
 1

A Query Formulation Language for the
Data Web

Mustafa Jarrar, Marios D. Dikaiakos

Abstract— We present a query formulation language (called MashQL) in order to easily query and fuse structured data on the

web. The main novelty of MashQL is that it allows people with limited IT-skills to explore and query one (or multiple) data

sources without prior knowledge about the schema, structure, vocabulary, or any technical details of these sources. More

importantly, to be robust and cover most cases in practice, we do not assume that a data source should have -an offline or

inline- schema. This poses several language-design and performance complexities that we fundamentally tackle. To illustrate

the query formulation power of MashQL, and without loss of generality, we chose the Data Web scenario. We also chose

querying RDF, as it is the most primitive data model; hence, MashQL can be similarly used for querying relational databases

and XML. We present two implementations of MashQL, an online mashup editor, and a Firefox add-on. The former illustrates

how MashQL can be used to query and mash up the Data Web as simple as filtering and piping web feeds; and the Firefox add-

on illustrates using the browser as a web composer rather than only a navigator. To end, we evaluate MashQL on querying two

datasets, DBLP and DBPedia, and show that our indexing techniques allow instant user-interaction.

Index Terms— Query Formulation, Semantic Web, Data Web, RDF, SPARQL, Indexing Methods, Query Optimization, Mashup

—————————— � ——————————

1. INTRODUCTION AND MOTIVATION

llowing end-users to easily search and consume
structured data is a known challenge that receives
recently a great attention from the Web 2.0 and the

Data Web communities. The rapid growth of structured
data on the Web has created a high demand for making
this content more reusable and consumable. Companies
are competing not only on gathering structured content
and making it public, but also on encouraging people to
reuse and profit from this content. Many companies such
as Google Base, Yahoo Local, Freebase, Upcoming, Flicker,
eBay, Amazon, and LinkedIn have made their content
publicly accessible through APIs. In addition, companies
have also started to widely adopt web metadata standards.
For example, Yahoo started to support websites
embedding RDF and microformats, by better presenting
them in the search results; MySpace also started to adopt
RDF for profile and data portability; Google, Upcoming,
Slideshare, Digg, the Whitehouse, and many others started
to publish their content in RDFa, a forthcoming W3C
standard for embedding RDF inside webpages so that
content can be better understood, searched, and filtered.

This trend of structured data on the Web (Data Web) is
shifting the focus of Web technologies towards new
paradigms of structured-data retrieval. Traditional search
engines cannot serve such data as the results of a keyword-
based query will not be precise or clean, because the query
itself is still ambiguous although the underlying data is
structured. To expose the massive amount of structured data
on the Web to its full potential, people should be able to
query this data easily and effectively. Formulating queries

should be fast and should not require programming skills.

1.1 Challenges

The main challenge is that, before formulating a query,
one has to know the structure of the data and the attribute
labels (i.e., the schema). End-users are not expected to
investigate “what is the schema” each time they search or
filter information. In many cases, a data schema might be
even dynamic, i.e., many kinds of items with different
attributes are often being added and dropped. Other
sources might be schema-free, or if it exists, the schema
might be inline the data (e.g., RDF). Allowing end-users to
query structured data flexibly is a challenge, especially
when a query involves multiple sources.

Example: Figure 1 shows two RDF sources1,
Example1.com and Example2.com. Suppose a Web user
wants to retrieve “Lara’s articles after 2007” from both
sites. These sources do not only disagree on property labels
(e.g., Year and PubYear), but also on data semantics. For
example, while the rdf:Type in Example1 tells us that A1
and A2 are Articles, we do not know whether B1 and B2 in
Example2 are articles, books, or songs.

It is not necessary in RDF that data adheres to a certain
schema or ontology. RDF data is queried using SPARQL
[42]. The query in the right-hand side retrieves “the titles of
the items that are written by Lara after 2007”. Query
conditions in SPARQL are called triple-patterns, and
evaluated as pattern-filling [41], rather than truth- evaluation
if compared with SQL. This is a robust way for querying
schema-free data, as changes to data do not cause queries to
break; however, it poses hard query formulation challenges.
Before writing a query, one has to be fully-aware of the
property labels and data structures. Unlike formulating SQL,

1 RDF represents data as a directed labeled graph. A graph is a set
of triples of the form <Subject, Predicate, Object>. Subjects and
Predicates must be URIs, an Object can be either a URI or a Literal.

————————————————

• M. Jarrar is the Birzeit Universit, Ramallah, Palestine.
E-mail:mjarrar@birzeit.edu

• M. D. Dikaiakos is with the University of Cyprus.20537, Nicosia, Cyprus.
E-mail:,mdd@cs.ucy.ac

A

2

http://example1.com
:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”
:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

SPARQL Query:
PREFIX S1:<http://example1.com>
PREFIX S2:<http://example2.com>
SELECT ?ArticleTitle
FROM <http://example1.com>
FROM <http://example2.com>
WHERE {{{?X S1:Title ?ArticleTitle} UNION
 {?X S2:Title ?ArticleTitle}}
 {{?X S1:Author ?X1} UNION {?X S2:Author ?X1}}
 {{?X S1:Year ?X2} UNION {?X S2:PubYear ?X2}}
 FILTER regex(?X1, “^Lara”)
 FILTER (?X2 > 2007)}
Results:

ArticleTitle
Data Web

Linked Data

http://example2.com
:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

Figure 1. SPARQL query over two RDF data sources.

query requires one to manually investigate the data itself
before querying it. This issue becomes challenging in the
case of large datasets; and even more complex when
querying multiple sources, as predicates have to be explicitly
union-ed (See Figure 1).

As discussed in section 2, allowing people to easily
query and consume structured data is a known challenge
in different areas. However, in an open environment, as the
Data Web, for a query formulation language to be practically
sound, it should address the assumptions below:

Position Statement: How to allow people with limited
IT-skills to query structured data, assuming that:

• The user does not have to know the schema. (1)

• The data might be schema-free. (2)

• A query may involve multiple data sources. (3)

• The query method is sufficiently expressive.
 (i.e., not merely a single-purpose user interface)

(4)

1.2 Overview of Contributions

We propose an interactive query formulation language,
called MashQL. The novelty of MashQL (compared with
related work) is that it considers all of the above
assumptions together. Being a language -not merely an
interface and, at the same time, assuming data to be
schema-free is one of the key challenges addressed in the
context of MashQL design and development. Without loss
of generality, this article focuses on the Data Web scenario.
We regard the Web as a database, where each data source
is seen as table. In this view, a data mashup becomes a query
involving multiple data sources. To illustrate the power of
MashQL we chose to focus on querying RDF, which is the
most primitive data model, hence, other models -as XML
and relational databases - can be easily mapped into it [4].

We give a bird’s-eye view of MashQL in Figure 2 which
shows the same query as in Figure 1 written in MashQL. The
first module specifies the query input, the second module
specifies the query body, and the output is piped into a third
module (not shown here) that renders the results into HTML
or XML, or as RDF input to other queries.

Each MashQL query is seen as a tree; the root is called
the query subject. Each branch is a restriction on a property
of the subject. Branches can be expanded to allow sub trees
(Figure 4), called query paths, which allows one to navigate
through the underlying dataset and build complex queries.
Formulating a query is an interactive process: First, the
editor queries a given dataset (as a black-box) to find the
main concepts, from which the query subject can be selected

Figure 2. The same SPARQL query in Figure 1, but in MashQL.

 (e.g. Anything, Article). The editor then finds the possible
properties for this subject (e.g. Title, Author, Year). The user
selects a property and restricts it using a function (e.g.
MoreThan) and value (e.g. 2007); and so on (Section 4). In this
way, users can navigate and query a data source without
any prior knowledge about it. The symbol “�” indicates a
projection, i.e., appear in the results. When querying
multiple sources, two properties (or two instances) are
considered the same if and only if they have the same URI.
To help end-users not seeing cryptic URI, the editor
normalizes URIs by detecting different namespaces of same
properties and optionally combines them together (Section
 6). In case of different namespaces and property labels (e.g.,
S1:Year and S2:PubYear), the user can choose the union
operator “\” to combine them.

Although MashQL can be used, in a sense, for data
integration, but this is not a goal per se. Data integration
requires not only syntax, but also semantic integration,
which is not supported in MashQL. MashQL allows
people to spot different labels of same properties (as they
navigate through datasets) and manually combine them,
as shown in the previous example.

Summary of Contributions:

� Query Language (Section 3). The notational system and
constructs that make MashQL an expressive and yet
intuitive query language, supporting all constructs of
SPARQL.

� Query Formulation Algorithm (Section 4). This algorithm
is used by the MashQL editor. Its novelty is that it one to
navigate through and query a data graph(s) without
assuming the end-user to know the schema or the data to
adhere to a schema.

� Graph Signature Index (Section 5). Because of
assumption 2 (data is schema-free), the previous
algorithm has to query the whole dataset in real-time,
which can be a performance bottleneck because such
queries may involve many self-joins. Hence, the
interactivity of MashQL might be unacceptable. Thus,
we propose a new way of indexing RDF, which we call
the Graph Signature. The size of a Graph Signature is
typically much smaller than the original graph,
yielding fast response-time queries.

� Implementation and Evaluation (Section 7 and 6). We
present two implementations of MashQL: a server-side
mashup editor, and a Firefox add-on extension. We
evaluate the response-time of MashQL on two large
datasets: DBLP and DBPedia; and compare it with
Oracle’s Semantic Technology. We will show queries
can be answered instantly, regardless of the data size.

AUTHOR ET AL.: TITLE 3

A preliminary version of MashQL appeared in [23, 23],
presenting only the general intuition of MashQL. This paper is
substantially different: a) the intuition is revised; it also
includes b) the formal syntax and semantics of MashQL and
its mapping into SPARQL, c) the query formulation
algorithm, d) the graph-signature index, e) the evaluation
and f) the implementation.

2. RELATED WORK

Query formulation is the art of allowing people to easily
query a data source (e.g., relational database, XML, or RDF).
In the background, queries are translated into formal
languages (e.g., SQL, XQuery, or SPARQL). This section
reviews the main approaches to query formulation and how
they relate to the novel contributions of MashQL.

Query-By-Form is the simplest querying method, but it is
neither flexible nor expressive. For each query, a form needs to
be developed; and changes to a query imply changing its
form. Although some methods have been proposed to semi-
automate form generation [28] and modification [29] but they
generally fail with assumptions 2-4.

Query-By-Example A known approach in databases,
where users formulate queries as filling tables [50]. However,
it requires the data be schematized and the users to be aware of

the schema (fails with assumptions 1 and 2).

Conceptual Queries As many databases are modeled at the
conceptual level using EER, ORM or UML diagrams, one can
query these databases starting from their diagrams. Users can
select part of a given diagram, and their selection is translated
into SQL (ECR [14, 41], RIDL[16], LISA[21], ConQuer[11],
Mquery[17]). These approaches assume that data has a schema
and users have a good knowledge of the conceptual schema
(fail with assumptions 1,2,3, and some with 4).

