
ar
X

iv
:1

70
1.

04
65

2v
1

 [
cs

.D
B

]
 1

7
Ja

n
20

17
TKDE, VOL. X, NO. X, SEPTEMBER 2011 1

A Survey of XML Tree Patterns
Marouane Hachicha and Jérôme Darmont, Member, IEEE Computer Society

Abstract —With XML becoming an ubiquitous language for data interoperability purposes in various domains, efficiently querying
XML data is a critical issue. This has lead to the design of algebraic frameworks based on tree-shaped patterns akin to the tree-
structured data model of XML. Tree patterns are graphic representations of queries over data trees. They are actually matched
against an input data tree to answer a query. Since the turn of the twenty-first century, an astounding research effort has been
focusing on tree pattern models and matching optimization (a primordial issue). This paper is a comprehensive survey of these
topics, in which we outline and compare the various features of tree patterns. We also review and discuss the two main families
of approaches for optimizing tree pattern matching, namely pattern tree minimization and holistic matching. We finally present
actual tree pattern-based developments, to provide a global overview of this significant research topic.

Index Terms —XML Querying, Data Tree, Tree Pattern, Tree Pattern Query, Twig Pattern, Matching, Containment, Tree Pattern
Minimization, Holistic Matching, Tree Pattern Mining, Tree Pattern Rewriting.

✦

1 INTRODUCTION

S INCE its inception in 1998, the eXtended Markup
Language (XML) [1] has emerged as a standard for

data representation and exchange over the Internet,
as many (mostly scientific, but not only) communities
adopted it for various purposes, e.g., mathematics
with MathML [2], chemistry with CML [3], geography
with GML [4] and e-learning with SCORM [5], just
to name a few. As XML became ubiquitous, effi-
ciently querying XML documents quickly appeared
primordial and standard XML query languages were
developed, namely XPath [6] and XQuery [7]. Re-
search initiatives also complemented these standards,
to help fulfill user needs for XML interrogation, e.g.,
XML algebras such as TAX [8] and XML information
retrieval [9].

Efficiently evaluating path expressions in a tree-
structured data model such as XML’s is crucial for the
overall performance of any query engine [10]. Initial
efforts that mapped XML documents into relational
databases queried with SQL [11], [12] induced costly
table joins. Thus, algebraic approaches based on tree-
shaped patterns became popular for evaluating XML
processing natively instead [13], [14]. Tree algebras
indeed provide a formal framework for query expres-
sion and optimization, in a way similar to relational
algebra with respect to the SQL language [15].

In this context, a tree pattern (TP), also called pat-
tern tree or tree pattern query (TPQ) in the literature,
models a user query over a data tree. Simply put, a
tree pattern is a graphic representation that provides
an easy and intuitive way of specifying the interesting
parts from an input data tree that must appear in

• Marouane Hachicha and Jérôme Darmont are from the Université de
Lyon (ERIC Lyon 2), 5 avenue Pierre Mendès-France, 69676 Bron
Cedex, France.
E-mails: marouane.hachicha@univ-lyon2.fr, jerome.darmont@univ-
lyon2.fr

query output. More formally, a TP is matched against
a tree-structured database to answer a query [16].
Figure 1 exemplifies this process. The upper left-hand
side part of the figure features a simple XML docu-
ment (a book catalog), and the lower left-hand side
a sample XQuery that may be run against this doc-
ument (and that returns the title and author of each
book). The tree representations of the XML document
and the associated query are featured on the upper
and lower right-hand sides of Figure 1, respectively.
At the tree level, answering the query translates in
matching the TP against the data tree. This process can
be optimized and outputs a data tree that is eventually
translated back as an XML document.

Fig. 1. Tree representation of XML documents and
queries

Since the early 2000s, a tremendous amount of
research has been based on, focusing on, or exploit-
ing TPs for various purposes. However, few related
reviews exist. Gou and Chirkova extensively survey
querying techniques over persistently stored XML
data [17]. Although the intersection between their

http://arxiv.org/abs/1701.04652v1

TKDE, VOL. X, NO. X, SEPTEMBER 2011 2

paper and ours is not empty, both papers are com-
plementary. We do not address approaches related
to the relational storage of XML data. By focusing
on native XML query processing, we complement
Gou and Chirkova’s work with specificities such as
TP structure, minimization approaches and sample
applications. Moreover, we cover the many match-
ing optimization techniques that have appeared since
2007. Other recent surveys are much shorter and focus
on a particular issue, i.e., twig queries [18] and holistic
matching [19].

The aim of this paper is thus to provide a global and
synthetic overview of more than ten years of research
about TPs and closely related issues. For this sake,
we first formally define TPs and related concepts in
Section 2. Then, we present and discuss various alter-
native TP structures in Section 3. Since the efficiency
of TP matching against tree-structured data is central
in TP usage, we review the two main families of
TP matching optimization methods (namely, TP min-
imization and holistic matching approaches), as well
as tangential but nonetheless interesting methods, in
Section 4. Finally, we briefly illustrate the use of TPs
through actual TP-based developments in Section 5.
We conclude this paper and provide insight about
future TP-related research in Section 6.

2 BACKGROUND

IN this section, we first formally define all the
concepts used in this paper (Section 2.1). We also

introduce a running example that illustrates through-
out the paper how the TPs and related algorithms we
survey operate (Section 2.2).

2.1 Definitions

2.1.1 XML document
XML is known to be a simple and very flexible text
format. It is essentially employed to store and transfer
text-type data. The content of an XML document
is encapsulated within elements that are defined by
tags [1]. These elements can be seen as a hierarchy
organized in a tree-like structure.

2.1.2 XML fragment
An XML document may be considered as an ordered
set of elements. Any element may contain subele-
ments that may in turn contain subelements, etc. One
particular element, which contains all the others, is
the document’s root. Any element (and its contents)
different from the root is termed an XML fragment.
An XML fragment may be modeled as a finite rooted,
labeled and ordered tree.

2.1.3 Data tree
An XML document (or fragment) may be modeled as
a data tree t = (r,N,E), where N is a set of nodes,
r ∈ N is the root of t, and E is a set of edges stitching
together couples of nodes (ni, nj) ∈ N ×N .

2.1.4 Data tree collection
An XML document considered as a set of fragments
may be modeled as a data tree collection (also named
forest in TAX [8]), which is itself a data tree.

2.1.5 Data subtree
Given a data tree t = (r,N,E), t

′

= (r
′

, N
′

, E
′

) is a
subtree of t if and only if:

1) N
′

⊆ N ;
2) let e

′

∈ E
′

be an edge connecting two nodes
(n

′

i, n
′

j) of t
′

; there exists an edge e ∈ E connect-

ing two nodes (ni, nj) of t such that ni = n
′

i and
nj = n

′

j .

2.1.6 Tree pattern
A tree pattern p is a pair p = (t, F) where:

1) t = (r,N,E) is a data tree;
2) F is a formula that specifies constraints on t’s

nodes.

Basically, a TP captures a useful fragment of
XPath [20]. Thus, it may be seen as the translation
of a user query [21]. Translating an XML query plan
into a TP is not a simple operation. Some XQueries
are written with complex combinations of XPath and
FLWOR expressions, and imply more than one TP.
Thus, such queries must be broken up into several
TPs. Only a single XPath expression can be translated
into a single TP. The more complex a query is, the
more its translation into TP(s) is difficult [10]. Starting
from TPs to express user queries in a first stage, and
optimize them in a second stage is a very effective
solution used in XML query optimization [21].

2.1.7 Tree pattern matching
Matching a TP p against a data tree t is a function
f : p→ t that maps nodes of p to nodes of t such that:

• structural relationships are preserved, i.e., if
nodes (x, y) are related in p through a parent-
child relationship, denoted PC for short or by a
simple edge / in XPath (respectively, an ancestor-
descendant relationship, denoted AD for short or
by a double edge // in XPath), their counterparts
(f(x), f(y)) in t must be related through a PC
(respectively, an AD) relationship too;

• formula F of p is satisfied.

The output of matching a TP against a data tree is
termed a witness trees in TAX [8].

2.1.8 Tree pattern embedding
Embedding a TP p into a data tree t is a function g :
p→ t that maps each node of p to nodes of t such that
structural relationships (PC and AD) are preserved.

The difference between embedding and matching
is that embedding maps a TP against a data tree’s
structure only, whereas matching maps a TP against a
data tree’s structure and contents [22]. In the remainder
of this paper, we use the more general term matching
when referring to mapping TPs against data trees.

TKDE, VOL. X, NO. X, SEPTEMBER 2011 3

Fig. 2. Sample data tree (a), tree pattern (b) and witness tree (c)

2.1.9 Boolean tree pattern
A Boolean TP b yields a “true” (respectively “false”)
result when successfully (respectively unsuccessfully)
matched against a data tree t. In other words, b has
no output node(s) [23]: it yields a “true” result when
t structurally matches (embeds) p.

2.2 Running example

Let us consider the data tree from Figure 2(a), which
represents a collection of books. The root doc gathers
books, each described by their title, author(s), editor,
year of publication and summary. Data tree nodes are
connected by simple edges (/), i.e., PC relationships.
Books do not necessarily bear the same structure. For
instance, a summary is not present in all books, and
some books are written by more than one author.

The TP from Figure 2(b) selects book titles, authors,
and years. Moreover, formula F indicates that author
must be different from Jill. Generally, a formula is a
boolean combination of predicates on node types (e.g.,
$1.tag = book) and/or values (e.g., $3.value ! = “Jill”).
Matching this TP against the data tree from Figure 2(a)
outputs the data tree (or witness tree) from Figure 2(c).
Only one book is selected from Figure 2(a), since the
other one (title = “A dummy for a computer”):

1) does not contain a year element;
2) is written by author Jill, which contradicts for-

mula F .

Finally, the AD relationship $1//$3 in Figure 2(b)’s
TP is correctly taken into account. It is not the struc-
ture of the book element with title = “A dummy for
a computer” that disqualifies it, but the fact that one

of its authors is Jill. If this author was Gill, the book
would be output.

3 TREE PATTERN STRUCTURES

W E review in this section the various TP struc-
tures found in the literature. Most have been

proposed to support XML algebras (Section 3.1), but
some have also been introduced for specific optimiza-
tion purposes (Section 3.2). We conclude this section
by discussing their features in Section 3.3.

3.1 Tree patterns in algebraic frameworks

The first XML algebras have appeared in 1999 [24],
[25] in conjunction with efforts aiming to define a
powerful XML query language [26], [27], [28], [29],
[30]. Note that they have appeared before the first
specification of XQuery, the now standard XML query
language, which was issued in 2001 [7]. The aim of
an XML tree algebra is to feature a set of operators
to manipulate and query data trees. Query results are
also data trees.

3.1.1 TAX tree pattern
The Tree Algebra for XML (TAX) [8] is one of the
most popular XML algebras. TAX’s TP preserves PC
and AD relationships from an input ordered data tree
in output, and satisfies a formula that is a boolean
combination of predicates applicable to nodes. The
example from Figure 2(b) corresponds to a TAX TP,
save that node relationships are simple edges labeled
AD or PC in TAX instead of being expressed as single
or double edges. The TAX TP is the most basic TP

TKDE, VOL. X, NO. X, SEPTEMBER 2011 4

used in algebraic contexts. It has thus been greatly
extended and enhanced.

3.1.2 Generalized tree pattern

The idea behind generalized tree patterns (GTPs) is
to associate more options with TP edges in order to
enrich matching. In TAX, one absent pattern node in
the matched subtree prevents it to appear in output. A
GTP extends the classical TAX TP by creating groups
of nodes to facilitate their manipulation, and by en-
riching edges to be extracted by the mandatory/optional
matching option [21].

Figure 3 shows an example of GTP, where the edge
connecting the year element to its parent book node
is dotted (i.e., optional), and title and author nodes
are connected to the same parent book node with
solid (i.e., mandatory) edges. This GTP permits to
match all books described by their title and author(s),
mandatorily, and that may be described by their year
of publication. Matching it against the data tree from
Figure 2(a) outputs both books (“Maktub” and “A
dummy for a computer”), even though the second
one does not contain a year element, while ensuring
that the title and author elements exist in the matched
book subtrees.

