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ABSTRACT
Several anonymization techniques, such as generalization
and bucketization, have been designed for privacy preserving
microdata publishing. Recent work has shown that general-
ization loses considerable amount of information, especially
for high-dimensional data. Bucketization, on the other hand,
does not prevent membership disclosure and does not apply
for data that do not have a clear separation between quasi-
identifying attributes and sensitive attributes.

In this paper, we present a novel technique called slicing,
which partitions the data both horizontally and vertically.
We show that slicing preserves better data utility than gen-
eralization and can be used for membership disclosure pro-
tection. Another important advantage of slicing is that it
can handle high-dimensional data. We show how slicing can
be used for attribute disclosure protection and develop an ef-
ficient algorithm for computing the sliced data that obey the
ℓ-diversity requirement. Our workload experiments confirm
that slicing preserves better utility than generalization and
is more effective than bucketization in workloads involving
the sensitive attribute. Our experiments also demonstrate
that slicing can be used to prevent membership disclosure.

1. INTRODUCTION
Privacy-preserving publishing of microdata has been stud-

ied extensively in recent years. Microdata contains records
each of which contains information about an individual en-
tity, such as a person, a household, or an organization.
Several microdata anonymization techniques have been pro-
posed. The most popular ones are generalization [29, 31]
for k-anonymity [31] and bucketization [35, 25, 16] for ℓ-
diversity [23]. In both approaches, attributes are partitioned
into three categories: (1) some attributes are identifiers that
can uniquely identify an individual, such as Name or Social
Security Number; (2) some attributes are Quasi-Identifiers
(QI), which the adversary may already know (possibly from
other publicly-available databases) and which, when taken
together, can potentially identify an individual, e.g., Birth-
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date, Sex, and Zipcode; (3) some attributes are Sensitive
Attributes (SAs), which are unknown to the adversary and
are considered sensitive, such as Disease and Salary.

In both generalization and bucketization, one first removes
identifiers from the data and then partitions tuples into
buckets. The two techniques differ in the next step. Gener-
alization transforms the QI-values in each bucket into “less
specific but semantically consistent” values so that tuples in
the same bucket cannot be distinguished by their QI val-
ues. In bucketization, one separates the SAs from the QIs
by randomly permuting the SA values in each bucket. The
anonymized data consists of a set of buckets with permuted
sensitive attribute values.

1.1 Motivation of Slicing
It has been shown [1, 15, 35] that generalization for k-

anonymity losses considerable amount of information, espe-
cially for high-dimensional data. This is due to the following
three reasons. First, generalization for k-anonymity suffers
from the curse of dimensionality. In order for generalization
to be effective, records in the same bucket must be close to
each other so that generalizing the records would not lose too
much information. However, in high-dimensional data, most
data points have similar distances with each other, forcing a
great amount of generalization to satisfy k-anonymity even
for relative small k’s. Second, in order to perform data
analysis or data mining tasks on the generalized table, the
data analyst has to make the uniform distribution assump-
tion that every value in a generalized interval/set is equally
possible, as no other distribution assumption can be justi-
fied. This significantly reduces the data utility of the gen-
eralized data. Third, because each attribute is generalized
separately, correlations between different attributes are lost.
In order to study attribute correlations on the generalized
table, the data analyst has to assume that every possible
combination of attribute values is equally possible. This is
an inherent problem of generalization that prevents effective
analysis of attribute correlations.

While bucketization [35, 25, 16] has better data utility
than generalization, it has several limitations. First, buck-
etization does not prevent membership disclosure [27]. Be-
cause bucketization publishes the QI values in their original
forms, an adversary can find out whether an individual has
a record in the published data or not. As shown in [31],
87% of the individuals in the United States can be uniquely
identified using only three attributes (Birthdate, Sex, and
Zipcode). A microdata (e.g., census data) usually contains
many other attributes besides those three attributes. This
means that the membership information of most individuals
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can be inferred from the bucketized table. Second, buck-
etization requires a clear separation between QIs and SAs.
However, in many datasets, it is unclear which attributes are
QIs and which are SAs. Third, by separating the sensitive
attribute from the QI attributes, bucketization breaks the
attribute correlations between the QIs and the SAs.

In this paper, we introduce a novel data anonymization
technique called slicing to improve the current state of the
art. Slicing partitions the dataset both vertically and hori-
zontally. Vertical partitioning is done by grouping attributes
into columns based on the correlations among the attributes.
Each column contains a subset of attributes that are highly
correlated. Horizontal partitioning is done by grouping tu-
ples into buckets. Finally, within each bucket, values in each
column are randomly permutated (or sorted) to break the
linking between different columns.

The basic idea of slicing is to break the association cross
columns, but to preserve the association within each col-
umn. This reduces the dimensionality of the data and pre-
serves better utility than generalization and bucketization.
Slicing preserves utility because it groups highly-correlated
attributes together, and preserves the correlations between
such attributes. Slicing protects privacy because it breaks
the associations between uncorrelated attributes, which are
infrequent and thus identifying. Note that when the dataset
contains QIs and one SA, bucketization has to break their
correlation; slicing, on the other hand, can group some QI at-
tributes with the SA, preserving attribute correlations with
the sensitive attribute.

The key intuition that slicing provides privacy protection
is that the slicing process ensures that for any tuple, there
are generally multiple matching buckets. Given a tuple t =
〈v1, v2, . . . , vc〉, where c is the number of columns, a bucket is
a matching bucket for t if and only if for each i (1 ≤ i ≤ c),
vi appears at least once in the i’th column of the bucket.
Any bucket that contains the original tuple is a matching
bucket. At the same time, a matching bucket can be due to
containing other tuples each of which contains some but not
all vi’s.

1.2 Contributions & Organization
In this paper, we present a novel technique called slicing

for privacy-preserving data publishing. Our contributions
include the following.

First, we introduce slicing as a new technique for privacy
preserving data publishing. Slicing has several advantages
when compared with generalization and bucketization. It
preserves better data utility than generalization. It pre-
serves more attribute correlations with the SAs than bucke-
tization. It can also handle high-dimensional data and data
without a clear separation of QIs and SAs.

Second, we show that slicing can be effectively used for
preventing attribute disclosure, based on the privacy re-
quirement of ℓ-diversity. We introduce a notion called ℓ-
diverse slicing, which ensures that the adversary cannot
learn the sensitive value of any individual with a probability
greater than 1/ℓ.

Third, we develop an efficient algorithm for computing
the sliced table that satisfies ℓ-diversity. Our algorithm par-
titions attributes into columns, applies column generaliza-
tion, and partitions tuples into buckets. Attributes that are
highly-correlated are in the same column; this preserves the
correlations between such attributes. The associations be-

tween uncorrelated attributes are broken; the provides bet-
ter privacy as the associations between such attributes are
less-frequent and potentially identifying.

Fourth, we describe the intuition behind membership dis-
closure and explain how slicing prevents membership disclo-
sure. A bucket of size k can potentially match kc tuples
where c is the number of columns. Because only k of the
kc tuples are actually in the original data, the existence of
the other kc−k tuples hides the membership information of
tuples in the original data.