Natural Language Queries allow people to write their
queries as natural language sentences, and then translate these
sentences into a formal language (e.g., SQL [44], XQuery [33]).
Hence, people are not required to know the schema in
advance. The main problem is that this approach is
fundamentally bounded with the language ambiguity –
multiple meanings of terms and the mapping between these
terms and the elements of a data schema (fails with
assumptions 2, 3, and relatively 4).

Visualize queries. Several Semantic Web approaches
(Isparql[2], RDFAuthor[46], GRQL[9], Nitelight[45]) propose
to formulate a SPARQL query by visualizing its triple patterns
as ellipses connected with arrows, so that one would need less
technical skills to formulate a query. Similarly, some tools had
been also proposed to assist formulating XQueries graphically
(Altova XMLSpy [1], Stylus Studio [2], Bea XQuery Builder
[10], XML-GL [12], QURSED [42]). Although these approaches
vary in their intuitiveness they all intend to assist developers -
rather than end-users, as they require technical knowledge
about the queried sources and their Schemas/DTDs (fail with
assumptions 1 and relatively with 2 and 4). In fact, they are
close to the query-by-example approaches as they are studio-
based query builders, but for semi-structured data.

Mashup Editors and Visual Scripting. Some mashup
editors (e.g., Yahoo Pipes [7], Popfly [19], sMash [15]) allow

people to write query scripts inside a module, and visualize
these modules and their inputs and outputs as boxes
connected with lines. However, when a user needs to express
a query over structured data, she has to use the formal
language of that editor (e.g., YQL for Yahoo). Two approaches
in the semantic web community (SparqlMotion[6] and
DeriPipes[48]) are inspired by this visual scripting. For
example, [48] allows people to write their SPARQL queries (in
a textual form) inside a box and link this box to another, in
order to form a pipeline of queries. All of these visual scripting
approaches are not comparable with MashQL, as they do not
provide query formulation guide in any sense. They are
included here, because MashQL is also inspired by the way
Yahoo Pipes visualizes query modules. However, the main
purpose of MashQL is not to visualize such boxes and links,
but rather, to help formulating what is inside these boxes
(Section 6). Hence, it is worth noting that the examples of this
article cannot be built using Yahoo pipes. Yahoo allows a
limited support of XML mashups, using scripts in YQL.

Interactive Queries. The closest approach to MashQL is
Lorel [18], which was developed for querying schema-free
XML, and without assuming a user’s knowledge about a
schema. The difference between them: (First) Lorel partially
handles schema-free queries. Like using the Graph-Signature
in MashQL, Lorel uses a summary of the data (called
DataGuide). However, unlike the Graph Signature, the
DataGuide groups unrelated items as they extrinsically use
same property labels, which lead to incorrect query
formulation. In authors words, “we have no way of knowing
whether O is a publication, book, play, or song. Therefore, a
DataGuide may group unrelated objects together”. To resolve this
issue, the authors proposed the notion of Strong DataGuide;
but the problem is that the size of a Strong DataGuide can grow
exponentially in case the data is graph-shaped (rather than
tree-shaped), thus, can be larger than the original graph: “the
worst case running time is exponential in the size of the database,
and for a large database even linear running time would be too slow
for an interactive session”. (Second) Lorel does not support
querying multiple sources (assumption 3); and (Third) its
expressivity is basic (assumption 4). MashQL supports path
conjunctions, disjunctions, and negation, variables, union,
reverse properties, among many others.

Another related approach suggests a highly user
interactive searching box [37]: a user can write a keyword, the
system then smartly and quickly suggests to auto-complete
this keyword. We found this approach intuitive as it is simple
and does not assume any prior knowledge about the schema
indeed (assumption 1). However, unlike MashQL, the
existence of a data schema is fundamental to this approach,
and this is what makes it highly interactive. The problem also
is that this approach cannot play the role of a query language
(fails with assumptions 2-4).Being, at the same time,
expressive, intuitive, and highly interactive query language
(over multiple, large, and schema-free data sources) is a very
difficult challenge indeed. We refer to a recent usability study
[30] that investigated several query formulation scenario that
the casual users prefer. It concluded that a query language
should be close to natural language, it should be graphically
intuitive, and should not assume prior knowledge about the
data. Another recent study [26] has specified similar querying

4

challenges and requirements for in making relational database
systems usable for web-based applications.

3. THE DEFINITION OF MASHQL

This section defines the data model, the syntax, and the
semantics of MashQL. The discussion on how to
formulate a query follows in the next section.

3.1 The Data Model

MashQL assumes the queried dataset is structured as
(or mapped into) a directed labeled graph, similar to but
not necessarily the exact RDF syntax. A dataset G is a set
of triples <Subject, Predicate, Object>. A subject and a
predicate can only be a unique identifier I (URL or a key).
An object can be a unique identifier I or a literal L.

Def.1 (Dataset): A dataset G is a set of triples, each triple t
is formed as <S, P, O>, where S ∈ I, P ∈ I, and O ∈ I ∪ L.

The only difference with the RDF model is that we allow
an identifier to be any form of a key (i.e. weaker than a URI).
Allowing this, would simplify the use of MashQL for
querying databases. Relational databases (or XML) can be
mapped easily to this primitive data model. Figure 3 shows a
simple example of mapping (or viewing) a database into a
graph. The primary key of a table is seen as a subject, a
column label as a predicate, and the data-entry in that
column as an object. Foreign keys represent relationships
between data elements across tables. Mapping from
relational database and XML into RDF is a mature topic and
is entering a standardization phase [4].

Figure 3. Mapping a relational database to RDF.

We assume each object literal to have a datatype. If an
object value does not have an explicit datatype, it can be
implicitly assumed, by taking advantage of XML
conventions: the syntax for literals is a String, enclosed in
double or single quotes; Integers are written without
quotes; Booleans are written as true or false; and so on.
Stating a datatype explicitly is done using namespaces,
such as: "1"^^xsd:integer, "2004-12-06"^^xsd:date.

Def.2 (Typed Literals): A typed literal is a literal object
with a tag specifying its Datatype D. Every object literal must
have a datatype D: If O ∈ L then O ∈ D.

Object literals may also have a language tag Lt (e.g., En,
Gr). In the RDF best practice, this is expressed using @
followed by the tag, such as “Person”@En, “Ατοµο”@Gr.

Def.3 (Language Tags): A language tag Lt is tag
optionally associated with a typed literal, to denote to which
human language this literal belongs.

3.2 The Intuition of MashQL

A MashQL query Q is seen as a tree. The root tree is
called the query subject Q(S), which is the subject matter
being inquired (see Def.4 in Table 1). A subject can be a
particular instance I or a user variable V (see Def.5). Each
branch is a restriction R, on a property of the subject.
Branches can be expanded to allow sub trees, called query
paths. In this case, the value of a property is the subject of
sub query. This allows one to navigate through the
underlying dataset and build complex queries. As will be
explained later, each level a query is expanded it costs a
join when this query is executed; thus the deeper the query
path is the execution complexity increases.

Example 2: To illustrate query paths, we use the data
in Figure 3 and seek to retrieve the recent articles from
Malta. That is, we retrieve the title of every article that has
an author, this author has an affiliation, this affiliation has
a country, this country has a name Malta, and the article
is published after 2007. This query path can be easily
formed and understood in MashQL, as shown in Figure 4.

SELECT ?ArticleTitle
FORM < http://localhost.example2#>
WHERE { ?X :Type :Article.
 ?X :Title ?ArticleTitle.
 ?X :Author ?X1.
 ?X1 :Address ?X2.
 ?X2 :Country ?X3.
 ?X3 : Name ?X4.
 ?x :Year ?X5.
 FILTER regex(?X4, “Malta”))
 FILTER (?X5 > 2007)}

Figure 4. Query paths in MashQL and their mappings into SPARQL.

3.3 The Syntax and Semantics of MashQL

MashQL queries are not executed directly; instead, they are
translated into SPARQL queries, which are submitted for
execution. Hence, the semantics of MashQL follow the
semantics of SPARQL [43]. Table 1 presents the formal
definition of the MashQL constructs, and Table 2 presents
their SPARQL interpretation.

Similar to SPARQL, when evaluating a query Q(S), only
the triples that satisfy all restrictions (see Def. 6) are retrieved,
such that: (i) if a restriction is not prefixed with a modal
operator, (R≔<empty, P, Of>), the truth-evaluation of the
restriction is considered true if the subject S, the predicate P,
and the object-filter Of are matched (see the first two
restrictions in Figure 5). This case is mapped into a normal
graph pattern in SPARQL (see rule-3). (ii) if a restriction is
prefixed with the modality “maybe” (R≔<maybe, P, Of>), its
truth-evaluation is always true (see the 3rd restriction in Figure
5). This case is mapped into an optional graph pattern in
SPARQL (see rule 4). (iii) if a restriction is prefixed with the
modality “without” (R≔<without, P, Of>), its truth-evaluation is
considered true if the subject S and the predicate P do not
appear together in a triple (see the last restriction in Figure 5).
Notice that there is no such a construct in SPARQL, but in
MashQL, we emulate it with an optional pattern and the
object O should not be bound (see rule 5).

Example. The query in Figure 5 means: retrieve everything
(call this thing a Song) that: has a title, has the artist Shakera,
possibly has an Album, and does not have a Copyright. In
other words, when evaluating this query, we retrieve all
triples that have same subject and: 1) with a predicate Title, 2)
with a predicate Artist and the object identifier is Shakera, 3)

AUTHOR ET AL.: TITLE 5

maybe with a predicate Album, and 4) should not have the
predicate Copyright.

SELECT SongTitle, AlbumTitle

WHERE{

 ?Song :Title ?SongTitle.

 ?Song :Artist :Shakera.

 Optional{?Song :Album ?AlbumTitle}

 Optional{?Song :Copyright ?X1}

 FILTER (!Bound(?X1))}

Figure 5. A MashQL query and its mapping into SPARQL.

As shown in Def.7, MashQL supports 9 forms of object
filters: Equals, Contains, MoreThan, LessThan, Between,
OneOf, Not, and query paths. Not all of these functions have a
direct support in SPARQL but we emulate them (see rules 6-
13). MashQL also supports a union between objects, properties,
subjects, and queries (see Def.8, and rules 14-17). In addition, to
allow people formulate queries at the type level, the construct
“Any” before a subject or object retrieves the instances of this
subject/object instead of the subject/object itself (See Figure 4).
Furthermore, since RDF is a directed graph, it is helpful for a
user to explore this graph backward. This is supported by the
Reverse construct (see Def.10 and rule 20). MashQL also
support functions for datatypes, and language tags, sorting,
some grouping, which are not presented here for brevity.
MashQL support of sorting, distinct, offset, and limit is moved
to the query property window, which appears by clicking on the
top left icon above the query.