Fig. 3. Sample generalized tree pattern

Finally, note that the GTP from Figure 3, unlike the
TP from Figure 2(b), does not include an author !=
”Jill” clause in its formula. Retaining this predicate
would not allow the second book (title = “A dummy
for a computer”) to be matched by this GTP, since
the boolean combination of formula elements (related
with and) cannot be verified.

3.1.3 Annotated tree pattern

A feature, more than a limitation, of the TAX TP is
that a set of subelements from the input data tree
may all appear in the output data tree. For example,
a TP with a single author node can match against a
book subtree containing several author subelements.
Annotated pattern trees (APTs) from the Tree Logical
Class (TLC) algebra [31] solve this problem by associ-
ating matching specifications to tree edges. Matching
options are:

• +: one to many matches;
• -: one match only;
• *: zero to many matches;
• ?: zero or one match.

Figure 4 shows an example of APT where the -
option is employed to extract books written by one
author only. This APT matches only the first book
from Figure 2(a) (title = “Maktub”), since the second
has two authors.

Fig. 4. Sample annotated pattern tree

3.1.4 Ordered annotated pattern tree

An APT, as a basic TAX TP, preserves the order output
of nodes from the input data tree, whatever node
order is specified in the TP. In other words, node
order in witness trees is always the same as that of
the input data tree. No reordering option is available,
though it is essential when optimizing queries. To
circumvent this problem, the APT used in TLC’s
Select and Join operators is supplemented with an
order parameter (ord) based on an order specification
(O-Spec) [13]. Four cases may occur:

1) empty: output node order is unspecified; O-Spec
is empty;

2) maintain: input node order is retained; O-Spec
duplicates input node order;

3) list-resort: nodes are wholly sorted with respect
to O-Spec; input node order is forsaken;

4) list-add: nodes are partially sorted with respect
to O-Spec.

For example, associating the O-Spec specification
[author, title] to the APT from Figure 4 permits to
select books ordered by author first, and then title.
Graphically, the author node would simply appear on
the left hand side of the witness tree and the title node
on the right hand side.

3.2 Tree patterns used in optimization processes

Many TP matching optimization approaches extend
the basic TP (Figure 2(b)) to allow a broader range
of queries. In this section, we survey the TPs that
introduce new, interesting features with respect to
those already presented in Section 3.1.

3.2.1 Global query pattern tree

A global query pattern tree (G-QPT) is constructed
from a set of possible ordered TPs proposed for the
same query [32]. First, a root is created for the G-QPT.
Then, each TP is merged with the G-QPT as follows:

• the TP root is merged with the G-QPT root;

TKDE, VOL. X, NO. X, SEPTEMBER 2011 5

Fig. 5. Sample construction of global query pattern tree

• TP nodes are merged with G-QPT nodes with re-
spect to node ordering and PC-AD relationships.

For example, TPs p1 and p2 from Figure 5 together
answer query “select title, authors and year of publi-
cation of books” and merge into G-QPT g.

3.2.2 Twig pattern
Twig patterns are designed for directed and rooted
graphs [33]. Here, XML documents are considered
having a graph structure, thanks to ID references
connecting nodes. Twig patterns respect PC-AD node
relationships and express node constraints in formula
F (called twig condition here) with operators such as
equals to, contains, ≥, etc. In Figure 6, we represent
the twig pattern that is equivalent to the TP from
Figure 2(b).

Fig. 6. Sample twig pattern

Moreover, distance-bounding twigs (DBTwigs) ex-
tend twig patterns to limit the large number of an-
swers resulting from matching a classical twig pattern
against a graph [33]. This method is called Filtering
+ Ranking. Its goal is to filter data to be matched
by indicating the length of paths corresponding to
descendant edges. DBTwigs also permit to indicate the
number (0, 1...) of nodes to be matched. All these pa-
rameters are indicated in the graphical representation
of DBTwigs.

3.2.3 Logical operator nodes
Izadi et al. include in their formal definition of TPs
a set O of logical operator nodes [34]. ∧, ∨ and
⊕ represent the binary AND, OR, and XOR logical
operators, respectively. ¬ is the unary NOT operator.
These operator nodes go further than GTPs’ manda-
tory/optional edge annotations by specifying logical
relationships between their subnodes. For instance,
Figure 7 features a TP that selects book titles and either
a set of authors or an editor.

Fig. 7. Sample tree pattern with logical operator nodes

3.2.4 Node degree and output node specification
In a TP, the degree of a tree node x, denoted degree(x),
represents its number of children [35]. Miklau and
Suciu define a maximal value for degree(x) within
a path expression optimization algorithm. This ap-
proach is mainly designed to check containment and
equivalence of XPath fragments (Section 4.1.1). Then,
translating XPath expressions into TPs requires the
identification of an output node marked with a wild-
card (∗) in the TP. For example, suppose that we are
only interested in book titles from Figure 2(a). Then,
we would simply associate a ∗ symbol with the title
node in the TP from Figure 2(b). Note that the other
nodes must remain in the TP if they appear in formula
F and thus help specify the output node.

3.2.5 Extended formula
Lakshmanan et al. further specify how formula F is
expressed in a TP [22]. They define F as a combina-
tion of tag constraints (TCs), value-based constraints
(VBCs) and node identity constraints (NICs). TCs
specify constraints on tag names, e.g., node.tag =
“book”. VBCs specify selection and join constraints
on tag attributes and values using the operators =,
6=, ≤, ≥, > and <. NICs finally determine whether
two TP nodes are the same (≈) or not. In addition
to TCs, VBCs and NICs, wildcards (∗) are associated
with untagged nodes.

For example, in Figure 8, we extend the TP from
Figure 2(b) with a VBC indicating that books to be
selected must be of type “Novel”. We suppose here
that a type is associated with each book node, that
the first book (title = “Maktub”) is of type “Novel”,
and that the second book (title = “A dummy for a
computer”) is of type “Technical book”. Then, the
output tree would of course only include the book
entitled “Maktub”.

TKDE, VOL. X, NO. X, SEPTEMBER 2011 6

Fig. 8. Sample tree pattern with a value-based con-
straint

3.2.6 Extended tree pattern

Extended TPs complement classical TPs with a nega-
tion function, wildcards and an order restriction [36].
For example, in Figure 9, the negative function (de-
noted ¬) helps specify that we look for an edited
book, i.e., with no author node. The wildcard node
∗ can match any single node in a data tree. Note that
the wildcard has a different meaning here than in
Section 3.2.4, where it denotes an output node, while
output node names are underlined in extended TPs.
Finally, the order restriction denoted by a < in a box
means that children of node book are ordered, i.e.,
title must come before the ∗ node.

Fig. 9. Sample extended tree pattern

3.3 Discussion

In this section, we discuss and compare the TPs
surveyed in Sections 3.1 and 3.2. For this sake, we
introduce four comparison criteria.

• Matching power: Matching encompasses two di-
mensions. Structural matching guarantees that
only subtrees of the input data tree that map the
TP are output. Matching by value is verifying
formula F . We mean by matching power all the
matching options (edge annotations, logical op-
erator nodes, formula extensions...) beyond these
basics. Improving matching power helps filter
data more precisely.

• Node reordering capability: Order is important in
XML querying, thus modern TPs should be able
to alter it [13]. We mean by node reordering
capability the ability of a TP to modify output
node order when matching against any data tree.

Note that node reordering could be classified
as a matching capability, but the importance of
ordering witness trees leads us to consider it
separately.

• Expressiveness: Expressiveness states how a logical
TP, i.e., a TP under its schematic form, translates
into the corresponding physical implementation.
The physical form of a TP may be either ex-
pressed with an XML query language (XQuery,
generally), or an implementation within an XML
database offering query possibilities. Using a TP
for other purposes but querying, e.g., in opti-
mization algorithms, is not accounted toward
expressiveness. Note that a TP that cannot be
expressed in physical form is usually considered
useless.

• Supported optimizations: TPs are an essential ele-
ment of XML querying [16], [37]. Hence, many
optimization approaches translate XML queries
into TPs, optimize them, and then translate them
back into optimized queries. Optimizing a TP
increases its matching power. This criterion ref-
erences the different kinds of optimizations sup-
ported by a given TP.

TP comparison with respect to matching power,
node reordering capability, expressiveness and sup-
ported optimizations follows (Sections 3.3.1, 3.3.2,
3.3.3 and 3.3.4, respectively), and is synthesized in
Section 3.3.5.

3.3.1 Matching power
The most basic TP is TAX’s [8]. Thus, matching a TAX
TP against a data tree collection is very simple: it is
only based on tree structure and node values specified
in formula F . If F is absent, a TAX TP matches all
possible subtrees from the input data tree.

Associating a mandatory/optional status to GTP
edges [21] increases the number of matched subtrees
in output. Only one absent edge in a TAX TP with
respect to a subtree containing all the other edges
in this TP prevents matching, while the candidate
subtree is “almost perfect”. If this edge is labeled
as optional in a GTP, matching becomes successful.
Even more flexibility is achieved by logical operator
nodes [34], which allow powerful matching options,
especially when logical operators are combined.

With APTs, matching precision is further improved
through edge annotations [31]. Annotations in APTs
force the matching process to extract data according
to their nature. For example, a classical TAX TP such
as the one from Figure 2(b), extracting books by titles
and authors, does not allow controlling the number of
authors. APTs help select only books with, e.g., more
than one author, as in the example from Figure 4.
Unfortunately, annotations only allow two maximum
cardinalities: one or several. DBTwigs [33] comple-
ment APTs in this respect, by allowing to choose the
exact number of nodes to be matched. Node degree

TKDE, VOL. X, NO. X, SEPTEMBER 2011 7

(number of children) [35] or the negation function of
extended TPs [36] can also be exploited for this sake.

Finally, up to now, we focused on TP structure
because few differences exist in formulas. Graphi-
cally, twig patterns associate constraints with nodes
directly in the schema [33] while in the TAX TP and
its derivatives, they appear in formula F , but this
is purely cosmetic. Only TCs, VBCs and NICs help
further structure formula F [22].

3.3.2 Node reordering capability
Despite many studies model XML documents as un-
ordered data trees, order is essential to XML query-
ing [13]. In XQuery, users can (re)order output nodes
simply through the Order by clause inherited from
SQL [15]. Hence, modern TPs should include ordering
features [16], [37].

However, among TAX TP derivatives, only ordered
APTs and extended TPs feature reordering features. In
G-QTPs, preorders associated with ordered TP nodes
help determine output order [32]. Unfortunately, or-
der is disregarded in all other TP proposals.

3.3.3 Expressiveness
TAX TPs and their derivatives (GTPs and APTs) do
not translate into an XML query language, but they
are implemented, through the TLC physical algebra
[31], in the TIMBER XML database management sys-
tem [38]. TIMBER permits to store XML in native
format and offers a query interface supporting both
classical XQuery fragments and TAX operators. Note
that TAX operators include a Group by construct that
has no equivalent in XQuery.

Translating TAX TPs for XML querying follows nine
steps:

1) identify all TP elements in the FOR clause;
2) push formula F ’s predicates into the WHERE

clause;
3) eliminate duplicates with the help of the

DISTINCT keyword;
4) evaluate aggregate expressions in LET clauses;
5) indicate tree variables to be joined (join condi-

tions) via the WHERE clause;
6) enforce any remaining constraint in the WHERE

clause;
7) evaluate RETURN aggregates;
8) order output nodes with the help of the ORDER

BY clause;
9) project on the elements indicated in the RETURN

clause.

Similarly, Lakshmanan et al. test the satisfiability of
TPs translated from XPath expressions and XQueries,
and then express them back in XQuery and evaluate
them within the XQEngine XQuery engine [39]. The
other TPs we survey are used in various algorithms
(containment and equivalence testing, TP rewriting,
frequent TP mining...). Hence, their expressiveness is
not assessed.

