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A Query Formulation Language for the 
Data Web 

Mustafa Jarrar, Marios D. Dikaiakos 

Abstract— We present a query formulation language (called MashQL) in order to easily query and fuse structured data on the 

web. The main novelty of MashQL is that it allows people with limited IT-skills to explore and query one (or multiple) data 

sources without prior knowledge about the schema, structure, vocabulary, or any technical details of these sources. More 

importantly, to be robust and cover most cases in practice, we do not assume that a data source should have -an offline or 

inline- schema. This poses several language-design and performance complexities that we fundamentally tackle. To illustrate 

the query formulation power of MashQL, and without loss of generality, we chose the Data Web scenario. We also chose 

querying RDF, as it is the most primitive data model; hence, MashQL can be similarly used for querying relational databases 

and XML. We present two implementations of MashQL, an online mashup editor, and a Firefox add-on. The former illustrates 

how MashQL can be used to query and mash up the Data Web as simple as filtering and piping web feeds; and the Firefox add-

on illustrates using the browser as a web composer rather than only a navigator. To end, we evaluate MashQL on querying two 

datasets, DBLP and DBPedia, and show that our indexing techniques allow instant user-interaction. 

Index Terms— Query Formulation, Semantic Web, Data Web, RDF, SPARQL, Indexing Methods, Query Optimization, Mashup  
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1. INTRODUCTION AND MOTIVATION

llowing end-users to easily search and consume 
structured data is a known challenge that receives 
recently a great attention from the Web 2.0 and the 

Data Web communities. The rapid growth of structured 
data on the Web has created a high demand for making 
this content more reusable and consumable. Companies 
are competing not only on gathering structured content 
and making it public, but also on encouraging people to 
reuse and profit from this content. Many companies such 
as Google Base, Yahoo Local, Freebase, Upcoming, Flicker, 
eBay, Amazon, and LinkedIn have made their content 
publicly accessible through APIs. In addition, companies 
have also started to widely adopt web metadata standards. 
For example, Yahoo started to support websites 
embedding RDF and microformats, by better presenting 
them in the search results; MySpace also started to adopt 
RDF for profile and data portability; Google, Upcoming, 
Slideshare, Digg, the Whitehouse, and many others started 
to publish their content in RDFa, a forthcoming W3C 
standard for embedding RDF inside webpages so that 
content can be better understood, searched, and filtered. 

This trend of structured data on the Web (Data Web) is 
shifting the focus of Web technologies towards new 
paradigms of structured-data retrieval. Traditional search 
engines cannot serve such data as the results of a keyword-
based query will not be precise or clean, because the query 
itself is still ambiguous although the underlying data is 
structured. To expose the massive amount of structured data 
on the Web to its full potential, people should be able to 
query this data easily and effectively. Formulating queries 

should be fast and should not require programming skills. 

1.1 Challenges 

The main challenge is that, before formulating a query, 
one has to know the structure of the data and the attribute 
labels (i.e., the schema). End-users are not expected to 
investigate “what is the schema” each time they search or 
filter information. In many cases, a data schema might be 
even dynamic, i.e., many kinds of items with different 
attributes are often being added and dropped. Other 
sources might be schema-free, or if it exists, the schema 
might be inline the data (e.g., RDF). Allowing end-users to 
query structured data flexibly is a challenge, especially 
when a query involves multiple sources. 

Example: Figure 1 shows two RDF sources1, 
Example1.com and Example2.com. Suppose a Web user 
wants to retrieve “Lara’s articles after 2007” from both 
sites. These sources do not only disagree on property labels 
(e.g., Year and PubYear), but also on data semantics. For 
example, while the rdf:Type in Example1 tells us that A1 
and A2 are Articles, we do not know whether B1 and B2 in 
Example2 are articles, books, or songs. 

It is not necessary in RDF that data adheres to a certain 
schema or ontology. RDF data is queried using SPARQL 
[ 42]. The query in the right-hand side retrieves “the titles of 
the items that are written by Lara after 2007”. Query 
conditions in SPARQL are called triple-patterns, and 
evaluated as pattern-filling [ 41], rather than truth- evaluation 
if compared with SQL. This is a robust way for querying 
schema-free data, as changes to data do not cause queries to 
break; however, it poses hard query formulation challenges. 
Before writing a query, one has to be fully-aware of the 
property labels and data structures. Unlike formulating SQL,  

 

1 RDF represents data as a directed labeled graph. A graph is a set 
of triples of the form <Subject, Predicate, Object>. Subjects and 
Predicates must be URIs, an Object can be either a URI or a Literal. 

———————————————— 

• M. Jarrar is the Birzeit Universit, Ramallah, Palestine.  
E-mail:mjarrar@birzeit.edu 

• M. D. Dikaiakos is with the University of Cyprus.20537, Nicosia, Cyprus. 
E-mail:,mdd@cs.ucy.ac 
 

A



2  

 

http://example1.com 
:A1  rdf:Type  bibo:Article 
:A1  :Title       “Data Web” 
:A1  :Author   “Tom Lara” 
:A1  :Author   “Bob Hacker” 
:A1  :Year       2007 
:A2  rdf:Type bibo:Article 
:A2  :Title      “Semantic Web” 
:A2  :Author  “Tom Lara” 
:A2  :Year      2005 

SPARQL Query: 
PREFIX S1:<http://example1.com> 
PREFIX S2:<http://example2.com> 
SELECT ?ArticleTitle 
FROM <http://example1.com> 
FROM <http://example2.com> 
WHERE {{{?X  S1:Title  ?ArticleTitle}  UNION 
   {?X  S2:Title  ?ArticleTitle}} 
  {{?X  S1:Author  ?X1}  UNION  {?X S2:Author ?X1}}
  {{?X  S1:Year  ?X2}  UNION  {?X S2:PubYear ?X2}}
    FILTER regex(?X1, “^Lara”) 
    FILTER (?X2 > 2007)} 
Results: 

ArticleTitle 
Data Web 

Linked Data 
 

http://example2.com 
:B1  :Title   “Linked Data” 
:B1  :Author  “Lara T.” 
:B1  :PubYear  2008 
:B1  :Publisher  “Springer” 
:B2  :Title  “Data on the Web” 
:B2  :Author  “Abiteboul S.” 

 

Figure 1. SPARQL query over two RDF data sources. 

query requires one to manually investigate the data itself 
before querying it. This issue becomes challenging in the 
case of large datasets; and even more complex when 
querying multiple sources, as predicates have to be explicitly 
union-ed (See Figure 1).  

As discussed in section 2, allowing people to easily 
query and consume structured data is a known challenge 
in different areas. However, in an open environment, as the 
Data Web, for a query formulation language to be practically 
sound, it should address the assumptions below: 

Position Statement: How to allow people with limited 
IT-skills to query structured data, assuming that: 

• The user does not have to know the schema. (1) 

• The data might be schema-free. (2) 

• A query may involve multiple data sources. (3) 

• The query method is sufficiently expressive. 
    (i.e., not merely a single-purpose user interface) 

(4) 

1.2 Overview of Contributions 

We propose an interactive query formulation language, 
called MashQL. The novelty of MashQL (compared with 
related work) is that it considers all of the above 
assumptions together. Being a language -not merely an 
interface and, at the same time, assuming data to be 
schema-free is one of the key challenges addressed in the 
context of MashQL design and development. Without loss 
of generality, this article focuses on the Data Web scenario. 
We regard the Web as a database, where each data source 
is seen as table. In this view, a data mashup becomes a query 
involving multiple data sources. To illustrate the power of 
MashQL we chose to focus on querying RDF, which is the 
most primitive data model, hence, other models -as XML 
and relational databases - can be easily mapped into it [ 4]. 

We give a bird’s-eye view of MashQL in Figure 2 which 
shows the same query as in Figure 1 written in MashQL. The 
first module specifies the query input, the second module 
specifies the query body, and the output is piped into a third 
module (not shown here) that renders the results into HTML 
or XML, or as RDF input to other queries. 

Each MashQL query is seen as a tree; the root is called 
the query subject. Each branch is a restriction on a property 
of the subject. Branches can be expanded to allow sub trees 
(Figure 4), called query paths, which allows one to navigate 
through the underlying dataset and build complex queries. 
Formulating a query is an interactive process: First, the 
editor queries a given dataset (as a black-box) to find the 
main concepts, from which the query subject can be selected 

 
Figure 2. The same SPARQL query in Figure 1, but in MashQL. 

 (e.g. Anything, Article). The editor then finds the possible 
properties for this subject (e.g. Title, Author, Year). The user 
selects a property and restricts it using a function (e.g. 
MoreThan) and value (e.g. 2007); and so on (Section  4). In this 
way, users can navigate and query a data source without 
any prior knowledge about it. The symbol “�” indicates a 
projection, i.e., appear in the results. When querying 
multiple sources, two properties (or two instances) are 
considered the same if and only if they have the same URI. 
To help end-users not seeing cryptic URI, the editor 
normalizes URIs by detecting different namespaces of same 
properties and optionally combines them together (Section 
 6). In case of different namespaces and property labels (e.g., 
S1:Year and S2:PubYear), the user can choose the union 
operator “\” to combine them. 