To conclude, MashQL is not merely a single-purpose
interface, but rather, a general query formulation language,
with the four assumptions -introduced earlier- in mind. It is as
expressive as SPARQL. Like querying RDF, MashQL can be
easily adapted to query XML and relational databases. This
can be done by either mapping XML (or RDB) into RDF, or by
translating MashQL into XQuery (or SQL).

The design challenge of keeping MashQL an expressive
and yet a simple query language is mainly achieved by
making technical variables and namespaces to be implicit, and
especially through the tree structure of MashQL queries that
hides joins, which is close to the intuition people use in their
natural language communication. For example, the query in
Figure 4 means, retrieve the article that has an Author x1, x1
has an affiliation x2, and so on. Because the query is
represented as a tree, these variables are implicit for end-users.
Suppose you would like to ask; “Give me the list of all stores
that sell parts of the iPhone mobile, and that are located in
Rome”; or, “Which cinemas are located in San Francesco ,
offer a movie called Avatar and will be played between 20:00
and 23:00”. Notice that apart from some terms (such as: give
me the list of all, which, that are), all of these inquiries can be
directly converted into MashQL queries.

Table 1. The formal definition of MashQL

Def. 4 (Query): A Query Q with a subject S, denoted as Q(S), is a set of
restrictions on S. Q(S) ≔ R1 ∧ … ∧ Rn.

Def. 5 (Subject): A subject S ∈ (I ∪ V), I is an identifier, V is a variable.

Def. 6 (Restriction): A restriction R ≔ <Rx , P, Of>, Rx is a modal operator, Rx
∈ {empty, maybe, without}; P is a predicate (P ∈ I ∪ V); Of is an object filter.

Def.7 (Object Filter): An object filter Of ≔ <O, f>, O is an object, f is a
filtering function. f can have one of the following nine forms:

1. Of ≔ <O>, where O is an object, O ∈ V ∪ I. This object filter does
not add any restriction on the object value as shown in Figure 5.

2. Of ≔ <O, Equals(X, D, Lt)>, where X can be a variable or a constant,
D is a datatype, and Lt is a language tag. See rule-6.

3. Of ≔ <O, Contains(X, D, Lt)>, O is an object variable, X a regex literal,
D a datatype, and Lt a language. O should be equal to regex(X).

4. Of ≔ <O, MoreThan(X, D)>, where O is an object variable, X is a
variable or a constant, D is a datatype.

5. Of ≔ <O, LessThan(X, D)>, where O is an object variable, X is a
variable or a constant, D is a datatype identifier.

6. Of ≔ <O, Between(X, Y, D)>, where X and Y are variables or
constants, D is a datatype identifier.

7. Of ≔ <O, OneOf(V)>, where O is an object variable, and V is a set of
values {v1, ... , vn}, vi is a variable or constant.

8. Of ≔ <O, Not(f)>, where f is one of the functions defined above. This
filter extends all of the above functions with simple negation.

9. Of ≔ <O, Qi(O)>, where O is an object (O ∈ V ∪ I), and Qi(O) is a
sub-query with O being the query subject. The restrictions defined
in the sub-query Qi(O) should be satisfied as well.

Def.8 (Union): A union can be declared between objects, predicates,
subjects and/or queries, in the following forms:
1. On = <O1\O2 \ . . . \On>, to indicate unions between objects, Oi ∈ I.
2. Pn = <P1\P2 \ . . . \Pn>, to indicate unions between predicates, Pi ∈ I.
3. Sn = <S1\S2 \ . . . \Sn>, to indicate unions between subjects, where Si ∈ I.
4. Qn = <Q1\Q2 \ . . . \Qn>, to indicate unions between queries,

Def.9 (Types): A subject (S ∈ I) or an object (O ∈ I) can be prefixed with
“Any” to mean the instances of this subject/object type.

Def.10 (Reverse): <~P> indicates the reverse of the predicate P. Let R1 be a
restriction on S s.t. <S P O>, R2 be <O ~P S>, R1 and R2 have the same meaning.

Table 2. MashQL-To-SPARQL mapping rules

Rule-1: The symbol � before a variable means that it will be
returned in the results; i.e., included in the SELECT part.

Rule-2: if a subject, predicate, or object in a MashQL query is
italicized: it is seen as a SPARQL variable, i.e. prefixed with “?”.

Rule-3: If S is a subject, R = <empty, P, Of>, the mapping:{S P O}.

Rule-4: If S is a subject and R = <maybe, P, Of>, the mapping is:
{OPTIONAL{S P O}}.

Rule-5: If S is a subject and R = < without, P, Of>, the mapping is:
 {S P O. FILTER (!bound(?O))}.

Rule 6. If Of = <O, Equals(X, D, Lt)>:
 Append the mapping with: FILTER(?O = X)
 If D ≠ Null: Append the mapping with:

FILTER(datatype(?O)=D)

 If Lt ≠ Null: Append the mapping with: FILTER(lang(?O)= Lt)

Rule 7. If Of = Contains(X, D, Lt)>:
 Append the mapping with: FILTER regex(?O, X)
 If D ≠ Null: Append the mapping with:

FILTER(datatype(?O)=D)
 If Lt ≠ Null: Append the mapping with: FILTER(lang(?O) = Lt)

Rule 8. If Of = <O, MoreThan(X, D)>:
 Append the mapping with: FILTER(?O > X)
 If D ≠ Null: Append the mapping with:

FILTER(datatype(?O=D)

Rule 9. If Of = <O, LessThan(X, D)>:
 Append the mapping with: FILTER(?O < X)
 If D ≠ Null: Append the mapping with:

FILTER(datatype(?O=D)

Rule 10. If Of = <O, Between(X, Y, D)>:
 Append the mapping with: FILTER(?O >=X)&& FILTER(?O<=Y)
 If D ≠ Null: Append the mapping with: FILTER(datatype(?O)=D)

Rule 11. If Of = <O, OneOf (V)>: Append the mapping with:
{FILTER(?O = V1)|| . . . || FILTER(?O = Vn)}

 If Vi is a regex-ed literal, the ith filter above should be replaced
with: FILTER Regex(?O, Vi)

Rule 12. If Of = <O, Not(f)>: f filter is generated as above, but with a negation.

Rule 13. If Of = <O, Qi(O)>:Repeat all mapping rules to generate Qi(O).

Rule 14. Given On , If n >1 and Oi ∈ I : The mapping in rules 3-4 will
be: {{S P :O1} UNION . . . UNION {S P :On}}

Rule 15. Given Pn , If n >1 and Pi ∈ I : The mapping in rules 3-4 will
be: {{S :P1 O} UNION . . . UNION {S :Pn O}}

Rule 16. Given Sn , If n >1 and Si ∈ I : Regenerate the query n times,
each time with Si as a root, and with a UNION between the queries.

Rule 17. Given Qn , If n >1 : Add UNION between the n queries.

Rule 18. If a subject S is prefixed with “Any”:{?S rdf:type :S}

Rule 19. If an object O is prefixed with “Any”:{?O rdf:type :O}

Rule 20. If S is a subject and R=<~P, O>, the mapping is: {O P S}.

6

4. QUERY FORMULATION ALGORITHM

We present a novel query formulation algorithm, by
which the complexity and the responsibility of
understanding a data source (even if it is schema-free) are
moved from the user to the query editor. It allows end-
users to easily navigate and query an unknown data
graph(s). That is, people learn the content and the
structure of a dataset while navigating it. The algorithm
does not require the data to contain specific information
or tags, except being syntactically correct RDF, as
discussed in the query model subsection 3.1. Figure 6
shows screenshots of a query formulation scenario.

Begin

Step 0: Specify the dataset G in the Input module. G can be
one or a merge2 of multiple data graphs.

Figure 6. A Query Formulation Demo.

Step 1: Select the query subject S, where S ∈ ST ∪ SI ∪ V. That is,
after specifying the dataset, users can select S from a drop-
down list (Figure 6.A) that contains, either: (i) ST: the set of
the subject-types in G, such as Article; or (ii) SI: the union of
all subject and object identifiers (i.e., all individuals) in the
dataset; or (iii) a user-defined subject label. In the latter case,
the subject is seen as a variable (S ∈ V) and displayed in
italics; the default subject is the variable label Anything.
These three options are formalized respectively in relational
algebra and SPARQL, as follows:

(1) S ∈ ST : ππππ O (σσσσ P=‘:Type’ (G))

(1’) O1:{(?S1 <:Type> ?O1)}
(2) S ∈ SI : ππππ S (G) ∪∪∪∪ ππππ O (σσσσO ∈URI (G))
(2’) S1:{(?S1 ?P1 ?O1)} UNION O1:{(?S1 ?P1 ?O1). Filter isURI(?O1)}
(3) S ∈ V

Users can union the selected subject with another
subject(s), e.g., Author\Person. After selecting a subject, and
then typing the “\” operator, the subject list appears again to
select another one(s). The union of all subjects is seen as one

2 Merging RDF graphs is straightforward as specified in the W3C
standard [42]: all triples are put together; two nodes or two edges
are exactly the same iff they have the same labels (i.e., URI).

subject in the next steps. A union is only possible either
between subject-types or individuals, but not a mix of both.

Repeat Step 2-3 (until the user stops)

Step 2: Select a property P. Depending on the chosen
subject(s) in step 1, a list of the possible properties for this
subject is generated (Figure 6.B). There are four possibilities:
(i) if (S ∈ ST), such as Article, the list will be the set of all
properties that the instances of this subject-type have (e.g.,
Title, Author, Year). (ii) if (S ∈ SI), such as A1, the list will be
the set of all properties that this particular instance(s) has.
(iii) If the subject is a variable (S ∈ V), the list will be the set of
all properties in the dataset. (iv) users can also choose the
property to be a variable by introducing their own label. The
formalization of these four options are:

(4) (S ∈ ST) → P ∈ππππ P2 (σ P1=:Type ∧∧∧∧ O1=Subject (G) ⋊⋊⋊⋊S1=S2 σσσσ (G))
(4’) P2:{(?S1 <:Type> <S>)(?S2 ?P2 ?O2)}

(5) (S ∈ SI) → P ∈ ππππ P (σσσσS=Subject (G))
(5’) P1:{(<S> ?P1 ?O1)}

(6) (S ∈ V) → P ∈ ππππ P (σσσσ (G))
(6’) P1:{(?S1 ?P1 ?O1)}

(7) P ∈ V
Users can also manually union between properties, in

the same way subjects are unioned, such as Year\PubYear.

Step 3: Add an object filter on P. There are three types of
filters the user can use to restrict P: a filtering function, an
object identifier, or a query path. (i) A filtering function
can be selected from a list (e.g., Equals, MoreThan, one
of, not); see Figure 6.H. (ii) If a user wants to add an
object identifier as a filter, a list of the possible objects will
be generated. For example, if a user previously chose Any
Article as a subject, and Author as a property, the list of
the object identifiers would be {A1,A2}. The following
formalizations specify what the list of object identifiers
may contain. Users can also union between objects in the
same way subjects and properties are unioned e.g., A1\A2.

