
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Discovering temporal change patterns in the presence of taxonomies / Cagliero, Luca. - In: IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. - STAMPA. - 25:3(2013), pp. 541-555.
[10.1109/TKDE.2011.233]

Original

Discovering temporal change patterns in the presence of taxonomies

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TKDE.2011.233

Terms of use:

Publisher copyright

©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460873 since:

IEEE Computer Society

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 1

Discovering temporal change patterns in the

presence of taxonomies

Luca Cagliero

L. Cagliero is with the Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

E-mail:luca.cagliero@polito.it. The author would like to thank Telecom Italia Lab. for having provided the source data and Prof. Elena Baralis,

Dr. Tania Cerquitelli, and Dr. Paolo Garza for their insightful suggestions and comments.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 2

Abstract

Frequent itemset mining is a widely exploratory technique that focuses on discovering recurrent correlations among

data. The steadfast evolution of markets and business environments prompts the need of data mining algorithms to

discover significant correlation changes in order to reactively suit product and service provision to customer needs.

Change mining, in the context of frequent itemsets, focuses on detecting and reporting significant changes in the set

of mined itemsets from one time period to another. The discovery of frequent generalized itemsets, i.e., itemsets that

(i) frequently occur in the source data, and (ii) provide a high level abstraction of the mined knowledge, issues new

challenges in the analysis of itemsets that become rare, and thus are no longer extracted, from a certain point.

This paper proposes a novel kind of dynamic pattern, namely the HIGEN (HIstory GENeralized Pattern), that

represents the evolution of an itemset in consecutive time periods, by reporting the information about its frequent

generalizations characterized by minimal redundancy (i.e., minimum level of abstraction) in case it becomes infrequent

in a certain time period. To address HIGEN mining, it proposes HIGEN MINER, an algorithm that focuses on avoiding

itemset mining followed by postprocessing by exploiting a support-driven itemset generalization approach. To focus

the attention on the minimally redundant frequent generalizations and thus reduce the amount of the generated patterns,

the discovery of a smart subset of HIGENs, namely the NON-REDUNDANT HIGENs, is addressed as well.

Experiments performed on both real and synthetic datasets show the efficiency and the effectiveness of the

proposed approach as well as its usefulness in a real application context.

Index Terms

Data Mining, Mining Methods and Algorithms

I. INTRODUCTION

The problem of discovering relevant data recurrences and their most significant temporal trends is becoming an

increasingly appealing research topic. The application of frequent itemset mining and association rule extraction

algorithms [1] to discover valuable correlations among data has been thoroughly investigated in a number of different

application contexts (e.g., market basket analysis [1], medical image processing [4]). In the last years, the steady

growth of business-oriented applications tailored to the extracted knowledge prompted the need of analyzing the

evolution of the discovered patterns. Since, in many business environments, companies are expected to reactively

suit product and service provision to customer needs, the investigation of the most notable changes between the

set of frequent itemsets or association rules mined from different time periods has become an appealing research

topic [2], [9], [12], [19], [23], [27].

Frequent itemset mining activity is constrained by a minimum support threshold to discover patterns whose

observed frequency in the source data (i.e., the support) is equal to or exceeds a given threshold [1]. However,

the enforcement of low support thresholds may entail generating a very large amount of patterns which may

become hard to look into. On the other hand, higher support threshold enforcement may also prune relevant but

not enough frequent recurrences. To overcome these issues, generalized itemset extraction could be exploited.

Generalized itemsets, which have been first introduced in [3] in the context of market basket analysis, are itemsets

that provide a high level abstraction of the mined knowledge. By exploiting a taxonomy (i.e., a is-a hierarchy)

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 3

Date Time Location Product description

2009-01-02 11:00 p.m. Turin T-shirt

2009-01-03 11:10 p.m. Rome T-shirt

2009-01-05 8:40 a.m. Paris Jacket

2009-01-30 5:05 p.m. Paris Jacket

2009-01-31 8:40 a.m. Cannes Jacket

(a) Dataset D1. Product sales in January 2009

Date Time Location Product description

2009-02-02 11:10 p.m. Turin T-shirt

2009-02-02 10:27 p.m. Turin T-shirt

2009-02-05 8:50 a.m. Paris Jacket

2009-02-05 5:00 p.m. Cannes Jacket

2009-02-28 5:00 p.m. Rome Jacket

(b) Dataset D2. Product sales in February 2009

TABLE I

RUNNING EXAMPLE DATASETS

Fig. 1. Generalization hierarchy for the location attribute in example datasets D1 and D2

over data items, items are aggregated into higher level (generalized) ones. Tables I(a) and I(b) report two example

datasets, associated, respectively, with two consecutive months of year 2009 (i.e., January and February). Each

record corresponds to a product sale. In particular, for each sale the product description, the date, the time, and the

location in which it took place are reported. For the sake of simplicity, in this preliminary analysis I am interested

in mining generalized itemsets involving just the location or the product description. Figure 1 shows a simple

hierarchy defined on the location attribute. Table II(a) reports the set of all possible frequent generalized and not

generalized itemsets, and their corresponding absolute support values (i.e., observed frequencies), mined, by means

of a traditional approach [3], from the example datasets D1 and D2, by exploiting the taxonomy reported in Figure 1

and by enforcing an absolute minimum support threshold equal to 2. Readers can notice that some of the itemsets

satisfy the support threshold in both D1 and D2, while the others are frequent in only one out of two months.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 4

Not generalized itemset
Sup Sup

D1 D2

{Turin} 1 (Inf.) 2

{Paris} 2 1 (Inf.)

{T-shirt} 2 2

{Jacket} 3 3

{T-shirt, Turin} 1 (Inf.) 2

{Jacket, Paris} 2 1 (Inf.)

Generalized itemset
Sup Sup

D1 D2

{Italy} 2 3

{France} 3 2

{T-shirt, Italy} 2 2

{Jacket, France} 3 2

(a) Generalized and not generalized itemsets

mined from D1 and D2.

HIGENs from D1 to D2

{T-shirt} [sup = 2] {T-shirt} [sup = 2]

{Jacket} [sup = 3] {Jacket} [sup = 3]

{Paris} [sup = 2] ↗ {France} [sup = 2]

{T-shirt, Italy} [sup = 2] ↘ {T-shirt, Turin} [sup = 2]

{Jacket, Paris} [sup = 2] ↗ {Jacket, France} [sup = 2]

{Italy} [sup = 3] ↘ {Turin} [sup = 2]

(b) Extracted HIGENs.

TABLE II

EXTRACTED PATTERNS. min sup = 2.

This paper focuses on change mining in the context of frequent itemsets by exploiting generalized itemsets to

represent patterns that become rare with respect to the support threshold, and thus are no longer extracted, at a

certain point. Previous approaches allow both keeping track of the evolution of the most significant pattern quality

indexes (e.g., [2], [7], [8]) and discovering their most fundamental changes (e.g., [5], [12], [19]). Consider, for

instance, the itemsets {T-shirt, Turin} and {Jacket, Paris}. The former itemset is infrequent in D1 (i.e., its support

value in D1 is lower than the support threshold) and becomes frequent in D2 due to a support value increase

from January to February, while the latter shows an opposite trend. Albeit these pieces of information might be of

interest for business decision making, the discovery of higher level correlations, in the form of generalized itemsets,

issues new challenges in the investigation of pattern temporal trends. Itemset generalization may allow preventing

infrequent knowledge discarding. At the same time, experts may look into the information provided by the sequence

of generalizations or specializations of the same pattern in consecutive time periods. For instance, the fact that the

generalized itemset {T-shirt, Italy} (frequent in both January and February 2009) has a specialization (i.e., {T-shirt,

Turin}) that is infrequent in January while becomes frequent in the next month may be deemed relevant for decision

making and, thus, might be reported as it highlights a temporal correlation among spatial recurrences regarding

product T-shirt. Similarly, the information that, although {Jacket, Paris} becomes infrequent with respect to the

minimum support threshold moving from January to February, its generalization {Jacket, France} remains frequent

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 5

in both months could be relevant for analyst decision making as well. However, to the best of my knowledge,

this kind of information cannot be neither directly mined nor concisely represented by means of any previously

proposed approach.

This paper proposes a novel kind of dynamic pattern, namely the HIGENs (HIstory GENeralized Pattern). A

HIGEN compactly represents the minimum sequence of generalizations needed to keep knowledge provided by

a not generalized itemset frequent, with respect to the minimum support threshold, in each time period. If an

itemset is frequent in each time period, the corresponding HIGEN just reports its support variations. Otherwise,

when the itemset becomes infrequent at a certain point, the HIGEN reports the minimum number of generalizations

(and the corresponding generalized itemsets) needed to make its covered knowledge frequent at a higher level

of abstraction. I argue that a frequent generalization at minimum abstraction level represents the rare knowledge

with minimal redundancy. In case an infrequent not generalized itemset has multiple generalizations belonging to

the same minimal aggregation level, many HIGENs associated with the same itemset are generated. To focus the

attention of the analysts on the frequent generalizations of a rare itemset covering the same knowledge with a

minimal amount of redundancy and, thus, reduce the number of the generated patterns, a more selective type of

HIGEN, i.e., the NON-REDUNDANT HIGEN, is proposed as well. NON-REDUNDANT HIGENs are HIGENs that

include, for each time period, the frequent generalizations of the reference itemset of minimal generalization level

characterized by minimal support.