Although MashQL can be used, in a sense, for data 
integration, but this is not a goal per se. Data integration 
requires not only syntax, but also semantic integration, 
which is not supported in MashQL. MashQL allows 
people to spot different labels of same properties (as they 
navigate through datasets) and manually combine them, 
as shown in the previous example. 

Summary of Contributions:  

� Query Language (Section  3). The notational system and 
constructs that make MashQL an expressive and yet 
intuitive query language, supporting all constructs of 
SPARQL.  

� Query Formulation Algorithm (Section  4). This algorithm 
is used by the MashQL editor. Its novelty is that it one to 
navigate through and query a data graph(s) without 
assuming the end-user to know the schema or the data to 
adhere to a schema. 

� Graph Signature Index (Section  5). Because of 
assumption 2 (data is schema-free), the previous 
algorithm has to query the whole dataset in real-time, 
which can be a performance bottleneck because such 
queries may involve many self-joins. Hence, the 
interactivity of MashQL might be unacceptable. Thus, 
we propose a new way of indexing RDF, which we call 
the Graph Signature. The size of a Graph Signature is 
typically much smaller than the original graph, 
yielding fast response-time queries. 

� Implementation and Evaluation (Section  7 and  6). We 
present two implementations of MashQL: a server-side 
mashup editor, and a Firefox add-on extension. We 
evaluate the response-time of MashQL on two large 
datasets: DBLP and DBPedia; and compare it with 
Oracle’s Semantic Technology. We will show queries 
can be answered instantly, regardless of the data size. 
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A preliminary version of MashQL appeared in [ 23, 23], 
presenting only the general intuition of MashQL. This paper is 
substantially different: a) the intuition is revised; it also 
includes b) the formal syntax and semantics of MashQL and 
its mapping into SPARQL, c) the query formulation 
algorithm, d) the graph-signature index, e) the evaluation 
and f) the implementation. 

2. RELATED WORK 

Query formulation is the art of allowing people to easily 
query a data source (e.g., relational database, XML, or RDF). 
In the background, queries are translated into formal 
languages (e.g., SQL, XQuery, or SPARQL). This section 
reviews the main approaches to query formulation and how 
they relate to the novel contributions of MashQL. 

Query-By-Form is the simplest querying method, but it is 
neither flexible nor expressive. For each query, a form needs to 
be developed; and changes to a query imply changing its 
form. Although some methods have been proposed to semi-
automate form generation [ 28] and modification [ 29] but they 
generally fail with assumptions 2-4. 

Query-By-Example A known approach in databases, 
where users formulate queries as filling tables [ 50]. However, 
it requires the data be schematized and the users to be aware of 

the schema (fails with assumptions 1 and 2). 

Conceptual Queries As many databases are modeled at the 
conceptual level using EER, ORM or UML diagrams, one can 
query these databases starting from their diagrams. Users can 
select part of a given diagram, and their selection is translated 
into SQL (ECR [ 14, 41], RIDL[ 16], LISA[ 21], ConQuer[ 11], 
Mquery[ 17]). These approaches assume that data has a schema 
and users have a good knowledge of the conceptual schema 
(fail with assumptions 1,2,3, and some with 4). 

Natural Language Queries allow people to write their 
queries as natural language sentences, and then translate these 
sentences into a formal language (e.g., SQL [ 44], XQuery [ 33]). 
Hence, people are not required to know the schema in 
advance. The main problem is that this approach is 
fundamentally bounded with the language ambiguity –
multiple meanings of terms and the mapping between these 
terms and the elements of a data schema (fails with 
assumptions 2, 3, and relatively 4). 

Visualize queries. Several Semantic Web approaches 
(Isparql[ 2], RDFAuthor[ 46], GRQL[ 9], Nitelight[ 45]) propose 
to formulate a SPARQL query by visualizing its triple patterns 
as ellipses connected with arrows, so that one would need less 
technical skills to formulate a query. Similarly, some tools had 
been also proposed to assist formulating XQueries graphically 
(Altova XMLSpy [ 1], Stylus Studio [ 2], Bea XQuery Builder 
[ 10], XML-GL [ 12], QURSED [ 42]). Although these approaches 
vary in their intuitiveness they all intend to assist developers -
rather than end-users, as they require technical knowledge 
about the queried sources and their Schemas/DTDs (fail with 
assumptions 1 and relatively with 2 and 4). In fact, they are 
close to the query-by-example approaches as they are studio-
based query builders, but for semi-structured data. 

Mashup Editors and Visual Scripting. Some mashup 
editors (e.g., Yahoo Pipes [ 7], Popfly [ 19], sMash [ 15]) allow 

people to write query scripts inside a module, and visualize 
these modules and their inputs and outputs as boxes 
connected with lines. However, when a user needs to express 
a query over structured data, she has to use the formal 
language of that editor (e.g., YQL for Yahoo). Two approaches 
in the semantic web community (SparqlMotion[ 6] and 
DeriPipes[ 48]) are inspired by this visual scripting. For 
example, [ 48] allows people to write their SPARQL queries (in 
a textual form) inside a box and link this box to another, in 
order to form a pipeline of queries. All of these visual scripting 
approaches are not comparable with MashQL, as they do not 
provide query formulation guide in any sense. They are 
included here, because MashQL is also inspired by the way 
Yahoo Pipes visualizes query modules. However, the main 
purpose of MashQL is not to visualize such boxes and links, 
but rather, to help formulating what is inside these boxes 
(Section  6). Hence, it is worth noting that the examples of this 
article cannot be built using Yahoo pipes. Yahoo allows a 
limited support of XML mashups, using scripts in YQL. 

Interactive Queries. The closest approach to MashQL is 
Lorel [ 18], which was developed for querying schema-free 
XML, and without assuming a user’s knowledge about a 
schema. The difference between them: (First) Lorel partially 
handles schema-free queries. Like using the Graph-Signature 
in MashQL, Lorel uses a summary of the data (called 
DataGuide). However, unlike the Graph Signature, the 
DataGuide groups unrelated items as they extrinsically use 
same property labels, which lead to incorrect query 
formulation. In authors words, “we have no way of knowing 
whether O is a publication, book, play, or song. Therefore, a 
DataGuide may group unrelated objects together”. To resolve this 
issue, the authors proposed the notion of Strong DataGuide; 
but the problem is that the size of a Strong DataGuide can grow 
exponentially in case the data is graph-shaped (rather than 
tree-shaped), thus, can be larger than the original graph: “the 
worst case running time is exponential in the size of the database, 
and for a large database even linear running time would be too slow 
for an interactive session”. (Second) Lorel does not support 
querying multiple sources (assumption 3); and (Third) its 
expressivity is basic (assumption 4). MashQL supports path 
conjunctions, disjunctions, and negation, variables, union, 
reverse properties, among many others. 

Another related approach suggests a highly user 
interactive searching box [ 37]: a user can write a keyword, the 
system then smartly and quickly suggests to auto-complete 
this keyword. We found this approach intuitive as it is simple 
and does not assume any prior knowledge about the schema 
indeed (assumption 1). However, unlike MashQL, the 
existence of a data schema is fundamental to this approach, 
and this is what makes it highly interactive. The problem also 
is that this approach cannot play the role of a query language 
(fails with assumptions 2-4).Being, at the same time, 
expressive, intuitive, and highly interactive query language 
(over multiple, large, and schema-free data sources) is a very 
difficult challenge indeed. We refer to a recent usability study 
[ 30] that investigated several query formulation scenario that 
the casual users prefer. It concluded that a query language 
should be close to natural language, it should be graphically 
intuitive, and should not assume prior knowledge about the 
data. Another recent study [ 26] has specified similar querying 
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challenges and requirements for in making relational database 
systems usable for web-based applications. 

3. THE DEFINITION OF MASHQL  

This section defines the data model, the syntax, and the 
semantics of MashQL. The discussion on how to 
formulate a query follows in the next section. 

3.1 The Data Model 

MashQL assumes the queried dataset is structured as 
(or mapped into) a directed labeled graph, similar to but 
not necessarily the exact RDF syntax. A dataset G is a set 
of triples <Subject, Predicate, Object>. A subject and a 
predicate can only be a unique identifier I (URL or a key). 
An object can be a unique identifier I or a literal L. 

Def.1 (Dataset): A dataset G is a set of triples, each triple t 
is formed as <S, P, O>, where S ∈ I, P ∈ I, and O ∈ I ∪ L. 

The only difference with the RDF model is that we allow 
an identifier to be any form of a key (i.e. weaker than a URI). 
Allowing this, would simplify the use of MashQL for 
querying databases. Relational databases (or XML) can be 
mapped easily to this primitive data model. Figure 3 shows a 
simple example of mapping (or viewing) a database into a 
graph. The primary key of a table is seen as a subject, a 
column label as a predicate, and the data-entry in that 
column as an object. Foreign keys represent relationships 
between data elements across tables. Mapping from 
relational database and XML into RDF is a mature topic and 
is entering a standardization phase [ 4]. 

 
Figure 3. Mapping a relational database to RDF. 

