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ABSTRACT

The increasing popularity of social networks has initiaaefértile
research area in information extraction and data miningonfmiza-
tion of these social graphs is important to facilitate psitilig these
data sets for analysis by external entities. Prior work has c
centrated mostly omode identity anonymizatioand structural
anonymization But with the growing interest in analyzing so-
cial networks as a weighted networgge weight anonymization
is also gaining importance. We presemonimos, a Linear Pro-
grammingbased technique for anonymization of edge weights that
preservedinear propertiesof graphs. Such properties form the
foundation of many important graph-theoretic algorithrastsas
shortest paths problenk-nearest neighbors, minimum cost span-
ning tree andmaximizing information spreadAs a proof of con-
cept, we applyanénimos to theshortest paths problemand its ex-
tensions, prove the correctness, analyze complexity, apdrie
mentally evaluate it using real social network data setsr &
periments demonstrate thaionimos anonymizes the weights, im-
provesk-anonymityof the weights, and also scrambles the relative
ordering of the edges sorted by weights, thereby providaimyist
and effective anonymization of the sensitive edge-weighiddi-
tionally, we demonstrate the composability of differentdals gen-
erated using\nénimos, a property that allows a single anonymized
graph to preserve multiplnear properties

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and networks; G.1.@ptimization]:
Linear programming; J.4ocial and Behavioral Sciencds Soci-

ology

General Terms
Algorithms, Design, Security.

Keywords

Anonymization, Social Networks, Weighted network mod&lsort-
est paths, Linear Programming.

1. INTRODUCTION

Social networking sites such &tySpace, Facebook, Twitter, and
Orkut have millions of registered users, and the resulting social
graph structures have millions of vertices (users or s@L&drs)
and edges (social associations). Recent research hasezkfilese
social networks for understanding their structur@[22], criminal
intelligence P4, information discovery 2], advertising and mar-
keting [13], and others11]. As a result, companies (such as Face-
book) hosting the data are interested in publishing postiafithe

graphs so that independent entities can mine the wealthfafin
mation contained in these social graphs. Anonymizatiorhese
graphs is paramount to avoid privacy breachgd}]. Conse-
quently, there has also been considerable interest in theyariza-
tion of graph structured dat&f7, 12, 19, 32,33]. But most of the
existing research on anonymization techniques tends tasfoa
unweightedyraphs fomodeandstructural anonymization

Recent research has shown applications ofsteighted network
modelwhere social graphs are viewed as weighted networks. Ex-
amples include analyzing tHermation of communitieithin the
network [L7], viral and targeted marketing and advertising3],
modeling the structure and dynamisch as opinion formatior2f],
and analysis of the network fonaximizing the spread of informa-
tion through the social linksl4], in addition to the traditional ap-
plications such ashortest path$9], spanning tree$16] etc. The
semantics of the edge weights depend on the applicatioh @sic
users in a social network assigning weights based on “degfree
friendship”, “trustworthiness”, “behavior”, etc.), oreahproperty
being modeled 17, 28]). For example, consider th&os Ange-
les” community in Facebook. If we consider that edge weights are
inverse of “trustworthiness” (smaller weights correspomdigher
trust in the relation), then theNearest Neighbors (kNNjuery at
a particular vertex returns thiemost trusted users associated to the
queried user, and th@ngle source shortest paths trpeovides the
most trusted paths within the community which might be used f
communicating while minimizing chances of a leak. We focos o
the problem of anonymization of edge weights in a social lyrap
Edge-weight anonymization: why do we careFirst, in many so-
cial networks (such as academic social netwogk@)[ node iden-
tity and link structure is public knowledge. But the edge giws,
such as “trustworthiness” of user according to useB, is private
information. Therefore, for publishing the graph, anorgation
of the edge weights is critical, while node identity anongation
might not be neededSecond even in the case where the node
identities are anonymized, edge weight anonymizationilisirst
portant since if an adversary re-identifies a node in the ynared
graph, even more information will be revealed if edge weigire
not anonymized.
Privacy preserving modeling.For a weighted network model, the
magnitude of the weights, distinguishability of weights,veell as
relative ordering of edges by their weights is sensitiverinfa-
tion. The goal of anonymization is to prevent rediscovenhthis
sensitive information with a high confidence. For instargieen
an edge’s weight(’) in the anonymized graph, an attacker must
not be able to determine, with high confidence, the weighbaf t
edge ) in the original graph. Similarly, given two edgés: , v1)
and(uz,v2) such that their weights in the anonymized graph have
the relationw’[u1, v1] < w'[uz, v2], an attacker must not be able
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to discern, with high confidence, the relative ordering & ¢uge
weights in the original graph.

Table 1: Notational Conventions.

Our solution to the problem of edge weight anonymizatioris t

model the weighted graph based on the property to be praserve

and then reassign edge weights satisfying the model torotiai

G=(V,E,W) Weighted graph to be anonymized
G = (V,E,W’) Anonymized graph\V” satisfies the model
n, [V] Number of vertices in the graph
d Average degree of the vertices of the graph

anonymized graph. We observe that a large class of grapleprop

wlu,v] andw’u, v]

Weight of edge(u, v) in G and inG’

ties can be expressed lasar properties

DEFINITION 1.1. A linear property of a graph is a property

Plu,v| Path from vertex: to v in the graph
Dlu,v] Cost of Plu, v], 3° (1 v)e Plu,o] WU, V']
II[v] Predecessor af in the shortest paths tree

expressible in terms of inequalities involving linear canations

T; Shortest paths tree witly as the source

of edge weights.

Linear propertiesform the basis for a gamut of important graph

theoretic properties such slortest paths, information spread, cre-

dentialing in social media, collective actigmainimum weight match-

TlyeeerTm Variables representing edge-weights
T (u,0) Variable corresponding to edge, v) € F
f(uv-"vv) Z(u/yv/)gp[uyv]x(u’,’u’)
n Indistinguishability threshold fok-anonymity
Ny, Edge neighbor of a vertex

ing, etc. Given a directed graph with non-negative edge-wsjght
our goal is to model suclinear propertiesusing a collection ofin-
ear inequalitiesandto preserve the structure of the graph as well
as the desired linear properties so that the anonymizedtgrapt
least as useful as the original graph in terms of the propé&ey
ing preserved Stated formally, the objective of privacy preserving
modeling is:

OBJECTIVE 1.1. To construct a model thatorrectly captures
the inequalities that must be obeyed by the edge weighthéor t
linear property being modeled to be preserved. Any solution to
such a model would ensure anonymization of edge weightte whi
preserving the linear property under consideration.

Once the model has been computed, the set of inequalities in
the model need to be solved so that the solution can be used to

e \We useAnonimos to develop models for different variants of
theshortest paths probleifBectiond). We also demonstrate
the composability of the models by composing the models of
thesingle source shortest paths treesconstruct the model
for all pairs shortest pathsAnénimos therefore has the abil-
ity to preserve multiple linear properties in a single amized
graph. We further optimize the models (Sect&rthat con-
siderably reduces the complexity of the models.

e We prove the correctness of the proposed models, provide a

anonymize the weights while preserving the property beitg-m
eled. Linear Programming (LP) is a powerful technique fdvieg
such system of linear equalities. We therefore proposimimos,

a technique for modeling linear properties using a systelimeér
inequalities and formulate it as an LP problem. This forrtiata
allows us to use off-the-shelf LP solvers for solving the eled
and anonymizing the graphs. We also show tleenposability
property of Anénimos for preserving multiple linear properties in

a single anonymized graph. As a proof-of-concept, we censid
the shortest paths problersince it is a problem of great interest in

weighted graphs. The notion of shortest paths is widelyieaiple

in people’s use of social media. Most notably, the detertiona
of (or reliance on) shortest paths is critical in the timelgnisfer
of information from one person to another. Applicationsludie

messages regarding everything: from social informatiog. (@p-

dates about plans among friends in a social network) tol&riwo
information (e.g., sharing jokes and entertainment inftiom) to

information that is potentially serious and consequerfgay., in-

formation about crises or the spread of disease). Moreaneler-

lying a variety of online relationships is the notion of trushich is

a fundamental concern in e-commerce transactions, pdrssaa
tionships, and the consumption of news information, amahgro
things. By involving the fewest people in the transfer obimha-

tion across a network, potential trust violations (e.gakie mis-
information from less well-known sources, or security loiess)

are minimized. In these and other ways, the retention ofinés

tion about shortest paths is of broad appeal. Furthermioigeaiso

useful in modeling other properties suchld$N and community
formation within complex network models.