3.3.4 Supported optimizations

Approaches purposely proposing TPs (i.e., algebraic
approaches) are much fewer than approaches using
TPs to optimize XML querying. Moreover, even alge-
braic approaches such as TAX do address optimiza-
tion issues. Since XML queries are easy to model with
TPs, researchers casually translate any XML query in
TPs, which are then optimized and implemented in
algorithms, XML queries or any other optimization
framework.

Hence, the biggest interest of the TP community
lies in enriching and optimizing matching. Matching
opportunities offered by TAX TPs, optional edges of
GTPs, annotations, ordering specification and dupli-
cate elimination of APTs, and extended TPs aim to
achieve more results and/or better precision. GTP and
APT matching characteristics prove their efficiency in
TIMBER [38].

Finally, satisfiability is an issue related to contain-
ment, a concept used in minimization approaches.
Satisfiability means that there exists a database, con-
sistent with the schema if one is available, on which
the user query, represented by a TP, has a non-empty
answer [22], [40], [41], [42].

3.3.5 Synthesis

We recapitulate in Table 1 the characteristics of all TPs
surveyed in this paper with respect to our comparison
criteria.

In summary, matching options in TPs are numerous
and it would probably not be easy to set up a metric
to rank them. The best choice, then, seems to select a
TP variant that is adapted to the user’s or designer’s
needs. However, designing a TP that pulls together
most of the options we survey is certainly desirable
to maximize matching power.

With respect to output node ordering, we con-
sider the ord order parameter introduced in APTs
the simplest and most efficient approach. A list of
ordered elements can indeed be associated with any
TP, whatever the nature of the input data tree (ordered
or unordered). However, it would be interesting to
generalize the ord specification to other, possibly more
complex, operators beside Select and Join, the two
only operators benefiting from ordering in APTs.

Expressiveness is a complex issue. Translating XML
queries into TPs is indeed easier than translating TPs
back into an XML query plan. XQuery, although the
standard XML query language, suffers from limita-
tions such as the lack of a Group by construct. Thus,
it is more efficient to implement TPs and exploit them
to enrich XML querying in an ad-hoc environment
such as TIMBER’s. We think that the richer the pat-
tern, with matching options, ordering specifications,
possibility to associate with many operators (and
other options if possible), the more efficient querying
is, in terms of user need satisfaction.

TKDE, VOL. X, NO. X, SEPTEMBER 2011 8

TABLE 1
Synthesis of tree pattern characteristics

TP Matching features Reordering Expressiveness Supported optimizations

TAX TP [8] Basic No TIMBER Matching

GTP [21] Mandatory/optional edges No TIMBER Matching

APT [31] Edge cardinality No TIMBER Matching

Ordered APT [13] Order specification Yes TIMBER Matching

G-QPT [32] Set of TPs Yes N/A Unspecified

Twig pattern [33] Graph structure No N/A XML graph querying

DBTwig [33] Filtering + Ranking No N/A XML graph querying

+ Matching cardinality

Izadi Logical operator nodes No N/A Matching

et al.’s TP [34] + Potential target node

Miklau and Node degree No N/A Containment and

Suciu’s TP [35] + Output node equivalence testing

Lakshmanan Tag constraints

et al.’s TP [22] + Value-based constraints No XQuery Satisfiability testing

+ Node identity constraints

Extended TP Negation function Yes N/A Matching

[36] + Wildcards

Finally, minimization, relaxation, containment,
equivalence and satisfiability issues lead the TP
community to optimize these tasks. However, most
TPs used in this context are basic, unlike TPs targeted
at matching optimization, which allows optimizing
XML queries wherein are translated optimized TPs.
In short, the best-optimized TP must be minimal,
satisfiable, and offer as many matching options as
possible.

4 TREE PATTERN MATCHING OPTIMIZATION

THE aim of TPs is not only to provide a graphi-
cal representation of queries over tree-structured

data, but also and primarily, to allow matching
queries against data trees. Hence, properly optimiz-
ing matching is primordial to achieve good query
response time.

In this section, we present the two main families
of approaches for optimizing matching, namely mini-
mization methods (Section 4.1) and holistic matching
approaches (Section 4.2). We also survey a couple of
other specific approaches (Section 4.3), before globally
discussing and comparing all TP matching optimiza-
tion methods (Section 4.4).

4.1 Tree pattern minimization

The efficiency of TP matching depends a lot on the
size of the pattern [16], [20], [43], [44]. It is thus
essential to identify and eliminate redundant nodes
in the pattern and do so as efficiently as possible [16].
This process is called TP minimization.

All research related to TP minimization is based
on a pioneer paper by Amer-Yahia et al. [16], who
formulate the problem as follows: given a TP, find an

equivalent TP of the smallest size. Formally, given a
data tree t and a TP p of size (i.e., number of nodes)
n, let S = {pi} be the set of TPs of size ni contained
in p (pi ⊆ p and ni ≤ n ∀i). Minimizing p is finding a
TP pmin ∈ S of size nmin such that:

• pmin ≡ p when matched against t;
• nmin ≤ ni ∀i.

Moreover, a set C of integrity constraints (ICs) may
be integrated into the problem. There are two forms
of ICs:

1) each node of type A (e.g., book) must have a
child (respectively, descendant) of type B (e.g.,
author), denoted A→ B (respectively, A⇒ B);

2) each node of type A (e.g., book) must have a
descendant of type C (e.g., name), knowing that
C is a descendant of B (e.g, author), i.e., A⇒ C
knowing that B ⇒ C.

Since TP minimization relies on the concepts of
containment and equivalence, we first detail how
containment and equivalence are tested (Section 4.1.1).
Then, we review the approaches that address the
TP minimization problem without taking ICs into
account (Section 4.1.2), and the approaches that do
(Section 4.1.3).

4.1.1 Containment and equivalence testing
Let us first further formalize the definitions of con-
tainment and equivalence. Containment of two TPs
p1 and p2 is defined as a node mapping relationship
h : p1 → p2 such that [16], [35]:

• h preserves node type, i.e., ∀x ∈ p1, x and h(x)
must be of the same type. Moreover, if x is an
output node, h(x) must be an output node too;

• h preserves node relationships, i.e., if two nodes
(x, y) are linked through a PC (respectively, AD)

TKDE, VOL. X, NO. X, SEPTEMBER 2011 9

Fig. 10. Simple minimization example

relationship in p1, (f(x), f(y)) must also be linked
through a PC (respectively, AD) relationship in
p2.

Note that function h is very similar to function
f that matches a TP to a data tree (Section 2.1.7),
but here, h is a homomorphism between two TPs
[45]. Moreover, containment may be tested between
a TP fragment and this TP as a whole. h is then an
endomorphism.

Finally, equivalence between two TPs is simply con-
sidered as two-way containment [16], [20]. Formally,
let p1 and p2 be two TPs. p1 ≡ p2 if and only if p1 ⊆ p2
and p2 ⊆ p1.

Miklau and Suciu show that containment testing is
intractable in the general case [35]. They nonetheless
propose an efficient algorithm for significant particu-
lar cases, namely TPs with AD edges and an output
node. This algorithm is based on tree automata, the
objective being to reduce the TP containment problem
to that of regular tree languages. In summary, given
two TPs p1 and p2, to test whether p1 ⊆ p2:

• p1’s nodes and edges are matched to determin-
istic finite tree automaton A1’s states and transi-
tions, respectively;

• p2’s nodes and edges are matched to alternating
finite tree automaton A2’s states and transitions,
respectively;

• if lang(A1) ⊆ lang(A2), then p1 ⊆ p2, where
lang(Ai) is the language associated with automa-
ton Ai (i = {1, 2}).

Similar approaches further test TP containment
under Document Type Definition (DTD) constraints
[46], [47]. For instance, Wood exploits regular tree
grammars (RTGs) to achieve containment testing [47].
Let D be a DTD and G1 and G2 RTGs corresponding
to p1 and p2, respectively. Then p1 ⊆ p2 if and only if
(D ∩G1) ⊆ (D ∩G2).

4.1.2 Unconstrained minimization

The first TP minimization algorithm, Constraint In-
dependent Minimization (CIM) [16], eliminates re-
dundant nodes from TP p by exploiting the concept
of images. Let there be a node x ∈ p. Its list of
images, denoted images(x), is composed of nodes

from p that bear the same type as x, but are different
from x. For each leaf x ∈ p, CIM searches for nodes
of the same type as x in the set of descendants
of images(parent(x)), where parent(x) is x’s parent
node in p. If such nodes are found, x is redundant and
thus deleted from p. CIM then proceeds similarly, in
a bottom-up fashion, on parent(x), until all nodes in
p (except output nodes that must always be retained)
have been checked for redundancy.

For example, let us consider TP p from Figure 10.
Without regarding node order, let us check leaf node
$5 for redundancy. parent($5) = $4, images($4) =
{$2}, descendants($2) = {$3}, where descendants(x)
is the set of descendants of node x. $3 bears the same
type as $5 (author), thus $5 is deleted. Similarly, $4 is
then found redundant and deleted, outputting pmin

in Figure 10. Further testing $1, $2 and $3 does not
detect any new redundant node. Moreover, deleting
another node from pmin would break the equivalence
between p and pmin. Hence, pmin is indeed minimal.

All minimization algorithms subsequent to CIM
retain its principle while optimizing complexity. One
strategy is to replace images by more efficient relation-
ships, i.e., coverage [48], [49], also called simulation
[43]. Let p be the TP to minimize, and x, y ∈ p two of
its nodes. If y covers x (x6 y) [50]:

• the types of x and y must be identical;
• if x has a child (respectively descendant) node

x′, y must have a child (respectively descendant)
node y′ such that x′ 6 y′.

cov(x) denotes the set of nodes that cover x. cov(x) =
x if x is an output node. Then, the minimization
process tests node redundancy in a top-down fashion
as follows: ∀x ∈ p, ∀x′ ∈ children(x) (respectively
descendants(x)), if ∃x′′ ∈ children(x) (respectively
descendants(x)) such that x′′ ∈ cov(x′), then x′ and
the subtree rooted in x′ are deleted. children(x) (re-
spectively descendants(x)) is the set of direct children
(respectively, all descendants) of node x.

Another strategy is to simply prune subtrees re-
cursively [51]. The subtree rooted at node x, denoted
subtree(x), is minimized in two steps:

1) ∀x′, x′′ ∈ children(x), if subtree(x′) ⊆
subtree(x′′) then delete subtree(x′);

TKDE, VOL. X, NO. X, SEPTEMBER 2011 10

2) ∀x′ ∈ children(x) (remaining children of x),
minimize subtree(x′).

A variant proceeds similarly, by first searching in a
TP p for any subtree pi redundant with sp, where sp
is p stripped of its root [20]. Formally, the algorithm
tests whether p − spi ⊆ pi. Redundant subtrees are
removed. Then, the algorithm is recursively executed
on unpruned subtrees spi.

4.1.3 Minimization under integrity constraints

Taking ICs into account in the minimization process
is casually achieved as follows.

1) Augment the TP to minimize with nodes
and edges that represent ICs. This is casually
achieved with the classical chase technique [52].
For instance, if we had a book → author IC
(nodes of type “book” must have a child of
type “author”), we would add one child node
of type author to each of the nodes $2 and $4
from Figure 10. Note that augmentation must
only apply to nodes from the original TP, and
not to nodes previously added by the chase.

2) Run any TP minimization algorithm, without
testing utilitarian nodes introduced in step #1
for redundancy, so that ICs hold.

3) Delete utilitarian nodes introduced in step #1.

This process has been applied onto the CIM algo-
rithm, to produce ACIM (Augmented CIM) [16], as
well as on its coverage-based variants [43], [48], [53].
Since the size of an augmented TP can be much larger
than that of the original TP, an algorithm called Con-
straint Dependant Minimization (CDM) also helps
identify and prune all TP nodes that are redundant
under ICs [16]. CDM actually acts as a filter before
ACIM is applied. CDM considers a TP leaf x′ of type
T ′ redundant and removes it if one of the following
conditions holds.