In Table II(b) the set of HIGENs, mined from the example dataset by enforcing an absolute minimum support

threshold equal to 2, is reported. The reference itemset is written in boldface. The relationship ↗ means that

the right-hand side itemset is a generalization of the left-hand side one, ↘ implies a specialization relationship,

while implies that no abstraction level change occurs. For instance, {Jacket, Paris} ↗ {Jacket, France} is a

HIGEN stating that, from January (D1) to February (D2) 2009, the not generalized itemset {Jacket, Paris} becomes

infrequent with respect to the minimum support threshold while its upper level generalization (see Figure 1) remains

frequent. All the HIGENs reported in Table II(b) refer to a different not generalized reference itemset. In case the

extraction would generate more HIGENs per itemset, the generation of the NON-REDUNDANT HIGENs generates

just the HIGENs covering the minimal amount of redundancy, i.e., the ones including generalizations with minimal

support.

To address HIGEN mining, the HIGEN MINER (HIstory GENeralized Pattern MINER) has been proposed. Instead

of generating the HIGENs by means of a postprocessing step that follows the generalized itemset mining process

performed on data collected at each time interval, the HIGEN MINER algorithm directly addresses the HIGEN

mining by extending a support-driven generalization approach, first proposed in [6], to a dynamic context. The

proposed algorithm avoids both redundant knowledge extraction followed by postpruning and multiple taxonomy

evaluations over the same pattern mined from different time intervals. A slightly modified version of the HIGEN

MINER algorithm is also proposed to address NON-REDUNDANT HIGEN mining.

The proposed approach may be profitably exploited in a number of different application domains (e.g., context-

aware domain, network traffic analysis, social network analysis). Experiments, reported in Section VI, show (i) the

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 6

effectiveness of the proposed approach in supporting expert decision making through the analysis of context data

coming from a context-aware mobile environment and (ii) the efficiency and the scalability of the proposed HIGEN

MINER algorithm on synthetic datasets.

This paper is organized as follows. Section II discusses and compares state-of-the-art approaches concerning

both change mining and generalized itemset mining with the proposed approach. Section III introduces preliminary

notions, while Section IV formally states the HIGEN mining problem. Section V describes the HIGEN MINER

algorithm. Section VI evaluates the efficiency and the effectiveness of the proposed approach. Finally, Section VII

draws conclusions and presents related future work.

II. RELATED WORK

Frequent itemset mining has been first proposed in [1], in the context of market basket analysis, as the first step

of the association rule extraction process. The problem of discovering relevant changes in the history of itemsets

and association rules has been already addressed by a number of research papers (e.g., [2], [5], [7], [8], [12], [19]).

Active data mining [2] was the first attempt to represent and query the history pattern of the discovered association

rule quality indexes. It first mines rules, from datasets collected in different time periods, by adding rules and

their related quality indexes (e.g., support and confidence [1]) to a common rule base. Next, the analyst could

specify a history pattern in a trigger which is fired when such a pattern trend is exhibiting. Albeit history patterns

allow tracking most notable pattern index changes, they neither keep the information covered by rare patterns nor

show links among patterns at different abstraction levels. More recently, other time-related data mining frameworks

tailored to monitor and detect changes in rule support and confidence have been proposed [7], [8], [25]. In [8]

patterns are evaluated and pruned based on both subjective and objective interestingness measures. The aim of [7]

is to monitor the mined patterns and reduce the effort spent in data mining. To achieve this goal, new patterns are

observed as soon as they emerge, and old patterns are removed from the rule base as soon as they become extinct.

To further reduce the computational cost, at one time period a subset of rules is selected and monitored, while data

changes that occur in subsequent periods are measured by their impact on the rules being monitored. Similarly, [25]

addresses itemset change mining from time-varying data streams. However, the approaches presented in [7], [8],

[25] do not address rare knowledge representation by means of generalized itemsets. Differently, [20] deals with

rule change mining by discovering two main types of rules: (i) the stable rules, i.e., rules that do not change a great

deal over time and, thus, are more reliable and could be trusted, and (ii) the trend rules, i.e., rules that indicate

some underlying systematic trends of potential interest. Similarly, this paper categorizes the HIGENs based on their

temporal trend. However, their evolution has been classified in terms of itemset generalizations or specializations

that occur over time. The problem of discovering the subset of most relevant changes in association rules has been

addressed by (i) evaluating rule changes that occur between two time periods by means of chi-square test [19], (ii)

searching for border descriptions of emerging patterns extracted from a pair of datasets [12], and (iii) applying a

fuzzy approach to rule change evaluation [5]. Unlike [5], [12], [19], the proposed approach allows both comparing

more than two time periods at a time and representing patterns that become infrequent in a certain time period by

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 7

means of one of their generalizations characterized by minimal redundancy.

A parallel issue concerns the detection of most notable changes in multidimensional data measures. [18] first

introduces the concept of cubegrade and compares the multidimensional data cube cells with their gradient cells,

namely their ancestors, descendants, and siblings. [11] extends the work proposed in [18] by pushing anti-monotone

constraints into the mining of highly similar data cube cell pairs with hugely different measure values. The HIGEN

mining problem is somehow related to but different from that addressed in [11], [18] as it concerns the discovery,

from relational data, of temporal change patterns composed of frequent generalized itemsets at minimal abstraction

level.

A parallel effort has been devoted to proposing more efficient and effective algorithms to address generalized

frequent itemset mining. The problem of frequent generalized itemset mining has been first introduced in [3] in the

context of market basket analysis as an extension of the traditional frequent itemset extraction task [1]. It generates

itemsets by considering, for each item, all its parents in a taxonomy (i.e., a is-a hierarchy defined on data items).

Hence, all combinations of candidate frequent itemsets are generated by exhaustively evaluating the taxonomy. To

prevent redundant knowledge extraction, several optimization strategies have been proposed (e.g., [6], [15]–[17]).

Among them, [6] proposed a support-driven itemset generalization approach, i.e., a frequent generalized itemset is

extracted only if it has at least an infrequent descendant. This paper extends the generalization procedure proposed

in [6] to a dynamic context to address HIGEN mining from a sequence of time-related datasets without the need

of a postprocessing step. Unlike [6], it does not extract all frequent generalizations of an infrequent pattern, but

rather generates only the ones characterized by minimal redundancy.

III. PRELIMINARY DEFINITIONS

This section introduces main notions concerning dynamic generalized itemset mining from structured data.

A structured dataset is a collection of records, where each record is a set of pairs (attribute, value) (e.g., (date,

5:05 p.m.)), called items, which identify specific data features (e.g., the time) and their values in the corresponding

domains (e.g., 5:05 p.m.). Dynamic data mining considers datasets associated with different time periods. Thus, I

introduce the notion of timestamped structured dataset. Its formal definition follows.

Definition 3.1: Timestamped structured dataset. Let T ={t1, t2, . . . , tn} be a set of data features and Ω={Ω1,Ω2, . . . ,Ωn}

its corresponding domains. ti may be either a categorical or a numeric discrete data feature. Let W = [wstart, wend]

be a time interval. A timestamped structured dataset D is a collection of records, where (i) each record r is a set

of pairs (ti, valuei) where ti ∈ T and valuei ∈ Ωi, (ii) each ti ∈ T , also called attribute, may occur at most once

in any record, and (iii) each record has a time stamp rts ∈ W .

In the case of datasets with continuous attributes, the value range should be discretized into intervals, and the

intervals mapped into consecutive positive integers. Consider again the example datasets D1 and D2 reported in

Tables I(a) and I(b). They are examples of timestamped structured datasets composed of 4 attributes (i.e., date, time,

location, and product description), among which the date attribute is selected as time stamp. Dataset D1 includes

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 8

Fig. 2. Taxonomy over data items in D1 and D2

product sales (i.e., records) whose time stamp ranges from 2009-01-01 to 2009-01-31 (see Table I(a)), while D2

includes product sales whose time stamp ranges from 2009-02-01 to 2009-02-28 (see Table I(b)).

Generalized itemset mining exploits a set of generalization hierarchies, i.e., a taxonomy, built over data items to

generalize at higher levels of abstraction items represented in a timestamped structured dataset. A taxonomy is a

is-a hierarchy built over data item values composed of aggregation hierarchies defined on each data attribute.

Definition 3.2: Taxonomy. Let T ={t1, t2, . . . , tn} be a set of attributes and Ω={Ω1,Ω2, . . . ,Ωn} its correspond-

ing domains. Let ρ = {GH1, . . ., GHm} be a set of generalization hierarchies defined on T . Each GHi represents

a predefined hierarchy of aggregations over values in Ωi. GHi leaves are all the values in Ωi. Each non-leaf node

in GHi is an aggregation of all its children. The root node (denoted as ⊥) aggregates all values for attribute ti.

