorine (D=128, N=4310) (c) Stock (D=512, N=10000) (d) Mallat (D=1024, N=2400) 
Fig. 20 Client computations vs. k (d=8) 
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include the I/O cost, which is identical to both methods. I/O
operations normally dominate the processing overhead
(since large records must be retrieved from the disk) and
the performance difference of the two methods in terms of
the overall cost diminishes. Moreover, the difference of C
AMN and AMN would decrease further (in Figures 17 18),
if DST were based on a more expensive distance function
than dst (e.g., DTW vs. Euclidean distance as in [10]) and
applied the optimization of Section 4.3. This is because
ReduceFH would entail only cheap dst computations, which
would be dominated by the more expensive DST
calculations, common in both methods.

Figure 19 illustrates the number of elementary distance
computations at the client as a function of d. C AMN leads
to significant gains, sometimes dropping the processing
cost by more than an order of magnitude. Since this cost is
proportional to the amount of data received by the client,
the diagrams are co related to those in Figure 15;
accordingly, the benefits of C AMN are more significant for
settings that involve large values of D, and |FH|. Figure 20
investigates the effect of k on the client. Similar to Figures
16 and 18, the CPU cost increases with k, but the impact of k
is rather small.

Summarizing, compared to AMN, C AMN imposes
additional CPU cost for the server, in order to reduce the
communication overhead and the verification effort at the
client. This is a desirable trade off in client server
architectures because (i) data transmissions constitute the
main bottleneck in most applications, especially those
involving wireless networks, and (ii) clients are assumed to
have limited resources, whereas servers are powerful.
Finally, note that the transmission overhead can also be
reduced by conventional compression techniques. We do
not include experiments with this approach since it benefits
both AMN and C AMN. Moreover, it increases the
computational burden of the client, which has to
decompress the data before their verification.

6.2 DISTRIBUTED SERVERS 
Next, we compare SD AMN and ID AMN considering that
the database is horizontally partitioned over m servers.
Recall that the methods first collect distance information,
based on which they determine the range that contains the
result. The NNs and the false hits are obtained during the
verification of this range, which is identical in SD AMN
and ID AMN. Thus, when measuring the communication
cost, we focus on their differences, which regard the
transmission of query points and the distance information.
The CPU overhead is based again on elementary distance
computations. Finally, due to the identical verification
process, the client cost is similar, and the corresponding
experiments are omitted.

Figure 21 shows the communication cost as a function of
the number m of servers. Since we do not count the
common data transmissions, the dominant factor is the
number of high dimensional query (Q) transmissions. SD
AMN sends Q to all servers yielding an overhead of D m
values. On the other hand, ID AMN transmits Q only to
candidate servers. In the best case, all results may be found
in a single server, and the rest are eliminated using the dst
bound; in the worst case, Q must be sent to all servers, if
they all constitute false candidates. In general, the number
of eliminated servers increases with their total number,
leading to the savings of ID AMN.

Figure 22 compares the two methods on elementary
distance computations at the server versus m. The retrieval
of a kNN set involves a number of computations linear to
(k+|FH|) (d+D) because the distances of all results and false
hits must be evaluated in both low and high dimensional
spaces. In SD AMN, each of the m servers must retrieve the
k NNs; thus, the total cost increases linearly with both m
and k. In ID AMN a server has to perform a number of
computations that is proportional to its contribution ki ( k)
in the result set. The value of m affects the number of
computations only indirectly, by increasing the false
candidates. In general, ID AMN clearly outperforms SD
AMN in all settings.
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(a) Corel (D=64, N=68040) (b) Chlorine (D=128, N=4310) (c) Stock (D=512, N=10000) (d) Mallat (D=1024, N=2400) 
Fig. 21 Communication overhead vs. m (d=8, k=8) 
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7 CONCLUSIONS 
The importance of authenticated query processing
increases with the amount of information available at
sources that are untrustworthy, unreliable, or simply
unfamiliar. This is the first work addressing authenticated
similarity retrieval from such sources using the multi step
kNN framework. We show that a direct integration of
optimal NN search with an authenticated data structure
incurs excessive communication overhead. Thus, we
develop C AMN, a technique that addresses the
communication specific aspects of NN, and minimizes the
transmission overhead and verification effort of the clients.
Furthermore, we propose ID AMN, which retrieves
distance information from distributed servers, eliminating
those that cannot contribute results.
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