Contributions.

e \We proposé\nénimos, a technique for edge weight anonymiza-

tion of graph structured data that preserliesar properties

thorough analysis of the complexity of the proposed mod-
els, and present the results of experiments (Secfoan
real social network graphs that validate this analysisevhi
confirming that the anonymity of the sensitive informatien i
preserved.

2. ANONIMOS IN ABSTRACT

We now introduceAnonimos, and use Kruskal's algorithnilf]
for minimum spanning tree (MS@&p an example. The goal of this
technique is to capture the dynamic behavior of the algoritis-
ing a system of linear inequalities. Given the original vieéegl
directed graptG = (V, E, W) with positive edge weights repre-
sented by variables;, zo, ...,z (Where each; corresponds to
an edge = (u,v) € E; refer to Tablel for notational conven-
tions), we model the system of linear inequalities in terfnthese
variables. For example, at every step of Kruskal’s algarithr the
MST [1€], the edge with the minimum weight amongst the set of re-
maining edges, and not resulting in a cycle is added to the. ST
(ui,v;) be the edge selected at tH& iteration, and(w; 1, vit1)
be the edge selected in tiie+ 1)*" iteration. This implies that
w[ui,vi] < w[uiﬂ,viﬂ]. If T(u;,v;) and l,(“iJrl’”iJrl) are the
variables representing these edges in the model, thenutisroe
is modeled by the inequality(y; v;) < T(u,,,,v;4,)- Therefore,
for every pair of edgesu;, v;) and (u;+1,vi+1) Selected in con-
secutive iterations, the inequalityv; v,y < T(u;,q,0;,,) CAN bE
added to the model whenever the given weights satigfy, v;] <
wlit1, vig1].

Decisions made at each step of the algorithm can similarly be
expressed as linear inequalities involving the edge-wisighhus,

by expressing them as a system of inequalities formulated asthe execution of the algorithm processing the graph can ltleus

an LP problem (Sectiof).

modeled as a set of linear inequalities involving the edgighis
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Any feasiblesolution to @), except the original set of weights,
can be used to anonymize the weights while ensuring thatrtipe p
erties of the graph remain unchanged with respect to theitigo
being modeled. Linear Programming (LP) provides a flexilblé a
powerful technique for solving such a system of inequalit®ince
finding a feasible solution to the model is as hard as findirg th
optimal solution 23], the model in {) can be formulated as an LP
problem:

F=c'x

Ax<b

Minimize (or Maximize)
subject to

Here A is anm x n matrix of coefficientsb anm x 1 column
vector,c a1 x n row of coefficients, andF = c'x is a linear
objective function. Even though feasibility df)(is enough, the LP
formulation and choice of the objective functidghhave a number
of advantages which we will discuss in Sectii.

Any linear propertywhich can be expressed as a function of a
linear combination of edge weights can be expressed as arobP p
lem, and henc@nénimos can be used for modeling a wide variety
of linear properties We remark that modeling an algorithm’s ex-
ecution (such as Kruskal’s algorithm for MST in this sectiand
Dijkstra’s algorithm for shortest paths in the rest of th@ea is
an intuitive way for constructing the model, and the moded-ca
tures the property of the graph in addition to modeling ttgoal
rithm. Once the model has been constructed, any off-thk-kRe
solver package can be used to find a solution to the set of @&equ
ities (constraints), and the solution constitutes the hisigf the
anonymized graph. The model is said todmerect if the property
being modeled is preserved across anonymization.cohglexity
of the model is the number of inequalities necessary to défiee
model.

2.1 Properties of Anénimos

Our formulation of {) as an LP problem lendsnénimos some
additional properties which are discussed below.

2.1.1 Flexibility and Robustness

The LP formulation of {) allows the variables (representing the
edge-weights) to be assigned varying lower and upper botmds
attain different scalings as well as shifts in the relativegmitudes
of the solution. Therefore, the publisher of the graph cdblipk
different anonymized versions of the same graph where the ed
weights in each published version is different. Additidpathe
LP formulation providedlexibility of choice of objective function
Different objective functionsF can be used to generate different
solution sets, and hence different anonymized graphs cgeter-
ated by changing the vectomwithout any need for regenerating the
model. In addition, if the publisher of the graph wants to imize
the sum of edge weights in the anonymized graph, thean be
set as a unit vector. Furthermore, if it is required that seraights
in the anonymized graph be smaller than other weights, ¢ream
be chosen with larger coefficients corresponding to thesahlas,
and smaller coefficients corresponding to the rest. Thesguat
some of the examples of flexibility that the objective fuootiF

lends to this problem and the publisher of the graph. Samyefea-
sible solution can be used for anonymization, the choicga$ a
free parameteand a choice of the publisher of the graph.

2.1.2 Composability

Another important property oAnénimos aided by the LP for-
mulation iscomposabilityi.e. the ability to combine models rep-
resenting different linear properties so thatltiple properties are
preserved in a single anonymized graph.

THEOREM 2.1. The composition of LP models developed as ex-
tensions oAnonimos for modeling differentinear propertieslo not
lead to contradictory constraints, and hence the modelscare-
posable

PrRoOOFR Proof by Contradiction. Let G = (V, E, W) be the
original weighted graph. Let/; and M, represent models repre-
sentinglinear propertiesP; and P, (shortest paths and minimum
spanning tree for instance), and Kt and.S2 denote the set of in-
equalities representing the models. Let us assume that éxést
a contradictory pair of constraints iy U Sz, i.e., there does not
exist a single solution for the set of constraistsuU S2. Since the
set.S; is built based on the original set of weightig, hencelW’
is a valid solution satisfying; (and there are possibly many more
solutions satisfyings;). Using similar argumentd}” also satisfies
So. SincelV satisfiesS: and.S» individually, hencel’ must also
satisfy S1 U S2. This leads to a contradiction thai U S2 had a
contradicting pair of inequalities. ]

Therefore, if amodel is developed to preserverttigmum span-
ning tree and another model is developed for preservingstiart-
est paths both the models can beomposedso that the resulting
model captures both properties, and a solution to the coeapos
model results in an anonymized graph that preserves bo#e the
properties.

3. PRIVACY METRICS

Attack Model. The goal of edge-weight anonymization is to pre-
vent an adversary from determining with high confidence Sgem
information” corresponding to the edges:

DEFINITION 3.1. Sensitivity of Weights:The following infor-
mation about an edge is consideredsansitiveand should be pre-
served across anonymization:

e Themagnitudeof the weights associated with the edges.

e Indistinguishabilityof the weight of an edge when compared
to the weights of other edges.

e Relative orderingf the edge weights in the original graph.

The reason for indistinguishability is obvious — a distirgiu
able weight would aid re-identification of the edge and fagsts
weight. Ordering of weights is sensitive for certain serizanof
edge-weights. For instance, in tfieos Angeles” community ex-
ample with weights representing “trustworthiness”AifatesB as
more trustworthy compared 10, thenw[A, B] > w[A, C]. Evi-
dently, this ordering is “sensitive” for all the involvedars, and an
adversary analyzing the anonymized graph should not be@tke
termine this order with high confidence. In summary, anomgmi
tion should not leak sensitive information such that if atacker
re-identifies an edge in the anonymized graph, s/he canenalth
termine the edge’s original weight, nor the ordering of tdgess
weight compared to weights of other edges.



Note that the ordering or indistinguishability of edges dstjz-
ularly interesting in aneighborhoodof an edge in the graph. For
instance, the ordering @f[u1, v1] andw|uz, v2] is not important if
u1,v1, uz, andvy are not related in the graph. We therefore define
anedge neighborhoodf a vertex (which also captures the relation-
ship amongst the edges) where ordering and indistinguiléiyab
important.

DEFINITION 3.2. Edge neighborhood of a vertexThe edge
neighborhood of a vertex, denoted asV,, is the set of edges
emanating from the vertex i.e., edges with, as the source.