(8) (S ∈ SI) ∧∧∧∧ (P ∈ V) → O ∈ ππππ O1 (σσσσS1=S ∧∧∧∧ O1∈URI (G))
(8’) O1:{(<S> ?P1 ?O1) Filter isURI(?O1)}
(9) (S ∈ SI) ∧∧∧∧ (P ∉ V) → O ∈ ππππ O1 (σσσσS1=S ∧∧∧∧ P1=P ∧∧∧∧ O1∈URI (G))
(9’) O1:{(<S> <P> ?O1) Filter isURI(?O1)}
(10) (S ∈ ST) ∧∧∧∧ (P ∈ V) → O ∈ ππππ O2 (σσσσP1=:Type ∧∧∧∧ O1=S (G) ⋊⋊⋊⋊S1=S2 σσσσ (G))
(10’) O1:{(?S1 <:Type> <S>)(?S1 ?P2 ?O2)}
(11) (S ∈ ST) ∧∧∧∧ (P ∉ V) → O ∈ ππππ O2 (σσσσP1=:Type ∧∧∧∧ O1=S (G) ⋊⋊⋊⋊S1=S2 σσσσP2=P (G))
(11’) O:{(?S <rdf:Type> <S>)(?S <P> ?O)}
(12) (S ∈ V) ∧∧∧∧ (P ∈ V) → O ∈ ππππ O (σσσσ (G))
(12’) O1:{(?S1 ?P1 ?O1)}
(13) (S ∈ V) ∧∧∧∧ (P ∉ V) → O ∈ ππππ O (σσσσP=P (G))
(13’) O1:{(?S1 <P> ?O1)}

Further, (iii) users can also choose to expand the property
P to declare a path on it (as Author in Figure 6.D). In this
case, the value X of the property Author, which is a
variable, will be the subject of the sub-query, i.e. a left-
join. The possible properties of this subject in the 2nd level
will be determined as described in step 2, taking into
account all previous selections. The general case of an n-
level property and n-level object (i.e., n-1 joins) are
presented below (14-17) for the cases where the root is a
subject-type or a certain instance.

General Cases
The n-level paths properties and objects, in case (S ∈ ST)

(14) P ∈ππππ Pn (σσσσP1=:Type ∧∧∧∧ O1=S (G) ⋊⋊⋊⋊S1=S2 (σσσσC2(G) ⋊⋊⋊⋊O2=S3 (σσσσC3(G) … ⋊⋊⋊⋊On-1=Sn

AUTHOR ET AL.: TITLE 7

(σσσσCn(G)))))
(14’) Pn:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3) … (On-1 ?Pn ?On)}

(15) O ∈ππππ On (σσσσP1=:Type ∧∧∧∧ O1=S (G) ⋊⋊⋊⋊S1=S2 (σσσσC2(G) ⋊⋊⋊⋊O2=S3 (σσσσC3(G) … ⋊⋊⋊⋊On-1=Sn

(σσσσCn(G)))))

(15’) On:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)}

The n-level paths properties and objects, in case (S ∈ SI)
(16) P ∈ππππPn (σσσσC1 (G) ⋊⋊⋊⋊O1=S2 (σσσσC2 (G) ⋊⋊⋊⋊O2=S3 (σσσσC3 (G) … ⋊⋊⋊⋊On-1=Sn (σσσσCn (G)))))

(16’) Pn:{(S1 P1 O1)(O1 P2 O2 … (On-1 ?Pn ?On)} \\Subject ∈ SI

(17) O ∈ππππOn (σσσσC1 (G) ⋊⋊⋊⋊O1=S2 (σσσσC2 (G) ⋊⋊⋊⋊O2=S3 (σσσσC3 (G) … ⋊⋊⋊⋊On-1=Sn (σσσσCn (G)))))

(17’) On:{(S1 P1 O1)(O1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)}

Step 4: The symbol � before a variable is used to indicate
that it will be returned in the results (i.e., projection).

End.

This algorithm illustrates how users interact with the
MashQL editor and formalizes the “background queries”
that need to be executed in each interaction. In this way,
users can navigate and query a data graph without prior
knowledge about it, even if it is schema-free. Section 6
implements this algorithm in two different editors, and
discusses implementation issues to further enhance the
query formulation process in case of large and cryptic data.
Next, we focus on the performance of this algorithm.

5. GRAPH INDEXING: THE GRAPH-SIGNATURE

One of our key assumptions for querying the Data Web is
that data is schema-free. This is indeed a challenging
requirement for query formulation as the editor’s
background queries need to be executed on the whole dataset
and in real-time, because there is no offline schema that can
be used instead. In such a user-interaction setting, the
response-time is an important factor that needs to be taken
into consideration and which should be small, preferably
within 100 ms [35]. Achieving such a short interaction time
for background queries with graph-shaped data is even more
challenging, because the exploration of a graph stored in a
relational table G(S,P,O) can be expensive as this table needs
to be self-joined many times [8]. A query with n levels
involves n-1 joins. Pre-computing and materializing all
possible MashQL’s background queries is not an option
since the space requirements are too high; thus an efficient
RDF indexing is needed. Several approaches have been
proposed to index RDF, such as Oracle3 [13], C-Store4 [8],
and RDF3X5 [39]. Although these approaches have shown
good performance –a query with a medium complexity costs
some seconds- however, this performance is unacceptable
for an interactive query formulation session, especially in the
case of large graphs.

In this section, we present the Graph Signature, a novel
approach for indexing RDF graphs, which is a
complementary rather than an alternative to the approaches
mentioned above. Our goal is not to optimize any arbitrary

3 Oracle suggested in [13] to build a subject-property matrix
materialized join views on the RDF table, such that all direct and nested
properties for a group of subjects is materialized. This approach (called
Semantic Technology) has been released as part of Oracle 10g and 11g.

4 C-Store [8] suggested partitioning the RDF table vertically, into n two-
column tables, where n is the number of unique properties in the data.

5 RDF3X [39] to only build many B+-Tree indexes, and a “careful
optimization of complex join queries”.

RDF query, but rather to enhance the performance of the
background queries presented in the previous section. Next
–before presenting the Graph Signature-, we generalize the
background queries into one query model. The rest of the
section shows how this query model is significantly
optimized using the Graph Signature.

5.1 The Query Model

As one may notice, each of the 17 background queries
formalized earlier is a query path, i.e., a linear-shaped
query. Star-shaped and tree-shaped queries are not needed
in query formulation. We define a query path as an
expression of the form: {O1 P1 O2 P2 . . . Pn On }, where Oi is
a node, and Pi is an edge. Both nodes and edges can be
variables. A variable node is denoted as ?Oi and a variable
edge as ?Pi. A query can return either a node or an edge.
For query formulation, we only need to retrieve the last
node/edge in the path; that is, we need to retrieve either
the edge Pn or the node On. Hence, the query model is
formed as: On|Pn:{O1 P1 O2 P2 . . . Pn On}. For example, the
query P:{B2 Author ?O1 ?P ?O2} retrieves the properties of the
authors of B2; and O:{B2 Author ?O1 Affiliation ?O} retrieves the
affiliations of the authors of B2. Each of the 17 background
queries in the previous section is a special case of this
query model; hence, optimizing the query model is an
optimization of all background queries.

5.2 The Intuition of the Graph Signature

The idea of the Graph Signature is to summarize a given
RDF graph, so that the background queries can be
answered from this summary. Because the size of the
summary is smaller than the original graph, queries can be
faster. Given an RDF graph G, its Graph Signature S is a
twofold summary: the O-Signature SO and the I-Signature
SI. SO is a summary of the original graph such that nodes
that have the same outgoing paths are grouped together. SI
summarizes a graph by grouping nodes that have the same
incoming paths, which is analogous to the 1-index [36].

Example. Figure 7 provides an example of an RDF
graph and its O/I-signatures. In this example, {A2, A3} are
grouped in the SO because they have the same outgoing
paths until the end. A1 is not part of this grouping as it does
not have the path Affiliation.Student. In the I-Signature, A4 is
not grouped with {A1, A2, A3} as it has different incoming
paths, e.g., Student. Each of the two summaries is computed
and stored separately, but they are jointly used to produce
precise answers, as will be discussed shortly .

Let us now query these signatures, and compare their
results with the results obtained from the original graph
G. We call the answer of G, the target answer. Figure 8
shows examples of queries and their answers.

8

Figure 7. An RDF data graph and its O/I-Signatures.

Query SO

Answer
SI Answer SO ∩∩∩∩ SI G Answer

Q1 P:{B2 Author ?O1 ?P ?O2} Affiliation,
Name

Affiliation,
Name, email

Affiliation,
Name

Affiliation,
Name

Q2

P:{B2 Author ?O1 Affiliation
 ?O2 ?P ?O3}

Name,
Country,
Employs,
Student

Name,
Country,
Employs,
Student

Name,
Country,
Employs,
Student

Name,
Country,
Employs,
Student

Q3 P:{UoM Student ?O1 ?P ?O2} { } email { } { }
Q4 O:{B2 Author ?O1 Affiliation ?O} UoC UoM, UoC UoC UoC
Q5 O:{?O1 Author ?O2 Affiliation ?O} UoM, UoC UoM, UoC UoM, UoC UoM, UoC

Figure 8. GS answers compared with the target answers.

As shown in Figure 8, each part of the Graph Signature
produces the correct answer and some more results,
called false positives. That is, the target answer is equal to
or a subset of the answer of each part. Hence, the
intersection of the SO and SI answers equals or is a small
superset of the target answer. We shall show in
subsection 5.8 how false positives (if any) are eliminated,
in order to always achieve precise answers. Hence, instead
of evaluating the background queries on the original
graph, we evaluate them on the Graph Signature. Because
the size of the graph signature is much smaller than the
original graph, querying it is much faster. Subsection 5.9
positions the novelties of the Graph Signature w.r.t.
related work. In Section 7, we present an evaluation of
MashQL’s background queries over the Graph Signature
of large datasets (DBLP and DBPedia), and show that it
yields to an instant user-interaction, regardless of the
complexity of the background queries.

In the next subsections, we turn our focus to formally
define the Graph Signature and its construction and storage.
We shall come back again (subsection 5.8) to discuss how the
background queries are evaluated on the Graph Signature.

5.3 The Notion of Bisimilarity

Since each node in the Graph Signature is in fact an
equivalent class of some nodes in G, one way to compute the
Graph Signature is a full traversal of G. For example, we
take every node in G, compute all outgoing paths from this
node, and compute all incoming paths into this node. Then,
we construct the O-Signature by grouping the nodes having
the same outgoing paths; and similarly the I-Signature. This
way is called trace equivalence [20]. Unfortunately, this way
is computationally expensive and known to be PSPACE-
complete [46]. The solution (as suggested by [32]) is to use
the notion of bisimilarity, which is extensively discussed in
the literature of process algebra [20, 40] and which implies

trace equivalence. The idea of bisimilarity, in RDF terms, is to
group nodes having the same properties, and then iterate; at
each iteration step we split a group of nodes if it violates
bisimilarity. We repeat until our groupings are stable. Next,
we adopt the typical definition of bisimilarity [40] and
modify it to suite RDF graphs.