• parent(x′) = x (respectively ancestor(x′) = x) of
type T and there exists an IC T → T ′ (respectively
T ⇒ T ′).

• parent(x′) = x (respectively ancestor(x′) = x)
of type T , ∃x′′/parent(x′′) = x (respectively
ancestor(x′′) = x) of type T ′′, and there exists
an IC T ′ = T ′′ (respectively, there exists one of
the ICs T ′′ ⇒ T ′ or T ′ = T ′′).

An alternative simulation-based minimization algo-
rithm also includes a similar prefilter, along with an
augmentation phase that adds to the nodes of cov(x)
their ancestors instead of using the chase [43].

Finally, the scope of ICs has recently been extended
to include not only forward and subtype (FT) con-
straints (as defined in Section 4.1), but also backward
and sibling (BS) constraints [44]:

• each node of type A (e.g., author) must have
a parent (respectively, ancestor) of type B (e.g.,
book), i.e., A← B (respectively, A⇐ B);

• each node of type A (e.g., book) that has a child
of type B (e.g., editor) must also have a child of
type C (e.g, address), i.e., if A→ B then A→ C.

Under FBST constraints, several minimal TPs can be
achieved (vs. one only under FT constraints), which
allows further optimizations of the chase augmenta-
tion and simulation-based minimization processes.

4.2 Holistic tree pattern matching

While TP minimization approaches (Section 4.1)
wholly focus on the TP side of the matching process,
holistic matching (also called holistic twig join [19])
algorithms mainly operate on minimizing access to
the input data tree when performing actual match-
ing operations. The initial binary join-based approach
for matching proposed by Al-Khalifa et al. [54] in-
deed produces large intermediate results. Holistic ap-
proaches casually optimize TP matching in two steps
[55]:

1) labeling: assign to each node x in the data tree t
an integer label label(x) that captures the struc-
ture of t (Section 4.2.1);

2) computing: exploit labels to match a twig pat-
tern p against t without traversing t again (Sec-
tion 4.2.2).

Moreover, recent proposals aim at reducing data tree
size by exploiting structural summaries in combina-
tion to labeling schemes. We review them in Sec-
tion 4.2.3.

Let us finally highlight that, given the tremendous
number of holistic matching algorithms proposed in
the literature, it is quite impossible to review them all.
Hence, we aim in the following sections at presenting
the most influential. The interested reader may further
refer to Grimsmo and Bjørklund’s survey [19], which
uniquely focuses on and introduces a nice history of
holistic approaches.

4.2.1 Labeling phase
The aim of data tree labeling schemes is to determine
the relationship (i.e., PC or AD) between two nodes
of a tree from their labels alone [55]. Many labeling
schemes have been proposed in the literature. We
particularly focus in this section on the region encod-
ing (or containment) and the Dewey ID (or prefix)
labeling schemes that are used in holistic approaches.
However, other approaches do exist, based on a tree-
traversal order [56], prime numbers [57] or a combi-
nation of structural index and inverted lists [58], for
instance.

The region encoding scheme [59] labels each node x
in a data tree t with a 3-tuple (start, end, level), where
start (respectively, end) is a counter from the root of
t until the start (respectively, the end) of x (in depth
first), and level is the depth of x in t. For example, the
data tree from Figure 2(a) is labeled in Figure 11, with
the region encoding scheme label indicated between

TKDE, VOL. X, NO. X, SEPTEMBER 2011 11

Fig. 11. Sample data tree labeling

parentheses. In Figure 11, node x(title = “Maktub”)
is labeled (3, 4, 3). start = 3 because x is the first child
of the node with start = 2; end = 4 because x has no
children (thus end = start+ 1); and level = 3 (level 1
being the root’s).

Now, let x and x′ be two nodes labeled (S,E, L)
and (S′, E′, L′), respectively. Then:

• x′ is a descendant of x if and only if S < S′ and
E′ < E;

• x′ is a child of x if and only if S < S′, E′ < E
and L′ = L+ 1.

For example, in Figure 11, node (author = “Jack”)
labeled (18, 19, 4) is a descendant from the node book
labeled (12, 25, 2) and a child of node authors labeled
(15, 20, 3).

The Dewey ID scheme [60] labels tree nodes as a
sequence. The root node is labeled ǫ (empty). Its chil-
dren are labeled 0, 1, 2, etc. Then, at any subsequent
level, the children of node x are labeled label(x).0,
label(x).1, label(x).2, etc. More formally, for each non-
root element x′, label(x′) = label(x).i, where x′ is the
ith child of x. Thus, each label embeds all ancestors
of the associated node. For example, in Figure 11,
the Dewey ID label is featured on the right hand
side of the “/”, for each node. Node (author =
“Jack”), labeled 1.1.1, is the second child of the node
labeled 1.1 (i.e., authors), and a descendant of the
node labeled 1 (i.e., the right hand side book).

The Dewey ID scheme has been extended to incor-
porate node names [61], by exploiting schema infor-
mation available in a DTD or XML schema. Encoding
node names along a path into a Dewey label provides
not only the labels of the ancestors of a given node,
but also their names. Moreover, the Dewey ID scheme
suffers from a high relabeling cost for dynamic XML
documents where nodes can be arbitrarily inserted
and deleted. Thus, variant schemes, namely ORD-
PATH [62] and Dynamic DEwey (DDE) [63], have
been devised to dynamically extend the domain of
label component values, so that no global relabeling
is required.

The main difference between the region encoding
and Dewey ID labeling schemes lies in the way struc-
tural relationships can be inferred from a label. While
region encoding necessitates two nodes to determine
whether they are related by a PC or AD relationship,
Dewey IDs directly relate to ancestors and thus only
require to know the current node’s label. A Dewey
ID-labeled data tree is also easier to update than a
region encoded data tree [64].

4.2.2 Computing phase
Various holistic algorithms actually achieve TP match-
ing, but they all exploit a data list that, for each node,
contains all labels of nodes of the same type. In this
section, we first review the approaches based on the
region encoding scheme, which were first proposed,
and then the approaches based on the Dewey ID
scheme.

As their successors, the first popular holistic match-
ing algorithms, PathStack and TwigStack, proceed in
two steps [59]: intermediate path solutions are out-
put to match each query root-to-leaf path, and then
merged to obtain the final result. For example, let
us consider the TP represented on the left hand side
of Figure 12, to be matched against the data tree
from Figure 11. Intermediate path solutions follow,
expressed as labels.

• book/title: (2, 11, 2) (3, 4, 3), (12, 25, 2) (13, 14, 3)
• book/editor: (2, 11, 2) (7, 8, 3), (12, 25, 2) (21, 22,

3)

Fig. 12. Sample holistic matching

After merging these intermediate paths, we obtain
the label paths below, which correspond to the witness
trees represented on the right hand side of Figure 12.

TKDE, VOL. X, NO. X, SEPTEMBER 2011 12

• (2, 11, 2) (3, 4, 3) (7, 8, 3)
• (12, 25, 2) (13, 14, 3) (21, 22, 3)

One issue with TwigStack is that it only considers
AD relationships in the TP and does not consider
level information. Hence, it may output many useless
intermediate results for queries with PC relationships.
Moreover, it cannot process queries with order pred-
icates.

On one hand, in order to reduce the search space,
path summaries that exploit schema information may
be used [65]. If a pattern subtree matches a data
tree several times, TwigStack loads streams for all
distinct paths, whether these streams contribute to
the output or not. Path summaries help distinguish
whether the occurrences of each pattern subtree are
output elements or not. Those that do not are pruned.

On the other hand, TwigStackList better controls
the size of intermediate results by buffering parent
elements in PC relationships in a main-memory list
structure [66]. Thus, only AD relationships in branch-
ing edges1 are handled by TwigStackList, and not
in all edges as with TwigStack. OrderedTJ builds
upon TwigStackList by handling order specifications
in TPs [67]. OrderedTJ additionally checks the order
conditions of nodes before outputting intermediate
paths, with the help of a stack data structure.

Since TwigStack and OrderedTJ partition data to
streams according to their names alone, two new data
streaming techniques are introduced in iTwigJoin [68]:
the tag+level and prefix path schemes. In the Or-
deredTJ algorithm, only AD relationships in branch-
ing edges are taken into account. The tag+level
scheme also takes PC relationships in all edges into
account. The prefix path scheme further takes 1-
branching into account.

An eventual enhancement has been brought by
Twig2Stack, which optimizes TwigStack by fur-
ther reducing the size of intermediate results [69].
Twig2Stack associates each query node x with a hi-
erarchical stack. A node x′ is pushed into hierarchi-
cal stack HS[x] if and only if x′ satisfies the sub-
twig query rooted at x. Matching can be determined
when an entire sub-tree of x′ is seen with respect to
post-order data tree traversal. Baca et al. also fuse
TwigStack and Twig2Stack along the same line, still
to reduce the size of intermediate results [70].

Simply replacing the region encoding labeling
scheme by the Dewey ID scheme would not particu-
larly improve holistic matching approaches, since they
would also need to read labels for all tree nodes. How-
ever, exploiting the extended Dewey labeling scheme
allows further improvements.

TJFast constructs, for each node x in the TP, an
input stream Tx [61]. Tx contains the ordered ex-
tended Dewey labels of nodes of the same type as x.

1. A branching node is a node whose number of children is greater
than one. All edges originating from a branching node are called
branching edges [66].

As TwigStackList, TJFast assigns, for each branching
node b, a set of nodes Sb that are potentially query an-
swers. But with TJFast, the size Sb is always bounded
by the depth of the data tree. TJFast+L further extends
TJFast by including the tag+level streaming scheme
[64].

Eventually, Lu et al. have recently identified a key
issue in holistic algorithms, called matching cross
[36]. If a matching cross is encountered, a holistic
algorithm either outputs useless intermediate results
and becomes suboptimal, or misses useful results and
looses its matching power. Based on this observation,
the authors designed a set of algorithms, collectively
called TreeMatch, which use a concise encoding to
present matching results, thus reducing useless inter-
mediate results. TreeMatch has been proved optimal
for several classes of queries based on extended TPs
(Section 3.2.6).

4.2.3 Structural summary-based approaches
These approaches aim at avoiding repeated access
to the input data tree. Thus, they exploit structural
summaries similar to the DataGuide proposed for
semi-structured documents [71]. A DataGuide’s struc-
ture describes using one single label all the nodes
whose labels (types) are identical. Its definition is
based on targeted path sets, i.e., sets of nodes that
are reached by traversing a given path. For example,
the DataGuide corresponding to the data tree from
Figure 2(a) is represented in Figure 13.

Fig. 13. Sample DataGuide

While a DataGuide can efficiently answer queries
with PC edges (by matching the query path against
the label path directly), it cannot process queries
with AD edges nor twig queries, because it does not
preserve hierarchical relationships [72]. Combining a
DataGuide with a labeling scheme that captures AD
relationships allows the reconstruction, for any node x
in a data tree t, of the specific path instance x belongs
to. Thus, in the computing phase, node labels can be
compared without accessing labels related to inner TP
nodes [34].

For instance, TwigX-Guide combines a DataGuide
to the region encoding labeling scheme [72]. Version
Tree is an annotated DataGuide in which labels in-
clude a version number for nodes of the same type

TKDE, VOL. X, NO. X, SEPTEMBER 2011 13

(e.g., all book nodes) [73]. Combined to the Dewey
ID labeling scheme, it supports a matching algo-
rithm called TwigVersion. Finally, QueryGuide labels
DataGuide nodes with Dewey ID lists and is part of
the S3 matching method [34]. All three approaches
have been experimentally shown to perform match-
ing faster than previous holistic algorithm such as
TwigStack and TJFast.

4.3 Other pattern tree matching approaches

We present in this section matching approaches of
interest that do not fall into the minimization and
holistic families of methods, namely tree homeomor-
phism matching (Section 4.3.1) and TP relaxation (Sec-
tion 4.3.2).