The notion of neighborhood can change depending on the se-

mantics of the application. To address privacy concernsusee
two well known metrics used in data privacy and statisticsctvh
will be evaluated in a particulareighborhood

k-anonymity. k-anonymity[26] is a well known metric used in
data privacy for dealing with thadistinguishabilityof data values
in an anonymized data sets. We use the following definitiok-of
anonymityin the context of edge weight anonymization:

DEFINITION 3.3. An edge(u, v) is k-anonymousif there ex-
ists k — 1 other edgequ, v;) in the neighborhoodV,, such that
|wlu, v]—wlu, vi]|| < u, wherew is the indistinguishability thresh-
old, i.e., the difference of weights below which two edgeghisi
cannot be distinguished.

Andnimos can ensure preservation lofanonymityby adding ad-
ditional constraints of the forme:(u,v) — z(u,v;) < p V(u,v)
and(u, v;) in a neighborhood; though at the cost of increasing the
complexityof the model.

Spearman rank correlation coefficient. The Spearman rank coef-
ficient [25], denoted byp, is a statistical measure of the correlation
of ranks or orders of two ranked data sets, and is used toaealu
the order sensitivity anonymizatiorConsider twon-tuples X and

Y, where X corresponds to the edge weights in the given graph,
andY to the edge weights in the anonymized graph. Let the corre-
sponding rank sequences bandy.

DEFINITION 3.4. Given two ranked data set¥ andY, p is
computed as:

63 d2
n(n? — 1)

whered; = x; — vy is the difference between the ranks of the cor-
responding valueX; andY;, andn is the number of items in each
data set.

p=1-

The value ofp lies between-1 and 1;p = 1 implies perfect
correlation,p = —1 implies perfect negative correlation, apg= 0
implies no correlation between the two orders. Therefprgives
a measure of anonymity in terms of scrambling the rank-amder
of edge weights in a neighborhood; given a list of edges in the
edge neighborhoodf a vertex, a value gb closer to 0 is desirable.

In case there are tied ranks, then a somewhat more complicate
formula is used. In this case Spearman rank correlatiorficimsft
in terms of the computed ranks andy; is

p= ”Zmyi—zmzw
Yn St - (Ca)\n e - (Cu)’

Algorithm 4.1 Dijkstra’a Algorithm: Shortest paths tree
1: D « (oc0) I* Cost of best known path from source. */

2: II « () /* Predecessor in shortest path from source. */
3. Q <+ wvo I* Set of unvisited vertices */
4: S < ¢ I* Vertices to which shortest path is known. */
5: D['L}Q,Uo] +— 0
6: while Q # ¢ do
7. u <+ ExtractMin(Q) /* Unvisited vertex with min cost */
8 S+ Su{u}
9: for each vertex such thafu,v) € E andv ¢ S do
10: if D[vo,v] > D[vo, u] + wlu, v] then
11: Dlvog,v] + D[vo, u] + wlu, v]
12: I1(v) < w /* Shorter path exists. */
13: else
14: /* Do Nothing. */
15: end if
16: if v ¢ Q then
17: Q + QU {v}
18: end if
19:  end for
20: end while

4. SHORTEST PATHS PROBLEM

In this section, we demonstrate hawonimos can be used for
modeling and preserving ttshortest pathgroperty of a graph. As
pointed out earlier, shortest paths in a graph are impottawveri-
ous graph applications, and we choose the shortest pathkpro
as a proof-of-concept. We first describe the technique fatetiog
single source shortest paths trasing the Dijkstra’s algorithmd],
and then demonstrate the composabilitpoednimos by composing
the models generated feingle source shortest patls construct
the model forall pairs shortest pathproblem.

4.1 Single Source Shortest Paths — Linear Model

We now show howAnénimos can be used for modeling tlsengle
source shortest paths tre@iven a weighted grapff = (V, E, W),
and a source vertexo, a single source shortest paths trée a
spanning tree of the graph where the path from the sourceyto an
other vertex in the tree is the shortest path between theipair
G. This tree is important in a number of applications; for exam
ple, if weights are assigned based on inverse of “trustioets”,
then this tree will provide the paths with greatest “trustihimess”
for transferring confidential information from a specifiaigowhile
minimizing chances of a leak.

The single source shortest paths trpeoblem can have various
naive anonymization schemes. We solve this problem searat
since: First, the single source shortest paths tre@eoblem sub-
sumes thé-nearest neighborguery, since given the shortest paths
tree from nodevy, we can determine the tdpnearest neighbors
in increasing order. Amnénimos based approach preserves this
additional property which many naive solutions cannot gmes
Secondthis model forms the basis for tladl pairs shortest paths
problem and we use this as a stepping stone towards this@oal.
composition of the models fatingle source shortest paths tree
modelall pairs shortest pathgroblem demonstrates the compos-
ability of the models (Theorer®.1).

Dijkstra’s algorithm P] is a well known greedy algorithm fain-
gle source shortest paths tre&lgorithm 4.1 provides an overview.
Given a start vertexy, at every step the algorithm selects the ver-
tex v with the smallest known cost fromy. The algorithm “re-
laxes” the neighbors af whose cost from the source has now de-
creased because of the selectiomoFigurel shows an illustration



(a) Original weighted graph

(b) Dijkstra’s algorithm in progress

(c) After completion

Figure 1: lllustration of Dijkstra’s algorithm. The number s adjoining the vertices and outside parenthesis correspahto the order
in which the vertices were selected by Dijkstra’s algorithm the number in parentheses correspond to the cost of the bekhown path
from the source, and the dashed edges constitute the shortgmths tree.

of the execution of Dijkstra’s algorithm on an example gragd
the resulting tree. For notational conventions refer tolddb In
particular, D[u, v] is the cost of the path from the vertexto v,
andf(u, v) i8> 1 1) e plu,v T v)- IN Other wordsf (u, v) is a
shorthand for the sum of the variables representing theseidge
given path.

Dijkstra’s algorithm P] makes a number of decisions based on
the outcome of comparisons of linear combinations of edgghte
These decisions can be modeled using the following three- cat
gories of inequalities and are incorporated in Dijkstrdgodathm
as shown in Algorithn.2

e Category I: When processing edde, v), if D[vo, v] can be
improved, therD|[vg, v] > D[vo, u]4+w]u, v], add constraint
J(vo,v) > f(vo,u) + (v (line 18in Algorithm 4.2).

e Category II: When processing edge, v), if D[vo,v] can
not be improved, the®[vo,v] < Dlvo,u] + wu, v], add
constraintf(vo,v) < f(vo,u) + T(u, (line 20in Algo-
rithm 4.2).

e Category Il : When extracting the edgefor the next itera-
tion, if u’ is the previous vertex processed, thefug, u'] <
DJvo, u], add constrainf (vo, u’) < f(vo,u). This captures
the order in which the vertices are selected (flrien Algo-
rithm 4.2).

The following theorem formalizes the correctness of thigleio

THEOREM 4.1. A model built from all the inequalities of Cat-
egories |, I, and Il combined will correctly model Dijksts al-
gorithm, i.e., any solution to the model used to anonymizge ed
weights in the graph results in the same shortest paths trebd
original as well as the anonymized graph.

ProOF Proof by Contradiction. Let G = (V, E, W) be the
input graph, and?’ = (V, E,W’) be the anonymized graph. Let
To be the shortest paths tree starting at verigin G and Ty be the
corresponding tree i6’. By way of contradiction, assume tH&g
andTy are different. Lew be a vertex wher&, and7} differ, and
let u be its predecessor ify, andv’ in T such that: # u’. Since
u is the predecessor afin T, and since(u, v) and (u’,v) € E,
we must have:

Dlvo, u] + w[u,v] = Dlvo,v]
and, Dlvo,u'] +w[u',v] > Dvo,v]

@)
®)

Algorithm 4.2 Linear Complexity model

1: D « (c0) I* Cost of best known path from source. */
2: II < () /* Predecessor in shortest path from source. */
3: Q <+ vo I* Set of unvisited vertices */

4: S < ¢ I* Vertices to which shortest path is known. */
5: D[’Uoﬂ]o] +~— 0
6
7
8

. u' + ¢ [* Stores the vertex processed in previous iteration */
- while Q # ¢ do
© u + ExtractMinQ)

9: S+ Su{u}

10:  if v’ # ¢ then

11: AddConstraintf (vo,u’) < f(vo,u))

12:  endif

13: v +—u

14:  for each vertew such thafu,v) € E andv ¢ S do
15: if D[vo,v] > D[vo, u] + wlu, v] then

16: Dlvo,v] - Dlvo, u] + wlu, v]

17: II(v) < u

18: AddConstraintf (vo, v) > f(vo,u) + T(u,v))
19: else

20: AddConstrainff (vo, v) < f(vo,u) + T(u,v))
21: end if

22: if v ¢ Q then

23: Q<+ Qu{v}

24: end if

25:  end for

26: end while

The model will contain constraints corresponding to props2
and3. Again, asu’ is the predecessor ofin T, and sincg(u, v)
and(v’,v) € E, we have:

D'[vo,u'] +w'[u,v] = D'[vo, v]
and, D'[vo,u] + w'[u,v] > D'[vo, V]

4)
©)

SinceW’ is a solution of the model, propertidsand5 will be
satisfied only ifu = v, which is a contradiction. [

Complexity of the Model. Category | and Category Il combined
will result in O(dn) inequalities. This is because, when an edge is
processed, either the path to its neighbor is improved (Car lit
remains unchanged (Cat Il), and hence every edge resultteiash
one inequality. Since the average degree per nodgtle resulting
number of inequalities i®)(dn). The number of inequalities for
Cat lllis O(n) since one inequality of Cat Ill is generated for every



vertex processed. Thus, the complexity of the modeD{gn).
Since most large real graphs are sparse, d.e< n (generallyd

is of the order of tens or hundreds), we refer to this modehas t
Linear modelwith complexity growing linearly with.