Finally, we conduct extensive workload experiments. Our
results confirm that slicing preserves much better data util-
ity than generalization. In workloads involving the sensitive
attribute, slicing is also more effective than bucketization.
In some classification experiments, slicing shows better per-
formance than using the original data (which may overfit
the model). Our experiments also show the limitations of
bucketization in membership disclosure protection and slic-
ing remedies these limitations.

The rest of this paper is organized as follows. In Section 2,
we formalize the slicing technique and compare it with gen-
eralization and bucketization. We define ℓ-diverse slicing for
attribute disclosure protection in Section 3 and develop an
efficient algorithm to achieve ℓ-diverse slicing in Section 4.
In Section 5, we explain how slicing prevents membership
disclosure. Experimental results are presented in Section 6
and related work is discussed in Section 7. We conclude the
paper and discuss future research in Section 8.

2. SLICING
In this section, we first give an example to illustrate slic-

ing. We then formalize slicing, compare it with general-
ization and bucketization, and discuss privacy threats that
slicing can address.

Table 1 shows an example microdata table and its
anonymized versions using various anonymization tech-
niques. The original table is shown in Table 1(a). The
three QI attributes are {Age ,Sex ,Zipcode}, and the sensi-
tive attribute SA is Disease. A generalized table that satis-
fies 4-anonymity is shown in Table 1(b), a bucketized table
that satisfies 2-diversity is shown in Table 1(c), a general-
ized table where each attribute value is replaced with the
the multiset of values in the bucket is shown in Table 1(d),
and two sliced tables are shown in Table 1(e) and 1(f).

Slicing first partitions attributes into columns. Each col-
umn contains a subset of attributes. This vertically parti-
tions the table. For example, the sliced table in Table 1(f)
contains 2 columns: the first column contains {Age,Sex}
and the second column contains {Zipcode ,Disease}. The
sliced table shown in Table 1(e) contains 4 columns, where
each column contains exactly one attribute.

Slicing also partition tuples into buckets. Each bucket
contains a subset of tuples. This horizontally partitions the
table. For example, both sliced tables in Table 1(e) and
Table 1(f) contain 2 buckets, each containing 4 tuples.

Within each bucket, values in each column are randomly
permutated to break the linking between different columns.
For example, in the first bucket of the sliced table shown in
Table 1(f), the values {(22,M), (22, F ), (33, F ), (52, F )} are
randomly permutated and the values {(47906, dyspepsia),
(47906, flu), (47905, flu), (47905, bronchitis)} are randomly
permutated so that the linking between the two columns
within one bucket is hidden.



Age Sex Zipcode Disease
22 M 47906 dyspepsia
22 F 47906 flu
33 F 47905 flu
52 F 47905 bronchitis
54 M 47302 flu
60 M 47302 dyspepsia
60 M 47304 dyspepsia
64 F 47304 gastritis

Age Sex Zipcode Disease
[20-52] * 4790* dyspepsia
[20-52] * 4790* flu
[20-52] * 4790* flu
[20-52] * 4790* bronchitis
[54-64] * 4730* flu
[54-64] * 4730* dyspepsia
[54-64] * 4730* dyspepsia
[54-64] * 4730* gastritis

Age Sex Zipcode Disease
22 M 47906 flu
22 F 47906 dyspepsia
33 F 47905 bronchitis
52 F 47905 flu
54 M 47302 gastritis
60 M 47302 flu
60 M 47304 dyspepsia
64 F 47304 dyspepsia

(a) The original table (b) The generalized table (c) The bucketized table

Age Sex Zipcode Disease
22:2,33:1,52:1 M:1,F:3 47905:2,47906:2 dysp.
22:2,33:1,52:1 M:1,F:3 47905:2,47906:2 flu
22:2,33:1,52:1 M:1,F:3 47905:2,47906:2 flu
22:2,33:1,52:1 M:1,F:3 47905:2,47906:2 bron.
54:1,60:2,64:1 M:3,F:1 47302:2,47304:2 flu
54:1,60:2,64:1 M:3,F:1 47302:2,47304:2 dysp.
54:1,60:2,64:1 M:3,F:1 47302:2,47304:2 dysp.
54:1,60:2,64:1 M:3,F:1 47302:2,47304:2 gast.

Age Sex Zipcode Disease
22 F 47906 flu
22 M 47905 flu
33 F 47906 dysp.
52 F 47905 bron.
54 M 47302 dysp.
60 F 47304 gast.
60 M 47302 dysp.
64 M 47304 flu

(Age,Sex) (Zipcode,Disease)
(22,M) (47905,flu)
(22,F) (47906,dysp.)
(33,F) (47905,bron.)
(52,F) (47906,flu)
(54,M) (47304,gast.)
(60,M) (47302,flu)
(60,M) (47302,dysp.)
(64,F) (47304,dysp.)

(d) Multiset-based generalization (e) One-attribute-per-column slicing (f) The sliced table

Table 1: An original microdata table and its anonymized versions using various anonymization techniques

2.1 Formalization of Slicing
Let T be the microdata table to be published. T contains

d attributes: A = {A1, A2, . . . , Ad} and their attribute do-
mains are {D[A1], D[A2], . . . , D[Ad]}. A tuple t ∈ T can
be represented as t = (t[A1], t[A2], ..., t[Ad]) where t[Ai]
(1 ≤ i ≤ d) is the Ai value of t.

Definition 1 (Attribute partition and columns).
An attribute partition consists of several subsets of A,
such that each attribute belongs to exactly one subset. Each
subset of attributes is called a column. Specifically, let
there be c columns C1, C2, . . . , Cc, then ∪c

i=1Ci = A and for
any 1 ≤ i1 6= i2 ≤ c, Ci1 ∩ Ci2 = ∅.

For simplicity of discussion, we consider only one sensi-
tive attribute S. If the data contains multiple sensitive at-
tributes, one can either consider them separately or consider
their joint distribution [23]. Exactly one of the c columns
contains S. Without loss of generality, let the column that
contains S be the last column Cc. This column is also called
the sensitive column. All other columns {C1, C2, . . . , Cc−1}
contain only QI attributes.

Definition 2 (Tuple partition and buckets). A
tuple partition consists of several subsets of T , such
that each tuple belongs to exactly one subset. Each subset
of tuples is called a bucket. Specifically, let there be b
buckets B1, B2, . . . , Bb, then ∪b

i=1Bi = T and for any
1 ≤ i1 6= i2 ≤ b, Bi1 ∩ Bi2 = ∅.

Definition 3 (Slicing). Given a microdata table T , a
slicing of T is given by an attribute partition and a tu-
ple partition.

For example, Table 1(e) and Table 1(f) are two sliced
tables. In Table 1(e), the attribute partition is {{Age},
{Sex}, {Zipcode}, {Disease}} and the tuple partition is
{{t1, t2, t3, t4}, {t5, t6, t7, t8}}. In Table 1(f), the attribute
partition is {{Age, Sex}, {Zipcode, Disease}} and the tuple
partition is {{t1, t2, t3, t4}, {t5, t6, t7, t8}}.

Often times, slicing also involves column generalization.

Definition 4 (Column Generalization). Given a
microdata table T and a column Ci = {Ai1, Ai2, . . . , Aij}, a
column generalization for Ci is defined as a set of non-
overlapping j-dimensional regions that completely cover
D[Ai1] × D[Ai2] × . . . × D[Aij ]. A column generalization
maps each value of Ci to the region in which the value is
contained.