A taxonomy Γ ⊆ ρ, is a forest of generalization hierarchies. Γ contains one generalization hierarchy GHi ∈ ρ for

each attribute ti in T .

Taxonomies may be either analyst-provided or inferred by means of ad-hoc algorithms (e.g., [10], [14]). Figure 2

reports three examples of generalization hierarchies constructed over the attributes of the example timestamped

datasets reported in Tables I(a) and I(b), exception for the time stamp attribute (i.e., the date) which, by construction,

is not considered. According to Definition 3.2, the set of all the generalization hierarchies in Figure 2 is a taxonomy.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 9

A pair (ti, aggregation valuei), where aggregation valuei is a not-leaf node belonging to the generalization hier-

archy associated with the i-th attribute ti, is a generalized item. In the following I denote as leaves(aggregation valuei) ⊆

Ωi the set of leaf nodes descendants of value aggregation valuei in an arbitrary generalization hierarchy GHi

associated with the i-th data attribute. For instance, in the generalization hierarchy GHlocation shown in Figure 2(b),

(location, Italy) is an example of generalized item whose set of leaves includes items (location, Rome) and (location,

Turin). Most relevant quality indexes that characterize a generalized item in terms of, respectively, a timestamped

dataset (Cf. Definition 3.1) and a taxonomy (Cf. Definition 3.2) are its support and generalization level. The

support of (ti, aggregation valuei) is defined as the sum of the observed frequencies of the corresponding leaves

leaves(aggregation valuei) in the source dataset. For instance, the support of the generalized item (location,

Italy) in D1 is 2
5 as it covers 2 out of 5 records in D1 (see Table I(a)). The generalization level classifies items

based on their generalization grade in the corresponding taxonomy. The item level L[(ti, aggregation valuei)] is

defined as the height of the subtree nested in GHi and rooted in aggregation valuei plus 1, i.e., it is the length

of the longest downward path in GHi to a leaf from that node plus 1. Consider again the generalization hierarchy

GHlocation on the product sale location shown in Figure 2(b). The level of the generalized item (location, Italy) is

2 provided that the longest path on GHlocation from Italy to a leaf node has length 1.

In the context of relational data, a (not generalized) k-itemset, i.e., an itemset of length k, is a set of k items,

each one belonging to a distinct data attribute. Generalized itemsets represent high level recurrences hidden in

the analyzed data. A generalized itemset of length k (i.e., a generalized k-itemset) is a set of generalized or not

generalized items including at least one generalized item. A more formal definition follows.

Definition 3.3: Generalized itemset. Let T ={t1, t2, . . . , tn} be a set of attributes belonging to a timestamped

structured dataset and I the enumeration of all the items in the corresponding dataset. Let Γ be a taxonomy over

T , and E the set of generalized items derived by all the generalization hierarchies in Γ. A generalized itemset Y is

a subset of I
⋃
E including at least one generalized item in E . Each attribute ti ∈ T may occur at most once in Y .

For instance, {(product, T-shirt), (location, Italy)} is a generalized 2-itemset, while {(product, T-shirt), (product,

Jacket)} does not.

To characterize generalized and not generalized itemsets, I extend previously discussed notions of item support

and level to itemsets. To define the (generalized) itemset support, I first introduce the concept of (generalized)

itemset matching and coverage set. A (generalized) itemset matches a given record if all its items either (i) belong

to the record, or (ii) are ancestors of items that belong to the record.

Definition 3.4: (Generalized) itemset matching. Let D be a timestamped structured dataset and Γ a taxonomy

built on D. A (generalized) itemset X matches an arbitrary record r ∈ D if and only if for all (possibly generalized)

items x ∈ X

1) x ∈ I (i.e., x is an item) and x ∈ r, or

2) x ∈ E (i.e., x is a generalized item) and ∃ i ∈ leaves(x) such that i ∈ r.

The coverage set cov(X,D) of a (generalized) itemset X is given by the set of records in D matched by X [22].

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 10

Definition 3.5: (Generalized) itemset support. Let D be a timestamped structured dataset and Γ a taxonomy

on D. The support of a generalized or not generalized itemset X is given by |cov(X,D)|
|D| .

Definition 3.6: (Generalized) itemset level. Let X={(t1, value1), . . ., (tk, valuek)} be a (generalized) itemset

of length k. Its level L[X] is the maximum item generalization level by considering items in X , i.e., L[X] =

max1≤j≤k{L[(tj , valuej)]}.

The generalization level of an itemset is affected by the highest generalized item level. Consider again the generalized

itemset {(product, T-shirt), (location, Italy)}. Its support is 2
5 in both datasets D1 and D2 (See Tables I(a) and I(b)).

Since, according to the taxonomy reported in Figure 2, L[(product, T-Shirt)] = 1 and L[(location, Italy)] = 2 its

generalization level is 2.

A generalized itemset may be an ancestor or a descendant of another one, according to a given taxonomy, as

stated by the following definition.

Definition 3.7: (Generalized) itemset ancestor and descendant. Let X,Y ⊆ I be two different (generalized)

k-itemsets and Γ be a taxonomy. X is an ancestor of Y on Γ, denoted as X ∈ Anc[Y,Γ], if and only if for any

(generalized) item yi ∈ Y exists a (generalized) item xi ∈ X such that xi is an ancestor of yi in GHi. If X is an

ancestor of Y , then Y is a descendant of X , denoted as Y ∈ Desc[X,Γ].

Consider again the generalized itemset I = {(product, T-shirt), (location, Italy)}. Since, according to the taxonomy

reported in Figure 2, Italy is an ancestor of Turin, {(product, T-shirt), (location, Turin)} is an example of

descendant of I .

The redundancy of an ancestor with respect to one of its descendants is defined in terms of their respective

coverage sets.

Definition 3.8: Ancestor redundancy. Let D be a structured dataset and Γ a taxonomy. Let X,Y ⊆ I be two

(generalized) k-itemsets such that X ∈ Anc[Y,Γ]. The redundancy red(X,Y) of X with respect to Y is given by
|cov(X,D)|
|cov(Y,D)| .

Theorem 3.1: The ancestors of a reference (generalized) itemset with minimal redundancy are the ones with

minimal support.

Proof: Suppose that X1,X2 ∈ Anc[Y,Γ] and red(X1, Y) > red(X2, Y). Since |cov(X1, D)| > |cov(X2, D)|

it follows that sup(X1, D) > sup(X2, D).

IV. PROBLEM STATEMENT

This section formalizes the concepts of HIGEN (HIstory GENeralized Pattern) and NON-REDUNDANT HIGEN

(Non-redundant HIstory GENeralized Pattern) as well as formally states the mining problem addressed by the paper.

The frequent (generalized) itemset mining problem [3] focuses on discovering, from the analyzed data, generalized

and not generalized itemsets (Cf. Definition 3.3) whose support value is equal to or exceeds a minimum support

threshold. Given an ordered sequence of timestamped structured datasets (Cf. Definition 3.1) relative to different

time periods, a taxonomy (Cf. Definition 3.2), and a minimum support threshold, dynamic change mining [2], in

the context of frequent itemsets, investigates the changes and the evolution of the extracted itemsets, in terms of

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 11

their main quality indexes (e.g., the support), from one time period to another. This paper extends the dynamic

change mining problem, in the context of frequent itemsets, by exploiting frequent generalized itemsets to represent

knowledge associated with infrequent patterns. In the following, I introduce the concepts of HIGEN and NON-

REDUNDANT HIGEN.

a) The HIGEN: A HIGEN, associated with both a not generalized itemset it and an ordered sequence of

timestamped datasets D = {D1, D2, . . ., Dn}, is a ordered sequence of generalized itemsets g1, g2, . . . , gn that

represents the evolution of the knowledge covered by it in D. Each gi is a frequent (generalized) itemset extracted

from Di. gi may be either (i) it, in case it is frequent in Di with respect to the minimum support threshold, or (ii)

one of the frequent generalizations of it in Di characterized by minimum generalization level otherwise. A more

formal definition of HIGEN follows.

Definition 4.1: HIGEN. Let D={D1, D2, . . ., Dn} be an ordered sequence of timestamped structured datasets

and Γ be a taxonomy built over data items in Di ∈ D ∀ i. Let it be a not generalized itemset and min sup be a

minimum support threshold. A HIGEN HGit, associated with it, is an ordered sequence of itemsets or generalized

itemsets g1, g2, . . . , gn such that:

• if sup(it,Di) ≥ min sup then gi= it

• else gi= git, where git is an ancestor of it, with respect to Γ, frequent in Di and characterized by a minimum

generalization level among the set of frequent ancestors of it, i.e., git ∈ Anc[it,Γ] ∧ sup(git,Di) ≥ min sup

and @ git2 ∈ Anc[it,Γ] such that L[git,Γ] > L[git2,Γ] and sup(git2, Di) ≥ min sup

A HIGEN HGit may be represented as a sequence

g1 R1 g2 R2 . . . gn−1 Rn−1 gn

where Ri is a relationship holding between (generalized) itemsets gi and gi+1 and may be represented as ↗ if gi

is a descendant of gi+1, ↘ if gi is an ancestor of gi+1 or if L[gi,Γ] = L[gi+1,Γ].