4.2 All Pairs Shortest Paths — Quadratic Model

In Theorem2.1, we formalized the concept abmposabilityof
models formed usingnonimos. We now demonstrate composabil-
ity by combining the models fosingle source shortest paths tree
for modelingall pairs shortest pathproblem P]. All pairs short-
est paths is a case where every vertex in the graph is coadidsr
a single source shortest paths tregnénimos can also use Floyd-
Warshall L0} algorithm for all-pairs shortest paths. We prefer to
build on Dijkstra’s algorithm since in addition to demoasing
composability we can build on the models developed in the pre-
vious section, and Dijkstra’s algorithm has additional gendies
(described in SectioB) which makes it better suited for certain
applications.

A simple solution for the all-pairs problem is to generate th
Linear model (as in Sectiod.1) for the single source shortest paths
trees for all the vertices; , v2, . . . , v,, Obtain the set of constraints
S1,8S2,...,5, and then obtain the model for all-pairs &8s U
Se U---US,. Since each of thé;’s provide constraints oall
edges, hence the constraints from sirgle source shortest paths
treecannot contradict the assignment of another tree.

THEOREM 4.2. A model comprised of all the constraints gen-
erated by the.inear solution for single source shortest paths tree,
repeated for all the vertices of the tree, is a correct modeltifie
all-pairs problem.

PrRoOFR Proof by Contradiction. Let G = (V, E, W) be the
input graph, and>’ = (V, E,W’) be the anonymized graph. Let
us assume that there exists at least one pair of vertices whose
shortest paths it differs from its shortest path i@'. The shortest
path fromu; to v; in the all-pairs problem is the path from to v;
in the single source shortest paths tree wittas the source, i.e.,
T;. This implies thatl; in G does not matcH? in G’, which is a
contradiction of Theored.1 [

Complexity of the Model. The complexity of the model can be de-
rived trivially from the complexity of the constituting metd Each
of the shortest paths trees have a complexity)¢fin), and this
repeated fon vertices gives us a total complexity 6 dn?).

5. OPTIMIZING THE MODELS

In the previous section, we developed a couple of simple tsode
for the shortest paths problem, and demonstrated the cahitios
of the models. We now provide optimizations to the simple aei®d
to reduce the complexity of the models while relaxing the €com
posability property of the models — composability of theilmized
models require special handling which we also discuss iatdre
section.

5.1 Single Source Shortest Paths — Reduced
Model

We exploit specific properties of shortest paths to reduee th
complexity of the naive application ahonimos to Dijkstra’s algo-
rithm which resulted in th&inear model. Note that even though
Dijkstra’s algorithm tries to relax the neighbors when @sging a
vertex, the ultimate goal is to select an appropriate veidexhe
next iteration, i.e., the vertex with the smallest knowntdosm
the source. Category Il inequalities model this inforroatin an
efficient way, and hence ideally, only Category Ill ineqtiesi are

needed. However Category Il inequalities only includeesdthat
are part of the shortest paths tree. Thereforenlfy Category IlI
inequalities are considered in the model, then only partetfotal
number of edges are modeled. These inequalities by theesselv
do not put constraints on non-tree edges, and thus, if noisare
taken while reassigning edge weights in the anonymizedhgriap
can lead to violations of the order in the anonymized grapbr. F
instance, if edgéu, v) is a non-tree edge, then a model using only
Category Ill would not impose any constraint m v). Hence a
reassignment of weights in the anonymized graph might ashig
edge(u,v) a weight such that Dijkstra’s algorithm executing on
the anonymized graph seledis v) as a tree edge.

Therefore, to ensure correctness, the model must be augthent
to make sure that the non-tree edges are not included inébe tr
when the algorithm executes on the anonymized graph. The fol
lowing theorem formalizes this proposition.

THEOREM 5.1. A model which ensures thét) the order of se-
lection of vertices remains the same even after anonyroizadind
(#4) non-tree edges in the original graph are not included in the
tree constructed on the anonymized graph, will also enshatthe
shortest paths tree in the original and anonymized graphadse
same, i.e., the model is correct.

PrROOF Proof by Contradiction.

LetG = (V, E,W) be the input graph, an@’ = (V, E,W')
be the anonymized graph. L&tbe the shortest paths tree starting
at vertexvp in G and7” be the corresponding tree @'. Let us
assume thai’ and7” are different. Let be first vertex wherg’
andT” differ, and letu be its predecessor i, andv’ in T” such
thatu # u’. Then the following two possibilities arise:
Case I: The edge(u,v) € T, and(u’,v) ¢ T. Now if u’ is the
predecessor afin T”, then(v’, v) € T". But this is a contradiction
since(ii) ensures that ifu’,v) ¢ T = (u',v) ¢ T".
Case II: Both edges(u,v) and (v/,v) are inT. If (v/,v) is a
directed edge, then this is not possible since vestean have only
one predecessor i which isu, and since(u’, v) is a directed
edge towards, it cannot be included in the path to some other
vertex processed afterleading to a contradiction to the condition
(). O

Augmenting the model — Complexity and CorrectnessCategory

Il inequalities enforce conditiofi) of Theorem5.1 A simple so-
lution to ensure that conditiofi?) is also satisfied is to keep track
of the edges not in the shortest path trég)(and when assign-
ing weights to the anonymized graph, non-tree edges argreski
weights greater than the shortest path with the largesthueidis
ensures that these edges are not picked as the shortestipaths
the anonymized graph. Thus, Category Il inequalities gaith
some additional information can model Dijkstra’s algamithand
the complexity of the modified model becom@$n) (n — 1 to be
exact). Algorithm5.1 provides the pseudocode for tReduced
model described in Sectidnl, while Algorithm 5.2 provides the
code for reassigning edge weights in the anonymized graph ob
tained using th&®educednodel. The asymptotic complexity of the
models in this section and in Sectidrl are the same: both grow
linearly withn (assuming that is a constant compared tg. But
considering the fact thatis generally of the order af0 or 100 (as
shown in our experiments using social network graphs), tbéeh
suggested in this section providégo 2 orders of magnitude re-
duction in the number of inequalities.

5.2 All Pairs Shortest Paths — Optimized Model

We now develop an efficient model for the all pairs shortetiipa
problem. The model obtained by composition of Lieear model,



Algorithm 5.1 Reduced model

Algorithm 5.3 Optimized model foall pairs shortest paths

1: /* Initialize similar to Dijkstra in Algorithm4.2. */
2. T < ¢ [* Set of edges in the Tree. */
3: while @ # ¢ do

4:  wu <+ ExtractMinQ)

5. S+ Su{u}

6: if (II(u),u) ¢ T then

7: T+ TU{(II(u),u)}

8: endif

9: ifu # ¢then

10: AddConstraintf (vo,u’) < f(vo,u))
11:  endif

120 v +u

13:  for each vertew such thatu,v) € E andv ¢ S do
14: if D[vo,v] > D[vo, u] + wlu, v] then
15: Dlvo,v] « Dlvo,u] + wlu, v]

16: II(v) < w /* Shorter path exists. */
17: end if

18: if v ¢ Qthen

19: Q + QU {v}
20: end if
21: endfor
22: end while

Algorithm 5.2 Reassignment of weights in Reduced model

Require: v; is the last vertex processed by Algorittarl

1: for each edgéu,v) € £ do

if (u,v) € T then
w'[u, v] + Value obtained from solution of model.

else
w'[u, v] < D'[vs, vi]+rand() I* v, is the source vertex.
*

6: endif

7: end for

though correct, has many redundant inequalities. For elkamp
edges that are not part of any of the trees need not be pareof th
model, and can be treated as the non-tree edges in Séxtion
However in the described model, there are no means for figeri
out these inequalities. We now delve deeper into the prolaledh
show how theReducednodel described in Sectidhlcan be com-
posed for the all pairs problem.