Column generalization ensures that one column satisfies
the k-anonymity requirement. It is a multidimensional en-
coding [17] and can be used as an additional step in slic-
ing. Specifically, a general slicing algorithm consists of the
following three phases: attribute partition, column general-
ization, and tuple partition. Because each column contains
much fewer attributes than the whole table, attribute parti-
tion enables slicing to handle high-dimensional data.

A key notion of slicing is that of matching buckets.

Definition 5 (Matching Buckets). Let
{C1, C2, . . . , Cc} be the c columns of a sliced table.
Let t be a tuple, and t[Ci] be the Ci value of t. Let B be a
bucket in the sliced table, and B[Ci] be the multiset of Ci

values in B. We say that B is a matching bucket of t iff
for all 1 ≤ i ≤ c, t[Ci] ∈ B[Ci].

For example, consider the sliced table shown in Table 1(f),
and consider t1 = (22,M, 47906, dyspepsia). Then, the set
of matching buckets for t1 is {B1}.

2.2 Comparison with Generalization
There are several types of recodings for generalization.

The recoding that preserves the most information is local
recoding. In local recoding, one first groups tuples into buck-
ets and then for each bucket, one replaces all values of one
attribute with a generalized value. Such a recoding is local
because the same attribute value may be generalized differ-
ently when they appear in different buckets.

We now show that slicing preserves more information than
such a local recoding approach, assuming that the same tu-
ple partition is used. We achieve this by showing that slicing



is better than the following enhancement of the local recod-
ing approach. Rather than using a generalized value to re-
place more specific attribute values, one uses the multiset of
exact values in each bucket. For example, Table 1(b) is a
generalized table, and Table 1(d) is the result of using mul-
tisets of exact values rather than generalized values. For the
Age attribute of the first bucket, we use the multiset of ex-
act values {22,22,33,52} rather than the generalized interval
[22 − 52]. The multiset of exact values provides more in-
formation about the distribution of values in each attribute
than the generalized interval. Therefore, using multisets of
exact values preserves more information than generalization.

However, we observe that this multiset-based generaliza-
tion is equivalent to a trivial slicing scheme where each
column contains exactly one attribute, because both ap-
proaches preserve the exact values in each attribute but
break the association between them within one bucket. For
example, Table 1(e) is equivalent to Table 1(d). Now com-
paring Table 1(e) with the sliced table shown in Table 1(f),
we observe that while one-attribute-per-column slicing pre-
serves attribute distributional information, it does not pre-
serve attribute correlation, because each attribute is in its
own column. In slicing, one groups correlated attributes
together in one column and preserves their correlation. For
example, in the sliced table shown in Table 1(f), correlations
between Age and Sex and correlations between Zipcode and
Disease are preserved. In fact, the sliced table encodes the
same amount of information as the original data with regard
to correlations between attributes in the same column.

Another important advantage of slicing is its ability to
handle high-dimensional data. By partitioning attributes
into columns, slicing reduces the dimensionality of the data.
Each column of the table can be viewed as a sub-table with
a lower dimensionality. Slicing is also different from the
approach of publishing multiple independent sub-tables in
that these sub-tables are linked by the buckets in slicing.

2.3 Comparison with Bucketization
To compare slicing with bucketization, we first note that

bucketization can be viewed as a special case of slicing,
where there are exactly two columns: one column contains
only the SA, and the other contains all the QIs. The ad-
vantages of slicing over bucketization can be understood as
follows. First, by partitioning attributes into more than two
columns, slicing can be used to prevent membership dis-
closure. Our empirical evaluation on a real dataset shows
that bucketization does not prevent membership disclosure
in Section 6.

Second, unlike bucketization, which requires a clear sep-
aration of QI attributes and the sensitive attribute, slicing
can be used without such a separation. For dataset such as
the census data, one often cannot clearly separate QIs from
SAs because there is no single external public database that
one can use to determine which attributes the adversary al-
ready knows. Slicing can be useful for such data.

Finally, by allowing a column to contain both some QI
attributes and the sensitive attribute, attribute correlations
between the sensitive attribute and the QI attributes are
preserved. For example, in Table 1(f), Zipcode and Disease
form one column, enabling inferences about their correla-
tions. Attribute correlations are important utility in data
publishing. For workloads that consider attributes in isola-
tion, one can simply publish two tables, one containing all

QI attributes and one containing the sensitive attribute.

2.4 Privacy Threats
When publishing microdata, there are three types of pri-

vacy disclosure threats. The first type is membership disclo-
sure. When the dataset to be published is selected from a
large population and the selection criteria are sensitive (e.g.,
only diabetes patients are selected), one needs to prevent ad-
versaries from learning whether one’s record is included in
the published dataset.

The second type is identity disclosure, which occurs when
an individual is linked to a particular record in the released
table. In some situations, one wants to protect against iden-
tity disclosure when the adversary is uncertain of member-
ship. In this case, protection against membership disclo-
sure helps protect against identity disclosure. In other sit-
uations, some adversary may already know that an indi-
vidual’s record is in the published dataset, in which case,
membership disclosure protection either does not apply or
is insufficient.

The third type is attribute disclosure, which occurs when
new information about some individuals is revealed, i.e., the
released data makes it possible to infer the attributes of an
individual more accurately than it would be possible before
the release. Similar to the case of identity disclosure, we
need to consider adversaries who already know the mem-
bership information. Identity disclosure leads to attribute
disclosure. Once there is identity disclosure, an individual
is re-identified and the corresponding sensitive value is re-
vealed. Attribute disclosure can occur with or without iden-
tity disclosure, e.g., when the sensitive values of all matching
tuples are the same.

For slicing, we consider protection against membership
disclosure and attribute disclosure. It is a little unclear how
identity disclosure should be defined for sliced data (or for
data anonymized by bucketization), since each tuple resides
within a bucket and within the bucket the association across
different columns are hidden. In any case, because identity
disclosure leads to attribute disclosure, protection against
attribute disclosure is also sufficient protection against iden-
tity disclosure.

We would like to point out a nice property of slicing that
is important for privacy protection. In slicing, a tuple can
potentially match multiple buckets, i.e., each tuple can have
more than one matching buckets. This is different from pre-
vious work on generalization and bucketzation, where each
tuple can belong to a unique equivalence-class (or bucket).
In fact, it has been recognized [4] that restricting a tuple in a
unique bucket helps the adversary but does not improve data
utility. We will see that allowing a tuple to match multiple
buckets is important for both attribute disclosure protection
and attribute disclosure protection, when we describe them
in Section 3 and Section 5, respectively.

3. ATTRIBUTE DISCLOSURE PROTEC-
TION

In this section, we show how slicing can be used to prevent
attribute disclosure, based on the privacy requirement of ℓ-
diversity and introduce the notion of ℓ-diverse slicing.

3.1 Example
We first give an example illustrating how slicing satisfies

ℓ-diversity [23] where the sensitive attribute is “Disease”.



