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ABSTRACT
The increasing popularity of social networks has initiateda fertile
research area in information extraction and data mining. Anonymiza-
tion of these social graphs is important to facilitate publishing these
data sets for analysis by external entities. Prior work has con-
centrated mostly onnode identity anonymizationand structural
anonymization. But with the growing interest in analyzing so-
cial networks as a weighted network,edge weight anonymization
is also gaining importance. We presentAnónimos, a Linear Pro-
grammingbased technique for anonymization of edge weights that
preserveslinear propertiesof graphs. Such properties form the
foundation of many important graph-theoretic algorithms such as
shortest paths problem,k-nearest neighbors, minimum cost span-
ning tree, andmaximizing information spread. As a proof of con-
cept, we applyAnónimos to theshortest paths problemand its ex-
tensions, prove the correctness, analyze complexity, and experi-
mentally evaluate it using real social network data sets. Our ex-
periments demonstrate thatAnónimos anonymizes the weights, im-
provesk-anonymityof the weights, and also scrambles the relative
ordering of the edges sorted by weights, thereby providing robust
and effective anonymization of the sensitive edge-weights. Addi-
tionally, we demonstrate the composability of different models gen-
erated usingAnónimos, a property that allows a single anonymized
graph to preserve multiplelinear properties.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; G.1.6 [Optimization ]:
Linear programming; J.4 [Social and Behavioral Sciences]: Soci-
ology

General Terms
Algorithms, Design, Security.

Keywords
Anonymization, Social Networks, Weighted network models,Short-
est paths, Linear Programming.

1. INTRODUCTION
Social networking sites such asMySpace, Facebook, Twitter, and

Orkut have millions of registered users, and the resulting social
graph structures have millions of vertices (users or socialactors)
and edges (social associations). Recent research has explored these
social networks for understanding their structure [1,4,22], criminal
intelligence [24], information discovery [2], advertising and mar-
keting [13], and others [11]. As a result, companies (such as Face-
book) hosting the data are interested in publishing portions of the

graphs so that independent entities can mine the wealth of infor-
mation contained in these social graphs. Anonymization of these
graphs is paramount to avoid privacy breaches [3, 15]. Conse-
quently, there has also been considerable interest in the anonymiza-
tion of graph structured data [5–7,12,19,32,33]. But most of the
existing research on anonymization techniques tends to focus on
unweightedgraphs fornodeandstructural anonymization.

Recent research has shown applications of theweighted network
modelwhere social graphs are viewed as weighted networks. Ex-
amples include analyzing theformation of communitieswithin the
network [17], viral and targeted marketing and advertising[13],
modeling the structure and dynamicssuch as opinion formation [28],
and analysis of the network formaximizing the spread of informa-
tion through the social links [14], in addition to the traditional ap-
plications such asshortest paths[9], spanning trees[16] etc. The
semantics of the edge weights depend on the application (such as
users in a social network assigning weights based on “degreeof
friendship”, “trustworthiness”, “behavior”, etc.), or the property
being modeled [17, 28]). For example, consider the“Los Ange-
les” community in Facebook. If we consider that edge weights are
inverse of “trustworthiness” (smaller weights correspondto higher
trust in the relation), then thek Nearest Neighbors (kNN)query at
a particular vertex returns thek most trusted users associated to the
queried user, and thesingle source shortest paths treeprovides the
most trusted paths within the community which might be used for
communicating while minimizing chances of a leak. We focus on
the problem of anonymization of edge weights in a social graph.
Edge-weight anonymization: why do we care?First, in many so-
cial networks (such as academic social networks [27]), node iden-
tity and link structure is public knowledge. But the edge weights,
such as “trustworthiness” of userA according to userB, is private
information. Therefore, for publishing the graph, anonymization
of the edge weights is critical, while node identity anonymization
might not be needed.Second, even in the case where the node
identities are anonymized, edge weight anonymization is still im-
portant since if an adversary re-identifies a node in the anonymized
graph, even more information will be revealed if edge weights are
not anonymized.
Privacy preserving modeling.For a weighted network model, the
magnitude of the weights, distinguishability of weights, as well as
relative ordering of edges by their weights is sensitive informa-
tion. The goal of anonymization is to prevent rediscoveringof this
sensitive information with a high confidence. For instance,given
an edge’s weight (w′) in the anonymized graph, an attacker must
not be able to determine, with high confidence, the weight of that
edge (w) in the original graph. Similarly, given two edges(u1, v1)
and(u2, v2) such that their weights in the anonymized graph have
the relationw′[u1, v1] < w′[u2, v2], an attacker must not be able
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to discern, with high confidence, the relative ordering of the edge
weights in the original graph.

Our solution to the problem of edge weight anonymization is to
model the weighted graph based on the property to be preserved,
and then reassign edge weights satisfying the model to obtain the
anonymized graph. We observe that a large class of graph proper-
ties can be expressed aslinear properties:

DEFINITION 1.1. A linear property of a graph is a property
expressible in terms of inequalities involving linear combinations
of edge weights.

Linear propertiesform the basis for a gamut of important graph
theoretic properties such asshortest paths, information spread, cre-
dentialing in social media, collective actions, minimum weight match-
ing, etc. Given a directed graph with non-negative edge-weights,
our goal is to model suchlinear propertiesusing a collection oflin-
ear inequalitiesandto preserve the structure of the graph as well
as the desired linear properties so that the anonymized graph is at
least as useful as the original graph in terms of the propertybe-
ing preserved. Stated formally, the objective of privacy preserving
modeling is:

OBJECTIVE 1.1. To construct a model thatcorrectly captures
the inequalities that must be obeyed by the edge weights for the
linear property being modeled to be preserved. Any solution to
such a model would ensure anonymization of edge weights, while
preserving the linear property under consideration.

Once the model has been computed, the set of inequalities in
the model need to be solved so that the solution can be used to
anonymize the weights while preserving the property being mod-
eled. Linear Programming (LP) is a powerful technique for solving
such system of linear equalities. We therefore proposeAnónimos,
a technique for modeling linear properties using a system oflinear
inequalities and formulate it as an LP problem. This formulation
allows us to use off-the-shelf LP solvers for solving the models
and anonymizing the graphs. We also show thecomposability
property ofAnónimos for preserving multiple linear properties in
a single anonymized graph. As a proof-of-concept, we consider
theshortest paths problemsince it is a problem of great interest in
weighted graphs. The notion of shortest paths is widely applicable
in people’s use of social media. Most notably, the determination
of (or reliance on) shortest paths is critical in the timely transfer
of information from one person to another. Applications include
messages regarding everything: from social information (e.g., up-
dates about plans among friends in a social network) to frivolous
information (e.g., sharing jokes and entertainment information) to
information that is potentially serious and consequential(e.g., in-
formation about crises or the spread of disease). Moreover,under-
lying a variety of online relationships is the notion of trust, which is
a fundamental concern in e-commerce transactions, personal rela-
tionships, and the consumption of news information, among other
things. By involving the fewest people in the transfer of informa-
tion across a network, potential trust violations (e.g., leaks, mis-
information from less well-known sources, or security breaches)
are minimized. In these and other ways, the retention of informa-
tion about shortest paths is of broad appeal. Furthermore, it is also
useful in modeling other properties such askNN and community
formation within complex network models.
Contributions.

• We proposeAnónimos, a technique for edge weight anonymiza-
tion of graph structured data that preserveslinear properties
by expressing them as a system of inequalities formulated as
an LP problem (Section2).

Table 1: Notational Conventions.
G = (V, E,W ) Weighted graph to be anonymized
G′ = (V, E,W ′) Anonymized graph,W ′ satisfies the model

n, |V | Number of vertices in the graph
d Average degree of the vertices of the graph

w[u, v] andw′[u, v] Weight of edge(u, v) in G and inG′

P [u, v] Path from vertexu to v in the graphG
D[u, v] Cost ofP [u, v],

∑
(u′,v′)∈P [u,v]w[u′, v′]

Π[v] Predecessor ofv in the shortest paths tree
Ti Shortest paths tree withvi as the source

x1, . . . , xm Variables representing edge-weights
x(u,v) Variable corresponding to edge(u, v) ∈ E

f(u, . . . , v)
∑

(u′,v′)∈P [u,v] x(u′,v′)

µ Indistinguishability threshold fork-anonymity
Nu Edge neighbor of a vertex

• We useAnónimos to develop models for different variants of
theshortest paths problem(Section4). We also demonstrate
the composability of the models by composing the models of
thesingle source shortest paths treesto construct the model
for all pairs shortest paths. Anónimos therefore has the abil-
ity to preserve multiple linear properties in a single anonymized
graph. We further optimize the models (Section5) that con-
siderably reduces the complexity of the models.