Note that twoReducednodels cannot be merged in a naive way
(refer to B] for more details), since all edges in the graph are not
part of the Reduced model (recall that only edges in the singl
source shortest path tree are part of model). When mergimg th
constraints of multiple trees developed using the Reducedie

1: Run Algorithm5.1for all verticesv, . . . , v, to determine the

treesTy, ..., T, and modelsSy, ..., S,

2:.T+ ¢

3 S« ¢

4: for eachT; in{Ty,...,T,} do

5. S« SuUS;

6: for each edgéu,v) € T; do

7: for eachTy in {11,..., Ty} such that(u,v) ¢ T% do
8: S SU{ f(vr,v) < f(vr,u) + T(u,0)}
9: end for
10:  end for
11: T+ TUT;
12: end for

T}, this decision was not part of the reduced model. We now devis
a mechanism to model this decisiond, so that the edge will no
longer be problematic fdr;.

PrRoOPOSITION 5.2. Eliminating Problematic Edges:A prob-
lematic edgéu, v) is not selected iff’;, if there exists another path
from the source vertex; to v which is cheaper than the path from
v; to v through the vertex, i.e., D[v;,v] < Dlvj,u] + wlu, v].

If the corresponding constraint(v;, v) < f(vj,u) + @[y, IS
added to the model df}, then (u, v) is no longer a problematic
edge forT;. Similarly, if the process is repeated for all tre@s
such that(u, v) ¢ Tk, then(u,v) is no longer a problematic edge
for any of the trees.

Therefore, once we have ensured that the problematic edges a
eliminated during the composition of the constraints ofitttivid-
ual trees, we can compose the individual constraints to fooor-
rect model for all-pairs shortest paths. Therefor&;if. .., T, are
the trees and, ..., S, are the corresponding set of constraints,
then we want to fornt = S; @ S @ - - - @ S,, which would model
the all-pairs shortest paths problem. The algorithm compalkse
trees one at a time. The pseudocode for the algorithm gémgrat
the model is shown in Algorithr.3. Edges which are not in any
of the trees can be dealt in a manner similar to the approaath us
in Section5.1

THEOREM 5.3. The model created by composing individual trees
while eliminatingoroblematic edgepreserves all the tre€g, , . . ., T,
and hence correctly models all pairs shortest paths.

PrROOF Proof by Mathematical Induction.

Base CaseAt the beginning of the algorithn¥’ = ¢ andS =
¢. Hence it is true trivially.

Inductive Case. Let us assume that after iterationwe have

some edges that are part of some trees but not all the trees may!' and set of constraints' that preserves trees, ..., T;, and at

result in problems. We formalize this as follows:

DEFINITION 5.1. Problematic edgesAn edge(u, v) is said to
be problematicfor composition if there exists a shortest paths tree
T; such that(u, v) € T;, and there exists a tre€; (1; # 1) such
that (u, v) ¢ T;.

A problematic edgdu,v) ¢ T; will not have any constraint
involving (., in the model developed fdf; , and hence the
constraints off; (or any other tred}, which containgu, v)) can
set a valuaw’[u, v] in the anonymized graph such that wtEhis
reconstructed in the anonymized grafi,v) is selected as an edge
in T;. There was in fact a decision which the algorithm took when
(u,v) was not included ¥, but since(u, v) was not selected in

iterationi + 1, we are adding the tre€; ;. Let us assume that
(u,v) is a problematic edge. For evefy, such that(u,v) ¢ Tk
(T € {Th,...,T.}), means that Dijkstra’s algorithm did not pick
(u,v) in Ty, and addition of the constraint in lif@ makes sure
that Dijkstra’s algorithm executing on the anonymized grapll
not pick (u, v) as an edge iff},. This property exists in the original
graph that made sure that, v) was not picked in any dfy,. There-
fore, it is evident that when the edge, v) is added, the algorithm
makes sure that it is not problematic, and hence at the erfeof t
iteration, the set of constraintspreserves tre€g;, ..., T;, Tit1.
Therefore, by the principle of mathematical induction, skéof
constraints at the end of the algorithm preserved the frees . , T,
and hence in the anonymized graph, all the trees can be recon-
structed which are identical to the trees in the originappra [



THEOREM 5.4. A model that preserves the tre@s, ..., T,
correctly models the shortest path between all pairs ofiest

ProOOF Proof by Contradiction. Let G = (V, E, W) be the
input graph, and le&@’ = (V, E,W') be the anonymized graph.
Let us assume that there exists at least one pair of vertices
whose shortest paths @’ differs from its shortest path i&'. The
shortest path from; to v; in the all-pairs problem is the path from
v; tov; in the single source shortest paths tree withs the source,
i.e.,T;. This implies thatl; in G does not match? in G’, which
is a contradiction, since tHE is preserved by Theoreth3 [

Complexity of the Model. The analysis of the complexity of the
algorithm is a bit more involved. In thbest casgall the trees
have the same edges. Since there are no problematic edgesyno
constraints were added, and hence the complexifi(is’). In the
worst caseevery problematic edge will add(n) inequalities, and
again, there can be at maSt{dn) problematic edges. Therefore,
the number of added constraints are:

m=1)+n-1)4+-+(n-1)

dn terms

+n=-1)+n-1)+---+(n-1)

n terms

= O0(dn®) + O(n?) = O(dn?)

Therefore, the total number of inequalities$dn?). Thus the
complexity is no worse than the model described in Sedfi@
Our experimental evaluation on real datasets shows treartbdel
performs significantly better on the average tiin?).

6. APPLICATION SPECIFIC PROPERTIES

In addition to the properties described in Sectbhwhich are
general toAnénimos, there are some additional properties which
are interesting for the shortest paths problem. While geirey the
constraints for the model, the algorithm can be terminatezhg
point prior to completion, and this early termination hasafic
applications for the shortest paths problem. Formulatingni-

Table 2: Summary of Complexity of the models.
Single source All pairs
Linear: O(dn) Quadratic: O(dn?)
Reduced:O(n) || Optimized: O(n?) (best),0(dn?) (average)

Table 3: Summary of the Social Graphs.

[ Data Set | No. of Vertices | No. of Edges| Avg. Degree |
Flickr-user-3 55,803 6,662,377 119.39
LJ-user-3 15,508 384,947 24.82
Orkut-user-3 26,110 899,638 34.46
Youtube-user-3 237,469 2,457,206 10.35
Flickr-comm 1,382 69,321 50.16
LJ-comm 1,497 21,481 14.35
Orkut-comm 1,047 28,240 26.97
Youtube-comm 1,823 29,342 16.1

A client requesting anonymized data corresponding to alhtiem-
bers in the'Los Angeles” community might only be interested in
shortest paths between all pairs of “computer scientists’such
a scenario, only the shortest paths trees with “computenssts”
as roots need to be combined. If the number of tieeg n, then
this technique will have a complexity @¥(kn), i.e., linear in the
number of vertices in the graph.

7. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the differemidm
els based onndnimos, compare their complexity, and validate our
analysis (Tabl2 provides a summary of complexity of the models).
All the algorithms were implemented in Java, and the expenis
were run on a 2.4GHz Intel Core 2 Quad processor. The machine
has 3GB main memory and runs Fedora Core Linux. We used four
real social network data sets obtained from the author23f [n
our experiments, we used a free open-source LP Sdpesdlve
5.5 [21]. We report the time taken to generate the model, com-
plexity of the model, and the time taken to solve the modele. W
assume that the LP solver is de-coupled from the system ajémgpr
the model. Therefore, the model is written to disk, and ttetesy

mos as an LP problem ensures that the model being constructed issolving the model reads the model from disk, and generates th

consistent at every point during the execution, and hehesgtin-
teresting sub-properties are also preserved. Furthermsioiee the
algorithm does not process every node and vertex in the gtiaigh
might lead to considerable savings in the complexity of #mult-
ing models.