The sliced table shown in Table 1(f) satisfies 2-diversity.
Consider tuple t1 with QI values (22,M, 47906). In order
to determine t1’s sensitive value, one has to examine t1’s
matching buckets. By examining the first column (Age,Sex)
in Table 1(f), we know that t1 must be in the first bucket
B1 because there are no matches of (22,M) in bucket B2.
Therefore, one can conclude that t1 cannot be in bucket B2

and t1 must be in bucket B1.
Then, by examining the Zipcode attribute of the second

column (Zipcode,Disease) in bucket B1, we know that the
column value for t1 must be either (47906, dyspepsia) or
(47906, flu) because they are the only values that match
t1’s zipcode 47906. Note that the other two column values
have zipcode 47905. Without additional knowledge, both
dyspepsia and flu are equally possible to be the sensitive
value of t1. Therefore, the probability of learning the cor-
rect sensitive value of t1 is bounded by 0.5. Similarly, we
can verify that 2-diversity is satisfied for all other tuples in
Table 1(f).

3.2 ℓ-Diverse Slicing
In the above example, tuple t1 has only one matching

bucket. In general, a tuple t can have multiple matching
buckets. We now extend the above analysis to the general
case and introduce the notion of ℓ-diverse slicing.

Consider an adversary who knows all the QI values of t
and attempts to infer t’s sensitive value from the sliced table.
She or he first needs to determine which buckets t may reside
in, i.e., the set of matching buckets of t. Tuple t can be in any
one of its matching buckets. Let p(t,B) be the probability
that t is in bucket B (the procedure for computing p(t,B)
will be described later in this section). For example, in the
above example, p(t1, B1) = 1 and p(t1, B2) = 0.

In the second step, the adversary computes p(t, s), the
probability that t takes a sensitive value s. p(t, s) is cal-
culated using the law of total probability. Specifically, let
p(s|t, B) be the probability that t takes sensitive value s
given that t is in bucket B, then according to the law of
total probability, the probability p(t, s) is:

p(t, s) =
X

B

p(t,B)p(s|t,B) (1)

In the rest of this section, we show how to compute the
two probabilities: p(t,B) and p(s|t,B).

Computing p(t,B). Given a tuple t and a sliced bucket
B, the probability that t is in B depends on the fraction
of t’s column values that match the column values in B. If
some column value of t does not appear in the corresponding
column of B, it is certain that t is not in B. In general,
bucket B can potentially match |B|c tuples, where |B| is
the number of tuples in B. Without additional knowledge,
one has to assume that the column values are independent;
therefore each of the |B|c tuples is equally likely to be an
original tuple. The probability that t is in B depends on the
fraction of the |B|c tuples that match t.

We formalize the above analysis. We consider the match
between t’s column values {t[C1], t[C2], · · · , t[Cc]} and B’s
column values {B[C1], B[C2], · · · , B[Cc]}. Let fi(t, B) (1 ≤
i ≤ c − 1) be the fraction of occurrences of t[Ci] in B[Ci]
and let fc(t,B) be the fraction of occurrences of t[Cc −{S}]
in B[Cc − {S}]). Note that, Cc − {S} is the set of QI at-
tributes in the sensitive column. For example, in Table 1(f),

f1(t1, B1) = 1/4 = 0.25 and f2(t1, B1) = 2/4 = 0.5. Simi-
larly, f1(t1, B2) = 0 and f2(t1, B2) = 0. Intuitively, fi(t, B)
measures the matching degree on column Ci, between tuple
t and bucket B.

Because each possible candidate tuple is equally likely to
be an original tuple, the matching degree between t and B
is the product of the matching degree on each column, i.e.,
f(t, B) =

Q

1≤i≤c fi(t, B). Note that
P

t f(t, B) = 1 and

when B is not a matching bucket of t, f(t, B) = 0.
Tuple t may have multiple matching buckets, t’s total

matching degree in the whole data is f(t) =
P

B
f(t, B).

The probability that t is in bucket B is:

p(t,B) =
f(t, B)

f(t)

Computing p(s|t, B). Suppose that t is in bucket B,
to determine t’s sensitive value, one needs to examine the
sensitive column of bucket B. Since the sensitive column
contains the QI attributes, not all sensitive values can be
t’s sensitive value. Only those sensitive values whose QI
values match t’s QI values are t’s candidate sensitive values.
Without additional knowledge, all candidate sensitive values
(including duplicates) in a bucket are equally possible. Let
D(t, B) be the distribution of t’s candidate sensitive values
in bucket B.

Definition 6 (D(t, B)). Any sensitive value that is as-
sociated with t[Cc − {S}] in B is a candidate sensitive
value for t (there are fc(t, B) candidate sensitive values for
t in B, including duplicates). Let D(t, B) be the distribution
of the candidate sensitive values in B and D(t, B)[s] be the
probability of the sensitive value s in the distribution.

For example, in Table 1(f), D(t1, B1) = (dyspepsia :
0.5, flu : 0.5) and therefore D(t1, B1)[dyspepsia] = 0.5. The
probability p(s|t, B) is exactly D(t, B)[s], i.e., p(s|t,B) =
D(t, B)[s].

ℓ-Diverse Slicing. Once we have computed p(t,B) and
p(s|t,B), we are able to compute the probability p(t, s) based
on the Equation (1). We can show when t is in the data, the
probabilities that t takes a sensitive value sum up to 1.

Fact 1. For any tuple t ∈ D,
P

s
p(t, s) = 1.

Proof.
X

s

p(t, s) =
X

s

X

B

p(t,B)p(s|t, B)

=
X

B

p(t, B)
X

s

p(s|t,B)

=
X

B

p(t, B)

= 1

(2)

ℓ-Diverse slicing is defined based on the probability p(t, s).

Definition 7 (ℓ-diverse slicing). A tuple t satisfies
ℓ-diversity iff for any sensitive value s,

p(t, s) ≤ 1/ℓ

A sliced table satisfies ℓ-diversity iff every tuple in it satisfies
ℓ-diversity.



Our analysis above directly show that from an ℓ-diverse
sliced table, an adversary cannot correctly learn the sensitive
value of any individual with a probability greater than 1/ℓ.
Note that once we have computed the probability that a
tuple takes a sensitive value, we can also use slicing for other
privacy measures such as t-closeness [20].

4. SLICING ALGORITHMS
We now present an efficient slicing algorithm to achieve

ℓ-diverse slicing. Given a microdata table T and two param-
eters c and ℓ, the algorithm computes the sliced table that
consists of c columns and satisfies the privacy requirement
of ℓ-diversity.

Our algorithm consists of three phases: attribute parti-
tioning, column generalization, and tuple partitioning. We
now describe the three phases.

4.1 Attribute Partitioning
Our algorithm partitions attributes so that highly-

correlated attributes are in the same column. This is good
for both utility and privacy. In terms of data utility, group-
ing highly-correlated attributes preserves the correlations
among those attributes. In terms of privacy, the association
of uncorrelated attributes presents higher identification risks
than the association of highly-correlated attributes because
the association of uncorrelated attribute values is much less
frequent and thus more identifiable. Therefore, it is better
to break the associations between uncorrelated attributes,
in order to protect privacy.

In this phase, we first compute the correlations between
pairs of attributes and then cluster attributes based on their
correlations.