Definition (O-Bisimilarity ≈O)

O-Bisimilarity is a symmetric binary relation ≈O on G. Two

nodes S1 and S2 are O-bisimilar (S1 ≈O S2), if and only if:
i. The set of the property labels of S1 equals the set of the
property labels of S2. In RDF terms, there exists (S1 P1
O)… (S1 Pm O), and (S2 P1 O) … (S2 Pn O), such that, the
distinct set of properties of S1 {P1..,Pm} equals the
distinct set of properties of S2 {P1,..,Pn}.

ii. If S1’ is a successor of S1 through a property Pi (S1
Pi

→

S1’), and S2’ is a successor of S2 through a property Pi

(S2
Pi

→

S2’) then S1’ ≈O S2’, and S2’ ≈O S1’.

Definition (I-Bisimilarity ≈I)

I-Bisimilarity is a symmetric binary relation ≈I on G. Two

nodes S1 and S2 are I-bisimilar (S1 ≈I S2), if and only if:
i. The set of the property labels into S1 equals the set of
the property labels into S2. That is, there exist (O P1
S1)… (O Pm S1), and (O P1 S2) … (O Pn S2), such that, the
set of properties into S1 {P1..,Pm} equals the set of
properties into S2 {P1,..,Pn}.

ii. If S1’ is a predecessor of S1 through a property Pi (S1’
Pi

→

S1) and S2’ is a predecessor of S2 through a

property Pi (S2’
Pi

→

S2), then S1’ ≈I S2’, and S2’ ≈I S1’.

5.4 The Definition of the Graph Signature

Definition (Graph Signature). Given an RDF graph G,
its Graph Signature S is comprised of two summaries: O-
Signature SO and I-Signature SI. In short, S = <SO, SI>.

Definition (O-Signature). Given an RDF graph G, its
SO is a directed labeled graph, such that, each node in SO is
an equivalent class (≈O) of some nodes in G; and each
edge p in SO from u to v (u P→

v) iff G contains an edge p

from a to b (a P→

b) and a ∈ u, b ∈ v.

Definition (I-Signature). Given an RDF graph G, its SI
is a directed labeled graph, such that, each node in SI is an
equivalent class (≈I) of some nodes in G; and each edge p
in SI from u to v (u P→

v) iff G contains an edge p from a to

b (a P→

b) and a ∈ u, b ∈ v.

5.5 Construction of the Graph Signature

To compute the Graph Signature, we use the standard
algorithm for computing bisimilarity [40]. We modify this
algorithm to suit RDF graphs, for computing both the O-
Signature and the I-Signature (see Figure 9). The input in
each algorithm is a data graph and the output is the O/I-
Signature. As mentioned earlier, to compute the O-
Signature, first we group nodes having the same immediate
properties; then we iterate -to split groupings that are not O-
bisimilar- until all groupings are stable. As shown in steps 5-
7, an equivalent class A is stable iff for every path P from A
into another group-node B, each instance of A has a
successor in B. In other words, let X be the predecessors of B
through P, in G; then A should be a subset of or equal to X.
Otherwise, A should be split into two nodes: (A ∩ X) and (A -

AUTHOR ET AL.: TITLE 9

X). The same (but the opposite) way is used to compute the
I-Signature. As discussed in [40] the maximal time needed to
compute bisimilarity for this algorithm is O(m log n), where
m is the number of nodes and n is the number of edges.
Hence, the time complexity of computing the overall Graph
Signature is O(m log n).

Procedure ComputeOSignature(G,SO)
begin
1. SO = (a copy of) G. Stable = false
2. Group nodes having the same property labels. \\the initial step
3. while (Stable ≠ True) do // iterate until the grouping is stable
4. foreach node A in SO do
5. foreach path Pi from A into a node B do
6. X = Pi

-1(ext[B]G) //find the predecessors of B through Pi, in G
7. if (A ⊈ X) then replace A by (A ∩ X) and (A - X) //split A
8. if there was no split then Stable=True
end
Procedure ComputeISignature(G,SI)
begin
1. SI = (a copy of) G. Stable = false
2. Group nodes having the same incoming properties \\the initial step
3. while (Stable ≠ True) do //iterate until the grouping is stable
4. foreach node A in SI do
5. foreach Pi path into A from a node B do
6. X = Pi(ext[B]G) //find the successor of B through Pi, in G
7. if (A ⊈ X) then replace A by (A ∩ X) and (A - X) //split A
8. if there was no split then Stable=True
end
Figure 9. An algorithm to compute the Graph-Signature[40].

5.6 Storage of the Graph Signature

Since each part of the Graph Signature is a directed
labeled graph it is convenient to store them in the same
way the data graph is stored. In our implementation, a data
graph and its O/I-signatures are stored and queried in the
same way, using the Oracle Semantic Technology (see
Section 6). To store the extent of the O/I-signature, each
node in SO and SI is given an identifier, and this id is used in
a lookup table to store the nodes in G belonging to their
equivalent classes in SO and SI, ext(SoID, SiID, Node). This
table is called the extent of the graph signature. A full-text
index can be built on this table for keyword search, and
statistics can be maintained for query optimization
purposes. For query formulation, we only store node labels
and their group ids in a table as specified above.

5.7 The Size of the Graph Signature

The space cost to store each part of the Graph Signature
consists of the space of the signature and the space of its
extent. The size of each part of the Graph Signature is at most
as large as the data graph; but in practice, it is much less, as
our evaluations show. The size of the extent is exactly the
number of unique nodes in the data graphs. In the following
we present some techniques that yield a significant reduction
of the overall size of the Graph Signature:

1. Literal nodes can be excluded, as they are not used in
query formulation. We assign literal nodes to null
before computing the Graph Signature.

2. Annotation properties can be excluded. There are several
types of properties in RDF that are not intended to
represent data, but rather, to describe data, such as
rdf:Description, rdf:comment, rdf:label, rdf:about, or rdfs:seeAlso.

3. Synonym properties can be joined. Because of different
namespaces and conventions, it is likely that different
properties have the same semantics (e.g., foaf:FirstName
and foaf:GivenName, foaf:mbox and :email). Such properties
can be joined by replacing them with a chosen label.

4. Equivalence properties can be normalized. Certain
properties indicate that the subject and object in a
triple are equal, such as rdf:SameAs and rdf:Redirect.
Normalizing these properties can be done by assigning
the subject and the object the same URI.

5. Certain properties can be excluded. We may wish to
exclude some properties that are not likely to be
queried, such as LongAbstract in DBPedia.
Before computing the graph signature, we process a

configuration file, which we have built for the properties to
be excluded, joined, or normalized.

A special case property is the rdf:Type. As this property
is likely to be used in query formulation, it should be
well-indexed. For this, we extend the lookup table, which
we use to store the extents. Instead of having the lookup
table as ext(SoID, SiID, Node), we have ext(Type, SoID, SiID, Node).
Hence, we can look up not only the group of a node, but
also the node(s) and the group(s) of a certain type.

5.8 Evaluating Queries with the Graph Signature

 As discussed earlier, the answer obtained from the O-
Signature -and similarly the I-Signature- is always a
superset or equals the target answer (the answer obtained
from the data graph). In case the answer of the O/I-
signature equals the target answer, we call it a precise
answer; otherwise, it is called a safe answer, since it equals
the target answer and some false positives. The intersection
of the answers of both the O-Signature and the I-
Signature is a smaller superset or equals the target
answer. The following theorems state when the Graph
Signature produces precise and safe answers; the proofs
are sketched in the appendix.

Theorem 1. Given a query, the answer of the O-Signature is
always safe; and similarly the answer of the I-Signature.

Theorem 2. Given any query retrieving edge labels, the
answer of the O-Signature is always precise.

Theorem 3. Given a query, with all nodes variables, the
answer of the I-Signature is always precise.

Theorem 4. Given a query, if the answer of the O/I-Signature
is empty or the intersection of both is empty, then this answer is
always precise.

Based on these theorems, the flowchart in Figure 10 depicts
the evaluation scenario. Given a background query Q, if Pn is
projected (i.e., the last edge label is retrieved), it can be
precisely answered from the O-Signature, as stated in
theorem 2. Examples of such queries follow: P:{?O ?P ?O1};

P:{?O Author ?O1 ?P ?O2}; P:{?O Author ?O1 Affiliation ?O2 ?P ?O3}. This
case represents the majority of the background queries in
query formulation, as it allow one to navigate through and
understand the structure of a data graph.

In case a background query projects On (i.e., the last node
label is retrieved), and all node labels (O1 …On) in the query
are variables, such as O:{?O1 Author ?O2 Affiliation ?O}, the answer of
the I-Signature is precise (see theorem 3). However, if some
nodes in the query are not variables, such as B2 in the query
O:{B2 Author ?O1 Affiliation ?O}, the answer of the O-Signature -and
the answer of the I-Signature- is safe. In fact, the more
variable nodes a query contains the less false positives are

10

produced. To reduce the number of false positives in this
case, we evaluate the query on the O-Signature and the I-
Signature separately, and we intersect both results. If the
intersection is empty (or one of the answers in empty), then
the answer is precise (see theorem 4). Otherwise, the
intersection of both answers is a small superset or equals of
the target answer. Such results might be sufficient indeed in
the query formulation practice; otherwise, to eliminate the
false answers, we evaluate the query on the data graph, and
optimize it using the intersection of both answers. The idea
of this optimization is to simply join the results of the
intersection with the data graph, and execute the query on
this join. That is, the false results are eliminated as they do
not satisfy the query on the data graph.

Figure 10. Depiction of the Execution Plan.

We have implemented the query evaluation scenario
described above (i.e., execution plan) in a table function in
Oracle 11g. This function takes a query as input and
produces precise results as output. The function first
parses the query to find the constant node labels -that are
not variables- and replace them with their group IDs. For
example, the query P:{B2 Author ?O1 ?P ?O2} is re-written as
P:{123 Author ?O1 ?P ?O2}, where 123 is the group id of the B2.
The function then checks whether the query is retrieving
edges or has all nodes as variables, if so, the function then
executes it on the O-Signature or I-Signature respectively.
Otherwise, it executes it on the O-Signature and I-
Signature in parallel, and intersects both results. If the
result is not empty, the function eliminates the possible
false positives by executing the query on the join of the
data graph and the intersection, as descried earlier.

Because the time-complexity of evaluating a query is
preoperational to the size of the graph [36], evaluating
queries on the Graph Index yields a better performance,
since its size is likely to be much smaller than the data
graph. See our evaluation is Section 7.