• We prove the correctness of the proposed models, provide a
thorough analysis of the complexity of the proposed mod-
els, and present the results of experiments (Section7) on
real social network graphs that validate this analysis, while
confirming that the anonymity of the sensitive information is
preserved.

2. ANÓNIMOS IN ABSTRACT
We now introduceAnónimos, and use Kruskal’s algorithm [16]

for minimum spanning tree (MST)as an example. The goal of this
technique is to capture the dynamic behavior of the algorithm us-
ing a system of linear inequalities. Given the original weighted
directed graphG = (V,E,W ) with positive edge weights repre-
sented by variablesx1, x2, . . . , xm (where eachxi corresponds to
an edgei = (u, v) ∈ E; refer to Table1 for notational conven-
tions), we model the system of linear inequalities in terms of these
variables. For example, at every step of Kruskal’s algorithm for the
MST [16], the edge with the minimum weight amongst the set of re-
maining edges, and not resulting in a cycle is added to the MST. Let
(ui, vi) be the edge selected at theith iteration, and(ui+1, vi+1)
be the edge selected in the(i + 1)th iteration. This implies that
w[ui, vi] ≤ w[ui+1, vi+1]. If x(ui,vi) andx(ui+1,vi+1) are the
variables representing these edges in the model, then this outcome
is modeled by the inequalityx(ui,vi) ≤ x(ui+1,vi+1). Therefore,
for every pair of edges(ui, vi) and(ui+1, vi+1) selected in con-
secutive iterations, the inequalityx(ui,vi) ≤ x(ui+1,vi+1) can be
added to the model whenever the given weights satisfyw[ui, vi] ≤
w[ui+1, vi+1].

Decisions made at each step of the algorithm can similarly be
expressed as linear inequalities involving the edge-weights. Thus,
the execution of the algorithm processing the graph can thusbe
modeled as a set of linear inequalities involving the edge weights
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(1)

Any feasiblesolution to (1), except the original set of weights,
can be used to anonymize the weights while ensuring that the prop-
erties of the graph remain unchanged with respect to the algorithm
being modeled. Linear Programming (LP) provides a flexible and
powerful technique for solving such a system of inequalities. Since
finding a feasible solution to the model is as hard as finding the
optimal solution [23], the model in (1) can be formulated as an LP
problem:

Minimize (or Maximize) F = c
t
x

subject to Ax ≤ b

HereA is anm× n matrix of coefficients,b anm × 1 column
vector, c a 1 × n row of coefficients, andF = c

t
x is a linear

objective function. Even though feasibility of (1) is enough, the LP
formulation and choice of the objective functionF have a number
of advantages which we will discuss in Section2.1.

Any linear propertywhich can be expressed as a function of a
linear combination of edge weights can be expressed as an LP prob-
lem, and henceAnónimos can be used for modeling a wide variety
of linear properties. We remark that modeling an algorithm’s ex-
ecution (such as Kruskal’s algorithm for MST in this section, and
Dijkstra’s algorithm for shortest paths in the rest of the paper) is
an intuitive way for constructing the model, and the model cap-
tures the property of the graph in addition to modeling the algo-
rithm. Once the model has been constructed, any off-the-shelf LP
solver package can be used to find a solution to the set of inequal-
ities (constraints), and the solution constitutes the weights of the
anonymized graph. The model is said to becorrect if the property
being modeled is preserved across anonymization. Thecomplexity
of the model is the number of inequalities necessary to definethe
model.

2.1 Properties of Anónimos
Our formulation of (1) as an LP problem lendsAnónimos some

additional properties which are discussed below.

2.1.1 Flexibility and Robustness
The LP formulation of (1) allows the variables (representing the

edge-weights) to be assigned varying lower and upper boundsto
attain different scalings as well as shifts in the relative magnitudes
of the solution. Therefore, the publisher of the graph can publish
different anonymized versions of the same graph where the edge
weights in each published version is different. Additionally, the
LP formulation providesflexibility of choice of objective function.
Different objective functionsF can be used to generate different
solution sets, and hence different anonymized graphs can begener-
ated by changing the vectorc without any need for regenerating the
model. In addition, if the publisher of the graph wants to minimize
the sum of edge weights in the anonymized graph, thenc can be
set as a unit vector. Furthermore, if it is required that someweights
in the anonymized graph be smaller than other weights, thenc can
be chosen with larger coefficients corresponding to these variables,
and smaller coefficients corresponding to the rest. These are just
some of the examples of flexibility that the objective function F

lends to this problem and the publisher of the graph. Sinceany fea-
siblesolution can be used for anonymization, the choice ofF is a
free parameterand a choice of the publisher of the graph.

2.1.2 Composability
Another important property ofAnónimos aided by the LP for-

mulation iscomposability, i.e. the ability to combine models rep-
resenting different linear properties so thatmultipleproperties are
preserved in a single anonymized graph.

THEOREM 2.1. The composition of LP models developed as ex-
tensions ofAnónimos for modeling differentlinear propertiesdo not
lead to contradictory constraints, and hence the models arecom-
posable.

PROOF. Proof by Contradiction. Let G = (V,E,W ) be the
original weighted graph. LetM1 andM2 represent models repre-
sentinglinear propertiesP1 andP2 (shortest paths and minimum
spanning tree for instance), and letS1 andS2 denote the set of in-
equalities representing the models. Let us assume that there exist
a contradictory pair of constraints inS1 ∪ S2, i.e., there does not
exist a single solution for the set of constraintsS1 ∪ S2. Since the
setS1 is built based on the original set of weightsW , henceW
is a valid solution satisfyingS1 (and there are possibly many more
solutions satisfyingS1). Using similar arguments,W also satisfies
S2. SinceW satisfiesS1 andS2 individually, henceW must also
satisfyS1 ∪ S2. This leads to a contradiction thatS1 ∪ S2 had a
contradicting pair of inequalities.

Therefore, if a model is developed to preserve theminimum span-
ning tree, and another model is developed for preserving theshort-
est paths, both the models can becomposedso that the resulting
model captures both properties, and a solution to the composed
model results in an anonymized graph that preserves both these
properties.

3. PRIVACY METRICS
Attack Model. The goal of edge-weight anonymization is to pre-
vent an adversary from determining with high confidence “sensitive
information” corresponding to the edges:

DEFINITION 3.1. Sensitivity of Weights:The following infor-
mation about an edge is considered assensitiveand should be pre-
served across anonymization:

• Themagnitudeof the weights associated with the edges.

• Indistinguishabilityof the weight of an edge when compared
to the weights of other edges.

• Relative orderingof the edge weights in the original graph.

The reason for indistinguishability is obvious — a distinguish-
able weight would aid re-identification of the edge and possibly its
weight. Ordering of weights is sensitive for certain semantics of
edge-weights. For instance, in the“Los Angeles” community ex-
ample with weights representing “trustworthiness”, ifA ratesB as
more trustworthy compared toC, thenw[A,B] > w[A,C]. Evi-
dently, this ordering is “sensitive” for all the involved users, and an
adversary analyzing the anonymized graph should not be ableto de-
termine this order with high confidence. In summary, anonymiza-
tion should not leak sensitive information such that if an attacker
re-identifies an edge in the anonymized graph, s/he can neither de-
termine the edge’s original weight, nor the ordering of the edge’s
weight compared to weights of other edges.



Note that the ordering or indistinguishability of edges is partic-
ularly interesting in aneighborhoodof an edge in the graph. For
instance, the ordering ofw[u1, v1] andw[u2, v2] is not important if
u1, v1, u2, andv2 are not related in the graph. We therefore define
anedge neighborhoodof a vertex (which also captures the relation-
ship amongst the edges) where ordering and indistinguishability is
important.

DEFINITION 3.2. Edge neighborhood of a vertex.The edge
neighborhood of a vertexu, denoted asNu, is the set of edges
emanating from the vertexu, i.e., edges withu as the source.

The notion of neighborhood can change depending on the se-
mantics of the application. To address privacy concerns, weuse
two well known metrics used in data privacy and statistics which
will be evaluated in a particularneighborhood:
k-anonymity. k-anonymity[26] is a well known metric used in
data privacy for dealing with theindistinguishabilityof data values
in an anonymized data sets. We use the following definition ofk-
anonymityin the context of edge weight anonymization:

DEFINITION 3.3. An edge(u, v) is k-anonymousif there ex-
ists k − 1 other edges(u, vi) in the neighborhoodNu such that
‖w[u, v]−w[u, vi]‖ ≤ µ, whereµ is the indistinguishability thresh-
old, i.e., the difference of weights below which two edge weights
cannot be distinguished.