Early termination of Single Source Shortest PathsWhen com-
puting the shortest paths tree from a specific node in the tihee
vertices are processed in the order of increasing distance the
source vertex. Therefore, if the algorithm is terminateérgbro-
cessingk of the n vertices, the resulting model preserves the
Nearest Neighbors (kNN) of the starting node. kNN is oftee-us
ful when the start vertex is an “influential user”, and the kitde
provides a path for information spreat¥]. In the Reduced model
(Section5.1), an inequality is added for every vertex processed.
Therefore, the complexity of the proposed modél{&) compared
to O(n) for the entire tree, a significant saving wherg n.

Early termination of All Pairs Shortest Paths. When combin-
ing individual shortest paths trees, the algorithm can beiteated
after processing tre€s;, ..., T, (wherek < n) and the model
is still consistent for these trees and preserves the ai gaiort-
est paths for paths between vertides . k. In addition, the trees
Ti,...,T, can be chosen as well as composed in any arbitrary or-
der. Consider th&_os Angeles”community example in Sectich

solution, which is then used to anonymize the model. Henee th
reported times include the disk access latencies. Most sparce
implementations of LP solvers are not heavily optimized] are
stable for smaller systems. There are commercial systenhwh
are much faster than these open source implementationg;aand
also handle larger models. Correctness of the models iseatso
perimentally validated by checking the equivalence of therts
est paths trees and all-pairs shortest paths in the origimélthe
anonymized graphs. As mentioned in Sect®h.], the choice of
objective function provides some flexibility to the pubksh We
experimented with a number of objective functions such &sge
all coefficients to unity (unity objective function), or ag them
to random values picked from uniform as well as gaussiamidist
butions, but no significant difference in degree of anonwtidmn
was observed. In the reported experiments, we use a uniégobj
function.

Implementation Issues ofAnénimos . It is appropriate to address
some of the subtleties of our implementation for completen&v-
ery modeled decision results in an inequality. In order tal edth
ties and different implementations of queues or other siras
used, the ties in the original graphs should be modeled lgxact
the same way in which it was resolved while generating theehod
in the original graph. Consequently, if the edge, v1 ) was chosen



by the algorithm ahead of edge, v), to ensure that the algorithm

figure corresponds to a graph in the data set, and reprekerftac¢-

takes the same decision even in the anonymized graph, wel modetion of vertices that have out degree less than or equal tadhe

the decision as(u1, v1) < z(u,v) —¢, wheree > 0 is a small real
number. Additionally, LP solvers do not accept strict inglifies

of the typex(u,v) < b. Therefore, such inequalities are converted
to non-strict inequalities as(u, v) < b — ¢, where agair > 0 is

a small real number.

7.1 Graph Data sets

Mislove et al. R2] crawled a number of social network sites
for analyzing the properties of these large social graphd,heave
made their data sets publicly available. Their data setsdecthe
graphs for a number of popular social networking sit&sickr
(www. flickr.com), Live Journal (www.livejournal.com), Orkut
(www.orkut.com), and Youtube (www.youtube.com). While Orkut
is a pure social networking site, LiveJournal (referred soLa
in the data sets) is a blogging site whose users form a soefal n
work, while Flickr and Youtube are photo sharing and videarsh
ing sites respectively, with an overlayed social networkicttire
amongst its users. We model the graphs of these networks as di
rected graphs where edges have positive weights, but thelmod
can be extended for undirected graphs. The published gragah d
sets are unweighted, but since our model is not dependerfieon t
semantics of the weights or their magnitude, we assign rafydo
generated weights (real numbers in the range 1 to 100) tadtese
of the graph. We used different distributions for assignaugye
weights, but no considerable change in complexity was obser

The social network data sets have two specific forms of sub-
graphs:

User Driven Structures: These are sub-graphs where a specific
user is of interest, and is useful for applications focugsed single
user. For example, for marketing purposes, a company malgtts
someinfluential users for free trials of their products so that they
can influence other users to use or buy the prodldt [Similarly,
applications such ashortest paths treeendnearest neighborsiill
also be interested in similar structures. To simulate teasetures,
we select a vertex in the graph as the root, and extract thghgra
induced by the vertices which are withindegrees of separation
from the root (a vertex is a first degree connection to the ragt

if there exists an edgévo, v)). We use theusersuffix to refer to
the user data sets, and for our experiments, we conSTdeiegree

of separation (e.gQrkut-user-3.

Community Driven Structures: These graphs correspond to com-
munities (or groups) within the social networks. For examjh
our examples in Sectioh, we refer to theé'Los Angeles” com-
munity in Facebook. Community structures are very impdrtan
applications such arargeted advertisingshortest pathsnearest
neighborsetc. This is primarily since users in the same commu-
nity share common interests, and hence many applicationbea
driven by the community structure. For the experiments, elecs
communities inside the social networks, and extract thptgra-
duced by the members of the community. We usecttramsuffix

to refer to the community data sets (e@rkut-comnmn.

Table 3 summarizes the different graphs in the data set used in
our experiments in terms of the number of vertices, number of
edges, and average out-degrees. To provide better insighthe
distribution of the out-degrees of the vertices, in Figirave plot
the cumulative distribution function (CDR)f the out-degrees of
the graphs in the data set. Along theaxis is the out-degree, and
along they-axis is the fraction of the total number of vertices whose
out-degree is less than the corresponding value ofthgis. Fig-
ure2(a)plots the CDF for theiser driven graphswhile Figure2(b)
plots the CDF for theeommunity driven graphsEach line in the

responding point on the-axis. As can be noted from Figur2é&)
and2(b), Flickr graphs have a considerably higher out degree com-
pared to the other three graphs, and foruker graphsabout 12%

of the vertices have an out degree higher than 250.

7.2 Single source shortest paths

In this section, we experimentally evaluate the modelsiiogle
source shortest paths tremd demonstrate the benefits of our opti-
mization. We compare theinear model to theReducedmodel in
terms of the complexity of the model, and the time taken tédbui
the model and write it to disk. Recall that the complexity lof t
model corresponds to the number of inequalities generated,
the time taken includes the time for executing Dijkstratgoaithm,
generating the inequalities, and writing the generateduiakties
to disk.

Figures3 and4 provide a comparison of the two modeling tech-
niques for both types of data sets for all the social graphg- F
ures 3(a) and 3(b) compare the complexity of the models, while
Figures4(a) and 4(b) compare the time taken to build the model.
In all the figures, thec-axis represents the social graphs, and the
y-axis for Figures3(a) and 3(b) plots the number of inequalities
constituting the model, while thg-axis for Figure4(a)and 4(b)
plot the time in seconds. Note that theaxis of all the plots have
been plotted in logarithmic scale. It is evident from the fegithat
the Reducedmodel is extremely efficient compared to thimear
model both in terms of complexity and time. The complexity of
theReducednodel is about 1 to 2 orders of magnitude lesser when
compared to th&inear model and so is the time taken in comput-
ing the model.

Table4 provides the results from these experiments along with a
detailed breakup of the number of inequalities, as well ase¢duc-
tion in complexity and time of thReducednodel compared to the
Linear model. For theLinear model, the categories of inequalities
in Table4 correspond to the categories defined in Secfidn As
is evident from Tablet, the Reducednodel provides abouD(d)
times improvement in complexity of the models for all theprs,
as observed in Sectidhl Depending on the graph, the valuedof
varies, and so does the factor of improvement. For exampi¢hé
Flickr-user-3data setd is 119.39, and the complexity of the-
ducedmodel is about 20 times less than that of tHenear model.
The large reduction in the number of inequalities also &ffelce
time to build the model, since in thénear model, fewer inequali-
ties need to bgeneratedand more importantly, fewer inequalities
need to bewritten to disk This is illustrated by the almo$t0%
improvement in time to generate tReducednodel.