We assume each object literal to have a datatype. If an 
object value does not have an explicit datatype, it can be 
implicitly assumed, by taking advantage of XML 
conventions: the syntax for literals is a String, enclosed in 
double or single quotes; Integers are written without 
quotes; Booleans are written as true or false; and so on. 
Stating a datatype explicitly is done using namespaces, 
such as: "1"^^xsd:integer, "2004-12-06"^^xsd:date. 

Def.2 (Typed Literals): A typed literal is a literal object 
with a tag specifying its Datatype D. Every object literal must 
have a datatype D: If O ∈ L then O ∈ D. 

Object literals may also have a language tag Lt (e.g., En, 
Gr). In the RDF best practice, this is expressed using @ 
followed by the tag, such as “Person”@En, “Ατοµο”@Gr. 

Def.3 (Language Tags): A language tag Lt is tag 
optionally associated with a typed literal, to denote to which 
human language this literal belongs. 

3.2 The Intuition of MashQL 

A MashQL query Q is seen as a tree. The root tree is 
called the query subject Q(S), which is the subject matter 
being inquired (see Def.4 in Table 1). A subject can be a 
particular instance I or a user variable V (see Def.5). Each 
branch is a restriction R, on a property of the subject. 
Branches can be expanded to allow sub trees, called query 
paths. In this case, the value of a property is the subject of 
sub query. This allows one to navigate through the 
underlying dataset and build complex queries. As will be 
explained later, each level a query is expanded it costs a 
join when this query is executed; thus the deeper the query 
path is the execution complexity increases.   

Example 2: To illustrate query paths, we use the data 
in Figure 3 and seek to retrieve the recent articles from 
Malta. That is, we retrieve the title of every article that has 
an author, this author has an affiliation, this affiliation has 
a country, this country has a name Malta, and the article 
is published after 2007. This query path can be easily 
formed and understood in MashQL, as shown in Figure 4. 

 

SELECT ?ArticleTitle 
FORM < http://localhost.example2#> 
WHERE { ?X  :Type  :Article. 
                 ?X  :Title  ?ArticleTitle. 
                 ?X  :Author  ?X1. 
                 ?X1  :Address  ?X2. 
                 ?X2  :Country  ?X3. 
                 ?X3 : Name  ?X4. 
                 ?x  :Year  ?X5. 
                 FILTER  regex(?X4, “Malta”)) 
                 FILTER  (?X5 > 2007)} 

Figure 4. Query paths in MashQL and their mappings into SPARQL. 

3.3 The Syntax and Semantics of MashQL 

MashQL queries are not executed directly; instead, they are 
translated into SPARQL queries, which are submitted for 
execution. Hence, the semantics of MashQL follow the 
semantics of SPARQL [ 43]. Table 1 presents the formal 
definition of the MashQL constructs, and Table 2 presents 
their SPARQL interpretation.  

Similar to SPARQL, when evaluating a query Q(S), only 
the triples that satisfy all restrictions (see Def. 6) are retrieved, 
such that: (i) if a restriction is not prefixed with a modal 
operator, (R≔<empty, P, Of>), the truth-evaluation of the 
restriction is considered true if the subject S, the predicate P, 
and the object-filter Of are matched (see the first two 
restrictions in Figure 5). This case is mapped into a normal 
graph pattern in SPARQL (see rule-3). (ii) if a restriction is 
prefixed with the modality “maybe” (R≔<maybe, P, Of>), its 
truth-evaluation is always true (see the 3rd restriction in Figure 
5). This case is mapped into an optional graph pattern in 
SPARQL (see rule 4). (iii) if a restriction is prefixed with the 
modality “without” (R≔<without, P, Of>), its truth-evaluation is 
considered true if the subject S and the predicate P do not 
appear together in a triple (see the last restriction in Figure 5). 
Notice that there is no such a construct in SPARQL, but in 
MashQL, we emulate it with an optional pattern and the 
object O should not be bound (see rule 5). 

Example. The query in Figure 5 means: retrieve everything 
(call this thing a Song) that: has a title, has the artist Shakera, 
possibly has an Album, and does not have a Copyright. In 
other words, when evaluating this query, we retrieve all 
triples that have same subject and: 1) with a predicate Title, 2) 
with a predicate Artist and the object identifier is Shakera, 3) 
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maybe with a predicate Album, and 4) should not have the 
predicate Copyright. 

 

SELECT SongTitle, AlbumTitle  

WHERE{ 

  ?Song :Title ?SongTitle. 

  ?Song :Artist :Shakera.  

  Optional{?Song :Album ?AlbumTitle} 

  Optional{?Song :Copyright ?X1}  

  FILTER (!Bound(?X1))}  

Figure 5. A MashQL query and its mapping into SPARQL. 

As shown in Def.7, MashQL supports 9 forms of object 
filters: Equals, Contains, MoreThan, LessThan, Between, 
OneOf, Not, and query paths. Not all of these functions have a 
direct support in SPARQL but we emulate them (see rules 6-
13). MashQL also supports a union between objects, properties, 
subjects, and queries (see Def.8, and rules 14-17). In addition, to 
allow people formulate queries at the type level, the construct 
“Any” before a subject or object retrieves the instances of this 
subject/object instead of the subject/object itself (See Figure 4). 
Furthermore, since RDF is a directed graph, it is helpful for a 
user to explore this graph backward. This is supported by the 
Reverse construct (see Def.10 and rule 20). MashQL also 
support functions for datatypes, and language tags, sorting, 
some grouping, which are not presented here for brevity. 
MashQL support of sorting, distinct, offset, and limit is moved 
to the query property window, which appears by clicking on the 
top left icon above the query.  

To conclude, MashQL is not merely a single-purpose 
interface, but rather, a general query formulation language, 
with the four assumptions -introduced earlier- in mind. It is as 
expressive as SPARQL. Like querying RDF, MashQL can be 
easily adapted to query XML and relational databases. This 
can be done by either mapping XML (or RDB) into RDF, or by 
translating MashQL into XQuery (or SQL). 

The design challenge of keeping MashQL an expressive 
and yet a simple query language is mainly achieved by 
making technical variables and namespaces to be implicit, and 
especially through the tree structure of MashQL queries that 
hides joins, which is close to the intuition people use in their 
natural language communication. For example, the query in 
Figure 4 means, retrieve the article that has an Author x1, x1 
has an affiliation x2, and so on. Because the query is 
represented as a tree, these variables are implicit for end-users. 
Suppose you would like to ask; “Give me the list of all stores 
that sell parts of the iPhone mobile, and that are located in 
Rome”; or, “Which cinemas are located in San Francesco , 
offer a movie called Avatar and will be played between 20:00 
and 23:00”. Notice that apart from some terms (such as: give 
me the list of all, which, that are), all of these inquiries can be 
directly converted into MashQL queries. 

Table 1. The formal definition of MashQL 

Def. 4 (Query): A Query Q with a subject S, denoted as Q(S), is a set of 
restrictions on S. Q(S) ≔ R1 ∧ … ∧ Rn. 

Def. 5 (Subject): A subject S ∈ (I ∪ V), I is an identifier, V is a variable. 

Def. 6 (Restriction): A restriction R ≔ <Rx , P, Of>, Rx is a modal operator, Rx 
∈ {empty, maybe, without}; P is a predicate (P ∈ I ∪ V); Of is an object filter. 

Def.7 (Object Filter): An object filter Of ≔ <O, f>, O is an object, f is a 
filtering function. f can have one of the following nine forms: 

1. Of ≔ <O>, where O is an object, O ∈ V ∪ I. This object filter does 
not add any restriction on the object value as shown in Figure 5. 

2. Of ≔ <O, Equals(X, D, Lt)>, where X can be a variable or a constant, 
D is a datatype, and Lt is a language tag. See rule-6. 

3. Of ≔ <O, Contains(X, D, Lt)>, O is an object variable, X a regex literal, 
D a datatype, and Lt a language. O should be equal to regex(X). 

4. Of ≔ <O, MoreThan(X, D)>, where O is an object variable, X is a 
variable or a constant, D is a datatype.  

5. Of ≔ <O, LessThan(X, D)>, where O is an object variable, X is a 
variable or a constant, D is a datatype identifier.  

6. Of ≔ <O, Between(X, Y, D)>, where X and Y are variables or 
constants, D is a datatype identifier.  

7. Of ≔ <O, OneOf(V)>, where O is an object variable, and V is a set of 
values {v1, ... , vn}, vi is a variable or constant. 

8. Of ≔ <O, Not(f)>, where f is one of the functions defined above. This 
filter extends all of the above functions with simple negation. 

9. Of ≔ <O, Qi(O)>, where O is an object (O ∈ V ∪ I), and Qi(O) is a 
sub-query with O being the query subject. The restrictions defined 
in the sub-query Qi(O) should be satisfied as well. 