Table II(b) reports the set of HIGENs mined from the timestamped datasets D1 and D2 (See Tables I(a) and I(b))

by enforcing an absolute minimum support threshold equal to 2 and by exploiting the taxonomy reported in Figure 2.

For instance, {(location, Paris)} ↗ {(location, France)} is a HIGEN associated with itemset {(location, Paris)}

given that {(location, Paris)} is a descendant of {(location, France)} and it is frequent in D1 but infrequent in

D2. Consider now the time attribute in D1 and D2 (See Tables I(a) and I(b)) and the corresponding generalization

hierarchy (see Figure 2(a)). {(time, from 5 p.m. to 6 p.m.)} ↘ {(time, 5 p.m.)} is a HIGEN associated with itemset

{(time, 5 p.m.)} while {(time, p.m.)} ↘ {(time, 5 p.m.)} does not as it exists an ancestor of {(time, 5 p.m.)},

i.e., {(time, from 5 p.m. to 6 p.m.)}, that is frequent in D1 and such that L[{(time, from 5 p.m. to 6 p.m.)}, Γ] <

L[{(time, p.m.)}, Γ].

b) The NON-REDUNDANT HIGEN: Since a not generalized itemset it may have several ancestors characterized

by the same generalization level, it trivially follows that an itemset may have many associated HIGENs. However,

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 12

analysts may prefer to look into a more concise set of temporal change patterns instead of the whole HIGEN set.

Among the possible generalizations of an infrequent itemset belonging to the minimal abstraction level, the ones

with minimal support are the generalizations that cover its knowledge with the minimal amount of redundancy (Cf.

Theorem 3.1).

To reduce the number of considered patterns, the notion of NON-REDUNDANT HIGEN is introduced. Among the

set of HIGENs relative to the same generalized itemset it, the NON-REDUNDANT HIGENs are the HIGENs that

include generalized itemsets with minimal redundancy, i.e., the ones with minimal support, in case the reference

itemset becomes infrequent in a certain time period.

Definition 4.2: NON-REDUNDANT HIGEN. Let D be an ordered sequence of timestamped structured datasets

and Γ a taxonomy built over data items in Di ∈ D ∀ i. A NON-REDUNDANT HIGEN SHGit, associated with it,

is a HIGEN composed of an ordered sequence of itemsets or generalized itemsets g1, g2, . . . , gn such that for each

generalized itemset gi in SHGit its redundancy with respect to it is minimal, i.e., it does not exist any frequent

ancestor g∗i of it such that sup(g∗i , Di) < sup(gi, Di).

From the above definition, it trivially follows that the number of NON-REDUNDANT HIGENs associated with

each not generalized itemset it is lower than the number of the corresponding HIGENs. Consider, for instance,

an item (time, 5:35 p.m.) and two of its possible generalizations (time, from 5 p.m. to 6 p.m.) and (time, from

5:30 p.m. to 6:30 p.m.) belonging to the same generalization level. Suppose that (time, 5:35 p.m.) ↗ (time, from

5 p.m. to 6 p.m.) and (time, 5:35 p.m.) ↗ (time, from 5:30 p.m. to 6:30 p.m.) are both HIGENs, according to

Definition 4.1. Among them, the analyst may prefer the one that covers the same knowledge supported by the

item (time, 5:35 p.m.) with a minimal amount of redundancy. If, for instance, the support of (time, from 5 p.m.

to 6 p.m.) is strictly lower than the support of (time, from 5:30 p.m. to 6:30 p.m.) in the second time period the

former HIGEN is selected as NON-REDUNDANT HIGEN. An empirical evaluation, performed on synthetic datasets,

of the average number of frequent generalizations, with minimum generalization level and support value, of each

infrequent itemset is reported in Section VI-C.

c) Problem statement: Given an ordered set of timestamped structured datasets, a taxonomy Γ, and a minimum

support threshold min sup, this paper addresses the problem of mining all HIGENs, according to Definitions 4.1.

To efficiently accomplish the HIGEN extraction task, in the next section I present the HIGEN MINER (HIstory

GENeralized Pattern MINER). The main HIGEN MINER algorithm modifications needed to address the NON-

REDUNDANT HIGEN extraction (Cf. Definition 4.2) are discussed as well.

V. THE HIGEN MINER ALGORITHM

The HIGEN MINER (HIstory GENeralized Pattern MINER) algorithm addresses the extraction of the HIGENs,

according to Definition 4.1.

HIGEN mining may be addressed by means of a postprocessing step after performing the traditional generalized

itemset mining step [3], constrained by the minimum support threshold and driven by the input taxonomy, from

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 13

each timestamped dataset. However, this approach may become computationally expensive, especially at lower

support thresholds, as it requires (i) generating all the possible item combinations by exhaustively evaluating the

taxonomy, (ii) performing multiple taxonomy evaluations over the same pattern mined several times from different

time periods, and (iii) selecting HIGENs by means of a, possibly time-consuming, postprocessing step.

To address the above issues, I propose a more efficient algorithm, called HIGEN MINER. It introduces the

following expedients: (i) To avoid generating all the possible combinations, it adopts, similarly to [6], an Apriori-

based support-driven generalized itemset mining approach, in which the generalization procedure is triggered on

infrequent itemsets only. Unlike [6], the generalization process does not generate all possible ancestors of an

infrequent itemset at any abstraction level, but it stops at the generalization level in which at least a frequent

ancestor occurs, (ii) to prevent multiple taxonomy evaluations over the same pattern, the generalization process of

each itemset is postponed after its support evaluation in all timestamped datasets and iteratively applied on infrequent

generalized itemsets of increasing generalization level, and (iii) to reduce the extraction time, HIGEN generation is

performed on-the-fly, without the need of an ad-hoc postprocessing step. Furthermore, a slightly modified version

of the HIGEN MINER algorithm is proposed to address NON-REDUNDANT HIGEN extraction. A description of the

main algorithm modifications is given in Section V-B.

As a drawback, the HIGEN MINER algorithm automatically selects the subset of generalized itemsets of interest

at the cost of a higher number of dataset scans with respect to a traditional Apriori-based miner. Consider a

timestamped datasets of n attributes and a taxonomy of height Hmax, the HIGEN MINER algorithm requires up to

Hmax · n dataset scans, while a traditional Apriori-like miner requires up to n dataset scans. However, traditional

mining approaches still require a postprocessing step to select the HIGENs of interest (Cf. Definition 4.1). The

experimental evaluation, reported in Section VI, shows that the HIGEN MINER algorithm yields good performance,

in terms of both pattern pruning selectivity, with respect to previous generalized itemset mining approaches (i.e., [3],

[6]), and execution time. In Section V-A, a pseudo-code of the HIGEN MINER is reported and thoroughly described

while, in Section V-B, the selection and categorization of the discovered HIGENs is addressed.

A. The HIGEN MINER algorithm pseudo-code

Algorithm 1 reports the pseudo-code of the HIGEN MINER. The HIGEN MINER algorithm iteratively extracts

frequent generalized itemsets of increasing length from each timestamped dataset by following an Apriori-based

level-wise approach and directly includes them into the HIGEN set. At an arbitrary iteration k, HIGEN MINER

performs the following three steps: (i) k-itemset generation from each timestamped dataset in D (line 3), (ii) support

counting and generalization of infrequent (generalized) k-itemsets of increasing generalization level (lines 6-37),

(iii) generation of candidate itemsets of length k+1 by joining k-itemsets and infrequent candidate pruning (line 39).

Since HIGEN MINER discovers HIGENs from relational datasets it adopts the well-known strategy to consider the

structure of the input datasets to avoid generating combinations that do not comply with the relational data format.

After being generated, frequent itemsets of length k are added to the corresponding HIGENs in the HG set (line 9),

while infrequent ones are generalized by means of the taxonomy evaluation procedure (line 17). Given an infrequent

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 14

itemset c of level l and a taxonomy Γ, the taxonomy evaluation procedure generates a set of generalized itemsets

of level l+1 by applying, on each item (tj , valuej) of c, the corresponding generalization hierarchy GHj ∈ Γ (see

Definition 3.2). All the itemsets obtained by replacing one or more items in c with their generalized versions of

level l+1 are generated and included into the Gen set (line 21). Finally, generalized itemset supports are computed

by performing a dataset scan (line 26). Frequent generalizations of an infrequent candidate c, characterized by level

l + 1, are first added to the corresponding HIGEN set and then removed from the Gen set when their lower level

infrequent descendants in each time period have been fully covered (lines 27- 32). In such a way, their further

generalizations at higher abstraction levels are prevented. Notice that the taxonomy evaluation over an arbitrary

candidate of length k is postponed when the support of all candidates of length k and generalization level l in each

timestamped dataset is available. This approach allows triggering the generalization on distinct candidates of level

l that are infrequent in at least one timestamped dataset in D. The sequence of support values of an itemset that

is infrequent in a given time period is store and reported provided that (i) it has at least a frequent generalization

in the same time period, and (ii) it is frequent in at least one of the remaining time periods. The generalization

procedure stops, at a certain level, when the Gen set is empty, i.e., when either the taxonomy evaluation procedure

does not generate any new generalization or all the considered generalizations are frequent in each time period and,

thus, have been pruned (line 30) to prevent further knowledge aggregations.