4.1.1 Measures of Correlation
Two widely-used measures of association are Pearson cor-

relation coefficient [6] and mean-square contingency coeffi-
cient [6]. Pearson correlation coefficient is used for mea-
suring correlations between two continuous attributes while
mean-square contingency coefficient is a chi-square mea-
sure of correlation between two categorical attributes. We
choose to use the mean-square contingency coefficient be-
cause most of our attributes are categorical. Given two
attributes A1 and A2 with domains {v11, v12, ..., v1d1} and
{v21, v22, ..., v2d2}, respectively. Their domain sizes are thus
d1 and d2, respectively. The mean-square contingency coef-
ficient between A1 and A2 is defined as:

φ2(A1, A2) =
1

min{d1, d2} − 1

d1
X

i=1

d2
X

j=1

(fij − fi·f·j)
2

fi·f·j

Here, fi· and f·j are the fraction of occurrences of v1i
and v2j in the data, respectively. fij is the fraction of co-
occurrences of v1i and v2j in the data. Therefore, fi· and

f·j are the marginal totals of fij : fi· =
Pd2

j=1 fij and f·j =
Pd1

i=1 fij . It can be shown that 0 ≤ φ2(A1, A2) ≤ 1.
For continuous attributes, we first apply discretization to

partition the domain of a continuous attribute into intervals
and then treat the collection of interval values as a discrete
domain. Discretization has been frequently used for decision
tree classification, summarization, and frequent itemset min-
ing. We use equal-width discretization, which partitions an
attribute domain into (some k) equal-sized intervals. Other

methods for handling continuous attributes are the subjects
of future work.

4.1.2 Attribute Clustering
Having computed the correlations for each pair of at-

tributes, we use clustering to partition attributes into
columns. In our algorithm, each attribute is a point in the
clustering space. The distance between two attributes in the
clustering space is defined as d(A1, A2) = 1 − φ2(A1, A2),
which is in between of 0 and 1. Two attributes that are
strongly-correlated will have a smaller distance between the
corresponding data points in our clustering space.

We choose the k-medoid method for the following rea-
sons. First, many existing clustering algorithms (e.g., k-
means) requires the calculation of the“centroids”. But there
is no notion of“centroids” in our setting where each attribute
forms a data point in the clustering space. Second, k-medoid
method is very robust to the existence of outliers (i.e., data
points that are very far away from the rest of data points).
Third, the order in which the data points are examined does
not affect the clusters computed from the k-medoid method.
We use the well-known k-medoid algorithm PAM (Partition
Around Medoids) [14]. PAM starts by an arbitrary selection
of k data points as the initial medoids. In each subsequent
step, PAM chooses one medoid point and one non-medoid
point and swaps them as long as the cost of clustering de-
creases. Here, the clustering cost is measured as the sum
of the cost of each cluster, which is in turn measured as the
sum of the distance from each data point in the cluster to the
medoid point of the cluster. The time complexity of PAM
is O(k(n − k)2). Thus, it is known that PAM suffers from
high computational complexity for large datasets. However,
the data points in our clustering space are attributes, rather
than tuples in the microdata. Therefore, PAM will not have
computational problems for clustering attributes.

4.1.3 Special Attribute Partitioning
In the above procedure, all attributes (including both QIs

and SAs) are clustered into columns. The k-medoid method
ensures that the attributes are clustered into k columns but
does not have any guarantee on the size of the sensitive col-
umn Cc. In some cases, we may pre-determine the number of
attributes in the sensitive column to be α. The parameter α
determines the size of the sensitive column Cc, i.e., |Cc| = α.
If α = 1, then |Cc| = 1, which means that Cc = {S}. And
when c = 2, slicing in this case becomes equivalent to buck-
etization. If α > 1, then |Cc| > 1, the sensitive column also
contains some QI attributes.

We adapt the above algorithm to partition attributes into
c columns such that the sensitive column Cc contains α at-
tributes. We first calculate correlations between the sensi-
tive attribute S and each QI attribute. Then, we rank the
QI attributes by the decreasing order of their correlations
with S and select the top α−1 QI attributes. Now, the sen-
sitive column Cc consists of S and the selected QI attributes.
All other QI attributes form the other c − 1 columns using
the attribute clustering algorithm.

4.2 Column Generalization
In the second phase, tuples are generalized to satisfy some

minimal frequency requirement. We want to point out that
column generalization is not an indispensable phase in our
algorithm. As shown by Xiao and Tao [35], bucketization



Algorithm tuple-partition(T, ℓ)
1. Q = {T}; SB = ∅.
2. while Q is not empty
3. remove the first bucket B from Q; Q = Q− {B}.
4. split B into two buckets B1 and B2, as in Mondrian.
5. if diversity-check(T , Q ∪ {B1, B2} ∪ SB , ℓ)
6. Q = Q ∪ {B1, B2}.
7. else SB = SB ∪ {B}.
8. return SB .

Figure 1: The tuple-partition algorithm

provides the same level of privacy protection as generaliza-
tion, with respect to attribute disclosure.

Although column generalization is not a required phase,
it can be useful in several aspects. First, column general-
ization may be required for identity/membership disclosure
protection. If a column value is unique in a column (i.e.,
the column value appears only once in the column), a tuple
with this unique column value can only have one matching
bucket. This is not good for privacy protection, as in the case
of generalization/bucketization where each tuple can belong
to only one equivalence-class/bucket. The main problem is
that this unique column value can be identifying. In this
case, it would be useful to apply column generalization to
ensure that each column value appears with at least some
frequency.

Second, when column generalization is applied, to achieve
the same level of privacy against attribute disclosure, bucket
sizes can be smaller (see Section 4.3). While column gener-
alization may result in information loss, smaller bucket-sizes
allows better data utility. Therefore, there is a trade-off be-
tween column generalization and tuple partitioning. In this
paper, we mainly focus on the tuple partitioning algorithm.
The tradeoff between column generalization and tuple par-
titioning is the subject of future work. Existing anonymiza-
tion algorithms can be used for column generalization, e.g.,
Mondrian [17]. The algorithms can be applied on the sub-
table containing only attributes in one column to ensure the
anonymity requirement.

4.3 Tuple Partitioning
In the tuple partitioning phase, tuples are partitioned into

buckets. We modify the Mondrian [17] algorithm for tuple
partition. Unlike Mondrian k-anonymity, no generalization
is applied to the tuples; we use Mondrian for the purpose of
partitioning tuples into buckets.

Figure 1 gives the description of the tuple-partition algo-
rithm. The algorithm maintains two data structures: (1)
a queue of buckets Q and (2) a set of sliced buckets SB .
Initially, Q contains only one bucket which includes all tu-
ples and SB is empty (line 1). In each iteration (line 2 to
line 7), the algorithm removes a bucket from Q and splits
the bucket into two buckets (the split criteria is described
in Mondrian [17]). If the sliced table after the split satisfies
ℓ-diversity (line 5), then the algorithm puts the two buckets
at the end of the queue Q (for more splits, line 6). Other-
wise, we cannot split the bucket anymore and the algorithm
puts the bucket into SB (line 7). When Q becomes empty,
we have computed the sliced table. The set of sliced buckets
is SB (line 8).