7.3 All pairs shortest paths

In this section, we experimentally evaluate the models lfier t
all pairs shortest paths problemin a community of a social net-
work, users share common interests, and an applicatiorutiest
minimum cost paths between any two members of the community
would require the all-pairs shortest paths. On the othed htor
a user drivensocial graph, two users in the graph might be com-
pletely unrelated, and from an application’s perspectslegrtest
paths between them are not interesting. Thus, we evaluatadd-
els forall-pairs only for thecommunity driven graphs

7.3.1 Evaluating shortest paths between all pairs
We refer to the model of Secti@gh2as theQuadraticmodel, and

that of Sectiorb.2 as theOptimizedmodel. Figures compares the

two models in terms of complexity and the time taken to builel t
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Figure 3: Complexity of the models forsingle source shortest pattsee.

model, and both of these terms have the same meaning ashaekcri
in the previous section. In Figuia), the number of inequalities
in the models is plotted along theaxis, while in Figure5(b), the
time taken (in seconds) to generate the model is plottechatos
y-axis. In both the figures, the x-axis represents the diffegeaph
data sets, and again note that ghexis is plotted in logarithmic
scale. As noted in Sectidn2, Figure5illustrates the benefits of the
Optimizedmodel compared to thQuadraticmodel both in terms
of complexity and time.

Table 5 provides the experimental results, tabulating the break
down of the categories of the constituent inequalities fibvath the
model. For theQuadratic model, the categories of the inequali-
ties correspond to the ones defined in Secddh For theOpti-
mizedmodel, theMergeinequalities are the ones generated when
the individual shortest paths trees are merged into oneistens
model compensating for the problematic edges, while Tiees
inequalities are the total number of inequalities generéve the
trees. Since this correspond<Qategory lllinequalities (as thRe-
ducedmodel for single source only us€ategory lllinequalities),
Columns 4 and 8 of Tableare identical. Tabl® also provides data
that allows a deeper analysis of the reasons for the imprpeed
formance of theDptimizedmodel, even though both models have
the same complexity bound(dn?). As was noted in Sectiob.2,
the inefficiency of theQuadraticmodel stems from the fact that it
cannot leverage the absence of some edges from all thewrieies,
allows these edges to be excluded from the model. These adges
represented by the column titlééhconstrained Edgem Table5.

It can be seen that in all the social graphs, a high percerdfige
edges are not part of any tree, and eliminating these edgestfre

model considerably simplifies the model. This is evidenirfribe
70-80% reduction in complexity of th@ptimizedmodel compared
to theQuadraticmodel. As seen in the casesifgle source short-
est tree reduction in complexity of the model also considerably
reduces the time, primarily because fewer inequalitiesaaitten

to disk.

7.3.2 Benefits of Early Termination

We now experimentally evaluate the benefits of early termina
tion of the all-pairs model as explained in Sect@nThis kind of
model finds application iscommunity drivergraphs where the ap-
plication is interested in a specific subset of vertices. goal is to
validate our analysis that #l-pairs shortest pathare not required
by the application, we can considerably reduce the comylexi
the model. For our experiments, we consider two cases, oreswh
the pairwise shortest paths between a subset of 100 veiditeebe
determined and the shortest paths tree for the rest sufioelsin
another, we are interested in a subset of 200 vertices. Hubsets
are randomly selected, and simulate our example where e ap
cation is interested in “computer scientists” or “guitésisin the
“Los Angeles” community of Facebook. Tablesummarizes the
results from these experiments, and compares them withuiime n
bers obtained for th®ptimizedsolution for all-pairs shortest paths
from Table5. It is evident from the table that when all possible
shortest paths need not be preserved, there can be a sighiBea
duction in the complexity of the models. This significantuetion
(reflected by the rightmost columns in Talfleis obtained primar-
ily due to the fact that a huge portion of the inequalities tfoe
merge phase is not required for the trees that are not oeisttand
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Table 4: Experimental evaluation of single source shortegbaths tree.
Linear Model Reduced Model Summary
Number Inequalities Time Number of Time Times Reduction | % Reduction

Data Sets Catl [ Catll T Catlll T Total | Taken(s) || Inequalities | Taken (s) in Complexity in Time
Flickr-user-3 204,626 | 6,457,751| 55,802 | 6,718,179 98.81 55,802 2.835 120.39 97.13
LJ-user-3 39,030 345,917 15,507 400,454 4.783 15,507 0.938 25.83 80.39
Orkut-user-3 72,130 827,508 26,109 925,747 15.735 26,109 1.752 35.47 88.87
Youtube-user-3 || 417,526 | 2,039,680 | 237,468 | 2,694,674| 44.943 237,468 8.226 11.35 81.7
Flickr-comm 4,112 65,209 1,381 70,702 2.464 1,381 0.163 51.2 93.39
LJ-comm 3,148 18,333 1,496 22,977 2.471 1,496 0.099 15.36 95.99
Orkut-comm 2,409 25,831 1,046 29,286 1.401 1,046 0.08 27.99 94.29
Youtube-comm 3,605 25,737 1,822 31,164 2.564 1,822 0.127 17.11 95.05

therefore do not need to be merged.

7.4 Overall time overhead

In all the above experiments, we considered only the complex
ity of the model, and the time taken to generate the model.eOnc

tween the ranks of the edges in the two lists. Figes, and8
provide the experimental results for the two measures omehle
data sets. In these experiments, we useéRibducednodel forsin-
gle source shortest patliee and th®ptimizedmodel forall pairs
shortest pathgroblem.

the model has been generated, it has to be solved to anonymize Figures6 and7 plot the percentage of edges in the graph that are

the graph. The time required for this step depends on the effi-
ciency of the LP solver. We used an open source LP SoREr [
in our experiments, and it is widely acknowledged that conuiaé
LP solvers are far more efficient compared to open sourceeimpl
mentations. As example timings, for tReducednodel ofsingle
source shortest paths trggoblem, the LP solver tool.394 sec-
onds to solve the model f@rkut-commgraph,0.541 seconds for
the Youtube-comrgraph,150.638 seconds for theJ-user-3graph,
and629.869 seconds for th&lickr-user-3graph. For the all-pairs
problem, where the complexity of the model rises to abidti
inequalities, the solvers took about an hour to find a satutie
remark that our open source LP solver is not optimized fov-sol
ing large, sparse models, and these timings are not the bssit p
ble. Furthermore, solving the model constitutes an offliost and
hence the exact times are not significant for our evaluation.

7.5 Evaluating Data privacy

In this section, we evaluate the privacy preserving propeidf
the proposed models. In our evaluation, we use the two messur
presented in Sectiog, i.e., k-anonymity{26] and Spearman rank
correlation coefficienf25]. As explained in Sectiof, in the con-
text of sensitivity of edge weights, both measures are dgfine
a neighborhood. Computation kfanonymityof edges follow di-
rectly from its definition. TheSpearman rank correlation coeffi-
cientis computed for every vertex in the graph. For each vertex in
the original graph and the corresponding vertex in the amarsd
graph, the list of edges emanating from the vertex comptises
ranked lists used for computing the coefficient. The lisessarted
by edge weights, and the coefficient measures the cornelage

k-anonymousn their neighborhood for a given value bfind indis-
tinguishability thresholgl.. Figure6 plots the graphs of the model
for single source shortest patiiee and Figur& plots the graphs

of the model forall pairs shortest pathproblem. Along ther-axis

we plot the different values df, and along thej-axis, we plot the
percentage of edges that decenonymoudor the corresponding
value ofk on thez-axis. Each graph plots two selected data sets
and compares thie-anonymityof the original and anonymized ver-
sions of the same graphs. Different graphs correspond fereiift
data sets, different values pf and different algorithms. In these
experiments, we selected tRéckr andOrkut graphs as represen-
tatives. Similarly values of 1 and 3 are representatives chosen to
show the variance of the anonymity levels as the indististgabil-

ity threshold increases. In our experiments, the edge iigare

in the range 1 to 100, sp = 1 corresponds to 1% of the total
range of edge weights. As is evident from the FiguBesnd 7,

our anonymization models considerably improve lth@nonymity

of the anonymized graphs when compared to the original graph
The improvement is even more significant for larger valudsanfd
smaller values of:, which demonstrates the improved anonymity
of edges in the anonymized graph. Therefore, in the anormaniz
graphs, individual edge-weights are even less distingibigh Note
that this level ofk-anonymityis provided by the model at no addi-
tional cost. We remark th&tanonymitycan be further improved by
adding constraints and setting bounds on the variablestiratre
that the anonymized weights are even closer to each other. Ad
ditionally, note that th&-anonymityof the edges is better for the
Flickr data set due to the higher average out-degree of the vertices
which allows for more room for hiding in thedge neighborhood
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Figure 5: Performance of the models for theall pairs problem

Table 5: Experimental evaluation of all pairs shortest patts problem for the community driven data sets.