Def.8 (Union): A union can be declared between objects, predicates, 
subjects and/or queries, in the following forms: 
1. On = <O1\O2 \ . . . \On>, to indicate unions between objects, Oi ∈ I. 
2. Pn = <P1\P2 \ . . . \Pn>, to indicate unions between predicates, Pi ∈ I. 
3. Sn = <S1\S2 \ . . . \Sn>, to indicate unions between subjects, where Si ∈ I.  
4. Qn = <Q1\Q2 \ . . . \Qn>, to indicate unions between queries,  

Def.9 (Types): A subject (S ∈ I) or an object (O ∈ I) can be prefixed with 
“Any” to mean the instances of this subject/object type.  

Def.10 (Reverse): <~P> indicates the reverse of the predicate P. Let R1 be a 
restriction on S s.t. <S P O>, R2 be <O ~P S>, R1 and R2 have the same meaning. 

Table 2. MashQL-To-SPARQL mapping rules 

Rule-1: The symbol � before a variable means that it will be 
returned in the results; i.e., included in the SELECT part.  

Rule-2: if a subject, predicate, or object in a MashQL query is 
italicized: it is seen as a SPARQL variable, i.e. prefixed with “?”. 

Rule-3: If S is a subject, R = <empty, P, Of>, the mapping:{S P O}. 

Rule-4: If S is a subject and R = <maybe, P, Of>, the mapping is:  
{OPTIONAL{S P O}}. 

Rule-5: If S is a subject and R = < without, P, Of>, the mapping is:  
            {S P O. FILTER (!bound(?O))}. 

Rule 6.  If Of = <O, Equals(X, D, Lt)>:  
       Append the mapping with: FILTER(?O = X) 
       If D ≠ Null: Append the mapping with: 

FILTER(datatype(?O)=D) 

       If Lt ≠ Null: Append the mapping with: FILTER(lang(?O)= Lt) 

Rule 7.  If Of = Contains(X, D, Lt)>: 
      Append the mapping with: FILTER regex(?O, X) 
       If D ≠ Null: Append the mapping with: 

FILTER(datatype(?O)=D) 
       If Lt ≠ Null: Append the mapping with: FILTER(lang(?O) = Lt) 

Rule 8. If Of = <O, MoreThan(X, D)>: 
       Append the mapping with: FILTER(?O > X) 
       If D ≠ Null: Append the mapping with: 

FILTER(datatype(?O=D) 

Rule 9. If Of = <O, LessThan(X, D)>:  
      Append the mapping with: FILTER(?O < X) 
       If D ≠ Null: Append the mapping with:  

FILTER(datatype(?O=D) 

Rule 10. If Of = <O, Between(X, Y, D)>: 
      Append the mapping with: FILTER(?O >=X)&& FILTER(?O<=Y) 
  If D ≠ Null: Append the mapping with: FILTER(datatype(?O)=D) 

Rule 11.  If Of = <O, OneOf (V)>:  Append the mapping with:  
{FILTER(?O = V1)|| . . . || FILTER(?O = Vn)} 

      If Vi is a regex-ed literal, the ith filter above should be replaced 
with: FILTER Regex(?O, Vi) 

Rule 12. If Of = <O, Not(f)>:  f filter is generated as above, but with a negation. 

Rule 13. If Of = <O, Qi(O)>:Repeat all mapping rules to generate Qi(O). 

Rule 14. Given On , If n >1 and Oi ∈  I : The mapping in rules 3-4 will 
be:    {{S P :O1} UNION . . . UNION {S P :On}} 

Rule 15.  Given Pn , If n >1 and Pi ∈  I : The mapping in rules 3-4 will 
be:  {{S :P1 O} UNION . . . UNION {S :Pn O}} 

Rule 16.  Given Sn , If n >1 and Si ∈  I : Regenerate the query n times, 
each time with Si as a root, and with a UNION between the queries. 

Rule 17.  Given Qn , If n >1 :  Add UNION between the n queries. 

Rule 18. If a subject S is prefixed with “Any”:{?S rdf:type :S} 

Rule 19. If an object O is prefixed with “Any”:{?O rdf:type :O} 

Rule 20. If S is a subject and R=<~P, O>, the mapping is: {O P S}. 
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4. QUERY FORMULATION ALGORITHM 

We present a novel query formulation algorithm, by 
which the complexity and the responsibility of 
understanding a data source (even if it is schema-free) are 
moved from the user to the query editor. It allows end-
users to easily navigate and query an unknown data 
graph(s). That is, people learn the content and the 
structure of a dataset while navigating it. The algorithm 
does not require the data to contain specific information 
or tags, except being syntactically correct RDF, as 
discussed in the query model subsection  3.1. Figure 6 
shows screenshots of a query formulation scenario. 

 

Begin 

Step 0: Specify the dataset G in the Input module. G can be 
one or a merge2 of multiple data graphs.  

 
Figure 6. A Query Formulation Demo. 

Step 1: Select the query subject S, where S ∈ ST ∪ SI ∪ V. That is, 
after specifying the dataset, users can select S from a drop-
down list (Figure 6.A) that contains, either: (i) ST: the set of 
the subject-types in G, such as Article; or (ii) SI: the union of 
all subject and object identifiers (i.e., all individuals) in the 
dataset; or (iii) a user-defined subject label. In the latter case, 
the subject is seen as a variable (S ∈ V) and displayed in 
italics; the default subject is the variable label Anything. 
These three options are formalized respectively in relational 
algebra and SPARQL, as follows: 

(1)   S ∈ ST : ππππ O (σσσσ P=‘:Type’ (G)) 

(1’)   O1:{(?S1 <:Type> ?O1)} 
(2)  S ∈ SI : ππππ S (G) ∪∪∪∪ ππππ O (σσσσO ∈URI (G)) 
(2’)      S1:{(?S1 ?P1 ?O1)} UNION O1:{(?S1 ?P1 ?O1). Filter isURI(?O1)} 
(3)  S ∈ V 

Users can union the selected subject with another 
subject(s), e.g., Author\Person. After selecting a subject, and 
then typing the “\” operator, the subject list appears again to 
select another one(s). The union of all subjects is seen as one 

 

2 Merging RDF graphs is straightforward as specified in the W3C 
standard [ 42]: all triples are put together; two nodes or two edges 
are exactly the same iff they have the same labels (i.e., URI). 

subject in the next steps. A union is only possible either 
between subject-types or individuals, but not a mix of both. 

Repeat Step 2-3 (until the user stops) 

Step 2: Select a property P. Depending on the chosen 
subject(s) in step 1, a list of the possible properties for this 
subject is generated (Figure 6.B). There are four possibilities: 
(i) if (S ∈ ST), such as Article, the list will be the set of all 
properties that the instances of this subject-type have (e.g., 
Title, Author, Year). (ii) if (S ∈ SI), such as A1, the list will be 
the set of all properties that this particular instance(s) has. 
(iii) If the subject is a variable (S ∈ V), the list will be the set of 
all properties in the dataset. (iv) users can also choose the 
property to be a variable by introducing their own label. The 
formalization of these four options are:  

(4)   (S ∈ ST) → P ∈ππππ P2 (σ P1=:Type ∧∧∧∧ O1=Subject (G) ⋊⋊⋊⋊S1=S2 σσσσ    (G)) 
(4’)  P2:{(?S1 <:Type> <S>)(?S2 ?P2 ?O2)} 

(5)   (S ∈ SI) → P ∈ ππππ     P (σσσσS=Subject (G)) 
(5’)  P1:{(<S> ?P1 ?O1)} 

(6)   (S ∈ V) → P ∈ ππππ P (σσσσ (G)) 
(6’)  P1:{(?S1 ?P1 ?O1)} 

(7)   P ∈ V 
Users can also manually union between properties, in 

the same way subjects are unioned, such as Year\PubYear.  

Step 3: Add an object filter on P. There are three types of 
filters the user can use to restrict P: a filtering function, an 
object identifier, or a query path. (i) A filtering function 
can be selected from a list (e.g., Equals, MoreThan, one 
of, not); see Figure 6.H. (ii) If a user wants to add an 
object identifier as a filter, a list of the possible objects will 
be generated. For example, if a user previously chose Any 
Article as a subject, and Author as a property, the list of 
the object identifiers would be {A1,A2}. The following 
formalizations specify what the list of object identifiers 
may contain. Users can also union between objects in the 
same way subjects and properties are unioned e.g., A1\A2. 