The main part of the tuple-partition algorithm is to check
whether a sliced table satisfies ℓ-diversity (line 5). Figure 2
gives a description of the diversity-check algorithm. For each

Algorithm diversity-check(T,T ∗, ℓ)
1. for each tuple t ∈ T , L[t] = ∅.
2. for each bucket B in T ∗

3. record f(v) for each column value v in bucket B.
4. for each tuple t ∈ T
5. calculate p(t, B) and find D(t, B).
6. L[t] = L[t] ∪ {〈p(t,B), D(t, B)〉}.
7. for each tuple t ∈ T
8. calculate p(t, s) for each s based on L[t].
9. if p(t, s) ≥ 1/ℓ, return false.
10. return true.

Figure 2: The diversity-check algorithm

tuple t, the algorithm maintains a list of statistics L[t] about
t’s matching buckets. Each element in the list L[t] contains
statistics about one matching bucket B: the matching prob-
ability p(t, B) and the distribution of candidate sensitive
values D(t, B).

The algorithm first takes one scan of each bucket B (line 2
to line 3) to record the frequency f(v) of each column value
v in bucket B. Then the algorithm takes one scan of each
tuple t in the table T (line 4 to line 6) to find out all tuples
that match B and record their matching probability p(t,B)
and the distribution of candidate sensitive values D(t, B),
which are added to the list L[t] (line 6). At the end of line
6, we have obtained, for each tuple t, the list of statistics
L[t] about its matching buckets. A final scan of the tuples
in T will compute the p(t, s) values based on the law of total
probability described in Section 3.2. Specifically,

p(t, s) =
X

e∈L[t]

e.p(t,B) ∗ e.D(t, B)[s]

The sliced table is ℓ-diverse iff for all sensitive value s,
p(t, s) ≤ 1/ℓ (line 7 to line 10).

We now analyze the time complexity of the tuple-partition
algorithm. The time complexity of Mondrian [17] or kd-
tree [10] is O(n log n) because at each level of the kd-tree,
the whole dataset need to be scanned which takes O(n) time
and the height of the tree is O(log n). In our modification,
each level takes O(n2) time because of the diversity-check
algorithm (note that the number of buckets is at most n).
The total time complexity is therefore O(n2 log n).

5. MEMBERSHIP DISCLOSURE PRO-
TECTION

Let us first examine how an adversary can infer member-
ship information from bucketization. Because bucketization
releases the QI values in their original form and most indi-
viduals can be uniquely identified using the QI values, the
adversary can simply determine the membership of an in-
dividual in the original data by examining the frequency of
the QI values in the bucketized data. Specifically, if the fre-
quency is 0, the adversary knows for sure that the individual
is not in the data. If the frequency is greater than 0, the
adversary knows with high confidence that the individual
is in the data, because this matching tuple must belong to
that individual as almost no other individual has the same
QI values.

The above reasoning suggests that in order to pro-
tect membership information, it is required that, in the
anonymized data, a tuple in the original data should have
a similar frequency as a tuple that is not in the original



data. Otherwise, by examining their frequencies in the
anonymized data, the adversary can differentiate tuples in
the original data from tuples not in the original data.

We now show how slicing protects against membership
disclosure. Let D be the set of tuples in the original data
and let D be the set of tuples that are not in the original
data. Let Ds be the sliced data. Given Ds and a tuple t, the
goal of membership disclosure is to determine whether t ∈ D
or t ∈ D. In order to distinguish tuples in D from tuples in
D, we examine their differences. If t ∈ D, t must have at
least one matching buckets in Ds. To protect membership
information, we must ensure that at least some tuples in D
should also have matching buckets. Otherwise, the adver-
sary can differentiate between t ∈ D and t ∈ D by examining
the number of matching buckets.

We call a tuple an original tuple if it is in D. We call a
tuple a fake tuple if it is in D and it matches at least one
bucket in the sliced data. Therefore, we have considered
two measures for membership disclosure protection. The
first measure is the number of fake tuples. When the num-
ber of fake tuples is 0 (as in bucketization), the membership
information of every tuple can be determined. The second
measure is to consider the number of matching buckets for
original tuples and that for fake tuples. If they are sim-
ilar enough, membership information is protected because
the adversary cannot distinguish original tuples from fake
tuples.

Slicing is an effective technique for membership disclosure
protection. A sliced bucket of size k can potentially match
kc tuples. Besides the original k tuples, this bucket can in-
troduce as many as kc − k tuples in D, which is kc−1 − 1
times more than the number of original tuples. The exis-
tence of such tuples in D hides the membership information
of tuples in D, because when the adversary finds a matching
bucket, she or he is not certain whether this tuple is in D or
not since a large number of tuples in D have matching buck-
ets as well. In our experiments (Section 6), we empirically
evaluate slicing in membership disclosure protection.

6. EXPERIMENTS
We conduct two experiments. In the first experiment, we

evaluate the effectiveness of slicing in preserving data utility
and protecting against attribute disclosure, as compared to
generalization and bucketization. To allow direct compari-
son, we use the Mondrian algorithm [17] and ℓ-diversity for
all three anonymization techniques: generalization, bucke-
tization, and slicing. This experiment demonstrates that:
(1) slicing preserves better data utility than generalization;
(2) slicing is more effective than bucketization in workloads
involving the sensitive attribute; and (3) the sliced table
can be computed efficiently. Results for this experiment are
presented in Section 6.2.

In the second experiment, we show the effectiveness of
slicing in membership disclosure protection. For this pur-
pose, we count the number of fake tuples in the sliced data.
We also compare the number of matching buckets for origi-
nal tuples and that for fake tuples. Our experiment results
show that bucketization does not prevent membership dis-
closure as almost every tuple is uniquely identifiable in the
bucketized data. Slicing provides better protection against
membership disclosure: (1) the number of fake tuples in the
sliced data is very large, as compared to the number of orig-
inal tuples and (2) the number of matching buckets for fake

Attribute Type # of values
1 Age Continuous 74
2 Workclass Categorical 8
3 Final-Weight Continuous NA
4 Education Categorical 16
5 Education-Num Continuous 16
6 Marital-Status Categorical 7
7 Occupation Categorical 14
8 Relationship Categorical 6
9 Race Categorical 5
10 Sex Categorical 2
11 Capital-Gain Continuous NA
12 Capital-Loss Continuous NA
13 Hours-Per-Week Continuous NA
14 Country Categorical 41
15 Salary Categorical 2

Table 2: Description of the Adult dataset

tuples and that for original tuples are close enough, which
makes it difficult for the adversary to distinguish fake tu-
ples from original tuples. Results for this experiment are
presented in Section 6.3.

Experimental Data. We use the Adult dataset from the
UC Irvine machine learning repository [2], which is com-
prised of data collected from the US census. The dataset is
described in Table 2. Tuples with missing values are elimi-
nated and there are 45222 valid tuples in total. The adult
dataset contains 15 attributes in total.

In our experiments, we obtain two datasets from the Adult
dataset. The first dataset is the “OCC-7” dataset, which
includes 7 attributes: QI = {Age, Workclass, Education,
Marital-Status, Race, Sex} and S = Occupation. The
second dataset is the “OCC-15” dataset, which includes all
15 attributes and the sensitive attribute is S = Occupation.

In the “OCC-7” dataset, the attribute that has the closest
correlation with the sensitive attribute Occupation is Gen-
der, with the next closest attribute being Education. In the
“OCC-15” dataset, the closest attribute is also Gender but
the next closest attribute is Salary.