5.9 Related Work to the Graph Signature

The notion of structural summaries has been proposed to
summarize XML data, for XQuery optimization. The
DataGuide [38] was the first to suggest summarizing XML
by grouping nodes reachable by any incoming path. The
problem with this way is that, because nodes that
extrinsically have some similar property labels are grouped

together, many false positives are generated. The Strong
DataGuide [18] proposed to solve this issue by grouping
nodes reachable by simple paths, as the DataGuide; but, it

allows a node to exist in multiple groups. As pointed by the
authors, this approach is efficient for tree-shaped data, but
the size of the summary grows exponentially the more the
data is graph-shaped (and can be larger than the original
graph). The 1-index [36] proposed to group nodes reachable
by all incoming paths (which is analogous to our I-
Signature), but it does not consider the outgoing paths (as
our O-Signature) that yields an efficient reduction of false
positives. A similar approach to the 1-index (called A(k)
index [32]) suggested to also group nodes reachable by all
incoming paths (but up to k levels), thus it can only answer
queries with k levels. Since this approach generates many
false positives, the same authors of the A(k) suggested later
another approach called F&B index [31]. This approach
groups nodes reachable by both all incoming and all
outgoing paths, i.e., forward and backward at the same
time. This approach produces much less false positives
indeed, but its size is not much less than the original. For
example, the size of the F&B index for the Xmark dataset is
only 10% less than the original [31]. As such, the time
needed to query the F&B summary is close to querying the
original graph. Furthermore, all of the above approaches
cannot be applied for RDF because (i) RDF is graph-shaped
rather than tree-shaped; hence applying them produces
large-size indexes; and (ii) XML queries are not the same as
RDF queries (i.e., different query models). For example, in
XML we typically retrieve node labels, but in RDF, we also
need to retrieve property labels.

The novelty of our graph index is: (i) the bisimilarity
algorithm is adapted to suite RDF graphs, s.t. it is not
necessary for a node to have unique outgoing edges, as in
XML; (ii) unlike the F&B approach that generates one
large incoming-and-outgoing index in order to generate
less false positives, we store the incoming and outgoing
indexes separately, but they are jointly used, thus
achieving small indexes and less false positives at the
same time; and (iii) a query model and an evaluation
scenario for RDF query paths is proposed, which is
different from XML paths, as property labels, not only
node labels, can be retrieved.

6. IMPLEMENTATION

We implemented MashQL in two scenarios: an online
server-side query and mashup editor, and a browser-side
Firefox add-on editor. The former is illustrated in Figure 11
and Figure 12. Its functionality comprises: i) the MashQL
language components; ii) the user-interface; iii) a state-
machine dispatching the “background queries” in order to
support query formulation during the interactive exploration
of RDF datasets; iv) a module that translates a formulated
MashQL query into SPARQL and submits this for execution
or debugging; the formulated MashQL query is serialized
and stored in XML; v) a module that retrieves, merges, and
presents the results of the submitted SPARQL query.
MashQL queries can be materialized and published if
needed. Each published query is given a URL, and its output
is seen as a concrete RDF source.

AUTHOR ET AL.: TITLE 11

Figure 11. Screenshot of the online MashQL-Editor.

Figure 12. System Model.

When a user specifies an RDF data source(s) as input, it
is bulk-loaded into an Oracle 11g, and its Graph Signature
is constructed. Subsequently, the MashQL Editor uses
AJAX to dispatch background queries and the SPARQL
translation of formulated MashQL queries for execution by
the Oracle 11g. We chose Oracle 11g because of its support
for native RDF queries and storage.

As one may notice, MashQL’s GUI follows the style
Yahoo Pipes visualizes feed mashups, and uses the Yahoo
Pipes’s open-source Java-Script libraries. Our choice of
following this style is to illustrate that MashQL can be used
to query and mash up the Data Web as simple as filtering
and piping web feeds. It is worth noting also that the
examples of this article cannot be built using Yahoo pipes,
as it does support querying structured data. Yahoo allows
a limited support of XML mashups, but this is neither
graphical nor intuitive; as one have to write complex
scripts in YQL, the Yahoo Pipes’ query language. In fact,
Yahoo Pipes, as well as Popfly and sMash, are motivating
for -rather than solving- the problem of structured-data
retrieval.

In an alternative implementation, we developed the
MashQL editor as an add-on to the Firefox browser. This
extension has the same functionalities of the online editor.
However, no databases or RDF indexing are used for
storing, indexing, and querying the data sources, but
rather, the SPARQL queries are executed inside the
browser, using the JENA SPARQL query libraries. Hence,
the size of the input sources is limited to the client’s
memory. The goal of this Firefox extension is to allow
querying and fusing websites that embed RDFa. In this way,
the browser is used as a Web composer rather than only a
navigator.

We refer the reader to technical report [25] for more
technical details and MashQL use cases.

6.1 Implementation Issues

URI Normalization: As RDF data may contain

unwieldy URIs, MashQL queries might be inelegant. Thus,
the editor normalizes URIs and displays the normalization
instead; for example, Type instead of http://www.w3.org/1999/02/22-rdf-

syntax-ns#type. In addition, if one moves over Type, its URI is
displayed as a ‘tip’. Internally, the editor uses only the long
URIs. In case of different URIs leading to the same
normalization, we add a gray prefix to distinguish them
(e.g., 1:Type, 2:Type). The normalization is based on a
repository that we built for the common namespaces (e.g.,
rdf, rdfs, WOL, FOAF). In case a URI does not belong to
these namespaces, the editor uses heuristics. For example,
takes the last part after ‘#’. If ‘#’ does not exist, then the
part after ‘/’. The result should be at least 3 characters and
start with a letter, otherwise we take the last two parts of
the URL, and so on. We have evaluated this on many
datasets and found it covering the extreme majority of
cases. However, there is no guarantee to always produce
elegant normalization.

Verbalization: To further improve the elegancy of
MashQL, we use a verbalize/edit modes. When a user
moves the mouse over a restriction, it gets the edit mode
and all other restrictions get the verbalize mode. That is,
all boxes and lists are made invisible, but their content is
verbalized and displayed instead (See Figure 6). This
makes the queries readability closer to natural language,
and guides users to validate whether what they see is
what they intended.

Scalable lists: In case of querying large datasets, the
usual drop-down list becomes un-scalable. We have
developed a scalable and friendly list that supports
search, auto-complete, and sorting based on Rank and
Asc/Desc. If Rank is selected, we order items/nodes
based on how many nodes points to them. This
knowledge is pre-computed, from the Graph Signature.
Our list supports also scalable scrolling. The first 50
results are displayed first, but one can scroll to go to the
next, arbitrarily middle, or last 50. Each time the editor
sends an AJAX query to fetch only those 50.

7. EVALUATION

This section presents three types of evaluations: (i) the
scalability of the Graph Signature, (ii) the time-cost of
formulating a MashQL query using the Graph Signature,
and compare it with using the Oracle Semantic
Technology; and (iii) the usability of the MashQL editors.

7.1 Datasets and Experimental Settings

Our evaluation is based on two public datasets: A) DBLP
and B) DBPedia. The DBLP (700MB size) is a graph of 8
million edges. We partitioned this graph into three parts:
A8 is the whole DBLP; A4 is 4 million triples from A8; and
A2 is 2 millions. No sorting is used before the partitioning.
Figure 13 shows some statistics. The DBPedia (6.7 GB) is a
graph of 32 million edges, which is an RDF version of the
Wikipedia. Similarly, DBPedia is partitioned into 3 parts.
We choose these datasets in order to illustrate the scalability
of our Graph Index in case of homogenously and
heterogeneously structured graphs. DBLP is more
homogenous, as most of its nodes have similar paths.

12

However DBPedia is known to be a noisy collection of RDF
triples. Each of the 6 partitions is loaded into a separate RDF
model in Oracle 11g, which was installed on an server with
2GHz dual CPU, 2 GB RAM, 500GB HHD, 32-bit Unix OS.

Number of (A)DBLP (B)DBPedia
 A8 A4 A2 B32 B16 B8

Unique Triples 9M 4M 2M 32M 16M 8M
Unique Subjects 1.1M 1M 0.8M 9.4M 6M 4M
Unique Predicates 28 27 26 35 35 34
Unique Objects 2.4 1.2 0.7M 16M 8.7M 4.7M
Data Size 700MB 350MB 170MB 6.7GB 3.1GB 1.4GB

Figure 13. Statistics about the experimental data.

7.2 Scalability Evaluation

We built an O-signature and I-Signature for each
partition (see Figure 14). As one can see, the time cost to
build the SO and SI is linear with respect to the data size.
For example, for SO, B2 (2M triples) costs 48 seconds, the
time is almost doubled when the data size is doubled.

 Number of (A)DBLP (B)DBPedia
 A8 A4 A2 B32 B16 B8

SO
Indexing Time (Sec) 219 90 48 563 194 106
Equivalence Classes 4K 28K 12K 103K 110K 56K
Triples in O-Signature 34K 190K 62K 1M 686K 244K

SI
Indexing Time (Sec) 83 40 18 641 293 142
Unique Categories 61 14 43 14K 7K 3K
Triples in O-Signature 108 72 62 84K 30K 10K

Figure 14. The O-Signature for all partitions.

What is more scalable, is the behavior of the index with
respect to the number of the triples. For example, the whole
DBLP A8 (8M triples) is summarized in SO by only 34K
triples; this number is larger when the data is smaller, 190K
for A4. This is because (although we did not apply any
sorting before partitioning the data, but) more similarities
were found when the whole data is put together. In other
words, some nodes in A4 are grouped in several
equivalence classes (instead of one) as they have different
paths, while when all data is put together in A4, it is found
that these nodes have the same paths. This implies that the
size of the Graph Signature does not necessarily increase if
more triples are added to the data graph. The size of the O-
Signature reflects the homogeneity of a graph. For
example, the O-Signature for A8 (34K) is smaller than the
O-Signature for B8 (244K), as DBLP is more homogenous.
Nevertheless, for both datasets, the generated O/I-
signatures fit in a small memory, thus joining it many times
still yields fast querying as we show next.

The I-Signature happens here to be smaller than the O-
Signature. The reason is that root nodes (which are many,
in DBLP and DBPedia) are all grouped together in one
equivalent class.

7.3 Response-Time Evaluation

This section evaluates the response-time of the
MashQL editor’s user interaction. In other words, we are
not interested to evaluate the execution of a MashQL
query itself, as this is not the purpose of this article; but
rather, the execution of the queries that the editor
performs in the background to generate the “next” drop-
down list (see Section 4). In the following we present
three MashQL queries. We identify the set of background
queries, and evaluate them on both: (1) Oracle’s Semantic

Technology, which is the native RDF index6 in Oracle 11g
[13]; and (2) the Graph Signature index (as described in
subsection 5.8). We also store the Graph Signature in
Oracle 11g as described subsection 5.6.

Experiment 1: To formulate the query in Figure 15 on
DBLP, the user first selects the query subject from a list.
The query that produces this list is annotated by �. The
user then selects a property of this subject from a list. The
query that produces this list is annotated by �, and so on.
These queries are executed on each partition of the DBLP,
using both: the Graph Signature (GS) and Oracle Semantic
Technology. The cost7 (in seconds) is shown in Figure 16.