(8)   (S ∈ SI) ∧∧∧∧ (P ∈ V) → O ∈ ππππ O1 (σσσσS1=S ∧∧∧∧ O1∈URI (G))  
(8’)  O1:{(<S> ?P1 ?O1) Filter isURI(?O1)} 
(9)   (S ∈ SI) ∧∧∧∧ (P ∉ V) → O ∈ ππππ O1 (σσσσS1=S ∧∧∧∧  P1=P ∧∧∧∧  O1∈URI (G)) 
(9’)  O1:{(<S> <P> ?O1) Filter isURI(?O1)} 
(10)  (S ∈ ST) ∧∧∧∧ (P ∈ V) → O ∈ ππππ O2 (σσσσP1=:Type ∧∧∧∧  O1=S  (G) ⋊⋊⋊⋊S1=S2 σσσσ (G)) 
(10’) O1:{(?S1 <:Type> <S>)(?S1 ?P2 ?O2)} 
(11)  (S ∈ ST) ∧∧∧∧ (P ∉ V) → O ∈ ππππ O2 (σσσσP1=:Type ∧∧∧∧  O1=S  (G) ⋊⋊⋊⋊S1=S2 σσσσP2=P (G)) 
(11’) O:{(?S <rdf:Type> <S>)(?S <P> ?O)} 
(12)  (S ∈ V) ∧∧∧∧ (P ∈ V) → O ∈ ππππ O (σσσσ (G)) 
(12’) O1:{(?S1 ?P1 ?O1)} 
(13)  (S ∈ V) ∧∧∧∧ (P ∉ V) → O ∈ ππππ O (σσσσP=P (G)) 
(13’) O1:{(?S1 <P> ?O1)} 

Further, (iii) users can also choose to expand the property 
P to declare a path on it (as Author in Figure 6.D). In this 
case, the value X of the property Author, which is a 
variable, will be the subject of the sub-query, i.e. a left-
join. The possible properties of this subject in the 2nd level 
will be determined as described in step 2, taking into 
account all previous selections. The general case of an n-
level property and n-level object (i.e., n-1 joins) are 
presented below (14-17) for the cases where the root is a 
subject-type or a certain instance. 

 

General Cases 
The n-level paths properties and objects, in case (S ∈ ST) 

(14)  P ∈ππππ Pn (σσσσP1=:Type  ∧∧∧∧ O1=S  (G) ⋊⋊⋊⋊S1=S2 (σσσσC2(G) ⋊⋊⋊⋊O2=S3 (σσσσC3(G) … ⋊⋊⋊⋊On-1=Sn 
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(σσσσCn(G))))) 
(14’) Pn:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3) … (On-1 ?Pn ?On)} 

(15)  O ∈ππππ On (σσσσP1=:Type  ∧∧∧∧ O1=S  (G) ⋊⋊⋊⋊S1=S2 (σσσσC2(G) ⋊⋊⋊⋊O2=S3 (σσσσC3(G) … ⋊⋊⋊⋊On-1=Sn 

(σσσσCn(G))))) 

(15’) On:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)} 

The n-level paths properties and objects, in case (S ∈ SI) 
(16)  P ∈ππππPn (σσσσC1 (G) ⋊⋊⋊⋊O1=S2 (σσσσC2 (G) ⋊⋊⋊⋊O2=S3 (σσσσC3 (G) … ⋊⋊⋊⋊On-1=Sn (σσσσCn (G))))) 

(16’) Pn:{(S1 P1 O1)(O1 P2 O2 … (On-1 ?Pn ?On)} \\Subject ∈ SI 

(17)  O ∈ππππOn (σσσσC1 (G) ⋊⋊⋊⋊O1=S2 (σσσσC2 (G) ⋊⋊⋊⋊O2=S3 (σσσσC3 (G) … ⋊⋊⋊⋊On-1=Sn (σσσσCn (G))))) 

(17’) On:{(S1 P1 O1)(O1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)} 

 
Step 4: The symbol � before a variable is used to indicate 
that it will be returned in the results (i.e., projection). 

End. 

This algorithm illustrates how users interact with the 
MashQL editor and formalizes the “background queries” 
that need to be executed in each interaction. In this way, 
users can navigate and query a data graph without prior 
knowledge about it, even if it is schema-free. Section  6 
implements this algorithm in two different editors, and 
discusses implementation issues to further enhance the 
query formulation process in case of large and cryptic data. 
Next, we focus on the performance of this algorithm. 

5. GRAPH INDEXING: THE GRAPH-SIGNATURE 

One of our key assumptions for querying the Data Web is 
that data is schema-free. This is indeed a challenging 
requirement for query formulation as the editor’s 
background queries need to be executed on the whole dataset 
and in real-time, because there is no offline schema that can 
be used instead. In such a user-interaction setting, the 
response-time is an important factor that needs to be taken 
into consideration and which should be small, preferably 
within 100 ms [ 35]. Achieving such a short interaction time 
for background queries with graph-shaped data is even more 
challenging, because the exploration of a graph stored in a 
relational table G(S,P,O) can be expensive as this table needs 
to be self-joined many times [ 8]. A query with n levels 
involves n-1 joins. Pre-computing and materializing all 
possible MashQL’s background queries is not an option 
since the space requirements are too high; thus an efficient 
RDF indexing is needed. Several approaches have been 
proposed to index RDF, such as Oracle3 [ 13], C-Store4 [ 8], 
and RDF3X5 [ 39]. Although these approaches have shown 
good performance –a query with a medium complexity costs 
some seconds- however, this performance is unacceptable 
for an interactive query formulation session, especially in the 
case of large graphs. 

In this section, we present the Graph Signature, a novel 
approach for indexing RDF graphs, which is a 
complementary rather than an alternative to the approaches 
mentioned above. Our goal is not to optimize any arbitrary 

 

3 Oracle suggested in [ 13] to build a subject-property matrix 
materialized join views on the RDF table, such that all direct and nested 
properties for a group of subjects is materialized. This approach (called 
Semantic Technology) has been released as part of Oracle 10g and 11g.  

4 C-Store [ 8] suggested partitioning the RDF table vertically, into n two-
column tables, where n is the number of unique properties in the data. 

5 RDF3X [ 39] to only build many B+-Tree indexes, and a “careful 
optimization of complex join queries”. 

RDF query, but rather to enhance the performance of the 
background queries presented in the previous section. Next 
–before presenting the Graph Signature-, we generalize the 
background queries into one query model. The rest of the 
section shows how this query model is significantly 
optimized using the Graph Signature. 

5.1 The Query Model  

As one may notice, each of the 17 background queries 
formalized earlier is a query path, i.e., a linear-shaped 
query. Star-shaped and tree-shaped queries are not needed 
in query formulation. We define a query path as an 
expression of the form: {O1  P1  O2  P2  . . .  Pn On }, where Oi is 
a node, and Pi is an edge. Both nodes and edges can be 
variables. A variable node is denoted as ?Oi and a variable 
edge as ?Pi. A query can return either a node or an edge. 
For query formulation, we only need to retrieve the last 
node/edge in the path; that is, we need to retrieve either 
the edge Pn or the node On. Hence, the query model is 
formed as: On|Pn:{O1  P1  O2  P2  . . .  Pn On}. For example, the 
query P:{B2  Author  ?O1  ?P  ?O2} retrieves the properties of the 
authors of B2; and O:{B2  Author  ?O1  Affiliation ?O} retrieves the 
affiliations of the authors of B2. Each of the 17 background 
queries in the previous section is a special case of this 
query model; hence, optimizing the query model is an 
optimization of all background queries. 

5.2 The Intuition of the Graph Signature 

The idea of the Graph Signature is to summarize a given 
RDF graph, so that the background queries can be 
answered from this summary. Because the size of the 
summary is smaller than the original graph, queries can be 
faster. Given an RDF graph G, its Graph Signature S is a 
twofold summary: the O-Signature SO and the I-Signature 
SI. SO is a summary of the original graph such that nodes 
that have the same outgoing paths are grouped together. SI 
summarizes a graph by grouping nodes that have the same 
incoming paths, which is analogous to the 1-index [ 36]. 

Example. Figure 7 provides an example of an RDF 
graph and its O/I-signatures. In this example, {A2, A3} are 
grouped in the SO because they have the same outgoing 
paths until the end. A1 is not part of this grouping as it does 
not have the path Affiliation.Student. In the I-Signature, A4 is 
not grouped with {A1, A2, A3} as it has different incoming 
paths, e.g., Student. Each of the two summaries is computed 
and stored separately, but they are jointly used to produce 
precise answers, as will be discussed shortly .  

Let us now query these signatures, and compare their 
results with the results obtained from the original graph 
G. We call the answer of G, the target answer. Figure 8 
shows examples of queries and their answers. 
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Figure 7. An RDF data graph and its O/I-Signatures. 

 
Query SO  

Answer 
SI  Answer SO ∩∩∩∩ SI G Answer 

Q1 P:{B2  Author  ?O1  ?P  ?O2} Affiliation, 
Name 

Affiliation,  
Name, email 

Affiliation, 
Name 

Affiliation, 
Name 

Q2 

P:{B2  Author ?O1  Affiliation   
      ?O2  ?P ?O3} 

Name, 
Country, 
Employs,  
Student 

Name,  
Country, 
Employs,  
Student 

Name, 
Country, 
Employs,  
Student 

Name, 
Country, 
Employs,  
Student 

Q3 P:{UoM  Student  ?O1  ?P  ?O2} { } email { } { } 
Q4 O:{B2  Author ?O1  Affiliation  ?O} UoC UoM, UoC UoC UoC 
Q5 O:{?O1 Author ?O2 Affiliation ?O} UoM, UoC UoM, UoC UoM, UoC UoM, UoC 

Figure 8. GS answers compared with the target answers. 