Anónimos can ensure preservation ofk-anonymityby adding ad-
ditional constraints of the formx(u, v) − x(u, vi) ≤ µ ∀(u, v)
and(u, vi) in a neighborhood; though at the cost of increasing the
complexityof the model.
Spearman rank correlation coefficient.The Spearman rank coef-
ficient [25], denoted byρ, is a statistical measure of the correlation
of ranks or orders of two ranked data sets, and is used to evaluate
theorder sensitivity anonymization. Consider twon-tuplesX and
Y , whereX corresponds to the edge weights in the given graph,
andY to the edge weights in the anonymized graph. Let the corre-
sponding rank sequences bex andy.

DEFINITION 3.4. Given two ranked data setsX and Y , ρ is
computed as:

ρ = 1−
6
∑

d2i
n(n2 − 1)

wheredi = xi − yi is the difference between the ranks of the cor-
responding valuesXi andYi, andn is the number of items in each
data set.

The value ofρ lies between−1 and 1;ρ = 1 implies perfect
correlation,ρ = −1 implies perfect negative correlation, andρ = 0
implies no correlation between the two orders. Therefore,ρ gives
a measure of anonymity in terms of scrambling the rank-ordering
of edge weights in a neighborhood; given a list of edges in the
edge neighborhoodof a vertex, a value ofρ closer to 0 is desirable.
In case there are tied ranks, then a somewhat more complicated
formula is used. In this case Spearman rank correlation coefficient
in terms of the computed ranksxi andyi is

ρ =
n
∑

xiyi −
∑

xi

∑
yi

√

n
∑

x2
i − (

∑
xi)

2
√

n
∑

y2
i − (

∑
yi)

2

Algorithm 4.1 Dijkstra’a Algorithm: Shortest paths tree
1: D← (∞) /* Cost of best known path from source. */
2: Π← () /* Predecessor in shortest path from source. */
3: Q← v0 /* Set of unvisited vertices */
4: S ← φ /* Vertices to which shortest path is known. */
5: D[v0, v0]← 0
6: while Q 6= φ do
7: u← ExtractMin(Q) /* Unvisited vertex with min cost */
8: S ← S ∪ {u}
9: for each vertexv such that(u, v) ∈ E andv /∈ S do

10: if D[v0, v] > D[v0, u] +w[u, v] then
11: D[v0, v]← D[v0, u] + w[u, v]
12: Π(v)← u /* Shorter path exists. */
13: else
14: /* Do Nothing. */
15: end if
16: if v /∈ Q then
17: Q← Q ∪ {v}
18: end if
19: end for
20: end while

4. SHORTEST PATHS PROBLEM
In this section, we demonstrate howAnónimos can be used for

modeling and preserving theshortest pathsproperty of a graph. As
pointed out earlier, shortest paths in a graph are importantto vari-
ous graph applications, and we choose the shortest paths problem
as a proof-of-concept. We first describe the technique for modeling
single source shortest paths treeusing the Dijkstra’s algorithm [9],
and then demonstrate the composability ofAnónimos by composing
the models generated forsingle source shortest pathsto construct
the model forall pairs shortest pathsproblem.

4.1 Single Source Shortest Paths – Linear Model
We now show howAnónimos can be used for modeling thesingle

source shortest paths tree. Given a weighted graphG = (V,E,W ),
and a source vertexv0, a single source shortest paths treeis a
spanning tree of the graph where the path from the source to any
other vertex in the tree is the shortest path between the pairin
G. This tree is important in a number of applications; for exam-
ple, if weights are assigned based on inverse of “trustworthiness”,
then this tree will provide the paths with greatest “trustworthiness”
for transferring confidential information from a specific node while
minimizing chances of a leak.

Thesingle source shortest paths treeproblem can have various
naïve anonymization schemes. We solve this problem separately
since: First, the single source shortest paths treeproblem sub-
sumes thek-nearest neighborsquery, since given the shortest paths
tree from nodev0, we can determine the top-k nearest neighbors
in increasing order. AnAnónimos based approach preserves this
additional property which many naïve solutions cannot preserve.
Second, this model forms the basis for theall pairs shortest paths
problem and we use this as a stepping stone towards this goal.Our
composition of the models forsingle source shortest paths treeto
modelall pairs shortest pathsproblem demonstrates the compos-
ability of the models (Theorem2.1).

Dijkstra’s algorithm [9] is a well known greedy algorithm forsin-
gle source shortest paths tree; Algorithm 4.1provides an overview.
Given a start vertexv0, at every step the algorithm selects the ver-
tex u with the smallest known cost fromv0. The algorithm “re-
laxes” the neighbors ofu whose cost from the source has now de-
creased because of the selection ofu. Figure1 shows an illustration



(a) Original weighted graph (b) Dijkstra’s algorithm in progress (c) After completion

Figure 1: Illustration of Dijkstra’s algorithm. The number s adjoining the vertices and outside parenthesis correspond to the order
in which the vertices were selected by Dijkstra’s algorithm, the number in parentheses correspond to the cost of the bestknown path
from the source, and the dashed edges constitute the shortest paths tree.

of the execution of Dijkstra’s algorithm on an example graph, and
the resulting tree. For notational conventions refer to Table 1. In
particular,D[u, v] is the cost of the path from the vertexu to v,
andf(u, v) is

∑

(u′,v′)∈P [u,v] x(u′,v′). In other wordsf(u, v) is a
shorthand for the sum of the variables representing the edges in a
given path.

Dijkstra’s algorithm [9] makes a number of decisions based on
the outcome of comparisons of linear combinations of edge weights.
These decisions can be modeled using the following three cate-
gories of inequalities and are incorporated in Dijkstra’s algorithm
as shown in Algorithm4.2:

• Category I: When processing edge(u, v), if D[v0, v] can be
improved, thenD[v0, v] > D[v0, u]+w[u, v], add constraint
f(v0, v) > f(v0, u) + x(u,v) (line 18 in Algorithm 4.2).

• Category II : When processing edge(u, v), if D[v0, v] can
not be improved, thenD[v0, v] ≤ D[v0, u] + w[u, v], add
constraintf(v0, v) ≤ f(v0, u) + x(u,v) (line 20 in Algo-
rithm 4.2).

• Category III : When extracting the edgeu for the next itera-
tion, if u′ is the previous vertex processed, thenD[v0, u

′] ≤
D[v0, u], add constraintf(v0, u′) ≤ f(v0, u). This captures
the order in which the vertices are selected (line11 in Algo-
rithm 4.2).

The following theorem formalizes the correctness of this model.

THEOREM 4.1. A model built from all the inequalities of Cat-
egories I, II, and III combined will correctly model Dijkstra’s al-
gorithm, i.e., any solution to the model used to anonymize edge
weights in the graph results in the same shortest paths tree in the
original as well as the anonymized graph.

PROOF. Proof by Contradiction. Let G = (V,E,W ) be the
input graph, andG′ = (V,E,W ′) be the anonymized graph. Let
T0 be the shortest paths tree starting at vertexv0 in G andT ′

0 be the
corresponding tree inG′. By way of contradiction, assume thatT0

andT ′

0 are different. Letv be a vertex whereT0 andT ′

0 differ, and
let u be its predecessor inT0, andu′ in T ′

0 such thatu 6= u′. Since
u is the predecessor ofv in T0 and since(u, v) and(u′, v) ∈ E,
we must have:

D[v0, u] + w[u, v] = D[v0, v] (2)

and, D[v0, u
′] + w[u′, v] ≥ D[v0, v] (3)

Algorithm 4.2 Linear Complexity model
1: D← (∞) /* Cost of best known path from source. */
2: Π← () /* Predecessor in shortest path from source. */
3: Q← v0 /* Set of unvisited vertices */
4: S ← φ /* Vertices to which shortest path is known. */
5: D[v0, v0]← 0
6: u′ ← φ /* Stores the vertex processed in previous iteration */
7: while Q 6= φ do
8: u← ExtractMin(Q)
9: S ← S ∪ {u}

10: if u′ 6= φ then
11: AddConstraint(f(v0 , u′) ≤ f(v0, u))
12: end if
13: u′ ← u
14: for each vertexv such that(u, v) ∈ E andv /∈ S do
15: if D[v0, v] > D[v0, u] +w[u, v] then
16: D[v0, v]← D[v0, u] + w[u, v]
17: Π(v)← u
18: AddConstraint(f(v0 , v) > f(v0, u) + x(u,v))
19: else
20: AddConstraint(f(v0 , v) ≤ f(v0, u) + x(u,v))
21: end if
22: if v /∈ Q then
23: Q← Q ∪ {v}
24: end if
25: end for
26: end while

The model will contain constraints corresponding to properties2
and3. Again, asu′ is the predecessor ofv in T ′

0, and since(u, v)
and(u′, v) ∈ E, we have:

D′[v0, u
′] + w′[u′, v] = D′[v0, v] (4)

and, D′[v0, u] + w′[u, v] ≥ D′[v0, v] (5)

SinceW ′ is a solution of the model, properties4 and5 will be
satisfied only ifu = u′, which is a contradiction.