The HIGEN MINER algorithm ends the mining loop when the set of candidate itemsets is empty (line 40).

B. HIGEN categorization and selection

Domain experts are commonly in charge of looking into the discovered temporal change patterns to highlight

most notable trends. To ease the domain expert validation task, a preliminary analysis of the set of extracted HIGENs

may (i) categorize them based on their time-related trends, or (ii) prune them to select a subset of interest, i.e., the

NON-REDUNDANT HIGENs.

HIGEN categorization: To better highlight HIGEN significance, HIGENs are categorized, based on their time-

related trend, in: (i) Stable HIGENs, i.e., HIGENs that include generalized itemsets belonging to the same gen-

eralization level, (ii) monotonous HIGENs, i.e., HIGENs that include a sequence of generalized itemsets whose

generalization level shows a monotonous trend, and (iii) oscillatory HIGENs, i.e., HIGENs that include a sequence

of generalized itemsets whose generalization level shows a variable and non-monotonous trend. Since, according

to Definition 3.6, a generalized itemset of level l may have several generalizations of level l + 1 and taxonomies

may have unbalanced data item distributions, stable HIGENs may be further partitioned in: (i) Strongly stable

HIGENs, i.e., stable HIGENs, in which items, appearing in its generalized itemsets and belonging to same data

attribute, are characterized by the same generalization level, and (ii) Weakly stable HIGENs, i.e., stable HIGENs

in which items, appearing in its generalized itemsets and belonging to the same attribute, may be characterized by

different generalization levels. Examples of HIGENs, extracted from a real-life dataset, belonging to each category

are reported in Section VI.

NON-REDUNDANT HIGEN selection: To reduce the amount of generated patterns, analysts may focus on the

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 15

set of NON-REDUNDANT HIGENs (Cf. Definition 4.2). Since they represent the subset of HIGENs whose gener-

alizations cover the same knowledge covered by the reference infrequent itemset with minimal redundancy, they

may be deemed relevant by domain experts. Notice that the extraction of the NON-REDUNDANT HIGENs may

be accomplished by slightly modifying the HIGEN MINER algorithm (see Algorithm 1). A sketch of the main

algorithm modifications follows. At each algorithm iteration, once the the list of Gen set is populated, the set of

infrequent descendants of patterns in Gen is visited. A nested loop iterates on Gen in order of increasing support

and selects its generalizations with minimal support. Finally, the set HG of discovered temporal change patterns

is updated accordingly.

VI. EXPERIMENTAL RESULTS

I evaluated the HIGEN MINER (HIstory GENeralized Pattern MINER) algorithm by means of a large set of

experiments addressing the following issues: (i) The usefulness and the characteristics of the HIGENs mined from a

real-life dataset (Section VI-A), (ii) the pruning selectivity, in terms of the number of generalized itemsets extracted

by HIGEN MINER with respect to previous generalized itemset mining algorithms, i.e., [3], [6] (Section VI-B),

(iii) the performance, in terms of the number of extracted temporal patterns, of the HIGEN MINER algorithm

(Section VI-C), and (iv) the scalability, in terms of execution time, of the proposed approach (Section VI-D). All

the experiments were performed on a 3.2 GHz Pentium IV system with 2 GB RAM, running Ubuntu 8.04. The

HIGEN MINER algorithm was implemented in the Python programming language [21].

A. Domain expert validation

To validate the significance of the proposed approach, a campaign of experiments has been conducted on a

real-life dataset coming from a context-aware mobile system. The extracted HIGENs have been first processed,

based on the procedure described in Section V-B. Next, they have been analyzed by a domain expert to assess their

usefulness in the context of mobile user and service profiling.

This Section is organized as follows. Section VI-A.1 provides a brief description of the adopted dataset. Sec-

tion VI-A.2 reports a selection of the discovered HIGENs while Section VI-A.3 describes the characteristics of the

discovered HIGENs based on the proposed categorization (see Section V-B).

1) Real dataset: A real dataset, called mDesktop, is provided by a research hub, namely the Telecom Italia

Lab. It collects contextual information about user application requests submitted, through mobile devices, over the

time period of three months (i.e., from August to October). From the whole context data collection, I generated

3 different timestamped datasets, each one corresponding to a 1-month time period. Regarding privacy concerns

related to real context data usage, please notice that (i) experimental data were collected from voluntary users that

provide their whole informed consent on personal data treatment for this research project, and (ii) real user names

were hidden throughout the paper to preserve identities. A more detailed description of the adopted data collection

follows.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 16

mDesktop dataset. The Telecom Italia mobile desktop application provides a wide range of services to users

through mobile devices. Some of them provide recommendations to users on restaurants, museums, movies, and

other entertainment activities. For instance, they allow end users to request for a recommendation (GET REC

service), enter a score (V OTE service), or update a score for an entertainment center (UPDATE service). Other

services allow users to upload files, photos, or videos and share them with the other users. The dataset includes

1,197 user requests concerning file sharing and uploading, 5814 records concerning user recommendations, and

4487 records regarding other kinds of services (e.g., weather forecasts, SMS, and call requests). To perform HIGEN

mining, a taxonomy including the following generalization hierarchies has been defined.

• time stamp → hour → time slot (two-hour time slots) → time slot (six-hour time slots) → day period

(AM/PM)

• service → service category

• latitude:longitude → city → country

• phone number → call type (PERSONAL/BUSINESS)

In particular, service characterization is performed by exploiting the generalization hierarchy over the Service

attribute domain reported in Figure 3.

Fig. 3. Generalization hierarchy over the Service attribute

I also considered (i) different time periods, and (ii) different generalization hierarchies for the time stamp attribute.

In particular, I also considered 1-week time periods and 4-hour and 8-hour time slots. Some remarkable examples

of HIGENs mined by using these configurations are reported in Section VI-A.2.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 17

2) Discovered pattern analysis: In the following, a selection of the discovered HIGENs is reported. Furthermore,

possible scenarios of usage for the selected patterns suggested by the expert are discussed. The reported HIGENs

are classified based on the categorization presented in Section V-B. Note that all the reported HIGENs, selected

by the expert as most notable patterns, are also NON-REDUNDANT HIGENs. Indeed, the pruning of the not NON-

REDUNDANT HIGENs did not relevantly affect the effectiveness of the knowledge discovery process.

a) Examples of stable HIGENs: Stable HIGENs are HIGENs whose generalized itemsets have the general-

ization level in common. Table III reports two examples of extracted strongly stable HIGENs, namely the HIGENs

1 and 2, and one example of weakly stable HIGEN, namely the HIGEN 3, generated by enforcing a minimum

support threshold min sup = 0.001%.

Both the reported strongly stable HIGENs concern the usage time of service Twitter, which provides mobile

access to a famous online community. Since in HIGENs 1 and 2 all the items belonging to attribute Service are

characterized by generalization level 1, while the ones belonging to attribute Time belong, respectively, to levels 2

and 3, the considered HIGENs are categorized as strongly stable HIGENs. The first strongly stable HIGEN states

that requests for Twitter are frequently submitted between 9 p.m. and 10 p.m. within each considered month. The

second one states a similar recurrence at a higher temporal abstraction level, i.e., between 7 p.m. and 13 p.m..

Their joint extraction implies that service Twitter is frequently requested from 9 p.m. to 10 p.m. within each month,

but exists at least one hourly time slot between 7 p.m. and 13 p.m., different from [9 p.m., 10 p.m.], such that

is infrequent within each considered month. I also analyzed the recurrences in service Twitter usage mined from

shorter time periods. Even by considering weekly time periods, analogous trends are shown. Differently, the third

stable HIGEN concerns the usage time of the whole application service by a user called John. Although, according

to Definition 3.6, all its generalized itemsets have the same generalization level (i.e., 3), it is categorized as weakly

stable HIGEN provided that the level of the items belonging to attribute User changes from month to month. This

means that the information stored in the generalized itemsets changes its abstraction level, with respect to the input

taxonomy, for a certain extent. However, since the overall itemset generalization level is affected by the mostly

generalized attribute values (i.e., values associated with attribute Time), whose level does not vary over time, it still

retains a certain degree of stability.

The information provided by stable HIGENs may be deemed relevant for service provisioning. For instance, the

analyst may profitably exploit this knowledge for suiting bandwidth shaping to the actual user needs. In particular, he

may either allocate dedicated bandwidth to frequently requested services at specific time slots or use free bandwidth

at less congested time slots for network monitoring purposes.

b) Examples of monotonous HIGENs: Monotonous HIGEN s are HIGENs whose sequence of generalized

itemsets is characterized by generalization levels with monotonous trend due to a steadfast and significant de-

crease/increase of the itemset support values, with respect to the support threshold, in consecutive time periods.