� O:(?S Type ?O)

� P:(?S Type Article)(?S ?P ?O1)

� P:(?S Type Article)
 (?S Creator ?O1) (?O1 ?P ?O2)

� O:(?S Type Article)
 (?S Creator ?O1)(?O1 Type ?O)

Figure 15. 4 Queries are needed to formulate this MashQL query.

Query (A8) 8 M triples (A4) 4 M triples (A2) 2 M triples
GS Oracle GS Oracle GS Oracle

Q1 0.003 0.005 0.003 0.004 0.003 0.003
Q2 0.001 0.136 0.001 0.148 0.001 0.108
Q3 0.001 0. 871 0.001 0.546 0.001 0.471
Q4 0.001 1.208 0.001 0.835 0.001 0.650

Figure 16. Time cost (in seconds) of background queries.

As shown by this experiment, the time cost for each
query remains within few milliseconds using the Graph
Signature, regardless of the data size and complexity of
the query. This is because the size of the Graph Signature
is small, if compared with the Oracle’s Semantic
Technology that scans the whole dataset.

Experiment 2: Here we show a similar evaluation on
DBPedia, but with longer queries (see Figure 17).

� O:(?S Type ?O)
� P:(?S Type Album)(?S ?P ?O1)
� O:(?S Type Article)(?S Genre ?O)
� P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 ?P ? O2)
� P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 PreviousAlbum? O2)(?O2 ?P ?O3)
� P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 PreviousAlbum? O2)
 (?O2 Artist ?O3)(?O3 ?P ?O4)
	 O:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)
 (?O2 Artist ?O3)(?O3 CurrentMember ?O)

 P:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? ?O)
 (?O2 Artist ?O3)(?O3 CurrentMember The_Furious_Five)(The_Furious_Five ?P ?O5)
� O:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)
 (?O2 Artist ?O3)(?O3 CurrentMember The_Furious_Five)(The_Furious_Five Genre ?O)

6 As described earlier, Oracle [13] stores RDF triples in one table G(s,p,o);
thus a query with n-levels implies joining the table n-1 times. To improve the
querying performance, Oracle proposed to build several B-tree indexes on G,
as well as to build subject-property materialized views on G, such as V1(s, p1,
p2, …pn). A tuple in V1 is a subject identifier x, and the value of the column pi
is an object y. In this way, data is transformed -somehow- from a graph form
into a relational form; thus, less number of joins when executing a query.
These subject-property views are seen as auxiliary, rather than core, indexes.
This is because there is no general criteria to know which subjects and which
properties to group. Oracle uses statistics to find possibly good groupings
(i.e., views), otherwise, queries are executed one the original G data graph;
hence queries with many joins remain a challenge.

7 To avoid the I/O dominance, we did not include GROUB-BY and
ORDER-BY, and only the top 10000 rows are retrieved.

AUTHOR ET AL.: TITLE 13

Figure 17. 9 queries are needed to formulate this MashQL query.

Query (B32) 32 M (B16) 16 M (B8) 8 M

 GS Oracle GS Oracle GS Oracle
Q1 0.003 0.017 0.003 0.012 0.003 0.008
Q2 0.002 172 0.002 118 0.002 85
Q3 0.005 859 0.004 592 0.003 423
Q4 0.005 2576 0.004 1776 0.004 1269
Q5 0.005 3864 0.004 2665 0.004 1903
Q6 0.005 - 0.005 - 0.005 -
Q7 0.007 - 0.007 - 0.007 -
Q8 0.005 - 0.005 - 0.005 -
Q9 0.007 - 0.007 - 0.007 -

Figure 18. Time cost of the background queries in Figure 17.
Queries taking more than 5000sec were terminated and their time is

not reported.

This experiment also shows that the time cost for all
queries remains very small indeed, although the dataset
is larger, more heterogeneous, and the queries involve
longer join-path expressions.

Experiment 3 (Extreme): This experiment might not be
faced in practice; but its goal is to expose the limits of both
our Graph Signature and Oracle’s index. Figure 19 shows a
query where all nodes and properties are variables. It
means, what are the properties of the properties of … (at 9
level) of properties of anything. After selecting the query
subject as the variable Anything, and then move to select
from the list of its properties, the user decides to make the
property as a variable, at each level. The query editor, at
each level, generates the list of the possible properties
depending on the previous selections. For example, at the
2nd level, the editor’s query �: P:(?Anything ?RelatedTo1 ?O1)(?O1 ?P
?O2); at the 3rd level �: P:(?Anything ?RelatedTo1 ?O1)(?O1 ?RelatedTo2
?O2)(?O2 ?P ?O4); and so on. Notice that executing such queries
is very expensive as the whole index must be scanned and
joined with itself i-1 times, at level i.

Figure 19. A query with all predicates are variables.

Query (B32) 32 M (B16) 16 M (B8) 8 M

 GS Oracle GS Oracle GS Oracle

Q1 0.003 0.017 0.003 0.012 0.003 0.008

Q2 0.031 151 0.020 104 0.012 75

Q3 0.058 606 0.022 418 0.020 298

Q4 0.091 3028 0.044 2088 0.034 1492

Q5 0.124 - 0.072 - 0.064 -

Q6 0.151 - 0. 110 - 0.096 -

Q7 0.172 - 0. 162 - 0.122 -

Q8 0.204 - 0.196 - 0.144 -

Q9 0.259 - 0. 220 - 0. 184 -

Figure 20. A query involving many background joins.

This is indeed the worst-case scenario for both indexes.
As shown in Figure 20, the response of the Oracle’s
Semantic Technology after the 4rd level, was larger than
5000 seconds, thus we terminated the queries. On the
other side, although the execution time using our index
increases at each level, the important thing is that this
increase remains fairly acceptable, for such type of
extreme queries. The GS index results to faster

background queries because the graph signature fits in a
small memory, even with some magnitudes of self joins.
Oracle’s Semantic Technology, on the other hand,
performs the self-joins on the whole dataset, which is too
large. In other words, the GS index joins only the Graph
Signature, which is 1M edges, whereas Oracle’s joins the
whole data graph, which is 32M edges.

To conclude, as shown by these three experiments,
because the size of the graph-signature index is small,
long join-path queries can be executed very fast. This
speed enables the MashQL editor to perform its
background queries instantly, regardless of the dataset’s
size.

7.4 Usability Evaluation

To evaluate how easy it is to use MashQL, we invited
40 people to use the MashQL editor to formulate basic
and advanced queries over RDF datasets found at
http://data.semanticweb.org, which contains over 80k triples
about articles, people, organizations, conferences, and
workshops. 25 participants were non-IT skilled (i.e., had
only basic skills for web browsing); and other 15 were IT-
skilled people – but none of them was familiar with RDF
or SPARQL. A 10-minutes tutorial about MashQL was
given before the evaluation started, illustrating examples
of MashQL queries but no hands-on exercises or
examples from the datasets used.

Each of the 40 participants was given 6 queries to
formulate (listed in Figure 21). After formulating each
query in MashQL, each person was asked to manually
browse the queried page(s) and compose the answer. The
average time needed to formulate each query in MashQL
(versus the manual navigation) was recorded and is
presented in Figure 22(a). The time needed to formulate a
query by the IT-skilled (versus the non IT-skilled) is
presented in Figure 22(b).

After finishing all queries, each person was asked to
fill in a questionnaire that evaluated the main features of
MashQL. The results are summarized in Figure 23.

This evaluation included the MashQL editor and the
Firefox add-on. The evaluation conclusions for each case
were almost the same, thus they are merged here for the
sake of brevity. We refer to [49] for more details about
each evaluation.

Q1. “Find the titles of the articles presented at the 4th European Semantic
Web Conference”. This is a simple query and helps to get familiar with
the MashQL editor.

Q2. “To learn more about these articles, find the titles, authors, and
abstracts of the articles presented at the 4th European Semantic Web
Conference”. This extends Q1, but this time the participants have to
compare the easiness of the web navigation with the use of MashQL.
Q3. “Retrieve all the titles, authors, and abstracts of the articles presented
at the 4th European Semantic Web Conference that have a title that
contains the word Semantic”. A more difficult query, to show the
querying efficiency of the two methods.

Q4. “Update the previous query by retrieving also and the homepages of the
authors, and order the results”. This scenario emphasizes the ordering
functionality of the editor compared to the manual ordering of the
information, after gathering them in a file.

Q5. “Retrieve the names of all authors of papers that contain the word
‘Semantic’ and presented in the 4th European Semantic Web Conference”.
In the previous queries one should start with “Article”, here it
should start with “Person”.

14

Q6. “Retrieve the names and homepages of the authors that attended the
4th European Semantic Web Conference or the 16th International World
Wide Web Conference, and the authors’ names contain the word Thomas’.
This query is a mashup involving multiple pages/sources, and
contains the “OneOf” operator.

Figure 21. List of queries used in the evaluation.

Figure 22. (a) Manual Navigation vs. MashQL; (b) IT vs. non IT.

Figure 23. Evaluation of the editor interface and features.

We found that most of the people were generally
happy and the core ideas of MashQL were appreciated.
People were able to learn MashQL quickly by practicing
it; if they were to perform similar queries on other
datasets they would do it much faster next time. It is
worth noting that none of the 40 people failed to
formulate the given queries. We also observed that people
are still not used with the Data Web paradigm (i.e.,
dealing with structured data and the difficulty of
querying it). They are used to “google” information and
then manually navigate to compose answers, without
noticing how much time they consume or the
impreciseness of the results.

Since MashQL is not intended to be used by
developers (e.g., SPARQL and RDF experts), but rather,
by people who are unfamiliar with these technologies,
our usability study did not compare MashQL usability
with SPARQL usability. However, it is worth noting that
some users of the MashQL editors have used it to learn
SPARQL. The tool supports a debugging functionality
that displays the generated SPARQL script, and allows
one to directly change this script, and then look back to
these changes in MashQL. This indicates that the
MashQL's intuition is easier to learn for SPARQL
beginners.

8. CONCLUSIONS AND FUTURE WORK

We proposed a query formulation language, called
MashQL. We have specified four assumptions that a Data
Web query language should have, and shown how MashQL
implements all of them. The language-design and the
performance complexities of MashQL are fundamentally
tackled. We have designed and formally specified the syntax
and the semantics of MashQL, as a language, not merely a
single-purpose interface. We have also specified the query
formulation algorithm, by which the complexity of
understanding a data source (even it is schema-free) are
moved to the query editor. We addressed the challenge of
achieving interactive performance during query formulation

by introducing a new approach for indexing RDF data. We
presented two different implementation scenarios of
MashQL and evaluated our implementation on two large
datasets.