6.1 Preprocessing
Some preprocessing steps must be applied on the

anonymized data before it can be used for workload tasks.
First, the anonymized table computed through generaliza-
tion contains generalized values, which need to be trans-
formed to some form that can be understood by the classi-
fication algorithm. Second, the anonymized table computed
by bucketization or slicing contains multiple columns, the
linking between which is broken. We need to process such
data before workload experiments can run on the data.

Handling generalized values. In this step, we map the
generalized values (set/interval) to data points. Note that
the Mondrian algorithm assumes a total order on the do-
main values of each attribute and each generalized value is a
sub-sequence of the total-ordered domain values. There are
several approaches to handle generalized values. The first
approach is to replace a generalized value with the mean
value of the generalized set. For example, the generalized
age [20,54] will be replaced by age 37 and the generalized
Education level {9th,10th,11th} will be replaced by 10th.
The second approach is to replace a generalized value by
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Figure 3: Learning the sensitive attribute (Target:
Occupation)

its lower bound and upper bound. In this approach, each
attribute is replaced by two attributes, doubling the total
number of attributes. For example, the Education attribute
is replaced by two attributes Lower-Education and Upper-
Education; for the generalized Education level {9th, 10th,
11th}, the Lower-Education value would be 9th and the
Upper-Education value would be 11th. For simplicity, we
use the second approach in our experiments.

Handling bucketized/sliced data. In both bucketiza-
tion and slicing, attributes are partitioned into two or more
columns. For a bucket that contains k tuples and c columns,
we generate k tuples as follows. We first randomly permu-
tate the values in each column. Then, we generate the i-th
(1 ≤ i ≤ k) tuple by linking the i-th value in each column.
We apply this procedure to all buckets and generate all of
the tuples from the bucketized/sliced table. This procedure
generates the linking between the two columns in a random
fashion. In all of our classification experiments, we applies
this procedure 5 times and the average results are reported.

6.2 Attribute Disclosure Protection
We compare slicing with generalization and bucketization

on data utility of the anonymized data for classifier learn-
ing. For all three techniques, we employ the Mondrian algo-
rithm [17] to compute the ℓ-diverse tables. The ℓ value can
take values {5,8,10} (note that the Occupation attribute has
14 distinct values). In this experiment, we choose α = 2.
Therefore, the sensitive column is always {Gender, Occupa-
tion}.

Classifier learning. We evaluate the quality of the
anonymized data for classifier learning, which has been used
in [11, 18, 4]. We use the Weka software package to evaluate
the classification accuracy for Decision Tree C4.5 (J48) and
Naive Bayes. Default settings are used in both tasks. For all
classification experiments, we use 10-fold cross-validation.

In our experiments, we choose one attribute as the tar-
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Figure 4: Learning a QI attribute (Target: Educa-
tion)

get attribute (the attribute on which the classifier is built)
and all other attributes serve as the predictor attributes.
We consider the performances of the anonymization algo-
rithms in both learning the sensitive attribute Occupation
and learning a QI attribute Education.

Learning the sensitive attribute. In this experiment,
we build a classifier on the sensitive attribute, which is “Oc-
cupation”. We fix c = 2 here and evaluate the effects of c
later in this section. Figure 3 compares the quality of the
anonymized data (generated by the three techniques) with
the quality of the original data, when the target attribute
is Occupation. The experiments are performed on the two
datasets OCC-7 (with 7 attributes) and OCC-15 (with 15
attributes).

In all experiments, slicing outperforms both generalization
and bucketization, that confirms that slicing preserves at-
tribute correlations between the sensitive attribute and some
QIs (recall that the sensitive column is {Gender, Occupa-
tion}). Another observation is that bucketization performs
even slightly worse than generalization. That is mostly due
to our preprocessing step that randomly associates the sen-
sitive values to the QI values in each bucket. This may
introduce false associations while in generalization, the as-
sociations are always correct although the exact associations
are hidden. A final observation is that when ℓ increases, the
performances of generalization and bucketization deteriorate
much faster than slicing. This also confirms that slicing pre-
serves better data utility in workloads involving the sensitive
attribute.

Learning a QI attribute. In this experiment, we build a
classifier on the QI attribute “Education”. We fix c = 2 here
and evaluate the effects of c later in this section. Figure 4
shows the experiment results.

In all experiments, both bucketization and slicing per-
form much better than generalization. This is because in
both bucketization and slicing, the QI attribute Education
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is in the same column with many other QI attributes: in
bucketization, all QI attributes are in the same column; in
slicing, all QI attributes except Gender are in the same col-
umn. This fact allows both approaches to perform well in
workloads involving the QI attributes. Note that the clas-
sification accuracies of bucketization and slicing are lower
than that of the original data. This is because the sensitive
attribute Occupation is closely correlated with the target
attribute Education (as mentioned earlier in Section 6, Ed-
ucation is the second closest attribute with Occupation in
OCC-7). By breaking the link between Education and Oc-
cupation, classification accuracy on Education reduces for
both bucketization and slicing.

The effects of c. In this experiment, we evaluate the
effect of c on classification accuracy. We fix ℓ = 5 and vary
the number of columns c in {2,3,5}. Figure 5(a) shows the
results on learning the sensitive attribute and Figure 5(b)
shows the results on learning a QI attribute. It can be seen
that classification accuracy decreases only slightly when we
increase c, because the most correlated attributes are still
in the same column. In all cases, slicing shows better accu-
racy than generalization. When the target attribute is the
sensitive attribute, slicing even performs better than bucke-
tization.

6.3 Membership Disclosure Protection
In the second experiment, we evaluate the effectiveness of

slicing in membership disclosure protection.
We first show that bucketization is vulnerable to member-

ship disclosure. In both the OCC-7 dataset and the OCC-15
dataset, each combination of QI values occurs exactly once.
This means that the adversary can determine the member-
ship information of any individual by checking if the QI value
appears in the bucketized data. If the QI value does not ap-
pear in the bucketized data, the individual is not in the orig-
inal data. Otherwise, with high confidence, the individual is
in the original data as no other individual has the same QI
value.

We then show that slicing does prevent membership dis-
closure. We perform the following experiment. First, we
partition attributes into c columns based on attribute cor-
relations. We set c ∈ {2, 5}. In other words, we com-
pare 2-column-slicing with 5-column-slicing. For example,
when we set c = 5, we obtain 5 columns. In OCC-7,
{Age , Marriage , Gender} is one column and each other at-
tribute is in its own column. In OCC-15, the 5 columns are:
{Age , Workclass , Education , Education-Num, Cap-Gain,
Hours , Salary}, {Marriage , Occupation , Family, Gender},
{Race ,Country}, {Final-Weight}, and {Cap-Loss}.
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Then, we randomly partition tuples into buckets of size p
(the last bucket may have fewer than p tuples). As described
in Section 5, we collect statistics about the following two
measures in our experiments: (1) the number of fake tuples
and (2) the number of matching buckets for original v.s. the
number of matching buckets for fake tuples.