Quadratic Model Optimized Model
Data Number Inequalities Time Number of Inequalities [ Time Unconstra-
Sets Catl [ Catll [ Catlll T Total | Taken(s) Merge | Trees [ Total | Taken(s) | ined Edges
Flickr 3,645,749| 85,824,651| 1,813,512| 91,283,912| 926.71 10,837,381| 1,813,512 12,650,893 172.66 60,166
LJ 2,330,938| 25,847,924| 2,107,957 | 30,286,819| 320.42 7,588,195 | 2,107,957 9,696,152 132.31 15,003
Orkut 1,428,809 | 26,907,339| 1,088,890 29,425,038 277.33 4,377,502 | 1,088,890| 5,466,392 72.32 23,018
Youtube 2,762,305| 38,902,975| 2,756,994 | 44,422,274| 473.945 9,163,912 | 2,756,994 11,920,906| 151.04 22,802

Figure8 plots theSpearman rank correlation coefficieaf the
models forsingle source shortest paths treead all pairs short-
est pathsproblem. Since the value of the coefficiemtforms a
continuum in the range-1.0 < p < 1.0, for ease of presenta-
tion, we maintain a equi-width histogram of the coefficiealues.
Along thez-axis, we plot the bucket boundaries of the histogram,
and along they-axis we plot the percentage of vertices that have
the value ofp in the range corresponding to the bucket. The two
graphs plot four data sets and Fig@@) plots the results for the
single source shortest patlree while Figure3(b) plots the results
for all pairs shortest pathgroblem. Figure§(a) and8(b) demon-
strate the excellent scrambling of the order of the edge hteig
Note thatp = 0 corresponds to no correlation of ordering, and the
closer it is to 0, the harder it is for an adversary to deteentire
original order with high confidence. Our experiments shost for
all data sets, more tharb% of vertices have-0.3 < p < 0.3,
and abou®0% of the vertices have-0.5 < p < 0.5. Addition-
ally, note that the higher the average out degree (refer iteTa
for the average degrees of the graphs in the data sets) ster khe
correlation between the original and the anonymized orders

In conclusion, these experiments demonstrate the rolastfe
the privacy models, and show how hard it is for an adversadgto
termine the original edge weight, to uniquely identify edggghts,
or to determine the original ordering of the weights, thgrefiec-
tively preserving the sensitivity of the weights.

8. RELATED WORK

The need to protect the privacy of social entities involveda-
cial networks has given rise to active research in anonyiniza
techniques for social network graphs. This interest has Ipeie
marily driven by the findings of Backstrom et aB] and Korolova
et al. [15]. Backstrom et al. 3] described a technique based on
the structural properties of graphs such as isomorphisnaatat
morphism to re-identify vertices in the anonymized graptheif
technique was based on implanting unique structures inridgehg
which can be re-identified in the anonymized graph with vegnh
probability. On the other hand, Korolova et al5] devised an

attack where a node can be re-identified based in part on back-
ground information regarding the neighborhood. As a resuilibt

of research has focused ande identity anonymizaticemdstruc-

tural anonymization A comprehensive survey about the various
anonymization techniques is provided it8[29.

A class of proposals, by Hay et alLld], Zhou et al. B2], Liu
etal. [19], and Zou et al.33], suggest different methods for anonym-
ization that are based on the addition and/or deletion oé®dig
the graph for altering the structure of the graph and theguréon
of re-identification in the anonymized graph. On the othercha
Cormode et al. 7] suggest a technique for the anonymization of
bipartite graphs based on safe groupings, an extension iwhwh
is class based anonymizatio].[ Ying et al. [30] propose a ran-
domization based spectrum preserving approach whichte#gc
preserves the properties of the eigenvalues of the netwdike
anonymizing the edges, and Campan et 3jl.sggest a cluster-
ing based approach for node anonymization. Along diffelient,
Zheleva et al. 31] formulate the problem of edge re-identification
in an unweighted graph, where the edge labels are sensitive.

The majority of existing work considers unweighted graptrs f
node identity and structural anonymization. But as reftbbtere-
cent work [L7, 28], the weighted social network model is gaining
importance, and so is edge weight anonymization. Liu et28). [
suggest a probabilistic technique for anonymizing edg@htsiby
perturbing the actual edge weights by a snsatbtained from a
probability distribution. The goal is to keep the total co$the
shortest path close to the cost of the path in the origingbtgra
However in this approach, the anonymized weights are ctotweet
original edge weights, and hence may reveal sensitivermton
about the original valuesAnonimos aims at preserving general lin-
ear properties of the graph. For the shortest paths, ouigjtmapre-
serve the paths rather than the values and for most applisatihe
ability to reconstruct the actual path is more importanhtheain-
taining approximate values. In addition, if necessary, model
can approximately preserve the cost of the shortest patlslbly
adding constraints of the forrfi(u,...,v) = DJu,v] + €. Note
that since the edge weights are only perturbed by a smakytie



Table 6: Experimental evaluation of all pairs shortest patts between a subset of vertices for the community driven dateess.

100 vertices 200 vertices Optimized All Pairs Percent Reduction
Number of | Unconstra- || Number of | Unconstra- || No. of ineq- Uncons- 100 200
Data Sets Inequalities | ined Edges || Inequalities | ined Edges qualities | trained edges| vertices | vertices
Flickr-comm 513,414 64,186 1,177,428 63,433 12,650,893 60,166 95.94 90.69
LJ-comm 314,107 18,339 732,212 17,819 9,696,152 15,003 96.76 92.45
Orkut-comm 253,002 25,709 562,005 25,429 5,466,392 23,018 95.37 89.72
Youtube-comm 374,516 25,596 835,831 25,162 11,920,906 22,802 96.86 92.99
10 — 100

3 sof B so4

D (@)

B 1 3

G 60r G 60r —=— Flickr Orig

% % —©— Flickr Anon

g 40 —=— Flickr Orig g 40r —5—Orkut Orig

§ —©—Flickr Anon § —9— Orkut Anon

& 20} —8— Orkut Orig & 20} ¥

—&— Orkut Anon .,
0 ‘ ‘ 0 ‘ B
2 4 6 8 10 2 4 6 8 10
k k

(a) k anonymityfor single source shortest paths t{e¢ k anonymityfor single source shortest paths tree

for user data sets and= 1 for

community data sets and= 1

7]
S 3
3 S
@ @
%S 60f s
g 2
[ ©
e 40y . . =
] —%— Flickr Orig 8
% —©— Flickr Anon ]
o 20f  —s—oOrkut Orig £ e
—&— Orkut Anon
0 . . .
2 4 6 8 10
k

10

— -
P ——o—9¢

901 1
i

801

701
60r

501
—#— Flickr Orig
—&— Flickr Anon
—&— Orkut Orig
—&— Orkut Anon

401
301
20F

10,

2 4 6 8 10

k

(c) k anonymityfor single source shortest paths tfel¢ k anonymityfor single source shortest paths tree

for user data sets and= 3 for

community data sets and= 3

Figure 6: Evaluating k-anonymityfor single source shortest pattsee model.

technique of 20] can neither significantly improv&-anonymity
nor can it scramble the ordering of edge weights.

9. CONCLUSION

Anonymization of edge weights in a social network graph is im
portant for enabling the analysis and mining of social gsaph
computer scientists as well as social scientists. Suchngihas
significant impact on the management of social networks ds we
as the understanding of various social behaviors. We peapos
Anénimos, a technique for the effective anonymization of weighted
social network graphs by modelidmear propertiesand formu-
lating them as an LP problem. Th@onimos approach is fairly
straightforward and can be applied to preservelamgar property
by a simple generation of inequalities corresponding tasitats
made by the algorithm during its execution. As a proof of emic
we considered thshortest paths probleand showed how off-the-
shelf LP packages can be used to effectively anonymize #pghgr
The composabilityof Anénimos for preserving multiple properties
in a single anonymized graph was demonstrated usingltipairs

shortest pathgproblem. We also showed how a careful analysis
of the properties can result in significant reductions in plax-

ity of the models. Our experiments demonstrated the effectiss

of our techniques in the anonymization of graphs, and theaefji

of our optimizations, while ensuring that the desired props are
preserved across anonymization. In the future, we wouédtblex-
plore extensions ofnénimos for other applications such as graph
clustering, information spread modeling, etc., which aksly on
linear combinations of edge weights.
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