We plan to extend this work in several directions. We will
introduce a search-box on top of MashQL to allow keyword-
search and then use MashQL to filter the retrieved results.
To allow people use MashQL in a typical data integration
scenario, several reasoning services will be supported,
including SameAs, Subtype, Sub-property, and Part-of.
Furthermore, we are collaborating with colleagues to use
MashQL as a business rules language, thus include several
reaction and production operators. We plan to also support
aggregation functions, as soon as their semantics are defined
and standardized in SPARQL. Supporting such functions in
MashQL is not difficult since we only need to allow the user
to select a function (e.g., sum, avg, max, etc.) before a subject,
property or object. Last but not least, we are currently
extending the Graph Signature approach for general-
purpose query optimization. In particular, we are seeking to
extend the Graph Signature to optimize arbitrary
SPARQL queries; for this, we need to extend our query
model to retrieve not only the last node/edge, but any
node/edge, as well as star-shaped queries. This is not
difficult, because a query path is the building block for
star-shaped queries. Furthermore, we plan to use our
approach on keyword-search. In such a scenario, we
expect to have fast responses, because false positives are
less important. Last but not least, we need to develop a
maintenance strategy to support querying dynamic
datasets.

ACKNOWLEDGEMENTS

This research was partially supported by the
SEARCHiN project (FP6-042467, Marie Curie Actions). We
would like to also thank Ala Hawash, Andreas Manoli,
Anton Deik, Bilal Farraj, and Constantinos Savvides for
their support and help in the implementation of MashQL.

REFERENCES
1 Altova XMLSpy®: http://www.altova.com/solutions/xquery-tools.html (Feb. 2010)
2 Stylus Studio®: http://www.stylusstudio.com/xquery_editor.html (Feb. 2010)
3 Isparql: http://lod.openlinksw.com/isparql (Feb. 2010)
4 RDB2RDF: http://www.w3.org/2005/Incubator/rdb2rdf (Feb. 2010)
5 SPARQL Extensions: http://esw.w3.org/SPARQL/Extensions? (Feb. 2010)
6 SparqlMotion: http://www.topquadrant.com/sparqlmotion (Feb. 2010)
7 Yahoo Pipes: http://pipes.yahoo.com/pipes (Feb. 2010)
8 Abadi D, Marcus A, Madden S, Hollenbach K: Scalable semantic web

data management using vertical partitioning. VLDB, 2007.
9 Athanasis N, Christophides V, Kotzinos D: Generating On the Fly

Queries for the Semantic Web. ISWC2004.
10 BEA Systems, Inc.: BEA AquaLogic Data Services Platform™ -

XQuery Developer’s Guide. Version 2.5, 2005.
11 Bloesch A, Halpin, T: Conceptual Queries using ConQuer–II. ER 1997.
12 Comai S, Damiani E: Computing Graphical Queries over XML Data.

ACM Transactions on Information Systems, 19(4). 2001
13 Chong E, Das S, Eadon G, Srinivasan J: An efficient SQL-based RDF

querying scheme. VLDB’05, Springer. 2005.
14 Czejdo B, and Elmasri R, and Rusinkiewicz M, and Embley D: An

algebraic language for graphical query formulation using an EER
model. Computer Science conference. ACM. 1987.

15 De Keukelaere F, Bhola S, Steiner M, Chari S, Yoshihama S:SMash:
secure component model for cross-domain mashups on unmodified
browsers. WWW 2008.

16 De Troyer O, Meersman R, Verlinden P: RIDL on the CRIS Case: A
Workbench for NIAM. Proc. of IFIP WG 8.1 Working. 1988.

AUTHOR ET AL.: TITLE 15

17 Dionisiof J, Cardenasf A: MQuery: A Visual Query Language for
Multimedia, Timeline and Simulation Data. J. Visual Languages &
Computing, 7(4).1996

18 Goldman R, Widom J: DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. VLDB 1997.

19 Griffin E: Foundations of Popfly. Springer, 2008.
20 Henzinger R, Henzinger A, Kopke W: Computing Simulations on

Finite and Infinite Graphs. FOCS 1995.
21 Hofstede A, Proper H, and Weide T: Computer Supported Query

Formulation in an Evolving Context. Australasian DB Conf. 1995.
22 Jarrar M: Towards Methodological Principles for Ontology

Engineering. PhD Thesis.Vrije Universiteit Brussel. 2005
23 Jarrar M, Dikaiakos M: A Data Mashup Language for the Data Web.

Proceedings of LDOW, at WWW'09. ISSN 1613-0073. 2009.
24 Jarrar M, and Dikaiakos M: MashQL: Querying the Data Web. IEEE

internet computing. April 2010.
25 Jarrar M, Dikaiakos M, Querying the Data Web, tech. report TR-09-04,

Dept. Computer Science, Univ. of Cyprus, Nov. 2009;
http://encs.birzeit.edu/klab/publications/TARMD10.pdf.htm

26 Jagadish H, Chapman A, Elkiss A, Jayapandian M, Li Y, Nandi A,
YuC: Making database systems usable. SIGMOD 2007

27 Jarrar M, Dikaiakos M.: Technical Article: Querying the Data Web.
University of Cyprus. www.cs.ucy.ac.cy/~mjarrar/TAR200904.pdf

28 Jayapandian M, Jagadish H:Automated Creation of a Forms-based
Database Query Interface. VLDB 2008.

29 Jayapandian M, Jagadish H:Expressive Query Specification through
Form Customization. EDBT 2008.

30 Kaufmann E, Bernstein A: How Useful Are Natural Language
Interfaces to the Semantic Web for Casual End-Users. ISWC, 2007.

31 Kaushik R, Bohannon P, Naughton J, Korth H: Covering Indexes for
Branching Path Queries. SIGMOD 2002.

32 Kaushik R, Shenoy P, Bohannon P, Gudes E: Exploiting local
similarity for indexing of paths in graph structured data. ICDE 2002.

33 Li Y, Yang H, Jagadish H: NaLIX: an interactive natural language
interface for querying XML. SIGMOD 2005.

34 Manoli A: MashQL Implementation in the Firefox Browser. B.Sc.
Thesis. Computer Science dept., University of Cyprus, Dec. 2009.

35 Miller R: Response time in man-computer conversational transactions. AFIPS 1968
36 Milo T, Suciu D: Index structures for path expressions. ICDT 1999.
37 Nandi A, Jagadish H: Assisted querying using instant-response

interfaces. SIGMOD 2007.
38 Nestorov S, Ullman J, Wiener J, Chawathe S: Concise Representations

of Semistructured Hierarchical Data. ICDE 1997.
39 Neumann T, Weikum G: RDF3X: RISC style engine for RDF. VLDB’08
40 Paige R, Tarjan R: Three partition refinement algorithms. SIAM

Journal on Computing, 16(6):973–989. 1987.
41 Parent C, Spaccapietra S: About Complex Entities, Complex Objects

and Object-Oriented Data Models. Information System Concepts, 1989
42 Petropoulos, M, Papakonstantinouy, Vassalos V: Graphical Query

Interfaces for Semistructured Data ACM Internet Technology, 5(2). 2005
43 Prud’hommeaux E, Seaborne A: SPARQL Query Language for RDF. 2008
44 Popescu A, Etzioni O, Kautz H: Towards a theory of natural language

interfaces to databases. 8th Con on Intelligent user interfaces. 2003
45 Russell A, Smart R, Braines D, Shadbolt R.: NITELIGHT: A Graphical Tool

for Semantic Query Construction. SWUI Workshop. 2008.
46 Steer D, Miller L, Brickley D: RDFAuthor: Enabling everyone to author rdf,”

WWW’02 Developers Day, 2002.
47 Stockmeyer L, Meyer A: Word problems requiring exponential time. STOC’73.
48 Tummarello G, Polleres A, Morbidoni C: Who the FOAF knows Alice?

ISWC Workshops. 2007
49 Savvides C: MashQL: A Step towards Semantic Pipes. M.Sc. Thesis.

Computer Science dept., University of Cyprus, May 2010.
50 Zloof M: Query-by-Example: Data Base Language. IBM Systems 16(4).

1977

APPENDIX

Proof of Theorem 1. Given a query Q (on:{o1 p1 o2 p2 … pn-1
on-1pn on}). Evaluating this query safely means the results set
ox when evaluating Q on a data graph G, is a subset of the
results Ox of evaluating it on the O-Signature (ox ∈ Ox).. Let
p1 be an edge from o1 to o2 in G, then (by definition), its O-
Signature SO must contain p1 from O1 to O2, and for pn from
on-1 to on there is pn from On-1 to On (where o1∈O1…on∈On).
Thus for every path (o1p1→o2 p2→… on-1 pn→) in G there is
exactly the path (O1

p1→O2
 p2→… On-1

pn→) in SO. When
evaluating Q on G we retrieve ox the set of nodes having
this path into them, and similarly Ox when evaluating Q on

SO. Since each oi∈Oi, then (ox ∈ Ox).

Proof of Theorem 2. Given a query Q (pn:{o1 p1 o2 p2 … pn-1
on-1 pn on}). Evaluating this query precisely means that the
results set px when evaluating Q on G, is exactly the same
results Px when evaluating it on the So (px = Px). Now, let
p1 be an edge from o1 to o2 in G, then (by definition) its O-
Signature SO must contain p1 from O1 to O2, and so for pn
from on-1 to on there is pn from On-1 to On (where
o1∈O1…on∈On). Hence for every path (o1

p1→ o2
p2→ … on-1

pn→ on) in G there is exactly the path in SO (O1
p1→ O2

p2→
… On-1

 pn→ On); and since the path (
p1→ p2→ … pn→) from

o1 to on-1, is (by definition) the same path from O1 to On-1.
Then, the set of edges px from on-1 to on is exactly the same
set of edges Px from O1 to On.

Proof of Theorem 3. Given query Q (on:{o1 p1 o2 p2 … pn-1
on-1 pn on}) where every node o is a variable. Evaluating
this query precisely means retrieving all nodes ox having
the path (p1→ p2→…pn→) into them, i.e. regardless of
which previous nodes this path follows to reach them, as
all previous nodes are variables. Hence, by definition, for
every node in ox having the path (p1→ p2→…pn→) into it in
G, there is the same path (p1→ p2→…pn→) into Ox in SI.
Since, also by definition, the nodes in Ox are exactly the
nodes in ox that have the same paths, then ox =Ox.

Proof of Theorem 4. Because (as proven in theorem 1) the
answer of the O/I-Signature is safe, i.e., a superset of the
target answer, then if this superset is empty the target
answer is empty.

About the Authors

Mustafa Jarrar (mjarrar@birzeit.edu) is an assistant professor
at the University of Birzeit in Palestine. His research interests
include the Semantic Web, ontology engineering, databases,
Web 2.0, and data mashups. Jarrar has a PhD in computer
science from Vrije Universiteit Brussel in Belgium; and an
Experienced Marie Curie fellow at the University of Cyprus.
He is a full member of the IFIP2.6 on Database Semantics, the
IFIP2.12 on Web Semantics, and the IEEE Learning
Standards Committee.www.jarrar.info

Marios D. Dikaiakos (mdd@cs.ucy.ac.cy) is an associate

professor of computer science at the University of Cyprus.

His research interests include network-centric computing

systems and Web technologies. Dikaiakos has a PhD in

computer science from Princeton University. He’s a senior

member of the ACM and a member of the IEEE Computer

Society and the Technical Chamber of Greece.

www.cs.ucy.ac.cy/~mdd