4.3.1 Tree homeomorphism matching

The tree homeomorphism matching problem is a
particular case of the TP matching problem. More
precisely, the considered TPs only bear descendant
edges. Formally, given a TP p and a data tree t,
tree homeomorphism matching aims at determining
whether there is a mapping θ from the nodes of p to
the nodes t such that if node x′ is a child of x in p,
then θ(x′) is a descendant of θ(x) in t.

Götz et al. propose a series of algorithms that aim
at reducing the time and space complexity of previ-
ous homeomorphism matching algorithms [74]. Their
whole work is based on a simple matching procedure
called MATCH. Let x be a node of TP p and y a node of
data tree t. MATCH tests whether the subtree rooted
at x, subtree(x), matches subtree(y). If y matches x,
children of x are recursively tested to match any child
of y. If y does not match x, then x is recursively tested
to match any child of y. MATCH uses the recursion
stack to determine which function call to issue next
or which final value to return, e.g., to determine the
data node y onto which x’s parent was matched in
t before proceeding with x’s siblings. In opposition,
L-MATCH recomputes the information necessary to
make the decision with a backtracking function.

MATCH and L-MATCH are space-efficient top-down
algorithms, but involve a lot of recomputing and thus
bear a high time complexity. Thus, Götz et al. also in-
troduce a bottom-up strategy. It is based on algorithm
TMATCH that addresses the tree homeomorphism
problem. TMATCH exploits a left-to-right post-order
ordering <post on nodes, and returns the largest (w.r.t.
<post) TP node x in an interval [xfrom, xuntil] (still
w.r.t. <post) such that subtree(y) matches [xfrom, x]
if x exists; and xfrom − 1 (the predecessor of xfrom

w.r.t. <post) otherwise. Finally, TMATCH-ALL gener-
alizes TMATCH to address the tree homeomorphism
matching problem, i.e., TMATCH-ALL computes all
possible exact matches of p against t.

4.3.2 Tree pattern relaxation
TP relaxation is not an optimization of the matching
process per se, but an optimization of its result with
respect to user expectations. TP relaxation indeed
allows approximate TP matching and returns ranked
answers in the spirit of Information Retrieval [37].
Four TP relaxations are proposed, the first two relat-
ing to structure and the last two to content.

1) Edge generalization permits a PC edge in the TP
to be generalized to an AD edge. For example, in
Figure 14, the book/title edge can be generalized
to allow books with any descendant title node
to appear in the witness tree.

2) Subtree promotion permits to connect a whole
subtree to its grandparent by an AD edge. For
example, in Figure 14, the address node can
be promoted to allow book nodes that have a
descendant address node to be output even if
the address node is not a descendant of the
editor node.

3) Leaf node deletion permits a leaf node to be
deleted. For example, in Figure 14, the summary
node can be deleted, allowing for books to ap-
pear in the witness tree whether they bear a
summary or not.

4) Node generalization permits to generalize the type
of a query node to a supertype. For example, in
Figure 14, the node book could be generalized to
node doc (document) from Figure 2(a).

Answer ranking is achieved by computing a score.
To this aim, the weighted TP is introduced, where
each node and edge is associated with an exact weight
ew and a relaxed weight rw such that ew ≥ rw.
Figure 14 features a sample weighted TP. In this
example, the score of exact matches of the weighted
TP is equal to the sum of the exact weight of its nodes
and edges, i.e., 41. If the node book was generalized
to doc, the score of an approximate answer that is a
document is the sum of rw(book) and the exact weight
of the other nodes and edges, i.e., 35.

Fig. 14. Sample weighted tree pattern

4.4 Discussion

In this section, we discuss and compare the TP
matching optimization approaches surveyed in Sec-
tions 4.1, 4.2 and 4.3; except TP relaxation, whose goal

TKDE, VOL. X, NO. X, SEPTEMBER 2011 14

is quite different (i.e., augmenting user satisfaction
rather than matching efficiency). Choosing objective
comparison criteria is pretty straightforward for algo-
rithms. Time and space complexity immediately come to
mind, though they are diversely documented in the
papers we survey.

We could also retain algorithm correctness as a com-
parison criterion, although proofs are quite systemat-
ically provided by authors of matching optimization
approaches. Thus, we only notice here that none of
the minimization algorithms reviewed in Section 4.1
actually test the equivalence of minimal TP pmin

to original TP p. More precisely, containment (i.e.,
pmin ⊆ p) is checked a posteriori, but the minimization
process being assumed correct, equivalence is not
double-checked.

Algorithm comparison with respect to complexity
follows (Sections 4.4.1 and 4.4.2), and is synthesized in
Section 4.4.3, where we also further discuss the com-
plementarity between TP minimization and holistic
approaches.

4.4.1 Time complexity

Time complexity is quite well documented for min-
imization approaches. Except the first, naive match-
ing algorithms [16], all optimized minimization algo-
rithms, whether they take ICs into account or not,
have a worst-case time complexity of O(n2), where
n is the size (number of nodes) of the TP. A notable
exception is Chen and Chan’s extension of ICs to
FSBT constraints [44] that makes the matching prob-
lem more complex. Thus, their algorithms range in
complexity, with respect to the combination of ICs
that are processed, from O(n2) (F and FS ICs) to
O(n3 · s+n2 · s2) (FSBT ICs), where s is the size of the
set of element types in ICs.

On the other hand, in papers about holistic ap-
proaches, complexity is often disregarded in favor of
the class of TP a given algorithm is optimal for. The
class of TP may be [75]:

• AD: a TP containing only AD edges, which may
begin with a PC edge;

• PC: a TP containing only PC edges, which may
begin with an AD edge;

• one-branching node TP: a TP containing at most
one branching node;

• AD in branches TP: a TP containing only AD edges
after the first branching node;

• PC before AD TP: a TP where an AD edge is never
found before a PC edge.

Holistic approaches indeed all have the same worst-
case time complexity. It is linear in the sum of all
sizes of the input lists they process and the output list.
However, since these approaches match twigs, they
enumerate all root-to-leaf path matches. Thus, their
complexity is actually exponential in n, i.e., it is O(dn),
where d is the size (number of nodes) of the input data

tree [69]. Only Twig2Stack has a lower complexity,
in O(d · b), where b = max(b1, b2) with b1 being the
maximum number of query nodes with the same label
and b2 the maximum total number of children of
query nodes with the same labels (b ≤ n) [69]; as well
as TreeMatch [36], which has been experimentally
shown to outperform Twig2Stack.

Structural summary-based approaches
(Section 4.2.3) have been experimentally shown
to perform matching faster than previous holistic
algorithms such as TwigStack and TJFast. However,
they have neither been compared to one another,
nor to TreeMatch. Moreover, their time complexity
is expressed in terms of DataGuide degree and
specific features such as the number of versions
in TwigVersion [73], so it is not easy to directly
compare it to other holistic algorithms’. For instance,
TwigVersion has a worst case time complexity of
O(lv · nv + lp · e), where lv is the depth of version tree
(annotated DataGuide) v, nv is the total number of
versions on nodes of v whose tags appear in the leaf
nodes of TP p, lp the depth of TP p, and e is the size
of the edge set containing all edges that are on paths
from nodes of v whose tags appear in the leaf nodes
of p to the root node of v [73].

Finally, the complexity of tree homeomorphism
matching is proved to be O(n · d · lp) [74].

4.4.2 Space complexity
Space complexity is intensively addressed in the lit-
erature regarding holistic approaches, which can pro-
duce many intermediate results whose volume must
be minimized, so that algorithms can run in memory
with as low response time as possible. On the other
hand, space complexity is not considered an issue in
minimization processes, which prune nodes in PTs
that are presumably small enough to fit into any main
memory.

Regarding holistic approaches, the worst-case space
complexity of TwigStack is min(n · lt, s) [59], where n
is defined as in Section 4.4.1, lt is the depth of data tree
t and s is the sum of sizes of the n input lists in the
computing phase (Section 4.2.2). Subsequent holistic
algorithms are more time-efficient than Twigstack be-
cause they are more space-efficient. TwigStackList and
iTwigJoin both have a worst-case space complexity of
O(n·lt) [66], [68]. Noticeably, Twig2Stack’s space com-
plexity is indeed the same as its time complexity, i.e.,
O(d · b) (Section 4.4.1). Finally, TJFast and TreeMatch
have a worst-case space complexity of O(l2t ·bf+ lt ·f),
where bf is the maximal branching factor of the input
data tree and f the number of leaf nodes in the TP
[36], [61].

Structural summary approaches’ space complexity,
as is the case for time complexity, are difficult to
compare because of their specifics. For example, the
worst case space complexity of TwigVersion is O(lv ·
nv), where lv and nv are defined as in Section 4.4.1

TKDE, VOL. X, NO. X, SEPTEMBER 2011 15

TABLE 2
Synthesis of tree pattern matching approaches

Algorithm TP used Time complexity Space complexity Features

CIM [16] With output node O(n4) N/A Prunes nodes

Coverage [49] With output node O(n2) N/A Prune subtrees

Simulation [43]

Recursive pruning [51] Unspecified O(n2) N/A Prune subtrees

[20] Limited branched TP

ACIM [16] With output node O(n6) N/A FS ICs

CDM [16] With output node O(n2) N/A FS ICs

Chase + coverage [49] With output node O(n2) N/A FS ICs

Chase + simulation [43]

FSBT [44] With output node From O(n2) to N/A FSBT ICs

O(n3
· s+ n2

· s2)

TwigStack [59] Twig pattern O(dn) min(n · lt, s) Region enc.

TwigStackList [66] Twig pattern O(dn) O(n · lt) Region enc.

OrderedTJ [67] Ordered twig

iTwigJoin [68] Twig pattern Tag+level, Prefix

Twig2Stack [69] GTP O(d · b) O(d · b) Region enc.

TJFast [61] Twig pattern O(dn) O(l2t · bf + lt · f) Dewey ID

TreeMatch [36] Extended TP O(d · b) O(l2t · bf + lt · f) Dewey ID

TwigX-Guide [72] Twig pattern Unspecified Unspecified DataGuide +

Region enc.

S3 [34] TP with Unspecified Unspecified DataGuide +

logical operators Dewey ID

TwigVersion [73] Twig with O(lv · nv + lp · e) O(lv · nv) DataGuide +

node predicates Dewey+Version

Tree homeomorphism [74] Unranked TP O(n · d · lp) O(lt · log(bf)) Left-to-right

post-order

[73]. Eventually, tree homeomorphism matching algo-
rithms have a space complexity of O(lt · log(bf)) [74].

4.4.3 Synthesis

Table 2 recapitulates the characteristics of all matching
optimization algorithms surveyed in this paper. In ad-
dition to the complexity comparison criteria discussed
above, we also indicate in Table 2 the type of TP
handled by each algorithm, in reference to Section 3,
as well as each algorithm’s distinctive features. The
first third of Table 2 is dedicated to minimization
approaches, the second to holistic approaches, and the
third to tree homeomorphism matching.

In the light of this synthesis, we can notice again
that TP minimization and holistic approaches have
developed along separate roads. Papers related to
one approach seldom refer to the other. Indeed, these
two families of approaches cannot be compared, e.g.,
in terms of raw complexity, since TP minimization
operates on TPs only, while holistic approaches op-
timize the actual matching of a TP against a data
tree. TP minimization is actually implicitly consid-
ered as preprocessing TPs before matching [76]. We
nonetheless find it surprising that nobody has ever
combined TP minimization to holistic matching in a

single framework to benefit from optimization of both
data tree access and TP size.

Eventually, Table 2 clearly outlines the history and
outcome of the families of algorithms we survey. With
respect to PT minimization algorithms, unless elabo-
rated ICs (i.e., FSBT ICs) are needed, the choice should
clearly fall on an approach whose time complexity is
O(n2), such as the coverage-based approaches [43],
[49]. With respect to holistic matching, the raw effi-
ciency of algorithms is not always easy to compare,
especially between the latest descendants of Twigstack
and structural summary-based approaches such as
TwigVersion [73] or S3 [34], for both complexity and
experimental studies remain partial as of today. The
types of TPs (Section 4.4.1) for which an approach is
optimal thus remains a primary criterion. However,
we agree with Grimsmo and Bjørklund in stating
that a global holistic approach, i.e., an approach that
encompasses all kinds of TPs, is most desirable [19].
In this respect, TreeMatch [36] appears as the most
comprehensive solution as of today.