Complexity of the Model. Category I and Category II combined
will result in O(dn) inequalities. This is because, when an edge is
processed, either the path to its neighbor is improved (Cat I), or it
remains unchanged (Cat II), and hence every edge results in at least
one inequality. Since the average degree per node isd, the resulting
number of inequalities isO(dn). The number of inequalities for
Cat III isO(n) since one inequality of Cat III is generated for every



vertex processed. Thus, the complexity of the model isO(dn).
Since most large real graphs are sparse, i.e.,d ≪ n (generallyd
is of the order of tens or hundreds), we refer to this model as the
Linear modelwith complexity growing linearly withn.

4.2 All Pairs Shortest Paths – Quadratic Model
In Theorem2.1, we formalized the concept ofcomposabilityof

models formed usingAnónimos. We now demonstrate composabil-
ity by combining the models forsingle source shortest paths tree
for modelingall pairs shortest pathsproblem [9]. All pairs short-
est paths is a case where every vertex in the graph is considered as
a single source shortest paths tree. Anónimos can also use Floyd-
Warshall [10] algorithm for all-pairs shortest paths. We prefer to
build on Dijkstra’s algorithm since in addition to demonstrating
composability, we can build on the models developed in the pre-
vious section, and Dijkstra’s algorithm has additional properties
(described in Section6) which makes it better suited for certain
applications.

A simple solution for the all-pairs problem is to generate the
Linear model (as in Section4.1) for the single source shortest paths
trees for all the verticesv1, v2, . . . , vn, obtain the set of constraints
S1, S2, . . . , Sn, and then obtain the model for all-pairs asS1 ∪
S2 ∪ · · · ∪ Sn. Since each of theSi’s provide constraints onall
edges, hence the constraints from onesingle source shortest paths
treecannot contradict the assignment of another tree.

THEOREM 4.2. A model comprised of all the constraints gen-
erated by theLinear solution for single source shortest paths tree,
repeated for all the vertices of the tree, is a correct model for the
all-pairs problem.

PROOF. Proof by Contradiction. Let G = (V,E,W ) be the
input graph, andG′ = (V,E,W ′) be the anonymized graph. Let
us assume that there exists at least one pair of verticesvi, vj whose
shortest paths inG′ differs from its shortest path inG. The shortest
path fromvi to vj in the all-pairs problem is the path fromvi to vj
in the single source shortest paths tree withvi as the source, i.e.,
Ti. This implies thatTi in G does not matchT ′

i in G′, which is a
contradiction of Theorem4.1.

Complexity of the Model. The complexity of the model can be de-
rived trivially from the complexity of the constituting model. Each
of the shortest paths trees have a complexity ofO(dn), and this
repeated forn vertices gives us a total complexity ofO(dn2).

5. OPTIMIZING THE MODELS
In the previous section, we developed a couple of simple models

for the shortest paths problem, and demonstrated the composability
of the models. We now provide optimizations to the simple models
to reduce the complexity of the models while relaxing the com-
posability property of the models – composability of the optimized
models require special handling which we also discuss laterin the
section.

5.1 Single Source Shortest Paths – Reduced
Model

We exploit specific properties of shortest paths to reduce the
complexity of the naïve application ofAnónimos to Dijkstra’s algo-
rithm which resulted in theLinear model. Note that even though
Dijkstra’s algorithm tries to relax the neighbors when processing a
vertex, the ultimate goal is to select an appropriate vertexfor the
next iteration, i.e., the vertex with the smallest known cost from
the source. Category III inequalities model this information in an
efficient way, and hence ideally, only Category III inequalities are

needed. However Category III inequalities only include edges that
are part of the shortest paths tree. Therefore, ifonly Category III
inequalities are considered in the model, then only part of the total
number of edges are modeled. These inequalities by themselves
do not put constraints on non-tree edges, and thus, if no careis
taken while reassigning edge weights in the anonymized graph, it
can lead to violations of the order in the anonymized graph. For
instance, if edge(u, v) is a non-tree edge, then a model using only
Category III would not impose any constraint on(u, v). Hence a
reassignment of weights in the anonymized graph might assign the
edge(u, v) a weight such that Dijkstra’s algorithm executing on
the anonymized graph selects(u, v) as a tree edge.

Therefore, to ensure correctness, the model must be augmented
to make sure that the non-tree edges are not included in the tree
when the algorithm executes on the anonymized graph. The fol-
lowing theorem formalizes this proposition.

THEOREM 5.1. A model which ensures that(i) the order of se-
lection of vertices remains the same even after anonymization, and
(ii) non-tree edges in the original graph are not included in the
tree constructed on the anonymized graph, will also ensure that the
shortest paths tree in the original and anonymized graph arealso
same, i.e., the model is correct.

PROOF. Proof by Contradiction.
Let G = (V,E,W ) be the input graph, andG′ = (V,E,W ′)

be the anonymized graph. LetT be the shortest paths tree starting
at vertexv0 in G andT ′ be the corresponding tree inG′. Let us
assume thatT andT ′ are different. Letv be first vertex whereT
andT ′ differ, and letu be its predecessor inT , andu′ in T ′ such
thatu 6= u′. Then the following two possibilities arise:
Case I: The edge(u, v) ∈ T , and(u′, v) /∈ T . Now if u′ is the
predecessor ofv in T ′, then(u′, v) ∈ T ′. But this is a contradiction
since(ii) ensures that if(u′, v) /∈ T ⇒ (u′, v) /∈ T ′.
Case II: Both edges(u, v) and (u′, v) are inT . If (u′, v) is a
directed edge, then this is not possible since vertexv can have only
one predecessor inT which is u, and since(u′, v) is a directed
edge towardsv, it cannot be included in the path to some other
vertex processed afterv leading to a contradiction to the condition
(i).

Augmenting the model – Complexity and Correctness.Category
III inequalities enforce condition(i) of Theorem5.1. A simple so-
lution to ensure that condition(ii) is also satisfied is to keep track
of the edges not in the shortest path tree (Ts) and when assign-
ing weights to the anonymized graph, non-tree edges are assigned
weights greater than the shortest path with the largest weight. This
ensures that these edges are not picked as the shortest pathsin
the anonymized graph. Thus, Category III inequalities along with
some additional information can model Dijkstra’s algorithm, and
the complexity of the modified model becomesO(n) (n− 1 to be
exact). Algorithm5.1 provides the pseudocode for theReduced
model described in Section5.1, while Algorithm 5.2 provides the
code for reassigning edge weights in the anonymized graph ob-
tained using theReducedmodel. The asymptotic complexity of the
models in this section and in Section4.1 are the same: both grow
linearly withn (assuming thatd is a constant compared ton). But
considering the fact thatd is generally of the order of10 or 100 (as
shown in our experiments using social network graphs), the model
suggested in this section provides1 to 2 orders of magnitude re-
duction in the number of inequalities.

5.2 All Pairs Shortest Paths – Optimized Model
We now develop an efficient model for the all pairs shortest paths

problem. The model obtained by composition of theLinear model,



Algorithm 5.1 Reduced model
1: /* Initialize similar to Dijkstra in Algorithm4.2. */
2: T ← φ /* Set of edges in the Tree. */
3: while Q 6= φ do
4: u← ExtractMin(Q)
5: S ← S ∪ {u}
6: if (Π(u), u) /∈ T then
7: T ← T ∪ {(Π(u), u)}
8: end if
9: if u′ 6= φ then

10: AddConstraint(f(v0, u′) ≤ f(v0, u))
11: end if
12: u′ ← u
13: for each vertexv such that(u, v) ∈ E andv /∈ S do
14: if D[v0, v] > D[v0, u] + w[u, v] then
15: D[v0, v]← D[v0, u] + w[u, v]
16: Π(v)← u /* Shorter path exists. */
17: end if
18: if v /∈ Q then
19: Q← Q ∪ {v}
20: end if
21: end for
22: end while

Algorithm 5.2 Reassignment of weights in Reduced model
Require: vl is the last vertex processed by Algorithm5.1
1: for each edge(u, v) ∈ E do
2: if (u, v) ∈ T then
3: w′[u, v]← Value obtained from solution of model.
4: else
5: w′[u, v]← D′[vs, vl]+rand() /* vs is the source vertex.