The number of fake tuples. Figure 6 shows the experi-
mental results on the number of fake tuples, with respect to
the bucket size p. Our results show that the number of fake
tuples is large enough to hide the original tuples. For exam-
ple, for the OCC-7 dataset, even for a small bucket size of
100 and only 2 columns, slicing introduces as many as 87936
fake tuples, which is nearly twice the number of original tu-
ples (45222). When we increase the bucket size, the number
of fake tuples becomes larger. This is consistent with our
analysis that a bucket of size k can potentially match kc−k
fake tuples. In particular, when we increase the number of
columns c, the number of fake tuples becomes exponentially
larger. In almost all experiments, the number of fake tuples
is larger than the number of original tuples. The existence
of such a large number of fake tuples provides protection for
membership information of the original tuples.

The number of matching buckets. Figure 7 shows
the number of matching buckets for original tuples and fake
tuples.

We categorize the tuples (both original tuples and fake
tuples) into three categories: (1) ≤ 10: tuples that have at
most 10 matching buckets, (2) 10−20: tuples that have more
than 10 matching buckets but at most 20 matching buckets,
and (3) > 20: tuples that have more than 20 matching buck-
ets. For example, the “original-tuples(≤ 10)” bar gives the
number of original tuples that have at most 10 matching
buckets and the “fake-tuples(> 20)” bar gives the number of
fake tuples that have more than 20 matching buckets. Be-
cause the number of fake tuples that have at most 10 match-
ing buckets is very large, we omit the“fake-tuples(≤ 10)”bar
from the figures to make the figures more readable.

Our results show that, even when we do random grouping,
many fake tuples have a large number of matching buckets.
For example, for the OCC-7 dataset, for a small p = 100
and c = 2, there are 5325 fake tuples that have more than
20 matching buckets; the number is 31452 for original tuples.
The numbers are even closer for larger p and c values. This
means that a larger bucket size and more columns provide
better protection against membership disclosure.

Although many fake tuples have a large number of match-
ing buckets, in general, original tuples have more matching
buckets than fake tuples. As we can see from the figures, a
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Figure 7: Number of tuples that have matching
buckets

large fraction of original tuples have more than 20 matching
buckets while only a small fraction of fake tuples have more
than 20 tuples. This is mainly due to the fact that we use
random grouping in the experiments. The results of random
grouping are that the number of fake tuples is very large but
most fake tuples have very few matching buckets. When we
aim at protecting membership information, we can design
more effective grouping algorithms to ensure better protec-
tion against membership disclosure. The design of tuple
grouping algorithms is left to future work.

7. RELATED WORK
Two popular anonymization techniques are generalization

and bucketization. Generalization [29, 31, 30] replaces a
value with a“less-specific but semantically consistent”value.
Three types of encoding schemes have been proposed for
generalization: global recoding, regional recoding, and local
recoding. Global recoding has the property that multiple
occurrences of the same value are always replaced by the
same generalized value. Regional record [17] is also called
multi-dimensional recoding (the Mondrian algorithm) which
partitions the domain space into non-intersect regions and
data points in the same region are represented by the region
they are in. Local recoding does not have the above con-
straints and allows different occurrences of the same value
to be generalized differently.

Bucketization [35, 25, 16] first partitions tuples in the
table into buckets and then separates the quasi-identifiers
with the sensitive attribute by randomly permuting the sen-
sitive attribute values in each bucket. The anonymized
data consists of a set of buckets with permuted sensitive
attribute values. In particular, bucketization has been used
for anonymizing high-dimensional data [12]. Please refer to
Section 2.2 and Section 2.3 for a detailed comparison of slic-
ing with generalization and bucketization, respectively.

Slicing has some connections to marginal publication [15];
both of them release correlations among a subset of at-

tributes. Slicing is quite different from marginal publica-
tion in a number of aspects. First, marginal publication
can be viewed as a special case of slicing which does not
have horizontal partitioning. Therefore, correlations among
attributes in different columns are lost in marginal publica-
tion. By horizontal partitioning, attribute correlations be-
tween different columns (at the bucket level) are preserved.
Marginal publication is similar to overlapping vertical par-
titioning, which is left as our future work (See Section 8).
Second, the key idea of slicing is to preserve correlations be-
tween highly-correlated attributes and to break correlations
between uncorrelated attributes, thus achieving both bet-
ter utility and better privacy. Third, existing data analysis
(e.g., query answering) methods can be easily used on the
sliced data.

Existing privacy measures for membership disclosure
protection include differential privacy [7, 8, 9] and δ-
presence [27]. Differential privacy has recently received
much attention in data privacy, especially for interactive
databases [7, 3, 8, 9, 36]. Rastogi et al. [28] design the
αβ algorithm for data perturbation that satisfies differential
privacy. Machanavajjhala et al. [24] apply the notion of dif-
ferential privacy for synthetic data generation. On the other
hand, δ-presence [27] assumes that the published database
is a sample of a large public database and the adversary
has knowledge of this large database. The calculation of
disclosure risk depends on this large database.

Finally, privacy measures for attribute disclosure pro-
tection include ℓ-diversity [23], (α, k)-anonymity [34], t-
closeness [20], (k, e)-anonymity [16], (c, k)-safety [25],
privacy skyline [5], m-confidentiality [33] and (ǫ,m)-
anonymity [19]. We use ℓ-diversity in slicing for attribute
disclosure protection.

8. DISCUSSIONS AND FUTURE WORK
This paper presents a new approach called slicing to

privacy-preserving microdata publishing. Slicing overcomes
the limitations of generalization and bucketization and pre-
serves better utility while protecting against privacy threats.
We illustrate how to use slicing to prevent attribute disclo-
sure and membership disclosure. Our experiments show that
slicing preserves better data utility than generalization and
is more effective than bucketization in workloads involving
the sensitive attribute.

The general methodology proposed by this work is that:
before anonymizing the data, one can analyze the data char-
acteristics and use these characteristics in data anonymiza-
tion. The rationale is that one can design better data
anonymization techniques when we know the data better.
In [21], we show that attribute correlations can be used for
privacy attacks.

This work motivates several directions for future research.
First, in this paper, we consider slicing where each attribute
is in exactly one column. An extension is the notion of over-
lapping slicing, which duplicates an attribute in more than
one columns. This releases more attribute correlations. For
example, in Table 1(f), one could choose to include the Dis-
ease attribute also in the first column. That is, the two
columns are {Age,Sex,Disease} and {Zipcode,Disease}.
This could provide better data utility, but the privacy im-
plications need to be carefully studied and understood. It is
interesting to study the tradeoff between privacy and util-
ity [22].



Second, we plan to study membership disclosure protec-
tion in more details. Our experiments show that random
grouping is not very effective. We plan to design more effec-
tive tuple grouping algorithms.

Third, slicing is a promising technique for handling high-
dimensional data. By partitioning attributes into columns,
we protect privacy by breaking the association of uncor-
related attributes and preserve data utility by preserving
the association between highly-correlated attributes. For
example, slicing can be used for anonymizing transaction
databases, which has been studied recently in [32, 37, 26].

Finally, while a number of anonymization techniques have
been designed, it remains an open problem on how to use
the anonymized data. In our experiments, we randomly gen-
erate the associations between column values of a bucket.
This may lose data utility. Another direction to design data
mining tasks using the anonymized data [13] computed by
various anonymization techniques.
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