Consider the monotonous HIGENs reported in Table III, which have been generated by enforcing a minimum

support threshold min sup = 0.001%.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 18

HIGENs mined between August and October

Time period Generalized itemset Support (%) Gen. level Relationship

Strongly Stable HIGEN 1

August {(Service, Twitter), (time, from 9 p.m. to 10 p.m.)} 0.051 2
September {(Service, Twitter), (time, from 9 p.m. to 10 p.m.)} 0.020 2
October {(Service, Twitter), (time, from 9 p.m. to 10 p.m.)} 0.022 2 -

Strongly Stable HIGEN 2

August {(Service, Twitter), (time, from 7 p.m. to 13 p.m.)} 0.071 3
September {(Service, Twitter), (time, from 7 p.m. to 13 p.m.)} 0.031 3
October {(Service, Twitter), (time, from 7 p.m. to 13 p.m.)} 0.044 3 -

Weakly Stable HIGEN 3

August {(User, Employee), (time, from 7 p.m. to 13 p.m.)} 0.051 3
September {(User, Employee), (time, from 7 p.m. to 13 p.m.)} 0.062 3
October {(User, John), (time, from 7 p.m. to 13 p.m.)} 0.024 3 -

Monotonous HIGEN 4

August {(Service, Home W), (User, John)} 0.005 1 ↗
September {(Service, Home Services), (User, John)} 0.017 2
October {(Service, Home Services), (User, John)} 0.021 2 -

Monotonous HIGEN 5

August {(Service, Travels), (User, John)} 0.009 2 ↘
September {(Service, Trains), (User, John)} 0.008 1
October {(Service, Trains), (User, John)} 0.007 1 -

Oscillatory HIGEN 6

August {(Service, Travels), (User, Terry)} 0.015 2 ↘
September {(Service, Maps), (User, Terry)} 0.053 1 ↗
October {(Service, Travels), (User, Terry)} 0.017 2 -

Oscillatory HIGEN 7

August {(Service, MMS), (Time, from 13 p.m. to 14 p.m.)} 0.004 2 ↗
September {(Service, MMS), (Time, from 13 p.m. to 15 p.m.)} 0.005 3 ↘
October {(Service, MMS), (Time, from 13 p.m. to 14 p.m.)} 0.002 2 -

TABLE III

mDesktop DATASET. EXAMPLES OF HIGENS. min sup = 0.001%.

Consider service Home W belonging to category Home Services, which is targeted to provide facilities to users

who are at home. The first monotonous HIGEN (i.e., HIGEN 4) shows a recurrence in user John mDesktop application

service usage. Requests for service Home W are frequently submitted in August, while become infrequent in both

September (sup = 0.0001%) and October (sup = 0.0008%). Nevertheless, the corresponding category Home Services

remains frequent in all the considered months. Readers can notice that weak monotonicity holds as the corresponding

itemset generalization level increases from August to September while remains constant from September to October.

It is worth mentioning that, by considering weekly time periods separately within each month, the reference itemset

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 19

{(Service, Home W), (User, John)} generates a strongly stable HIGEN over August, while it generates oscillatory

HIGENs in the next months. Differently, the monotonous HIGEN 5 highlights an opposite trend. It regards service

Trains, which belongs to service category Travels and provides information on rail transports. User John appears

less interested in service Trains in August (sup = 0.0002%), possibly due to holiday vacations, while the service

increases its attractiveness in the following months.

The above information is deemed relevant by domain expert for both user and service profiling. The analyst

could (i) shape service bandwidth depending on the time period, (ii) personalize user John service promotions,

and (iii) plan long-term promotions to counteract service usage decrease at certain times of the year. The extracted

information may be also used for cross-selling purposes, i.e., by suggesting others services belonging to category

Home Services (e.g., service Weather) to either increase user interest in the service category or counteract user

migration from occasional use services (i.e., classes of services, such as Travels, on which users focus their

interest for short time periods) to commonly used services (e.g., service Home W).

c) Examples of oscillatory HIGENs: Oscillatory HIGENs are HIGENs whose sequence of generalized itemsets

is characterized by generalization levels with variable and non-monotonous trend. Consider, for instance, the

oscillatory HIGENs, reported in Table III, mined by enforcing a minimum support threshold equal to 0.01%.

The first oscillatory HIGEN (i.e., HIGEN 6) concerns service category Travels, which provides to users informa-

tion about travels, and its service Maps, which allows browsing of geographical maps. User Terry seems interested

in services belonging to category Travels in each considered month. Nevertheless, in September, he focused his

interest in service Maps, possibly due to work travels. Differently, the second oscillatory HIGEN (i.e., HIGEN 7)

provides information about the usage time of service MMS. In August and October, the service MMS is frequently

requested between 13 p.m. and 14 p.m., while in September user interest in service MMS in the same time slot

decreases but still holds between 13 p.m. and 15 p.m. Notice that, by using a different 2-hour time stamp (between

12 p.m. and 14 p.m.) the temporal correlation does not hold anymore. By looking into the discovered oscillatory

HIGENs, analysts may, for instance, investigate the provision of occasional use services (e.g., service Maps) and

perform the following actions: (i) suggest complementary services (e.g., service Flightstats), (ii) plan promotions

targeted to specific user profiles, and (iii) discover mostly used service parameters to automatically suggest (e.g.,

frequently requested GPS coordinates for service Maps).

3) Characteristics of the discovered HIGENs: The expert also analyzes the frequency of stable, monotonous,

and oscillatory HIGENs inherent in a certain service category. To address this issue, he adopts the following

three-step approach: (i) HIGEN mining from mDesktop by means of the HIGEN MINER algorithm, by enforcing

a minimum support threshold min sup = 0.001%, (ii) selection of the HIGENs whose generalized itemsets

include items belonging to the Service attribute (i.e., service description), and (iii) HIGEN categorization based

on the service categories reported in Figure 3. For instance, the monotonous HIGEN {(Service, SMS)} ↗

{(Service, Communication)} would be associated with category Communication. Table IV reports the dis-

tribution of the HIGENs within the service categories.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 20

Service category Number of Number of Number of

stable monotonous oscillatory

HIGENs (%) HIGENs (%) HIGENs (%)

Weak Strong Total

Travels 18 9 27 32 41

Communication 19 33 52 22 26

Entertainment 20 7 27 34 39

Friends 14 12 26 44 30

Home Services 17 28 45 32 23

Recs 15 14 29 36 35

Teamlife 14 22 36 27 37

TABLE IV

mDesktop DATASET. HIGEN DISTRIBUTION. min sup = 0.001%

Categories that include commonly used services (e.g., category Communication) are mainly represented by

stable HIGENs (e.g., 52% of the HIGENs belonging to Communication are stable against 22% of monotonous

HIGENs and 26% of oscillatory HIGENs), while categories that group occasional use services are mostly covered

by monotonous or oscillatory HIGENs. A significant percentage of strongly stable HIGENs characterizes service

categories with a great regularity in their context of use (e.g., category Home Services). For these services,

analysts may design long-term resource and promotion plans. Service categories with a significant percentage of

weakly stable or monotonous HIGENs (e.g., Entertainment and Friends) are usually suitable for medium-term

plans, as they show periodical (e.g., seasonal) variations of their context of usage. Finally, oscillatory HIGENs are

often characterized by non-deterministic behaviors. For instance, notice that service category Travels includes a

significant percentage of oscillatory HIGENs as its usage changes significantly and unexpectedly from month to

month.

B. HIGEN MINER pruning selectivity

I evaluated the pruning selectivity of the HIGEN MINER generalization procedure on synthetic datasets. To this

aim, I compared the number of frequent itemset and generalized itemsets mined from each generated timestamped

dataset with that extracted by the following generalized frequent itemset mining algorithms: (i) a traditional

algorithm, i.e., Cumulate [3], which performs an exhaustive taxonomy evaluation by generating all possible frequent

combinations of generalized and not generalized itemsets, and (ii) a recently proposed support-driven approach to

itemset generalization, i.e., GENIO [6], which generates a generalized itemset only if it has at least an infrequent

descendant (Cf. Definition 3.7). The set of experiments was performed on synthetic datasets generated by means

of the TPC-H generator [26], whose main configuration settings follow.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 21

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by Cumulate
Not generalized itemsets mined by Cumulate

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by GenIO
Not generalized itemsets mined by GenIO

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by HiGen Miner
Not generalized itemsets mined by HiGen Miner

Fig. 4. Generalized and not generalized itemsets extracted from data-1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by Cumulate
Not generalized itemsets mined by Cumulate

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by GenIO
Not generalized itemsets mined by GenIO

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by HiGen Miner
Not generalized itemsets mined by HiGen Miner

Fig. 5. Generalized and not generalized itemsets extracted from data-2

1) Synthetic datasets: The TPC-H data generator [26] consists of a suite of business-oriented ad-hoc database

queries. By varying the scale factor parameter, files with different size could be generated. Generalized itemsets have

been mined from a dataset generated from the lineitem table by setting a scale factor equal to 0.075 (i.e., around

450,000 records). Hierarchies on line item categorical attributes have been generated by using the part, nation,

and region tables. To generate generalization hierarchies over the continuous attributes, I applied several data equi-

depth discretization steps of finer granularities. The finest discretized values are considered as data item values

and, thus, become the taxonomy leaves, while the coarser discretization procedures are exploited to aggregate the

corresponding lower level values. More specifically, pairs of consecutive discretized values are aggregated in higher

level items. To partition the whole dataset in three distinct time-related data collections I queried the source data

by enforcing different constraints on the shipping date value (attribute ShipDate). More specifically, I partitioned

line items shipped in the three following time periods: [1992-01-01, 1994-02-31], [1994-03-01, 1996-05-31] [1996-

06-01, 1998-12-01]. For the sake of brevity, I will denote the corresponding datasets as data-1, data-2, and data-3

in the rest of this section.