*/
6: end if
7: end for

though correct, has many redundant inequalities. For example,
edges that are not part of any of the trees need not be part of the
model, and can be treated as the non-tree edges in Section5.1.
However in the described model, there are no means for filtering
out these inequalities. We now delve deeper into the problemand
show how theReducedmodel described in Section5.1can be com-
posed for the all pairs problem.

Note that twoReducedmodels cannot be merged in a naïve way
(refer to [8] for more details), since all edges in the graph are not
part of the Reduced model (recall that only edges in the single
source shortest path tree are part of model). When merging the
constraints of multiple trees developed using the Reduced model,
some edges that are part of some trees but not all the trees may
result in problems. We formalize this as follows:

DEFINITION 5.1. Problematic edges:An edge(u, v) is said to
beproblematicfor composition if there exists a shortest paths tree
Ti such that(u, v) ∈ Ti, and there exists a treeTj (Ti 6= Tj) such
that (u, v) /∈ Tj .

A problematic edge(u, v) /∈ Tj will not have any constraint
involving x(u,v) in the model developed forTj , and hence the
constraints ofTi (or any other treeTk which contains(u, v)) can
set a valuew′[u, v] in the anonymized graph such that whenT ′

j is
reconstructed in the anonymized graph,(u, v) is selected as an edge
in T ′

j . There was in fact a decision which the algorithm took when
(u, v) was not included inTj , but since(u, v) was not selected in

Algorithm 5.3 Optimized model forall pairs shortest paths

1: Run Algorithm5.1 for all verticesv1, . . . , vn to determine the
treesT1, . . . , Tn and modelsS1, . . . , Sn

2: T ← φ
3: S ← φ
4: for eachTi in {T1, . . . , Tn} do
5: S ← S ∪ Si

6: for each edge(u, v) ∈ Ti do
7: for eachTk in {T1, . . . , Tn} such that(u, v) /∈ Tk do
8: S ← S∪ {f(vk, v) < f(vk, u) + x(u,v)}
9: end for

10: end for
11: T ← T ∪ Ti

12: end for

Tj , this decision was not part of the reduced model. We now devise
a mechanism to model this decision inTj , so that the edge will no
longer be problematic forTj .

PROPOSITION 5.2. Eliminating Problematic Edges:A prob-
lematic edge(u, v) is not selected inTj , if there exists another path
from the source vertexvj to v which is cheaper than the path from
vj to v through the vertexu, i.e.,D[vj , v] < D[vj , u] + w[u, v].
If the corresponding constraintf(vj , v) < f(vj , u) + x([u,v]) is
added to the model ofTj , then(u, v) is no longer a problematic
edge forTj . Similarly, if the process is repeated for all treesTk

such that(u, v) /∈ Tk, then(u, v) is no longer a problematic edge
for any of the trees.

Therefore, once we have ensured that the problematic edges are
eliminated during the composition of the constraints of theindivid-
ual trees, we can compose the individual constraints to forma cor-
rect model for all-pairs shortest paths. Therefore, ifT1, . . . , Tn are
the trees andS1, . . . , Sn are the corresponding set of constraints,
then we want to formS = S1⊕S2⊕· · ·⊕Sn which would model
the all-pairs shortest paths problem. The algorithm composes the
trees one at a time. The pseudocode for the algorithm generating
the model is shown in Algorithm5.3. Edges which are not in any
of the trees can be dealt in a manner similar to the approach used
in Section5.1.

THEOREM 5.3. The model created by composing individual trees
while eliminatingproblematic edgespreserves all the treesT1, . . . , Tn,
and hence correctly models all pairs shortest paths.

PROOF. Proof by Mathematical Induction.
Base Case.At the beginning of the algorithm,T = φ andS =

φ. Hence it is true trivially.
Inductive Case. Let us assume that after iterationi, we have

T and set of constraintsS that preserves treesT1, . . . , Ti, and at
iteration i + 1, we are adding the treeTi+1. Let us assume that
(u, v) is a problematic edge. For everyTk such that(u, v) /∈ Tk

(Tk ∈ {T1, . . . , Tn}), means that Dijkstra’s algorithm did not pick
(u, v) in Tk, and addition of the constraint in line8 makes sure
that Dijkstra’s algorithm executing on the anonymized graph will
not pick(u, v) as an edge inT ′

k. This property exists in the original
graph that made sure that(u, v)was not picked in any ofTk. There-
fore, it is evident that when the edge(u, v) is added, the algorithm
makes sure that it is not problematic, and hence at the end of the
iteration, the set of constraintsS preserves treesT1, . . . , Ti, Ti+1.

Therefore, by the principle of mathematical induction, theset of
constraints at the end of the algorithm preserved the treesT1, . . . , Tn,
and hence in the anonymized graph, all the trees can be recon-
structed which are identical to the trees in the original graph.



THEOREM 5.4. A model that preserves the treesT1, . . . , Tn

correctly models the shortest path between all pairs of vertices.

PROOF. Proof by Contradiction. Let G = (V,E,W ) be the
input graph, and letG′ = (V,E,W ′) be the anonymized graph.
Let us assume that there exists at least one pair of verticesvi, vj
whose shortest paths inG′ differs from its shortest path inG. The
shortest path fromvi to vj in the all-pairs problem is the path from
vi tovj in the single source shortest paths tree withvi as the source,
i.e.,Ti. This implies thatTi in G does not matchT ′

i in G′, which
is a contradiction, since theTi is preserved by Theorem5.3.

Complexity of the Model. The analysis of the complexity of the
algorithm is a bit more involved. In thebest case, all the trees
have the same edges. Since there are no problematic edges, nonew
constraints were added, and hence the complexity isO(n2). In the
worst case, every problematic edge will addO(n) inequalities, and
again, there can be at mostO(dn) problematic edges. Therefore,
the number of added constraints are:

(n− 1) + (n− 1) + · · ·+ (n− 1)
︸ ︷︷ ︸

dn terms

+(n− 1) + (n− 1) + · · ·+ (n− 1)
︸ ︷︷ ︸

n terms

= O(dn2) +O(n2) = O(dn2)

Therefore, the total number of inequalities isO(dn2). Thus the
complexity is no worse than the model described in Section4.2.
Our experimental evaluation on real datasets shows that this model
performs significantly better on the average thanO(dn2).

6. APPLICATION SPECIFIC PROPERTIES
In addition to the properties described in Section2.1 which are

general toAnónimos, there are some additional properties which
are interesting for the shortest paths problem. While generating the
constraints for the model, the algorithm can be terminated at any
point prior to completion, and this early termination has specific
applications for the shortest paths problem. FormulatingAnóni-
mos as an LP problem ensures that the model being constructed is
consistent at every point during the execution, and hence, these in-
teresting sub-properties are also preserved. Furthermore, since the
algorithm does not process every node and vertex in the graph, this
might lead to considerable savings in the complexity of the result-
ing models.
Early termination of Single Source Shortest Paths.When com-
puting the shortest paths tree from a specific node in the tree, the
vertices are processed in the order of increasing distance from the
source vertex. Therefore, if the algorithm is terminated after pro-
cessingk of the n vertices, the resulting model preserves thek
Nearest Neighbors (kNN) of the starting node. kNN is often use-
ful when the start vertex is an “influential user”, and the kNNtree
provides a path for information spread [14]. In the Reduced model
(Section5.1), an inequality is added for every vertex processed.
Therefore, the complexity of the proposed model isO(k) compared
toO(n) for the entire tree, a significant saving whenk ≪ n.
Early termination of All Pairs Shortest Paths. When combin-
ing individual shortest paths trees, the algorithm can be terminated
after processing treesT1, . . . , Tk (wherek < n) and the model
is still consistent for these trees and preserves the all pairs short-
est paths for paths between vertices1 . . . k. In addition, the trees
T1, . . . , Tk can be chosen as well as composed in any arbitrary or-
der. Consider the“Los Angeles”community example in Section1.

Table 2: Summary of Complexity of the models.
Single source All pairs

Linear: O(dn) Quadratic: O(dn2)
Reduced:O(n) Optimized: O(n2) (best),O(dn2) (average)

Table 3: Summary of the Social Graphs.
Data Set No. of Vertices No. of Edges Avg. Degree
Flickr-user-3 55,803 6,662,377 119.39
LJ-user-3 15,508 384,947 24.82
Orkut-user-3 26,110 899,638 34.46
Youtube-user-3 237,469 2,457,206 10.35

Flickr-comm 1,382 69,321 50.16
LJ-comm 1,497 21,481 14.35
Orkut-comm 1,047 28,240 26.97
Youtube-comm 1,823 29,342 16.1

A client requesting anonymized data corresponding to all the mem-
bers in the“Los Angeles” community might only be interested in
shortest paths between all pairs of “computer scientists”.In such
a scenario, only the shortest paths trees with “computer scientists”
as roots need to be combined. If the number of treesk ≪ n, then
this technique will have a complexity ofO(kn), i.e., linear in the
number of vertices in the graph.

7. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the different mod-

els based onAnónimos, compare their complexity, and validate our
analysis (Table2 provides a summary of complexity of the models).
All the algorithms were implemented in Java, and the experiments
were run on a 2.4GHz Intel Core 2 Quad processor. The machine
has 3GB main memory and runs Fedora Core Linux. We used four
real social network data sets obtained from the authors of [22]. In
our experiments, we used a free open-source LP Solver (lp_solve
5.5) [21]. We report the time taken to generate the model, com-
plexity of the model, and the time taken to solve the models. We
assume that the LP solver is de-coupled from the system generating
the model. Therefore, the model is written to disk, and the system
solving the model reads the model from disk, and generates the
solution, which is then used to anonymize the model. Hence the
reported times include the disk access latencies. Most opensource
implementations of LP solvers are not heavily optimized, and are
stable for smaller systems. There are commercial systems which
are much faster than these open source implementations, andcan
also handle larger models. Correctness of the models is alsoex-
perimentally validated by checking the equivalence of the short-
est paths trees and all-pairs shortest paths in the originaland the
anonymized graphs. As mentioned in Section2.1.1, the choice of
objective function provides some flexibility to the publisher. We
experimented with a number of objective functions such as setting
all coefficients to unity (unity objective function), or setting them
to random values picked from uniform as well as gaussian distri-
butions, but no significant difference in degree of anonymization
was observed. In the reported experiments, we use a unity object
function.
Implementation Issues ofAnónimos . It is appropriate to address
some of the subtleties of our implementation for completeness. Ev-
ery modeled decision results in an inequality. In order to deal with
ties and different implementations of queues or other structures
used, the ties in the original graphs should be modeled exactly in
the same way in which it was resolved while generating the model
in the original graph. Consequently, if the edge(u1, v1)was chosen



by the algorithm ahead of edge(u, v), to ensure that the algorithm
takes the same decision even in the anonymized graph, we model
the decision asx(u1, v1) ≤ x(u, v)−ǫ, whereǫ > 0 is a small real
number. Additionally, LP solvers do not accept strict inequalities
of the typex(u, v) < b. Therefore, such inequalities are converted
to non-strict inequalities asx(u, v) ≤ b − ǫ, where againǫ > 0 is
a small real number.

7.1 Graph Data sets
Mislove et al. [22] crawled a number of social network sites

for analyzing the properties of these large social graphs, and have
made their data sets publicly available. Their data sets include the
graphs for a number of popular social networking sites:Flickr
(www.flickr.com), Live Journal (www.livejournal.com), Orkut
(www.orkut.com), andYoutube (www.youtube.com). While Orkut
is a pure social networking site, LiveJournal (referred to as LJ
in the data sets) is a blogging site whose users form a social net-
work, while Flickr and Youtube are photo sharing and video shar-
ing sites respectively, with an overlayed social network structure
amongst its users. We model the graphs of these networks as di-
rected graphs where edges have positive weights, but the models
can be extended for undirected graphs. The published graph data
sets are unweighted, but since our model is not dependent on the
semantics of the weights or their magnitude, we assign randomly
generated weights (real numbers in the range 1 to 100) to the edges
of the graph. We used different distributions for assigningedge
weights, but no considerable change in complexity was observed.

The social network data sets have two specific forms of sub-
graphs:
User Driven Structures: These are sub-graphs where a specific
user is of interest, and is useful for applications focussedon a single
user. For example, for marketing purposes, a company might select
someinfluential users for free trials of their products so that they
can influence other users to use or buy the product [14]. Similarly,
applications such asshortest paths treesandnearest neighborswill
also be interested in similar structures. To simulate thesestructures,
we select a vertex in the graph as the root, and extract the graph
induced by the vertices which are withink degrees of separation
from the root (a vertexv is a first degree connection to the rootv0
if there exists an edge(v0, v)). We use theusersuffix to refer to
the user data sets, and for our experiments, we consider3rd degree
of separation (e.g.,Orkut-user-3).
Community Driven Structures: These graphs correspond to com-
munities (or groups) within the social networks. For example, in
our examples in Section1, we refer to the“Los Angeles” com-
munity in Facebook. Community structures are very important for
applications such astargeted advertising, shortest paths, nearest
neighborsetc. This is primarily since users in the same commu-
nity share common interests, and hence many applications can be
driven by the community structure. For the experiments, we select
communities inside the social networks, and extract the graph in-
duced by the members of the community. We use thecommsuffix
to refer to the community data sets (e.g.,Orkut-comm).

Table3 summarizes the different graphs in the data set used in
our experiments in terms of the number of vertices, number of
edges, and average out-degrees. To provide better insight into the
distribution of the out-degrees of the vertices, in Figure2, we plot
the cumulative distribution function (CDF)of the out-degrees of
the graphs in the data set. Along thex-axis is the out-degree, and
along they-axis is the fraction of the total number of vertices whose
out-degree is less than the corresponding value of thex-axis. Fig-
ure2(a)plots the CDF for theuser driven graphs, while Figure2(b)
plots the CDF for thecommunity driven graphs. Each line in the

figure corresponds to a graph in the data set, and represents the frac-
tion of vertices that have out degree less than or equal to thecor-
responding point on thex-axis. As can be noted from Figures2(a)
and2(b), Flickr graphs have a considerably higher out degree com-
pared to the other three graphs, and for theuser graphs, about 12%
of the vertices have an out degree higher than 250.

7.2 Single source shortest paths
In this section, we experimentally evaluate the models forsingle

source shortest paths treeand demonstrate the benefits of our opti-
mization. We compare theLinear model to theReducedmodel in
terms of the complexity of the model, and the time taken to build
the model and write it to disk. Recall that the complexity of the
model corresponds to the number of inequalities generated,and
the time taken includes the time for executing Dijkstra’s algorithm,
generating the inequalities, and writing the generated inequalities
to disk.

Figures3 and4 provide a comparison of the two modeling tech-
niques for both types of data sets for all the social graphs. Fig-
ures3(a) and 3(b) compare the complexity of the models, while
Figures4(a) and 4(b) compare the time taken to build the model.
In all the figures, thex-axis represents the social graphs, and the
y-axis for Figures3(a) and 3(b) plots the number of inequalities
constituting the model, while they-axis for Figures4(a)and 4(b)
plot the time in seconds. Note that they-axis of all the plots have
been plotted in logarithmic scale. It is evident from the figures that
the Reducedmodel is extremely efficient compared to theLinear
model both in terms of complexity and time. The complexity of
theReducedmodel is about 1 to 2 orders of magnitude lesser when
compared to theLinear model and so is the time taken in comput-
ing the model.

Table4 provides the results from these experiments along with a
detailed breakup of the number of inequalities, as well as the reduc-
tion in complexity and time of theReducedmodel compared to the
Linear model. For theLinear model, the categories of inequalities
in Table4 correspond to the categories defined in Section4.1. As
is evident from Table4, theReducedmodel provides aboutO(d)
times improvement in complexity of the models for all the graphs,
as observed in Section5.1. Depending on the graph, the value ofd
varies, and so does the factor of improvement. For example, for the
Flickr-user-3data set,d is 119.39, and the complexity of theRe-
ducedmodel is about120 times less than that of theLinear model.
The large reduction in the number of inequalities also affects the
time to build the model, since in theLinear model, fewer inequali-
ties need to begenerated, and more importantly, fewer inequalities
need to bewritten to disk. This is illustrated by the almost90%
improvement in time to generate theReducedmodel.

7.3 All pairs shortest paths
In this section, we experimentally evaluate the models for the

all pairs shortest paths problem. In a community of a social net-
work, users share common interests, and an application thatuses
minimum cost paths between any two members of the community
would require the all-pairs shortest paths. On the other hand, for
a user drivensocial graph, two users in the graph might be com-
pletely unrelated, and from an application’s perspective,shortest
paths between them are not interesting. Thus, we evaluate the mod-
els forall-pairs only for thecommunity driven graphs.