5 TREE PATTERN USAGES

B ESIDE expressing and optimizing queries over
tree-structured documents, TPs have also been

TKDE, VOL. X, NO. X, SEPTEMBER 2011 16

Fig. 15. Sample tree pattern collection and rooted subtree

exploited for various purposes ranging from system
optimization (e.g., query caching [77], [78], addressing
and routing over a peer-to-peer network [79]) to high-
level database operations (e.g., schema construction
[80], active XML query satisfiability and relevance
[81], [82]) and knowledge discovery (e.g., discovering
user communities [83]).

In this section, we investigate the most prominent of
TP usages we found in the literature, which we clas-
sify by the means used to achieve the goals we have
listed above (e.g., routing and query satisfiability), i.e.,
TP mining (Section 5.1), TP rewriting (Section 5.2) and
extensions to matching (Section 5.3).

5.1 Tree pattern mining

TP mining actually summarizes into discovering fre-
quent subtrees in a collection of TPs. It is used, for
instance, to cache the results of frequent patterns,
which significantly improves query response time
[77], produce data warehouse schemas of integrated
XML documents from historical user queries [80], or
help in website management by mining data streams
[84].

5.1.1 Problem formulation

Let C = {p1, p2, ..., pn} be a collection of n TPs and
minsup ∈]0, 1] a number called minimum support.
The support of any rooted subtree (denoted RST) r
is sup(r) = freq(r)/n, where freq(r) is the total
occurrence of r in C. Then, the problem of mining
frequent RSTs from C may be defined as finding
the set F = {r1, r2, ..., rm} of m RSTs such that
∀i ∈ [1,m], sup(ri) ≥ minsup [77].

For example, let us consider TP collection C and
RST r from Figure 15. Since r ⊆ p1 and r ⊆ p2,
freq(r) = 2 and sup(r) = 2

3 . If minsup = 1
2 , then r

is considered frequent. Note that searching frequent
RSTs relies on testing containment (Section 4.1.1)
against TPs of C.

5.1.2 Frequent subtree mining algorithms

One of the first frequent RST mining algorithm, XQP-
Miner [85], operates like the famous frequent itemset

mining algorithm Apriori [86]. XQPMiner initializes
by enumerating all frequent 1-edge RSTs. Then, each
further step i is subdivided in two substeps:

1) candidate i-edge RSTs are built from (i−1)-edge
RSTs and filtered with respect to the minimum
support;

2) each remaining i-edge RST is tested for contain-
ment in each TP of C to compute its support.

FastXMiner optimizes this process by constructing a
global query pattern tree (G-QTP, Section 3.2.1) over
C. Then, a tree-encoding scheme is applied on the
G-QTP to partition candidate RSTs into equivalence
classes. The authors show that only single-branch can-
didate RSTs need to be matched against the TPs from
C, which leads to a large reduction in the number of
tree inclusion tests [77].

MineFreq further builds upon this principle by
mining frequent RST sets [80]. A frequent RST set
must satisfy two requirements:

1) support requirement: sup(r1, r2, ..., rn) ≥ minsup;

2) confidence requirement: ∀ri,
freq(r1,r2,...,rn)

freq(ri)
≥

minconf , where minconf is a minimum confi-
dence user-specified threshold.

The algorithm again proceeds by level, the n-itemset
RST candidates being generated by joining (n −
1)itemset frequent RSTs. Candidates in which one or
more (n − 1)-subsets are infrequent are pruned, for
they cannot be frequent. Remaining candidates are
then filtered with respect to support and confidence.
Finally, frequent TPs are built by joining all RSTs in
each frequent RST set.

Eventually, Stream Tree Miner (STMer) mines fre-
quent labeled ordered subtrees over a tree-structured
data stream [84]. Its main contribution lies in candi-
date subtree generation, which is suitably incremental.

5.2 Tree pattern rewriting

Query rewriting is casually used when views, whether
they are materialized or not, are defined over data.
Rewriting a query Q that runs against a database D
is formulating a query Q′ that runs against a view
V built from D such that Q and Q′ output the same

TKDE, VOL. X, NO. X, SEPTEMBER 2011 17

result. When data are tree-structured, views are prede-
fined TPs. Then, Q′ is found among so-called useful
embeddings (UEs) of Q in V ; the problem being to
prune redundant, useless UEs [78]. The heuristics that
address this issue [78], [87], [88] rely on containment
testing (Section 4.1.1) to output a minimal set of UEs.

Query rewriting is also notably used in Peer Data
Management Systems (PDMSs). In a PDMS, each peer
is associated with a schema that represents the peer’s
domain of interest, as well as semantic relationships to
neighboring peers. Thus, a query over one peer can
obtain relevant data from any reachable peer in the
PDMS. Semantic paths are traversed by reformulating
queries at a peer into queries on its neighbors, and
then to the neighbors’ neighbors, recursively. In the
Piazza PDMS [79], data is modeled in XML, peer
schemas in XML Schema, and queries in a subset
of XQuery. Thus, query reformulation optimization
strongly relates to TP matching optimization. For
instance, one query may follow multiple paths in a
PDMS, and thus may induce redundant reformula-
tions, i.e., redundant queries on the peers. Pruning
queries help reduce such redundancy. Pruning re-
quires checking query containment (Section 4.1.1) be-
tween a previously obtained reformulation and a new
one. The reformulating process may also introduce
redundant subexpressions in a query, leading to query
minimization (Section 4.1).

5.3 Extended matching

We review in this section two ways of “pushing”
matching further on. The first one relates to checking
the satisfiability of TPs against Active XML (AXML)
documents [81], [82]. AXML documents contain both
data defined in extension (as in XML documents) and
in intention, by means of Web service calls [89]. When
a Web service is invoked, its result is inserted into the
document. In this context, a priori checking whether
a query (TP) is satisfiable, i.e., whether there exists
any document the TP matches against, helps avoid
unnecessary query computations.

Although TP satisfiability is well studied [22], with
AXML documents, Web service calls may also return
data that contribute to query results, which makes
the problem even more complex. Here, some fact is
satisfiable for an AXML document and a query if it
can be in the query result in some future state [82].
As Miklau and Suciu did for containment testing
(Section 4.1.1), Ma et al. use tree automata to represent
both TPs and sets of AXML documents conforming
to a given schema. Then, the product tree automaton
helps decide whether a TP matches any document.
Abiteboul et al. further test the relevance of Web
service calls, i.e., whether the result can impact query
answer [82].

The other example of matching enhancement lies
in the context of building semantic communities, i.e.,

clusters of users with similar interests modeled as
TPs. Chand et al. propose to replace equivalence by
similarity in matching, which could more generally
be used to approximate XML queries [83], as TP
relaxation (Section 4.3.2). Chand et al. formulate the
TP similarity problem as follows. Let S be a set of
TPs, D a set of data trees, and p, q ∈ S. The similarity
of p and q is a function sim : S2 7→ [0, 1] such that
sim(p, q) is the probability that p matches the same
subset of data from D as q. Note that, depending on
the proximity metric, sim(p, q) may be different from
sim(q, p).

6 CONCLUSION

W E provide in this paper a comprehensive survey
about XML tree patterns, which are nowadays

considered crucial in XML querying and its optimiza-
tion. We first compare TPs from a structural point of
view, concluding that the richer a TP is with matching
possibilities, the larger the subset of XQuery/XPath it
encompasses, and thus the closer to user expectations
it is.

Secondly, acknowledging that TP querying, i.e.,
matching a TP against a data tree, is central in TP
usage, we review methods for TP matching optimiza-
tion. They belong to two main families: TP minimiza-
tion and holistic matching. We trust we provide a
good overview of these approaches’ evolution, and
highlight the best algorithms in each family as of
today. Moreover, we want to emphasize that TP min-
imization and holistic matching are complementary
and should both be used to wholly optimize TP
matching.

We eventually illustrate how TPs are actually ex-
ploited in several application domains such as system
optimization, network routing or knowledge discov-
ery from XML sources. We especially demonstrate
the use of frequent TP mining and TP rewriting for
various purposes.

Although TP-related research, which has been on-
going for more than a decade, could look mature
in the light of this survey, it is perpetually chal-
lenged by the ever-growing acceptance and usage
of XML. For instance, recent applications require ei-
ther querying data with a complex or only partially
known structure, or integrating heterogeneous XML
data sources (e.g., when dealing with streams). The
keyword search-based languages that address these
problems cannot be expressed with TPs [90]. Thus,
TPs must be extended, e.g., by so-called partial tree-
pattern queries (PTPQs) that allow the partial spec-
ification of a TP and are not restricted by a total
order on nodes [90], [91]. In turn, adapted matching
procedures must be devised [92], a trend that is likely
to perpetuate in the near future.

Moreover, we purposely focus on the core of TP-
related topics in this survey (namely, TPs themselves,

TKDE, VOL. X, NO. X, SEPTEMBER 2011 18

matching issues and a couple of applications). There
is nonetheless a large number of important topics
that we could not address due to space constraints,
such as TP indexing, TP-based view selection, TP for
probabilistic XML and continuous TP matching over
XML streams.

ACKNOWLEDGMENTS

We would like to thank all the anonymous reviewers
of this paper for their thoughtful comments, and
especially the reviewers of the very first version, who
expressed interest in this work and encouraged us to
write this widely complemented version.

We would also like to thank Mr. Huayu Wu, from
the Institute of InfoComm Research, Singapore, for his
valuable correspondence.

REFERENCES

[1] L. Quin, “Extensible Markup Language (XML),”
http://www.w3.org/XML/, World Wide Web Consortium
(W3C), 2006.

[2] D. Carlisle, P. Ion, and R. Miner, “Mathemat-
ical Markup Language (MathML) Version 3.0,”
http://www.w3.org/TR/MathML/, World Wide Web
Consortium (W3C), 2010.

[3] P. Murray-Rust and H. Rzepa, “Chemical Markup Language
- CML,” http://www.xml-cml.org/, 1995.

[4] R. Lake, D. S. Burggraf, M. Trninic, and L. Rae, Geography
Mark-Up Language: Foundation for the Geo-Web. Wiley, 2004.

[5] ADL, “SCORM 2004 4th Edition Version 1.1 Overview,”
http://www.adlnet.gov/Technologies/scorm/, Advanced
Distributed Learning (ADL), 2004.

[6] J. Clark and S. DeRose, “XML Path Language (XPath) Version
1.0,” http://www.w3.org/TR/xpath, World Wide Web Con-
sortium (W3C), 1999.

[7] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie,
and J. Siméon, “XQuery 1.0: An XML Query Language,”
http://www.w3.org/TR/xquery/, World Wide Web Consor-
tium (W3C), 2007.

[8] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and
K. Thompson, “TAX: A Tree Algebra for XML.” in 8th Inter-
national Workshop on Database Programming Languages (DBPL
01), Frascati, Italy, ser. LNCS, vol. 2397. Springer, 2001, pp.
149–164.

[9] A. Trotman, N. Pharo, and M. Lehtonen, “XML-IR Users and
Use Cases,” in 5th International Workshop of the Initiative for
the Evaluation of XML Retrieval (INEX 06), Dagstuhl Castle,
Germany, ser. LNCS, vol. 4518, 2006, pp. 400–412.

[10] P. Michiels, G. A. Mihaila, and J. Siméon, “Put a Tree Pattern
in Your Algebra,” in 23rd International Conference on Data
Engineering (ICDE 07), Istanbul, Turkey. IEEE, 2007, pp. 246–
255.

[11] A. Deutsch, M. F. Fernández, and D. Suciu, “Storing Semistruc-
tured Data with STORED,” in ACM SIGMOD International
Conference on Management of Data (SIGMOD 99), Philadelphia,
PA, USA. ACM Press, 1999, pp. 431–442.