As shown in Figure 8, each part of the Graph Signature 
produces the correct answer and some more results, 
called false positives. That is, the target answer is equal to 
or a subset of the answer of each part. Hence, the 
intersection of the SO and SI answers equals or is a small 
superset of the target answer. We shall show in 
subsection  5.8 how false positives (if any) are eliminated, 
in order to always achieve precise answers. Hence, instead 
of evaluating the background queries on the original 
graph, we evaluate them on the Graph Signature. Because 
the size of the graph signature is much smaller than the 
original graph, querying it is much faster. Subsection  5.9 
positions the novelties of the Graph Signature w.r.t. 
related work. In Section  7, we present an evaluation of 
MashQL’s background queries over the Graph Signature 
of large datasets (DBLP and DBPedia), and show that it 
yields to an instant user-interaction, regardless of the 
complexity of the background queries. 

In the next subsections, we turn our focus to formally 
define the Graph Signature and its construction and storage. 
We shall come back again (subsection  5.8) to discuss how the 
background queries are evaluated on the Graph Signature. 

5.3 The Notion of Bisimilarity 

Since each node in the Graph Signature is in fact an 
equivalent class of some nodes in G, one way to compute the 
Graph Signature is a full traversal of G. For example, we 
take every node in G, compute all outgoing paths from this 
node, and compute all incoming paths into this node. Then, 
we construct the O-Signature by grouping the nodes having 
the same outgoing paths; and similarly the I-Signature. This 
way is called trace equivalence [ 20]. Unfortunately, this way 
is computationally expensive and known to be PSPACE-
complete [ 46]. The solution (as suggested by [ 32]) is to use 
the notion of bisimilarity, which is extensively discussed in 
the literature of process algebra [ 20, 40] and which implies 

trace equivalence. The idea of bisimilarity, in RDF terms, is to 
group nodes having the same properties, and then iterate; at 
each iteration step we split a group of nodes if it violates 
bisimilarity. We repeat until our groupings are stable. Next, 
we adopt the typical definition of bisimilarity [ 40] and 
modify it to suite RDF graphs. 

Definition (O-Bisimilarity ≈O) 

O-Bisimilarity is a symmetric binary relation ≈O on G. Two 

nodes S1 and S2 are O-bisimilar (S1 ≈O S2), if and only if: 
i. The set of the property labels of S1 equals the set of the 
property labels of S2. In RDF terms, there exists (S1 P1 
O)… (S1 Pm O), and (S2 P1 O) … (S2 Pn O), such that, the 
distinct set of properties of S1 {P1..,Pm} equals the 
distinct set of properties of S2 {P1,..,Pn}. 

ii. If S1’ is a successor of S1 through a property Pi (S1 
Pi

→
 

S1’), and S2’ is a successor of S2 through a property Pi 

(S2 
Pi

→
 
S2’) then S1’ ≈O S2’, and S2’ ≈O S1’. 

Definition (I-Bisimilarity ≈I) 

I-Bisimilarity is a symmetric binary relation ≈I on G. Two 

nodes S1 and S2 are I-bisimilar (S1 ≈I S2), if and only if: 
i. The set of the property labels into S1 equals the set of 
the property labels into S2. That is, there exist (O P1 
S1)… (O Pm S1), and (O P1 S2) … (O Pn S2), such that, the 
set of properties into S1 {P1..,Pm} equals the set of 
properties into S2 {P1,..,Pn}. 

ii. If S1’ is a predecessor of S1 through a property Pi (S1’ 
Pi

→
 

S1) and S2’ is a predecessor of S2 through a 

property Pi (S2’ 
Pi

→
 
S2), then S1’ ≈I S2’, and S2’ ≈I S1’. 

5.4 The Definition of the Graph Signature 

Definition (Graph Signature). Given an RDF graph G, 
its Graph Signature S is comprised of two summaries: O-
Signature SO and I-Signature SI. In short, S = <SO, SI>.  

Definition (O-Signature). Given an RDF graph G, its 
SO is a directed labeled graph, such that, each node in SO is 
an equivalent class (≈O) of some nodes in G; and each 
edge p in SO from u to v (u P→

 
v) iff G contains an edge p 

from a to b (a P→
 
b) and a ∈ u, b ∈ v. 

Definition (I-Signature). Given an RDF graph G, its SI 
is a directed labeled graph, such that, each node in SI is an 
equivalent class (≈I) of some nodes in G; and each edge p 
in SI from u to v (u P→

 
v) iff G contains an edge p from a to 

b (a P→
 
b) and a ∈ u, b ∈ v. 

5.5 Construction of the Graph Signature 

To compute the Graph Signature, we use the standard 
algorithm for computing bisimilarity [ 40]. We modify this 
algorithm to suit RDF graphs, for computing both the O-
Signature and the I-Signature (see Figure 9). The input in 
each algorithm is a data graph and the output is the O/I-
Signature. As mentioned earlier, to compute the O-
Signature, first we group nodes having the same immediate 
properties; then we iterate -to split groupings that are not O-
bisimilar- until all groupings are stable. As shown in steps 5-
7, an equivalent class A is stable iff for every path P from A 
into another group-node B, each instance of A has a 
successor in B. In other words, let X be the predecessors of B 
through P, in G; then A should be a subset of or equal to X. 
Otherwise, A should be split into two nodes: (A ∩ X) and (A - 
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X). The same (but the opposite) way is used to compute the 
I-Signature. As discussed in [ 40] the maximal time needed to 
compute bisimilarity for this algorithm is O(m log n), where 
m is the number of nodes and n is the number of edges. 
Hence, the time complexity of computing the overall Graph 
Signature is O(m log n). 

Procedure ComputeOSignature(G,SO) 
begin 
1.    SO = (a copy of) G.       Stable = false 
2.    Group nodes having the same property labels. \\the initial step 
3.    while (Stable ≠ True) do   // iterate until the grouping is stable 
4.       foreach node A in SO do   
5.          foreach path Pi from A into a node B do 
6.               X = Pi

-1(ext[B]G)  //find the predecessors of B through Pi, in G 
7.             if (A ⊈ X) then replace A  by (A ∩ X) and (A - X)   //split A 
8.       if there was no split then Stable=True 
end 
Procedure ComputeISignature(G,SI) 
begin 
1.    SI = (a copy of) G.      Stable = false 
2.    Group nodes having the same incoming properties \\the initial step 
3.    while (Stable ≠ True) do //iterate until the grouping is stable 
4.       foreach node A in SI do 
5.          foreach Pi path into A from a node B do 
6.                X = Pi(ext[B]G)       //find the successor of B through Pi, in G 
7.             if (A ⊈ X) then replace A  by (A ∩ X) and (A - X)   //split A 
8.       if there was no split then Stable=True 
end 
Figure 9. An algorithm to compute the Graph-Signature[ 40]. 

5.6 Storage of the Graph Signature 

Since each part of the Graph Signature is a directed 
labeled graph it is convenient to store them in the same 
way the data graph is stored. In our implementation, a data 
graph and its O/I-signatures are stored and queried in the 
same way, using the Oracle Semantic Technology (see 
Section  6). To store the extent of the O/I-signature, each 
node in SO and SI is given an identifier, and this id is used in 
a lookup table to store the nodes in G belonging to their 
equivalent classes in SO and SI, ext(SoID, SiID, Node). This 
table is called the extent of the graph signature. A full-text 
index can be built on this table for keyword search, and 
statistics can be maintained for query optimization 
purposes. For query formulation, we only store node labels 
and their group ids in a table as specified above. 

5.7 The Size of the Graph Signature 

The space cost to store each part of the Graph Signature 
consists of the space of the signature and the space of its 
extent. The size of each part of the Graph Signature is at most 
as large as the data graph; but in practice, it is much less, as 
our evaluations show. The size of the extent is exactly the 
number of unique nodes in the data graphs. In the following 
we present some techniques that yield a significant reduction 
of the overall size of the Graph Signature: 

1. Literal nodes can be excluded, as they are not used in 
query formulation. We assign literal nodes to null 
before computing the Graph Signature. 

2. Annotation properties can be excluded. There are several 
types of properties in RDF that are not intended to 
represent data, but rather, to describe data, such as 
rdf:Description, rdf:comment, rdf:label, rdf:about, or rdfs:seeAlso.  

3. Synonym properties can be joined. Because of different 
namespaces and conventions, it is likely that different 
properties have the same semantics (e.g., foaf:FirstName 
and foaf:GivenName, foaf:mbox and :email). Such properties 
can be joined by replacing them with a chosen label. 

4. Equivalence properties can be normalized. Certain 
properties indicate that the subject and object in a 
triple are equal, such as rdf:SameAs and rdf:Redirect. 
Normalizing these properties can be done by assigning 
the subject and the object the same URI. 

5. Certain properties can be excluded. We may wish to 
exclude some properties that are not likely to be 
queried, such as LongAbstract in DBPedia. 
Before computing the graph signature, we process a 

configuration file, which we have built for the properties to 
be excluded, joined, or normalized.  

A special case property is the rdf:Type. As this property 
is likely to be used in query formulation, it should be 
well-indexed. For this, we extend the lookup table, which 
we use to store the extents. Instead of having the lookup 
table as ext(SoID, SiID, Node), we have ext(Type, SoID, SiID, Node). 
Hence, we can look up not only the group of a node, but 
also the node(s) and the group(s) of a certain type. 