2) Performance comparison: Since the enforcement of the minimum support threshold during the itemset mining

step significantly affects the number of extracted itemsets, I performed different mining sessions, for all combinations

of algorithms and datasets, by varying the minimum support threshold value. In Figures 4, 5, and 6 I plotted the

number of itemsets mined, respectively, from data-1, data-2, and data-3. To test the HIGEN MINER algorithm, I

considered the generated datasets in order of increasing shipment date interval. To better highlight the pruning

selectivity on the cardinality of the mined generalized itemsets, I distinguished between generalized itemsets and

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 22

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by Cumulate
Not generalized itemsets mined by Cumulate

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by GenIO
Not generalized itemsets mined by GenIO

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 it
em

se
ts

minimum support threshold (%)

Generalized itemsets mined by HiGen Miner
Not generalized itemsets mined by HiGen Miner

Fig. 6. Generalized and not generalized itemsets extracted from data-3

not.

For all the tested algorithms and datasets and for most of the settings of minimum support value, the percentage

of extracted frequent itemsets including at least one generalized item is significant (i.e., higher than 60%). For both

Cumulate and GENIO, the number of mined (generalized) itemsets significantly increases when lower minimum

support values are enforced (e.g., 1%). Thus, the analysis of the temporal evolution of the extracted itemsets

may require a computationally expensive postpruning step. In GENIO, infrequent items are aggregated during the

extraction process and all frequent ancestors of an infrequent itemset are extracted. However, most of the extracted

generalization seem redundant as they represent the same infrequent knowledge at increasing abstraction levels.

The less redundant generalizations could be selected as the less redundant frequent representatives. By following

this approach, the HIGEN MINER algorithm selects just the frequent ancestors with minimal generalization level

(i.e., with minimal redundancy). The pruning selectivity, in terms of the number of extracted generalized itemsets,

achieved by HIGEN MINER within each time period appears more evident when lower support thresholds (e.g.,

2%) are enforced (see Figures 4, 5, and 6). In fact, when high support thresholds (e.g., 7%) are enforced, most

of the frequent generalizations have already a high generalization level and, thus, the pruning effectiveness is less

evident. Oppositely, when lower support thresholds are enforced (e.g., 2%), the extraction of a significant amount

of redundant generalized itemsets, generated by both Cumulate and GENIO, is prevented. The pruning rate on

the number of mined higher level (generalized) itemsets is between 5% and 15% with respect to GENIO for any

support threshold value.

C. HIGEN MINER performance analysis

I analyzed the performance of the HIGEN MINER algorithm, in terms of the number extracted HIGENs and

NON-REDUNDANT HIGENs, by analyzing the impact of the following factors: (i) minimum support threshold,

(ii) number of time periods, and (iii) taxonomy characteristics. A set of experiments was performed on synthetic

datasets generated by means of the TPC-H generator [26]. The baseline configuration used for data generation is

similar to that described in Section VI-B.1.

a) Impact of the support threshold: I analyzed, on synthetic datasets, the impact of the minimum support

threshold on the number of discovered HIGENs and NON-REDUNDANT HIGENs. In Figure 7 I report the number

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 23

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

2 3 4 5

N
um

be
r

of
 e

xt
ra

ct
ed

 H
iG

en
s

Taxonomy height

Non-redundant HiGens HiGens

 0

 10000

 20000

 30000

 40000

 50000

2 3 4 5

N
um

be
r

of
 e

xt
ra

ct
ed

 H
iG

en
s

Taxonomy height

Non-redundant HiGens HiGens

 0

 20000

 40000

 60000

 80000

 100000

0.
5 1 2 3 4 5 6 7

N
um

be
r

of
 e

xt
ra

ct
ed

 H
iG

en
s

minimum support threshold (%)

Non-redundant HiGens HiGens

 0

 20000

 40000

 60000

 80000

 100000

2 3 4 5 6

N
um

be
r

of
 e

xt
ra

ct
ed

 H
iG

en
s

Number of time periods

Non-redundant HiGens HiGens

Fig. 7. HIGEN MINER: number of mined HIGENs and NON-REDUNDANT HIGENs. Default parameters: min sup=1%, Taxonomy height =

3, Time periods = 3.

of HIGENs mined from data-1, data-2, and data-3 by varying the minimum support threshold. To test the HIGEN

MINER algorithm, datasets are considered in order of increasing shipment date interval. To better highlight the

pruning selectivity yielded by mining NON-REDUNDANT HIGENs, I distinguished between NON-REDUNDANT

HIGENs and not.

As expected, the number of generated HIGENs increases more than linearly when the minimum support threshold

decreases. The selection of the NON-REDUNDANT HIGENs significantly reduces the number of generated temporal

change patterns. In fact, the number of possible generalizations with minimal generalization level of each infrequent

itemset significantly affects the cardinality of the set of mined HIGENs. Let min sup be a minimum support

threshold. Let n be the number of considered time periods (i.e., the number of timestamped datasets) and let |{pi}|

be the average number of not generalized patterns pi that are frequent, with respect to min sup, in an arbitrary

time period at any abstraction level. Let avg level sharing be the average number of frequent generalizations,

with minimum generalization level, of an infrequent pattern. An estimation of the number of HIGENs (|HiGen|),

mined by enforcing a support threshold min sup, is:

|HiGen| ≈ avg level sharing · (n− 1) · |{pi}| (1)

By setting n = 3 and by approximating the {pi} set cardinality in Formula 1 as the greatest common divisor of the

number of generalized itemsets extracted from data-1, data-2, and data-3, for each support threshold (see Figures 4, 5,

and 6), I can compute the approximated value achieved by avg level sharing, for any support threshold, starting

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 24

from the results reported in Figure 7. The average number avg level sharing of frequent generalizations, with

minimal generalization level, of each infrequent itemset turns out to range from 2 to 4 for any support threshold.

The achieved results are close to the expectations. By selecting the NON-REDUNDANT HIGENs, the reduction, in

terms of the number of HIGENs, is greater than 35% for any support threshold. The obtained results depend on

the considered data item distribution.

b) Impact of the number of time periods: I analyzed the impact of the number of considered time periods

on the cardinality of the extracted patterns. To this aim, I uniformly partitioned the ShipDate attribute domain

of the lineitem table in an increasing number of intervals. Figure 7 reports the number of mined HIGENs and

NON-REDUNDANT HIGENs. The cardinality of the discovered HIGENs grows when the number of time periods

increases due to both the presence of new reference itemsets that are frequent, at any abstraction level, in at least

one time period and the generation of multiple combinations of least generalized itemsets. As expected, the increase

is less relevant when considering just NON-REDUNDANT HIGENs.

c) Impact of the taxonomy characteristics: I also analyzed, on synthetic datasets, the impact of the main

taxonomy characteristics on the number of extracted HIGENs and NON-REDUNDANT HIGENs. To evaluate the

impact of the taxonomy height, I generated ad-hoc taxonomies of increasing height by varying the number of

discretization steps adopted for aggregating continuous data attribute values. To also evaluate the impact of different

multiple-level data item distributions, Figures 7 reports the number of extracted temporal patterns, when varying the

taxonomy height, by applying two representative discretization procedures, i.e., an equi-depth procedure [24] and an

entropy-based one [13], on numeric data attributes. A similar trend is shown by both the tested item distributions.

By using a taxonomy composed of only 2 levels many generalizations are still infrequent in some time periods and,

thus, the corresponding HIGENs are not extracted. When the taxonomy height increases from 2 to 4 a significant

number of reference infrequent itemsets becomes frequent at a higher generalization level and, thus, the number

of extracted combinations relevantly grows. Further taxonomy height increments do not produce any significant

increase of the HIGEN cardinality. Since the data distribution generated by the entropy-based discretization is

sparser than that generated by the equi-depth procedure, it produces a smaller number of temporal correlations.

D. HIGEN MINER scalability

I also analyzed, on synthetic datasets, the scalability of the HIGEN MINER algorithm, in terms of the execution

time. To analyze the scalability with the number of dataset records, I exploited the TPC-H data generator [26] and

I varied the scale factor to generate datasets of increasing size, ranging from 150, 000 to 900, 000 records. To test

the HIGEN MINER, I exploited the same configurations for the data generator already described in Section VI-

B.1. Figure 8 plots the time spent in HIGEN mining for different support values. The computational complexity

significantly increases for lower minimum support threshold values (e.g., 1%) due to the higher number of extracted

itemsets. However, the execution time scales roughly linearly with the number of dataset records for any support

threshold.