[12] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt,
and J. F. Naughton, “Relational Databases for Querying XML
Documents: Limitations and Opportunities,” in 25th Interna-
tional Conference on Very Large Data Bases (VLDB 99), Edinburgh,
Scotland, UK. Morgan Kaufmann, 1999, pp. 302–314.

[13] S. Paparizos and H. V. Jagadish, “Pattern Tree Algebras: Sets
or Sequences?” in 31st International Conference on Very Large
Data Bases (VLDB 05), Trondheim, Norway. ACM, 2005, pp.
349–360.

[14] S. Paparizos and H. Jagadish, “The Importance of Algebra
for XML Query Processing,” in 2nd International Workshop on
Database Technologies for Handling XML Information on the Web
(DataX 06), Munich, Germany, ser. Lecture Notes in Computer
Science, vol. 4254. Springer, 2006, pp. 126–135.

[15] D. D. Chamberlin and R. F. Boyce, “SEQUEL: A Structured
English Query Language,” in In Proceedings of 1974 ACM-
SIGMOD Workshop on Data Description, Access and Control
(SIGMOD Workshop, Vol. 1 1974), Ann Arbor, Michigan, USA,
1974, pp. 249–264.

[16] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava,
“Minimization of Tree Pattern Queries,” in ACM SIGMOD 20th
International Conference on Management of Data (SIGMOD 01),
Santa Barbara, California, USA, 2001, pp. 497–508.

[17] G. Gou and R. Chirkova, “Efficiently Querying Large XML
Data Repositories: A Survey,” IEEE Transactions on Knowledge
and Data Engineering, vol. 19, no. 10, pp. 1381–1403, 2007.

[18] L. V. S. Lakshmanan, “XML Tree Pattern, XML Twig Query,”
in Encyclopedia of Database Systems. Springer US, 2009, pp.
3637–3640.

[19] N. Grimsmo and T. A. Bjørklund, “Towards unifying ad-
vances in twig join algorithms,” in 21st Australasian Database
Conference (ADC 10), Brisbane, Australia, ser. CRPIT, vol. 104.
Australian Computer Society, 2010, pp. 57–66.

[20] S. Flesca, F. Furfaro, and E. Masciari, “On the minimization of
Xpath queries,” in 29th International Conference on Very Large
Data Bases (VLDB 03), Berlin, Germany, 2003, pp. 153–164.

[21] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and S. Paparizos,
“From Tree Patterns to Generalized Tree Patterns: On Efficient
Evaluation of XQuery,” in 29th International Conference on Very
Large Data Bases (VLDB 03), Berlin, Germany, 2003, pp. 237–248.

[22] L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. J. Zhao,
“On Testing Satisfiability of Tree Pattern Queries,” in 30th
International Conference on Very Large Data Bases (VLDB 04),
Toronto, Canada. Morgan Kaufmann, 2004, pp. 120–131.

[23] J. Wang, J. X. Yu, and C. Liu, “Independence of Containing
Patterns Property and Its Application in Tree Pattern Query
Rewriting Using Views,” World Wide Web, vol. 12, no. 1, pp.
87–105, 2009.

[24] D. Beech, A. Malhotra, and M. Rys, “A formal data model and
algebra for XML,” W3C XML Query Working Group Note,
Tech. Rep., 1999.

[25] C. Beeri and Y. Tzaban, “SAL: An Algebra for Semistructured
Data and XML,” in WebDB (Informal Proceedings), Philadelphia,
USA, 1999, pp. 37–42.

[26] D. D. Chamberlin, J. Robie, and D. Florescu, “Quilt: An XML
Query Language for Heterogeneous Data Sources,” in 3rd
International Workshop on The World Wide Web and Databases
(WebDB 00), Dallas, Texas, USA, May 18-19, ser. Lecture Notes
in Computer Science, vol. 1997. Springer, 2000, pp. 1–25.

[27] A. Deutsch, M. F. Fernández, D. Florescu, A. Levy,
and D. Suciu, “XML-QL: A Query Language for XML,”
http://www.w3.org/TR/NOTE-xml-ql/, World Wide Web
Consortium (W3C), 1998.

[28] H. Ishikawa, K. Kubota, Y. Kanemasa, and Y. Noguchi, “The
Design of a Query Language for XML Data,” in 10th In-
ternational DEXA Workshop on Database and Expert Systems
Applications, Florence, Italy, 1999.

[29] G. Mecca, P. Merialdo, and P. Atzeni, “Do we really need a
new query language for XML?” in 1st W3C Query Languages
Workshop (QL 98), Boston, USA, 1998.

[30] N. Shinagawa, H. Kitagawa, and Y. Ishikawa, “X2QL: An
eXtensible XML Query Language Supporting User-Defined
Foreign Functions,” in 2000 ADBIS-DASFAA Symposium on
Advances in Databases and Information Systems (ADBIS-DASFAA
00), Prague, Czech Republic, 2000, pp. 251–264.

[31] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V. Jagadish,
“Tree Logical Classes for Efficient Evaluation of XQuery,” in
SIGMOD 23rd International Conference on Management of Data
(SIGMOD 04), Paris, France. ACM, 2004, pp. 71–82.

[32] Y. Chen, “Discovering Ordered tree patterns from XML
queries,” in 8th Pacific-Asia Conference In Advances in Knowledge
Discovery and Data Mining (PAKDD 04), Sydney, Australia, 2004,
pp. 559–563.

[33] B. Kimelfeld and Y. Sagiv, “Twig Patterns: From XML Trees to
Graphs,” in 9th International Workshop on the Web and Databases
(WebDB 06), Chicago, Illinois, USA, 2006.

[34] S. K. Izadi, T. Härder, and M. S. Haghjoo, “S3: Evaluation
of Tree-Pattern Queries Supported by Structural Summaries,”
Data & Knowledge Engineering, vol. 68, no. 1, pp. 126–145, 2009.

http://www.w3.org/XML/
http://www.w3.org/TR/MathML/
http://www.xml-cml.org/
http://www.adlnet.gov/Technologies/scorm/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/NOTE-xml-ql/

TKDE, VOL. X, NO. X, SEPTEMBER 2011 19

[35] G. Miklau and D. Suciu, “Containment and Equivalence for
an XPath Fragment,” in ACM SIGACT-SIGMOD-SIGART 21st
Symposium on Principles of Database Systems (PODS 02), Madi-
son, USA, 2002, pp. 65–76.

[36] J. Lu, T. W. Ling, Z. Bao, and C. Wang, “Extended XML Tree
Pattern Matching: Theories and Algorithms,” IEEE Transactions
on Knowledge and Data Engineering, vol. 23, no. 3, March 2011.

[37] S. Amer-Yahia, S. Cho, and D. Srivastava, “Tree Pattern Re-
laxation,” in 8th International Conference on Extending Database
Technology (EDBT 02), Prague, Czech Republic, ser. LNCS, vol.
2287, 2002, pp. 496–513.

[38] S. Paparizos, S. Al-Khalifa, A. Chapman, H. V. Jagadish,
L. V. S. Lakshmanan, A. Nierman, J. M. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu, “TIMBER: A Native Sys-
tem for Querying XML.” in ACM SIGMOD 22th International
Conference on Management of Data (SIGMOD 03), San Diego,
USA. ACM, 2003, p. 672.

[39] H. Katz, “XQEngine at SourceForge,”
http://xqengine.sourceforge.net/, Fatdog Software Inc.,
2005.

[40] J. Hidders, “Satisfiability of XPath Expressions,” in 9th Inter-
national Workshop On Database Programming Languages (DBPL
03), Potsdam, Germany, ser. Lecture Notes in Computer Science,
vol. 2921. Springer, 2004, pp. 21–36.

[41] C. David, “Complexity of Data Tree Patterns over XML
Documents,” in 33rd International Symposium on Mathematical
Foundations of Computer Science 2008 (MFCS 08), Torun, Poland,
ser. Lecture Notes in Computer Science, vol. 5162. Springer,
2008, pp. 278–289.

[42] M. Benedikt, W. Fan, and F. Geerts, “XPath satisfiability in the
presence of DTDs,” Journal of the ACM, vol. 55, no. 2, 2008.

[43] P. Ramanan, “Efficient algorithms for minimizing tree pattern
queries,” in 2002 ACM SIGMOD International Conference on
Management of Data (SIGMOD 02), Madison, Wisconsin, USA.
ACM, 2002, pp. 299–309.

[44] D. Chen and C. Y. Chan, “Minimization of tree pattern queries
with constraints,” in 2008 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 08), Vancouver, BC,
Canada. ACM, 2008, pp. 609–622.

[45] A. K. Chandra and P. M. Merlin, “Optimal Implementation of
Conjunctive Queries in Relational Data Bases,” in 9th Annual
ACM Symposium on Theory of Computing (STOC 77), Boulder,
USA, 1977, pp. 77–90.

[46] F. Neven and T. Schwentick, “XPath Containment in the
Presence of Disjunction, DTDs, and Variables,” in 9th Inter-
national Conference on Database Theory (ICDT 03), Siena, Italy,
ser. Lecture Notes in Computer Science, vol. 2572. Springer,
2003, pp. 312–326.

[47] P. T. Wood, “Containment for XPath Fragments under DTD
Constraints,” in 9th International Conference on Database Theory
(ICDT 03), Siena, Italy, ser. Lecture Notes in Computer Science,
vol. 2572. Springer, 2003, pp. 297–311.

[48] Y. Chen and D. Che, “Efficient Processing of XML Tree Pattern
Queries,” Journal of Advanced Computational Intelligence and
Intelligent Informatics, vol. 10, no. 5, pp. 738–743, 2006.

[49] D. Che and Y. Liu, “Efficient Minimization of XML Tree Pattern
Queries,” in 1st International Conference on Next Generation Web
Services Practices (NWeSP 05), Seoul, Korea, 2005.

[50] S. Abiteboul and V. Vianu, “Queries and computation on the
web,” Theoretical Computer Science, vol. 239, no. 2, pp. 231–255,
2000.

[51] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and R. Rastogi,
“Tree Pattern Aggregation for Scalable XML Data Dissemina-
tion,” in 28th International Conference on Very Large Data Bases
(VLDB 02), Hong Kong, China. Morgan Kaufmann, 2002, pp.
826–837.

[52] J. D. Ullman, Principles of Database and Knowledge-Base Systems,
Volume I. Computer Science Press, 1988.

[53] Y. Chen and D. Che, “Minimization of XML Tree Pattern
Queries in the Presence of Integrity Constraints,” Journal of
Advanced Computational Intelligence and Intelligent Informatics,
vol. 10, no. 5, pp. 744–751, 2006.

[54] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas,
and D. Srivastava, “Structural Joins: A Primitive for Efficient
XML Query Pattern Matching,” in 18th International Conference
on Data Engineering (ICDE 02), San Jose, CA, USA. IEEE
Computer Society, 2002, p. 141.

[55] J. Lu, “Benchmarking Holistic Approaches to XML Tree
Pattern Query Processing - (Extended Abstract of Invited
Talk),” in 15th International Conference ON Database Systems
for Advanced Applications (DASFAA 10), International Workshops:
GDM, BenchmarX, MCIS, SNSMW, DIEW, UDM, Tsukuba,
Japan, ser. Lecture Notes in Computer Science, vol. 6193.
Springer, 2010, pp. 170–178.

[56] Q. Li and B. Moon, “Indexing and Querying XML Data for
Regular Path Expressions,” in 27th International Conference on
Very Large Data Bases (VLDB 01), Roma, Italy, 2001, pp. 361–370.

[57] X. Wu, M.-L. Lee, and W. Hsu, “A Prime Number Labeling
Scheme for Dynamic Ordered XML Trees,” in 20th International
Conference on Data Engineering (ICDE 04), Boston, MA, USA.
IEEE Computer Society, 2004, pp. 66–78.