7.3.1 Evaluating shortest paths between all pairs
We refer to the model of Section4.2as theQuadraticmodel, and

that of Section5.2as theOptimizedmodel. Figure5 compares the
two models in terms of complexity and the time taken to build the
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Figure 2: Cumulative Distribution Function for the out-degrees of the different graph data sets used for the experiments.
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Figure 3: Complexity of the models forsingle source shortest pathstree.

model, and both of these terms have the same meaning as described
in the previous section. In Figure5(a), the number of inequalities
in the models is plotted along they-axis, while in Figure5(b), the
time taken (in seconds) to generate the model is plotted along the
y-axis. In both the figures, the x-axis represents the different graph
data sets, and again note that they-axis is plotted in logarithmic
scale. As noted in Section5.2, Figure5 illustrates the benefits of the
Optimizedmodel compared to theQuadraticmodel both in terms
of complexity and time.

Table5 provides the experimental results, tabulating the break
down of the categories of the constituent inequalities thatform the
model. For theQuadratic model, the categories of the inequali-
ties correspond to the ones defined in Section4.1. For theOpti-
mizedmodel, theMerge inequalities are the ones generated when
the individual shortest paths trees are merged into one consistent
model compensating for the problematic edges, while theTrees
inequalities are the total number of inequalities generated for the
trees. Since this corresponds toCategory III inequalities (as theRe-
ducedmodel for single source only usesCategory III inequalities),
Columns 4 and 8 of Table5 are identical. Table5 also provides data
that allows a deeper analysis of the reasons for the improvedper-
formance of theOptimizedmodel, even though both models have
the same complexity boundO(dn2). As was noted in Section5.2,
the inefficiency of theQuadraticmodel stems from the fact that it
cannot leverage the absence of some edges from all the trees,which
allows these edges to be excluded from the model. These edgesare
represented by the column titledUnconstrained Edgesin Table5.
It can be seen that in all the social graphs, a high percentageof
edges are not part of any tree, and eliminating these edges from the

model considerably simplifies the model. This is evident from the
70–80% reduction in complexity of theOptimizedmodel compared
to theQuadraticmodel. As seen in the case ofsingle source short-
est tree, reduction in complexity of the model also considerably
reduces the time, primarily because fewer inequalities arewritten
to disk.

7.3.2 Benefits of Early Termination
We now experimentally evaluate the benefits of early termina-

tion of the all-pairs model as explained in Section6. This kind of
model finds application incommunity drivengraphs where the ap-
plication is interested in a specific subset of vertices. Ourgoal is to
validate our analysis that ifall-pairs shortest pathsare not required
by the application, we can considerably reduce the complexity of
the model. For our experiments, we consider two cases, one where
the pairwise shortest paths between a subset of 100 verticesis to be
determined and the shortest paths tree for the rest suffices,and in
another, we are interested in a subset of 200 vertices. Thesesubsets
are randomly selected, and simulate our example where the appli-
cation is interested in “computer scientists” or “guitarists” in the
“Los Angeles” community of Facebook. Table6 summarizes the
results from these experiments, and compares them with the num-
bers obtained for theOptimizedsolution for all-pairs shortest paths
from Table5. It is evident from the table that when all possible
shortest paths need not be preserved, there can be a significant re-
duction in the complexity of the models. This significant reduction
(reflected by the rightmost columns in Table6) is obtained primar-
ily due to the fact that a huge portion of the inequalities forthe
merge phase is not required for the trees that are not of interest and
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Figure 4: Time to build the model for the single source shortest pathstree.

Table 4: Experimental evaluation of single source shortestpaths tree.
Linear Model Reduced Model Summary

Number Inequalities Time Number of Time Times Reduction % Reduction
Data Sets Cat I Cat II Cat III Total Taken (s) Inequalities Taken (s) in Complexity in Time

Flickr-user-3 204,626 6,457,751 55,802 6,718,179 98.81 55,802 2.835 120.39 97.13
LJ-user-3 39,030 345,917 15,507 400,454 4.783 15,507 0.938 25.83 80.39
Orkut-user-3 72,130 827,508 26,109 925,747 15.735 26,109 1.752 35.47 88.87
Youtube-user-3 417,526 2,039,680 237,468 2,694,674 44.943 237,468 8.226 11.35 81.7

Flickr-comm 4,112 65,209 1,381 70,702 2.464 1,381 0.163 51.2 93.39
LJ-comm 3,148 18,333 1,496 22,977 2.471 1,496 0.099 15.36 95.99
Orkut-comm 2,409 25,831 1,046 29,286 1.401 1,046 0.08 27.99 94.29
Youtube-comm 3,605 25,737 1,822 31,164 2.564 1,822 0.127 17.11 95.05

therefore do not need to be merged.

7.4 Overall time overhead
In all the above experiments, we considered only the complex-

ity of the model, and the time taken to generate the model. Once
the model has been generated, it has to be solved to anonymize
the graph. The time required for this step depends on the effi-
ciency of the LP solver. We used an open source LP Solver [21]
in our experiments, and it is widely acknowledged that commercial
LP solvers are far more efficient compared to open source imple-
mentations. As example timings, for theReducedmodel ofsingle
source shortest paths treeproblem, the LP solver took0.394 sec-
onds to solve the model forOrkut-commgraph,0.541 seconds for
theYoutube-commgraph,150.638 seconds for theLJ-user-3graph,
and629.869 seconds for theFlickr-user-3graph. For the all-pairs
problem, where the complexity of the model rises to about100K
inequalities, the solvers took about an hour to find a solution. We
remark that our open source LP solver is not optimized for solv-
ing large, sparse models, and these timings are not the best possi-
ble. Furthermore, solving the model constitutes an offline cost and
hence the exact times are not significant for our evaluation.

7.5 Evaluating Data privacy
In this section, we evaluate the privacy preserving properties of

the proposed models. In our evaluation, we use the two measures
presented in Section3, i.e., k-anonymity[26] and Spearman rank
correlation coefficient[25]. As explained in Section3, in the con-
text of sensitivity of edge weights, both measures are defined in
a neighborhood. Computation ofk-anonymityof edges follow di-
rectly from its definition. TheSpearman rank correlation coeffi-
cient is computed for every vertex in the graph. For each vertex in
the original graph and the corresponding vertex in the anonymized
graph, the list of edges emanating from the vertex comprisesthe
ranked lists used for computing the coefficient. The lists are sorted
by edge weights, and the coefficient measures the correlation be-

tween the ranks of the edges in the two lists. Figures6, 7, and8
provide the experimental results for the two measures on thereal
data sets. In these experiments, we use theReducedmodel forsin-
gle source shortest pathstree and theOptimizedmodel forall pairs
shortest pathsproblem.

Figures6 and7 plot the percentage of edges in the graph that are
k-anonymousin their neighborhood for a given value ofk and indis-
tinguishability thresholdµ. Figure6 plots the graphs of the model
for single source shortest pathstree and Figure7 plots the graphs
of the model forall pairs shortest pathsproblem. Along thex-axis
we plot the different values ofk, and along they-axis, we plot the
percentage of edges that arek-anonymousfor the corresponding
value ofk on thex-axis. Each graph plots two selected data sets
and compares thek-anonymityof the original and anonymized ver-
sions of the same graphs. Different graphs correspond to different
data sets, different values ofµ, and different algorithms. In these
experiments, we selected theFlickr andOrkut graphs as represen-
tatives. Similarly,µ values of 1 and 3 are representatives chosen to
show the variance of the anonymity levels as the indistinguishabil-
ity threshold increases. In our experiments, the edge weights were
in the range 1 to 100, soµ = 1 corresponds to 1% of the total
range of edge weights. As is evident from the Figures6 and 7,
our anonymization models considerably improve thek-anonymity
of the anonymized graphs when compared to the original graphs.
The improvement is even more significant for larger values ofk and
smaller values ofµ, which demonstrates the improved anonymity
of edges in the anonymized graph. Therefore, in the anonymized
graphs, individual edge-weights are even less distinguishable. Note
that this level ofk-anonymityis provided by the model at no addi-
tional cost. We remark thatk-anonymitycan be further improved by
adding constraints and setting bounds on the variables thatensure
that the anonymized weights are even closer to each other. Ad-
ditionally, note that thek-anonymityof the edges is better for the
Flickr data set due to the higher average out-degree of the vertices
which allows for more room for hiding in theedge neighborhood.
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(b) Time to build the model.

Figure 5: Performance of the models for theall pairs problem.