5.8 Evaluating Queries with the Graph Signature 

 As discussed earlier, the answer obtained from the O-
Signature -and similarly the I-Signature- is always a 
superset or equals the target answer (the answer obtained 
from the data graph). In case the answer of the O/I-
signature equals the target answer, we call it a precise 
answer; otherwise, it is called a safe answer, since it equals 
the target answer and some false positives. The intersection 
of the answers of both the O-Signature and the I-
Signature is a smaller superset or equals the target 
answer. The following theorems state when the Graph 
Signature produces precise and safe answers; the proofs 
are sketched in the appendix. 

Theorem 1. Given a query, the answer of the O-Signature is 
always safe; and similarly the answer of the I-Signature.  

Theorem 2. Given any query retrieving edge labels, the 
answer of the O-Signature is always precise. 

Theorem 3. Given a query, with all nodes variables, the 
answer of the I-Signature is always precise. 

Theorem 4. Given a query, if the answer of the O/I-Signature 
is empty or the intersection of both is empty, then this answer is 
always precise. 

Based on these theorems, the flowchart in Figure 10 depicts 
the evaluation scenario. Given a background query Q, if Pn is 
projected (i.e., the last edge label is retrieved), it can be 
precisely answered from the O-Signature, as stated in 
theorem 2. Examples of such queries follow: P:{?O ?P ?O1};  

P:{?O Author ?O1 ?P ?O2};   P:{?O Author ?O1 Affiliation ?O2 ?P ?O3}. This 
case represents the majority of the background queries in 
query formulation, as it allow one to navigate through and 
understand the structure of a data graph. 

In case a background query projects On (i.e., the last node 
label is retrieved), and all node labels (O1 …On) in the query 
are variables, such as O:{?O1 Author ?O2 Affiliation ?O}, the answer of 
the I-Signature is precise (see theorem 3). However, if some 
nodes in the query are not variables, such as B2 in the query 
O:{B2 Author ?O1 Affiliation ?O}, the answer of the O-Signature -and 
the answer of the I-Signature- is safe. In fact, the more 
variable nodes a query contains the less false positives are 
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produced. To reduce the number of false positives in this 
case, we evaluate the query on the O-Signature and the I-
Signature separately, and we intersect both results. If the 
intersection is empty (or one of the answers in empty), then 
the answer is precise (see theorem 4). Otherwise, the 
intersection of both answers is a small superset or equals of 
the target answer. Such results might be sufficient indeed in 
the query formulation practice; otherwise, to eliminate the 
false answers, we evaluate the query on the data graph, and 
optimize it using the intersection of both answers. The idea 
of this optimization is to simply join the results of the 
intersection with the data graph, and execute the query on 
this join. That is, the false results are eliminated as they do 
not satisfy the query on the data graph. 

 
Figure 10. Depiction of the Execution Plan. 

We have implemented the query evaluation scenario 
described above (i.e., execution plan) in a table function in 
Oracle 11g. This function takes a query as input and 
produces precise results as output. The function first 
parses the query to find the constant node labels -that are 
not variables- and replace them with their group IDs. For 
example, the query P:{B2 Author ?O1 ?P ?O2} is re-written as 
P:{123 Author ?O1 ?P ?O2}, where 123 is the group id of the B2. 
The function then checks whether the query is retrieving 
edges or has all nodes as variables, if so, the function then 
executes it on the O-Signature or I-Signature respectively. 
Otherwise, it executes it on the O-Signature and I-
Signature in parallel, and intersects both results. If the 
result is not empty, the function eliminates the possible 
false positives by executing the query on the join of the 
data graph and the intersection, as descried earlier. 

Because the time-complexity of evaluating a query is 
preoperational to the size of the graph [ 36], evaluating 
queries on the Graph Index yields a better performance, 
since its size is likely to be much smaller than the data 
graph. See our evaluation is Section  7. 

5.9 Related Work to the Graph Signature 

The notion of structural summaries has been proposed to 
summarize XML data, for XQuery optimization. The 
DataGuide [ 38] was the first to suggest summarizing XML 
by grouping nodes reachable by any incoming path. The 
problem with this way is that, because nodes that 
extrinsically have some similar property labels are grouped 

together, many false positives are generated. The Strong 
DataGuide [ 18] proposed to solve this issue by grouping 
nodes reachable by simple paths, as the DataGuide; but, it 

allows a node to exist in multiple groups. As pointed by the 
authors, this approach is efficient for tree-shaped data, but 
the size of the summary grows exponentially the more the 
data is graph-shaped (and can be larger than the original 
graph). The 1-index [ 36] proposed to group nodes reachable 
by all incoming paths (which is analogous to our I-
Signature), but it does not consider the outgoing paths (as 
our O-Signature) that yields an efficient reduction of false 
positives. A similar approach to the 1-index (called A(k) 
index [ 32]) suggested to also group nodes reachable by all 
incoming paths (but up to k levels), thus it can only answer 
queries with k levels. Since this approach generates many 
false positives, the same authors of the A(k) suggested later 
another approach called F&B index [ 31]. This approach 
groups nodes reachable by both all incoming and all 
outgoing paths, i.e., forward and backward at the same 
time. This approach produces much less false positives 
indeed, but its size is not much less than the original. For 
example, the size of the F&B index for the Xmark dataset is 
only 10% less than the original [ 31]. As such, the time 
needed to query the F&B summary is close to querying the 
original graph. Furthermore, all of the above approaches 
cannot be applied for RDF because (i) RDF is graph-shaped 
rather than tree-shaped; hence applying them produces 
large-size indexes; and (ii) XML queries are not the same as 
RDF queries (i.e., different query models). For example, in 
XML we typically retrieve node labels, but in RDF, we also 
need to retrieve property labels.  

The novelty of our graph index is: (i) the bisimilarity 
algorithm is adapted to suite RDF graphs, s.t. it is not 
necessary for a node to have unique outgoing edges, as in 
XML; (ii) unlike the F&B approach that generates one 
large incoming-and-outgoing index in order to generate 
less false positives, we store the incoming and outgoing 
indexes separately, but they are jointly used, thus 
achieving small indexes and less false positives at the 
same time; and (iii) a query model and an evaluation 
scenario for RDF query paths is proposed, which is 
different from XML paths, as property labels, not only 
node labels, can be retrieved. 

6. IMPLEMENTATION  

We implemented MashQL in two scenarios: an online 
server-side query and mashup editor, and a browser-side 
Firefox add-on editor. The former is illustrated in Figure 11 
and Figure 12. Its functionality comprises: i) the MashQL 
language components; ii) the user-interface; iii) a state-
machine dispatching the “background queries” in order to 
support query formulation during the interactive exploration 
of RDF datasets; iv) a module that translates a formulated 
MashQL query into SPARQL and submits this for execution 
or debugging; the formulated MashQL query is serialized 
and stored in XML; v) a module that retrieves, merges, and 
presents the results of the submitted SPARQL query. 
MashQL queries can be materialized and published if 
needed. Each published query is given a URL, and its output 
is seen as a concrete RDF source. 
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Figure 11. Screenshot of the online MashQL-Editor. 

 
Figure 12. System Model. 

When a user specifies an RDF data source(s) as input, it 
is bulk-loaded into an Oracle 11g, and its Graph Signature 
is constructed. Subsequently, the MashQL Editor uses 
AJAX to dispatch background queries and the SPARQL 
translation of formulated MashQL queries for execution by 
the Oracle 11g. We chose Oracle 11g because of its support 
for native RDF queries and storage.  

As one may notice, MashQL’s GUI follows the style 
Yahoo Pipes visualizes feed mashups, and uses the Yahoo 
Pipes’s open-source Java-Script libraries. Our choice of 
following this style is to illustrate that MashQL can be used 
to query and mash up the Data Web as simple as filtering 
and piping web feeds. It is worth noting also that the 
examples of this article cannot be built using Yahoo pipes, 
as it does support querying structured data. Yahoo allows 
a limited support of XML mashups, but this is neither 
graphical nor intuitive; as one have to write complex 
scripts in YQL, the Yahoo Pipes’ query language. In fact, 
Yahoo Pipes, as well as Popfly and sMash, are motivating 
for -rather than solving- the problem of structured-data 
retrieval. 

In an alternative implementation, we developed the 
MashQL editor as an add-on to the Firefox browser. This 
extension has the same functionalities of the online editor. 
However, no databases or RDF indexing are used for 
storing, indexing, and querying the data sources, but 
rather, the SPARQL queries are executed inside the 
browser, using the JENA SPARQL query libraries. Hence, 
the size of the input sources is limited to the client’s 
memory. The goal of this Firefox extension is to allow 
querying and fusing websites that embed RDFa. In this way, 
the browser is used as a Web composer rather than only a 
navigator. 

We refer the reader to technical report [ 25] for more 
technical details and MashQL use cases. 