[58] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ra-
makrishnan, “On the Integration of Structure Indexes and
Inverted Lists,” in 2004 ACM SIGMOD International Conference
on Management of Data (SIGMOD 04), Paris, France. ACM,
2004, pp. 779–790.

[59] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins:
optimal XML pattern matching,” in 2002 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD 02),
Madison, USA. ACM, 2002, pp. 310–321.

[60] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J.
Shekita, and C. Zhang, “Storing and querying ordered xml
using a relational database system,” in 2002 ACM SIGMOD
International Conference on Management of Data (SIGMOD 02),
Madison, Wisconsin, USA. ACM, 2002, pp. 204–215.

[61] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen, “From Region
Encoding To Extended Dewey: On Efficient Processing of XML
Twig Pattern Matching,” in 31st International Conference on Very
Large Data Bases (VLDB 05), Trondheim, Norway. ACM, 2005,
pp. 193–204.

[62] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury, “ORDPATHs: Insert-Friendly XML Node La-
bels,” in 2004 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 04), Paris, France. ACM, 2004, pp.
903–908.

[63] L. Xu, T. W. Ling, H. Wu, and Z. Bao, “DDE: from Dewey to a
fully dynamic XML labeling scheme,” in 2009 ACM SIGMOD
International Conference on Management of Data (SIGMOD 09),
Providence, USA. ACM, 2009, pp. 719–730.

[64] J. Lu, “Efficient Processing of XML Twig Pattern Matching,”
Ph.D. dissertation, National University of Singapore, 2006.

[65] A. Barta, M. P. Consens, and A. O. Mendelzon, “Benefits
of Path Summaries in an XML Query Optimizer Supporting
Multiple Access Methods,” in 31st International Conference on
Very Large Data Bases (VLDB 05), Trondheim, Norway. ACM,
2005, pp. 133–144.

[66] J. Lu, T. Chen, and T. W. Ling, “Efficient processing of
XML twig patterns with parent child edges: a look-ahead
approach,” in 2004 ACM CIKM International Conference on
Information and Knowledge Management (CIKM 04), Washington,
USA. ACM, 2004, pp. 533–542.

[67] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni, “Efficient Pro-
cessing of Ordered XML Twig Pattern,” in 16th International
on Database and Expert Systems Applications (DEXA 05), Copen-
hagen, Denmark, ser. Lecture Notes in Computer Science, vol.
3588. Springer, 2005, pp. 300–309.

[68] T. Chen, J. Lu, and T. W. Ling, “On Boosting Holism in XML
Twig Pattern Matching using Structural Indexing Techniques,”
in ACM SIGMOD 24th International Conference on Management
of Data (SIGMOD 05), Baltimore, Maryland, USA. ACM, 2005,
pp. 455–466.

[69] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal,

and K. S. Candan, “Twig2stack: Bottom-up processing of
generalized-tree-pattern queries over xml documents,” in 32nd
International Conference on Very Large Data Bases (VLDB 06),
Seoul, Korea.

[70] R. Baca, M. Krátký, and V. Snásel, “On the efficient search of an
XML twig query in large DataGuide trees,” in 12th International
Database Engineering and Applications Symposium (IDEAS 08),
Coimbra, Portugal, ser. ACM International Conference Proceed-
ing Series, vol. 299. ACM, 2008, pp. 149–158.

[71] R. Goldman and J. Widom, “DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases,”

http://xqengine.sourceforge.net/

TKDE, VOL. X, NO. X, SEPTEMBER 2011 20

in 23rd International Conference on Very Large Data Bases, Athens,
Greece, 1997, pp. 436–445.

[72] S.-C. Haw and C.-S. Lee, “TwigX-Guide: An Efficient Twig
Pattern Matching System Extending DataGuide Indexing and
Region Encoding Labeling,” Journal of Information Science and
Engineering, vol. 25, no. 2, pp. 603–617, 2009.

[73] X. Wu and G. Liu, “XML twig pattern matching using version
tree,” Data & Knowledge Engineering, vol. 64, no. 3, pp. 580–599,
2008.

[74] M. Götz, C. Koch, and W. Martens, “Efficient algorithms
for descendant-only tree pattern queries,” Information Systems,
vol. 34, no. 7, pp. 602–623, 2009.

[75] R. Baca, “Path-based Approaches to the Twig Pattern Query
Searching,” Ph.D. dissertation, VSB-Technical University of
Ostrava, Czech Republic, 2008.

[76] J. Yao and M. Z. II, “A Fast Tree Pattern Matching Algorithm
for XML Query,” in 2004 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI 04), 20-24 September 2004, Beijing,
China. IEEE Computer Society, 2004, pp. 235–241.

[77] L. H. Yang, M.-L. Lee, and W. Hsu, “Efficient Mining of XML
Query Patterns for Caching,” in 29th International Conference
on Very Large Data Bases (VLDB 03), Berlin, Germany, 2003, pp.
69–80.

[78] J. Wang, K. Wang, and J. Li, “Finding Irredundant Contained
Rewritings of Tree Pattern Queries Using Views,” in Advances
in Data and Web Management, Joint International Conferences
(APWeb/WAIM 09), Suzhou, China, 2009, pp. 113–125.

[79] I. Tatarinov and A. Y. Halevy, “Efficient Query Reformulation
in Peer-Data Management Systems,” in 2004 ACM SIGMOD
International Conference on Management of Data (SIGMOD 04),
Paris, France. ACM, 2004, pp. 539–550.

[80] J. Zhang, T. W. Ling, R. M. Bruckner, and A. M. Tjoa, “Building
XML Data Warehouse Based on Frequent Patterns in User
Queries,” in 5th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 03), Prague, Czech Republic,
ser. Lecture Notes in Computer Science, vol. 2737. Springer,
2003, pp. 99–108.

[81] H.-T. Ma, Z.-X. Hao, and Y. Zhu, “Checking Satisfiability
of Tree Pattern Queries for Active XML Documents,” INFO-
COMP Journal of Computer Science, vol. 7, no. 1, pp. 11–18, 2008.

[82] S. Abiteboul, P. Bourhis, and B. Marinoiu, “Satisfiability and
relevance for queries over active documents,” in 28th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS 09), Providence, USA. ACM, 2009, pp. 87–96.

[83] R. Chand, P. Felber, and M. N. Garofalakis, “Tree-pattern
similarity estimation for scalable content-based routing,” in
23rd International Conference on Data Engineering (ICDE 07),
Istanbul, Turkey. IEEE, 2007, pp. 1016–1025.

[84] M. C.-E. Hsieh, Y.-H. Wu, and A. L. P. Chen, “Discovering
Frequent Tree Patterns over Data Streams,” in 6th SIAM In-
ternational Conference on Data Mining (SDM 06), Bethesda, MD,
USA. SIAM, 2006.

[85] L. H. Yang, M.-L. Lee, W. Hsu, and S. Acharya, “Mining
Frequent Query Patterns from XML Queries,” in 8th Interna-
tional Conference on Database Systems for Advanced Applications
(DASFAA 03), Kyoto, Japan. IEEE Computer Society, 2003, pp.
355–362.

[86] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” in 20th International
Conference on Very Large Data Bases (VLDB 94), Santiago de Chile,
Chile, 1994, pp. 487–499.

[87] A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and H. Pi-
rahesh, “A Framework for Using Materialized XPath Views
in XML Query Processing,” in 30th International Conference on
Very Large Data Bases (VLDB 04), Toronto, Canada. Morgan
Kaufmann, 2004, pp. 60–71.

[88] L. V. S. Lakshmanan, W. H. Wang, and Z. J. Zhao, “Answering
tree pattern queries using views,” in 32nd International Confer-
ence on Very Large Data Bases (VLDB 06), Seoul, Korea, 2006, pp.
571–582.

[89] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. We-
ber, “Active xml: Peer-to-peer data and web services integra-
tion,” in 28th International Conference on Very Large Data Bases
(VLDB 02), Hong Kong, China. Morgan Kaufmann, 2002, pp.
1087–1090.

[90] D. Theodoratos and X. Wu, “Eager Evaluation of Partial Tree-
Pattern Queries on XML Streams,” in 14th International Con-
ference on Database Systems for Advanced Applications (DASFAA
09), Brisbane, Australia, ser. Lecture Notes in Computer Science,
vol. 5463. Springer, 2009, pp. 241–246.

[91] P. Placek, D. Theodoratos, S. Souldatos, T. Dalamagas, and
T. K. Sellis, “A heuristic approach for checking containment
of generalized tree-pattern queries,” in 17th ACM Conference on
Information and Knowledge Management (CIKM 08), Napa Valley,
California, USA. ACM, 2008, pp. 551–560.

[92] X. Wu, D. Theodoratos, S. Souldatos, T. Dalamagas, and
T. K. Sellis, “Efficient Evaluation of Generalized Tree-Pattern
Queries with Same-Path Constraints,” in 21st International Con-
ference Scientific and Statistical Database Management (SSDBM
09), New Orleans, LA, USA, ser. Lecture Notes in Computer
Science, vol. 5566. Springer, 2009, pp. 361–379.

Marouane Hachicha received his M.Sc. in
computer science from the University of
Lyon 2, France in 2007. He has been a Ph.D.
student at the University of Lyon 2 since then.
He spent six months as a foreign researcher
in Italy in 2009. His research interests lie in
XML data warehousing and XOLAP.

Jérôme Darmont received his Ph.D. in
computer science from the University of
Clermont-Ferrand II, France in 1999. He
joined the University of Lyon 2, France in
1999 as an associate professor, and be-
came full professor in 2008. He was head
of the Decision Support Databases research
group within the ERIC laboratory from 2000
to 2008, director of the Computer Science
and Statistics Department of the Faculty of
Economics and Management from 2003 to

2010, and has been in charge of the Complex Data Warehousing
and OLAP research axis at ERIC since 2010. His current research
interests mainly relate to handling so-called complex data in data
warehouses (XML warehousing, performance optimization, auto-
administration, benchmarking...), but also include data quality and
security, cloud business intelligence, as well as medical or health-
related applications.

	1 Introduction
	2 Background
	2.1 Definitions
	2.1.1 XML document
	2.1.2 XML fragment
	2.1.3 Data tree
	2.1.4 Data tree collection
	2.1.5 Data subtree
	2.1.6 Tree pattern
	2.1.7 Tree pattern matching
	2.1.8 Tree pattern embedding
	2.1.9 Boolean tree pattern

	2.2 Running example

	3 Tree pattern structures
	3.1 Tree patterns in algebraic frameworks
	3.1.1 TAX tree pattern
	3.1.2 Generalized tree pattern
	3.1.3 Annotated tree pattern
	3.1.4 Ordered annotated pattern tree

	3.2 Tree patterns used in optimization processes
	3.2.1 Global query pattern tree
	3.2.2 Twig pattern
	3.2.3 Logical operator nodes
	3.2.4 Node degree and output node specification
	3.2.5 Extended formula
	3.2.6 Extended tree pattern

	3.3 Discussion
	3.3.1 Matching power
	3.3.2 Node reordering capability
	3.3.3 Expressiveness
	3.3.4 Supported optimizations
	3.3.5 Synthesis

	4 Tree pattern matching optimization
	4.1 Tree pattern minimization
	4.1.1 Containment and equivalence testing
	4.1.2 Unconstrained minimization
	4.1.3 Minimization under integrity constraints

	4.2 Holistic tree pattern matching
	4.2.1 Labeling phase
	4.2.2 Computing phase
	4.2.3 Structural summary-based approaches

	4.3 Other pattern tree matching approaches
	4.3.1 Tree homeomorphism matching
	4.3.2 Tree pattern relaxation

	4.4 Discussion
	4.4.1 Time complexity
	4.4.2 Space complexity
	4.4.3 Synthesis

	5 Tree pattern usages
	5.1 Tree pattern mining
	5.1.1 Problem formulation
	5.1.2 Frequent subtree mining algorithms

	5.2 Tree pattern rewriting
	5.3 Extended matching

	6 Conclusion
	References
	Biographies
	Marouane Hachicha
	Jérôme Darmont