Table 5: Experimental evaluation of all pairs shortest paths problem for the community driven data sets.
Quadratic Model Optimized Model

Data Number Inequalities Time Number of Inequalities Time Unconstra-
Sets Cat I Cat II Cat III Total Taken (s) Merge Trees Total Taken (s) ined Edges

Flickr 3,645,749 85,824,651 1,813,512 91,283,912 926.71 10,837,381 1,813,512 12,650,893 172.66 60,166
LJ 2,330,938 25,847,924 2,107,957 30,286,819 320.42 7,588,195 2,107,957 9,696,152 132.31 15,003
Orkut 1,428,809 26,907,339 1,088,890 29,425,038 277.33 4,377,502 1,088,890 5,466,392 72.32 23,018
Youtube 2,762,305 38,902,975 2,756,994 44,422,274 473.945 9,163,912 2,756,994 11,920,906 151.04 22,802

Figure8 plots theSpearman rank correlation coefficientof the
models forsingle source shortest paths treeand all pairs short-
est pathsproblem. Since the value of the coefficientρ forms a
continuum in the range−1.0 ≤ ρ ≤ 1.0, for ease of presenta-
tion, we maintain a equi-width histogram of the coefficient values.
Along thex-axis, we plot the bucket boundaries of the histogram,
and along they-axis we plot the percentage of vertices that have
the value ofρ in the range corresponding to the bucket. The two
graphs plot four data sets and Figure8(a) plots the results for the
single source shortest pathstree while Figure8(b) plots the results
for all pairs shortest pathsproblem. Figures8(a)and8(b) demon-
strate the excellent scrambling of the order of the edge weights.
Note thatρ = 0 corresponds to no correlation of ordering, and the
closer it is to 0, the harder it is for an adversary to determine the
original order with high confidence. Our experiments show that for
all data sets, more than75% of vertices have−0.3 ≤ ρ ≤ 0.3,
and about90% of the vertices have−0.5 ≤ ρ ≤ 0.5. Addition-
ally, note that the higher the average out degree (refer to Table 3
for the average degrees of the graphs in the data sets), the lesser the
correlation between the original and the anonymized orders.

In conclusion, these experiments demonstrate the robustness of
the privacy models, and show how hard it is for an adversary tode-
termine the original edge weight, to uniquely identify edgeweights,
or to determine the original ordering of the weights, thereby effec-
tively preserving the sensitivity of the weights.

8. RELATED WORK
The need to protect the privacy of social entities involved in so-

cial networks has given rise to active research in anonymization
techniques for social network graphs. This interest has been pri-
marily driven by the findings of Backstrom et al. [3] and Korolova
et al. [15]. Backstrom et al. [3] described a technique based on
the structural properties of graphs such as isomorphism andauto-
morphism to re-identify vertices in the anonymized graph. Their
technique was based on implanting unique structures in the graph
which can be re-identified in the anonymized graph with very high
probability. On the other hand, Korolova et al. [15] devised an

attack where a node can be re-identified based in part on back-
ground information regarding the neighborhood. As a result, a lot
of research has focused onnode identity anonymizationandstruc-
tural anonymization. A comprehensive survey about the various
anonymization techniques is provided in [18,29].

A class of proposals, by Hay et al. [12], Zhou et al. [32], Liu
et al. [19], and Zou et al. [33], suggest different methods for anonym-
ization that are based on the addition and/or deletion of edges in
the graph for altering the structure of the graph and the prevention
of re-identification in the anonymized graph. On the other hand,
Cormode et al. [7] suggest a technique for the anonymization of
bipartite graphs based on safe groupings, an extension of which
is class based anonymization [6]. Ying et al. [30] propose a ran-
domization based spectrum preserving approach which effectively
preserves the properties of the eigenvalues of the network,while
anonymizing the edges, and Campan et al. [5] suggest a cluster-
ing based approach for node anonymization. Along differentlines,
Zheleva et al. [31] formulate the problem of edge re-identification
in an unweighted graph, where the edge labels are sensitive.

The majority of existing work considers unweighted graphs for
node identity and structural anonymization. But as reflected by re-
cent work [17, 28], the weighted social network model is gaining
importance, and so is edge weight anonymization. Liu et al. [20]
suggest a probabilistic technique for anonymizing edge weights by
perturbing the actual edge weights by a smallσ obtained from a
probability distribution. The goal is to keep the total costof the
shortest path close to the cost of the path in the original graph.
However in this approach, the anonymized weights are close to the
original edge weights, and hence may reveal sensitive information
about the original values.Anónimos aims at preserving general lin-
ear properties of the graph. For the shortest paths, our goalis to pre-
serve the paths rather than the values and for most applications, the
ability to reconstruct the actual path is more important than main-
taining approximate values. In addition, if necessary, ourmodel
can approximately preserve the cost of the shortest paths aswell by
adding constraints of the formf(u, . . . , v) = D[u, v] ± ǫ. Note
that since the edge weights are only perturbed by a small value, the



Table 6: Experimental evaluation of all pairs shortest paths between a subset of vertices for the community driven data sets.
100 vertices 200 vertices Optimized All Pairs Percent Reduction

Number of Unconstra- Number of Unconstra- No. of ineq- Uncons- 100 200
Data Sets Inequalities ined Edges Inequalities ined Edges qualities trained edges vertices vertices
Flickr-comm 513,414 64,186 1,177,428 63,433 12,650,893 60,166 95.94 90.69
LJ-comm 314,107 18,339 732,212 17,819 9,696,152 15,003 96.76 92.45
Orkut-comm 253,002 25,709 562,005 25,429 5,466,392 23,018 95.37 89.72
Youtube-comm 374,516 25,596 835,831 25,162 11,920,906 22,802 96.86 92.99
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(a) k anonymityfor single source shortest paths tree
for user data sets andµ = 1
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(b) k anonymityfor single source shortest paths tree
for community data sets andµ = 1
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(c) k anonymityfor single source shortest paths tree
for user data sets andµ = 3
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(d) k anonymityfor single source shortest paths tree
for community data sets andµ = 3

Figure 6: Evaluating k-anonymityfor single source shortest pathstree model.

technique of [20] can neither significantly improvek-anonymity,
nor can it scramble the ordering of edge weights.

9. CONCLUSION
Anonymization of edge weights in a social network graph is im-

portant for enabling the analysis and mining of social graphs by
computer scientists as well as social scientists. Such mining has
significant impact on the management of social networks as well
as the understanding of various social behaviors. We proposed
Anónimos, a technique for the effective anonymization of weighted
social network graphs by modelinglinear propertiesand formu-
lating them as an LP problem. TheAnónimos approach is fairly
straightforward and can be applied to preserve anylinear property
by a simple generation of inequalities corresponding to decisions
made by the algorithm during its execution. As a proof of concept,
we considered theshortest paths problemand showed how off-the-
shelf LP packages can be used to effectively anonymize the graphs.
Thecomposabilityof Anónimos for preserving multiple properties
in a single anonymized graph was demonstrated using theall pairs

shortest pathsproblem. We also showed how a careful analysis
of the properties can result in significant reductions in complex-
ity of the models. Our experiments demonstrated the effectiveness
of our techniques in the anonymization of graphs, and the efficacy
of our optimizations, while ensuring that the desired properties are
preserved across anonymization. In the future, we would like to ex-
plore extensions ofAnónimos for other applications such as graph
clustering, information spread modeling, etc., which alsorely on
linear combinations of edge weights.
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(a) k anonymityfor incremental all pairs shortest
paths for community data sets andµ = 1
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(b) k anonymityfor incremental all pairs shortest
paths for community data sets andµ = 3

Figure 7: Evaluating k-anonymityfor the all-pairs shortest pathstree models. For incremental all pairs, algorithm is terminated after
100 vertices.
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Figure 8: Evaluating Spearman rank correlation coefficientfor the models. For incremental all pairs, algorithm is terminated after
100 vertices.

10. REFERENCES
[1] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong.

Analysis of topological characteristics of huge online social
networking services. InWWW, pages 835–844, 2007.

[2] S. Amer-Yahia, L. V. S. Lakshmanan, and C. Yu.
Socialscope: Enabling information discovery on social
content sites. InCIDR, 2009.

[3] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore Art
Thou R3579X?: Anonymized Social Networks, Hidden
Patterns, and Structural Steganography. InWWW, pages
181–190, 2007.

[4] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.
Group formation in large social networks: membership,
growth, and evolution. InKDD, pages 44–54, 2006.

[5] A. Campan and T. M. Truta. A Clustering Approach for Data
and Structural Anonymity in Social Networks. InPinKDD,
pages 1–10, 2008.

[6] G. Cormode, D. Srivastava, S. Bhagat, and
B. Krishnamurthy. Class-based graph anonymization for
social network data.PVLDB, 2(1):766–777, 2009.

[7] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang.
Anonymizing bipartite graph data using safe groupings.
Proc. VLDB Endow., 1(1):833–844, 2008.
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