I also analyzed on synthetic datasets the scalability of the HIGEN MINER with both the taxonomy height and the

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 25

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 150000 300000 450000 600000 750000 900000

E
xe

cu
tio

n
tim

e
(s

)

Number of records

minsup=1% minsup=2% minsup=3%

Fig. 8. Scalability of the HIGEN MINER algorithm. Time periods = 3. Taxonomy height = 3

number of time periods. Results, not reported here due to the lack of space, show that HIGEN MINER averagely

scales more than linearly with both taxonomy height and number of time periods due to the non-linear growth of

the number of considered (potentially relevant) combinations. However, the HIGEN MINER execution time is still

acceptable even when coping with quite complex taxonomies evaluated over a number of time periods (e.g., around

20, 000 seconds with min sup=1%, time periods = 6, taxonomy height = 5, number of records = 300, 000).

VII. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of change mining in the context of frequent itemsets. To represent the

evolution of itemsets in different time periods without discarding relevant but rare knowledge due to minimum

support threshold enforcement, it proposes to extract generalized itemsets characterized by minimal redundancy

(i.e., minimum abstraction level) in case one itemset becomes infrequent in a certain time period. To this aim, two

novel kinds of dynamic patterns, namely the HIGENs and the NON-REDUNDANT HIGENs, have been introduced.

The usefulness of the proposed approach to support user and service profiling in a mobile context-aware environment

has been validated by a domain expert.

Future works will address: (i) the automatic inference and use of multiple taxonomies from data coming from real

application contexts (e.g., social network data), and (ii) the pushing of more complex HIGEN quality constraints

into the mining process.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. ACM SIGMOD Record,

pages 207–216, 1993.

[2] R. Agrawal and G. Psaila. Active data mining. In Proceedings of the 1st international conference on knowledge discovery and data

mining, pages 3–8, New York, NY, USA, 1995. AAAI.

[3] R. Agrawal and R. Srikant. Mining generalized association rules. VLDB’95, pages 407–419, 1995.

[4] M. L. Antonie, O. R. Zaiane, and A. Coman. Application of data mining techniques for medical image classification. MDM/KDD’01,

2001.

[5] W.-H. Au and K. C. C. Chan. Mining changes in association rules: a fuzzy approach. Fuzzy Sets Syst., 149:87–104, January 2005.

[6] E. Baralis, L. Cagliero, T. Cerquitelli, V. D’Elia, and P. Garza. Support driven opportunistic aggregation for generalized itemset extraction.

In IS 2010, 2010.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 26

[7] S. Baron, M. Spiliopoulou, and O. G?nther. Efficient monitoring of patterns in data mining environments. In L. Kalinichenko, R. Manthey,

B. Thalheim, and U. Wloka, editors, Advances in Databases and Information Systems, volume 2798 of Lecture Notes in Computer Science,

pages 253–265. Springer Berlin Heidelberg, 2003.

[8] M. Böttcher, D. Nauck, D. Ruta, and M. Spott. Towards a framework for change detection in data sets. In M. Bramer, F. Coenen, and

A. Tuson, editors, Research and Development in Intelligent Systems XXIII, pages 115–128. Springer London, 2007.

[9] D. W.-L. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of discovered association rules in large databases: An incremental updating

technique. In Proceedings of the Twelfth International Conference on Data Engineering, ICDE ’96, pages 106–114, Washington, DC,

USA, 1996. IEEE Computer Society.

[10] C. Clifton, R. Cooley, and J. Rennie. Topcat: Data mining for topic identification in a text corpus. In In Proceedings of the 3rd European

Conference of Principles and Practice of Knowledge Discovery in Databases, 2002.

[11] G. Dong, J. Han, J. M. W. Lam, J. Pei, K. Wang, and W. Zou. Mining constrained gradients in large databases. IEEE Trans. on Knowl.

and Data Eng., 16:922–938, August 2004.

[12] G. Dong and J. Li. Mining border descriptions of emerging patterns from dataset pairs. Knowl. Inf. Syst., 8:178–202, August 2005.

[13] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of

the 13th International Joint Conference on Artificial Intelligence, pages 1022–1029, 1993.

[14] S. C. Gates, W. Teiken, and K.-S. F. Cheng. Taxonomies by the numbers: building high-performance taxonomies. In CIKM ’05: Proceedings

of the 14th ACM international conference on Information and knowledge management, pages 568–577, New York, NY, USA, 2005. ACM.

[15] P. Giannikopoulos, I. Varlamis, and M. Eirinaki. Mining frequent generalized patterns for web personalization in the presence of taxonomies.

IJDWM, 6(1):58–76, 2010.

[16] J. Han and Y. Fu. Mining multiple-level association rules in large databases. IEEE Transactions on knowledge and data engireering,

11(7):798–805, 1999.

[17] J. Hipp, A. Myka, R. Wirth, and U. Guntzer. A new algorithm for faster mining of generalized association rules. Proceedings of the 2nd

European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD98), pages 74–82, 1998.

[18] T. Imieliski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association rules. Data Mining and Knowledge Discovery,

6:219–257, 2002. 10.1023/A:1015417610840.

[19] B. Liu, W. Hsu, and Y. Ma. Discovering the set of fundamental rule changes. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’01, pages 335–340, New York, NY, USA, 2001. ACM.

[20] B. Liu, Y. Ma, and R. Lee. Analyzing the interestingness of association rules from the temporal dimension. In ICDM, pages 377–384,

2001.

[21] Python. Python website, 2009.

[22] L. D. Raedt. Constraint-based pattern set mining. In In SIAM International Conference on Data Mining, pages 237–248, 2007.

[23] B. Shen, M. Yao, Z. Wu, and Y. Gao. Mining dynamic association rules with comments. Knowl. Inf. Syst., 23:73–98, April 2010.

[24] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association patterns. In ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’02), pages 32–41, July 2002.

[25] Y. Tao and M. T. Özsu. Mining frequent itemsets in time-varying data streams. In Proceeding of the 18th ACM conference on Information

and knowledge management, CIKM ’09, pages 1521–1524, New York, NY, USA, 2009. ACM.

[26] TPC-H. The TPC benchmark H. Transaction Processing Performance Council, 2009. http://www.tpc.org/tpch/default.asp.

[27] K. Verma and O. P. Vyas. Efficient calendar based temporal association rule. SIGMOD Rec., 34:63–70, September 2005.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 27

Luca Cagliero is a Ph.D. student at the Dipartimento di Automatica e Informatica of the Politecnico di Torino since

January 2008. He holds a Master degree in Computer and Communication Networks from Politecnico di Torino. His

current research interests include Data Mining and Database Systems. He has worked on user and service profiling in

context-aware systems, ontology construction, and social network analysis by using itemset and association rule mining

algorithms.

DRAFT

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 20XX 28

Algorithm 1 HIGEN MINER: HIstory GENeralized Pattern MINER
Input: ordered set of timestamped structured datasets D={D1, D2, . . ., Dn}, minimum support threshold min sup, taxonomy Γ

Output: set of HIGENs HG

1: k = 1 // Candidate length

2: HG = ∅

3: Ck = set of distinct k-itemsets in D

4: repeat

5: for all c ∈ Ck do

6: scan Di and count the support sup(c,Di) ∀ Di ∈ D

7: end for

8: Li
k = {itemsets c ∈ Ck| sup(c,Di) ≥ min sup for some Di ∈ D}

9: HG = update HIGEN set(Li
k , HG)

10: l = 1 // Candidate generalization level

11: Gen = ∅ // generalized itemset container

12: repeat

13: for all c in Ck of level l do

14: Dinf
c = {Di ∈ D | sup(c,Di) < min sup} // datasets for which c is infrequent

15: if Dinf
c 6= ∅ then

16: gen(c) = set of new generalizations of itemset c of level l + 1

17: gen(c) = taxonomy evaluation(Θ, c)

18: for all gen ∈ gen(c) do

19: gen.Desc = c // Generalized itemset descendant

20: end for

21: Gen = Gen ∪ gen(c)

22: end if

23: end for

24: if Gen 6= ∅ then

25: for all gen ∈ Gen do

26: scan Di and count the support of gen ∀ Di ∈ Dinf
gen.Desc

27: for all gen| sup(gen,Di) ≥ min sup for some Di ∈ Dinf
gen.Desc do

28: HG = update HIGEN set(gen, HG)

29: if sup(gen,Di) ≥ min sup for all Di ∈ Dinf
gen.Desc then

30: remove gen from Gen

31: end if

32: end for

33: end for

34: Ck = Ck ∪ Gen

35: end if

36: l = l + 1

37: until Gen = ∅

38: k = k + 1

39: Ck+1 = candidate generation(
⋃

i C
i
k)

40: until Ck = ∅

41: return HG

DRAFT