6.1 Implementation Issues 

URI Normalization: As RDF data may contain 

unwieldy URIs, MashQL queries might be inelegant. Thus, 
the editor normalizes URIs and displays the normalization 
instead; for example, Type instead of http://www.w3.org/1999/02/22-rdf-

syntax-ns#type. In addition, if one moves over Type, its URI is 
displayed as a ‘tip’. Internally, the editor uses only the long 
URIs. In case of different URIs leading to the same 
normalization, we add a gray prefix to distinguish them 
(e.g., 1:Type, 2:Type). The normalization is based on a 
repository that we built for the common namespaces (e.g., 
rdf, rdfs, WOL, FOAF). In case a URI does not belong to 
these namespaces, the editor uses heuristics. For example, 
takes the last part after ‘#’. If ‘#’ does not exist, then the 
part after ‘/’. The result should be at least 3 characters and 
start with a letter, otherwise we take the last two parts of 
the URL, and so on. We have evaluated this on many 
datasets and found it covering the extreme majority of 
cases. However, there is no guarantee to always produce 
elegant normalization. 

Verbalization: To further improve the elegancy of 
MashQL, we use a verbalize/edit modes. When a user 
moves the mouse over a restriction, it gets the edit mode 
and all other restrictions get the verbalize mode. That is, 
all boxes and lists are made invisible, but their content is 
verbalized and displayed instead (See Figure 6). This 
makes the queries readability closer to natural language, 
and guides users to validate whether what they see is 
what they intended.  

Scalable lists: In case of querying large datasets, the 
usual drop-down list becomes un-scalable. We have 
developed a scalable and friendly list that supports 
search, auto-complete, and sorting based on Rank and 
Asc/Desc. If Rank is selected, we order items/nodes 
based on how many nodes points to them. This 
knowledge is pre-computed, from the Graph Signature. 
Our list supports also scalable scrolling. The first 50 
results are displayed first, but one can scroll to go to the 
next, arbitrarily middle, or last 50. Each time the editor 
sends an AJAX query to fetch only those 50. 

7. EVALUATION 

This section presents three types of evaluations: (i) the 
scalability of the Graph Signature, (ii) the time-cost of 
formulating a MashQL query using the Graph Signature, 
and compare it with using the Oracle Semantic 
Technology; and (iii) the usability of the MashQL editors.  

7.1 Datasets and Experimental Settings 

Our evaluation is based on two public datasets: A) DBLP 
and B) DBPedia. The DBLP (700MB size) is a graph of 8 
million edges. We partitioned this graph into three parts: 
A8 is the whole DBLP; A4 is 4 million triples from A8; and 
A2 is 2 millions. No sorting is used before the partitioning. 
Figure 13 shows some statistics. The DBPedia (6.7 GB) is a 
graph of 32 million edges, which is an RDF version of the 
Wikipedia. Similarly, DBPedia is partitioned into 3 parts. 
We choose these datasets in order to illustrate the scalability 
of our Graph Index in case of homogenously and 
heterogeneously structured graphs. DBLP is more 
homogenous, as most of its nodes have similar paths. 
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However DBPedia is known to be a noisy collection of RDF 
triples. Each of the 6 partitions is loaded into a separate RDF 
model in Oracle 11g, which was installed on an server with 
2GHz dual CPU, 2 GB RAM, 500GB HHD, 32-bit Unix OS. 

Number of (A)DBLP (B)DBPedia 
 A8 A4 A2 B32 B16 B8 

Unique Triples 9M 4M 2M 32M 16M 8M 
Unique Subjects 1.1M 1M 0.8M 9.4M 6M 4M 
Unique Predicates 28 27 26 35 35 34 
Unique Objects 2.4 1.2 0.7M 16M 8.7M 4.7M 
Data Size 700MB 350MB 170MB 6.7GB 3.1GB 1.4GB 

Figure 13. Statistics about the experimental data. 

7.2 Scalability Evaluation 

We built an O-signature and I-Signature for each 
partition (see Figure 14). As one can see, the time cost to 
build the SO and SI is linear with respect to the data size. 
For example, for SO, B2 (2M triples) costs 48 seconds, the 
time is almost doubled when the data size is doubled. 

 Number of (A)DBLP (B)DBPedia 
 A8 A4 A2 B32 B16 B8 

SO 
Indexing Time (Sec) 219 90 48 563 194 106 
Equivalence Classes  4K 28K 12K 103K 110K 56K 
Triples in O-Signature 34K 190K 62K 1M 686K 244K 

SI 
Indexing Time (Sec) 83 40 18 641 293 142 
Unique Categories  61 14 43 14K 7K 3K 
Triples in O-Signature 108 72 62 84K 30K 10K 

Figure 14. The O-Signature for all partitions. 

What is more scalable, is the behavior of the index with 
respect to the number of the triples. For example, the whole 
DBLP A8 (8M triples) is summarized in SO by only 34K 
triples; this number is larger when the data is smaller, 190K 
for A4. This is because (although we did not apply any 
sorting before partitioning the data, but) more similarities 
were found when the whole data is put together. In other 
words, some nodes in A4 are grouped in several 
equivalence classes (instead of one) as they have different 
paths, while when all data is put together in A4, it is found 
that these nodes have the same paths. This implies that the 
size of the Graph Signature does not necessarily increase if 
more triples are added to the data graph. The size of the O-
Signature reflects the homogeneity of a graph. For 
example, the O-Signature for A8 (34K) is smaller than the 
O-Signature for B8 (244K), as DBLP is more homogenous. 
Nevertheless, for both datasets, the generated O/I-
signatures fit in a small memory, thus joining it many times 
still yields fast querying as we show next.  

The I-Signature happens here to be smaller than the O-
Signature. The reason is that root nodes (which are many, 
in DBLP and DBPedia) are all grouped together in one 
equivalent class. 

7.3 Response-Time Evaluation 

This section evaluates the response-time of the 
MashQL editor’s user interaction. In other words, we are 
not interested to evaluate the execution of a MashQL 
query itself, as this is not the purpose of this article; but 
rather, the execution of the queries that the editor 
performs in the background to generate the “next” drop-
down list (see Section  4). In the following we present 
three MashQL queries. We identify the set of background 
queries, and evaluate them on both: (1) Oracle’s Semantic 

Technology, which is the native RDF index6 in Oracle 11g 
[ 13]; and (2) the Graph Signature index (as described in 
subsection  5.8). We also store the Graph Signature in 
Oracle 11g as described subsection  5.6. 

Experiment 1: To formulate the query in Figure 15 on 
DBLP, the user first selects the query subject from a list. 
The query that produces this list is annotated by �. The 
user then selects a property of this subject from a list. The 
query that produces this list is annotated by �, and so on. 
These queries are executed on each partition of the DBLP, 
using both: the Graph Signature (GS) and Oracle Semantic 
Technology. The cost7 (in seconds) is shown in Figure 16. 

 

 

� O:(?S Type ?O) 

� P:(?S Type Article)(?S ?P ?O1) 

� P:(?S Type Article) 
     (?S Creator ?O1) (?O1 ?P ?O2) 

� O:(?S Type Article) 
     (?S Creator ?O1)(?O1 Type ?O) 
 

Figure 15. 4 Queries are needed to formulate this MashQL query. 

Query (A8) 8 M triples (A4) 4 M triples (A2) 2 M triples 
GS Oracle GS Oracle GS Oracle 

Q1 0.003 0.005 0.003 0.004 0.003 0.003 
Q2 0.001 0.136 0.001 0.148 0.001 0.108 
Q3 0.001 0. 871 0.001 0.546 0.001 0.471 
Q4 0.001 1.208 0.001 0.835 0.001 0.650 

Figure 16. Time cost (in seconds) of background queries. 

As shown by this experiment, the time cost for each 
query remains within few milliseconds using the Graph 
Signature, regardless of the data size and complexity of 
the query. This is because the size of the Graph Signature 
is small, if compared with the Oracle’s Semantic 
Technology that scans the whole dataset. 

Experiment 2: Here we show a similar evaluation on 
DBPedia, but with longer queries (see Figure 17).  

 
� O:(?S Type ?O) 
� P:(?S Type Album)(?S ?P ?O1) 
� O:(?S Type Article)(?S Genre ?O) 
� P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 ?P ? O2)  
� P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 PreviousAlbum? O2)(?O2 ?P ?O3) 
� P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 PreviousAlbum? O2)  
     (?O2 Artist ?O3)(?O3 ?P ?O4) 
	 O:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)  
     (?O2 Artist ?O3)(?O3 CurrentMember ?O) 

 P:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? ?O) 
     (?O2 Artist ?O3)(?O3 CurrentMember The_Furious_Five)(The_Furious_Five ?P ?O5) 
� O:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)  
    (?O2 Artist ?O3)(?O3 CurrentMember The_Furious_Five)(The_Furious_Five Genre ?O) 
 

6 As described earlier, Oracle [ 13] stores RDF triples in one table G(s,p,o); 
thus a query with n-levels implies joining the table n-1 times. To improve the 
querying performance, Oracle proposed to build several B-tree indexes on G, 
as well as to build subject-property materialized views on G, such as V1(s, p1, 
p2, …pn). A tuple in V1 is a subject identifier x, and the value of the column pi 
is an object y. In this way, data is transformed -somehow- from a graph form 
into a relational form; thus, less number of joins when executing a query. 
These subject-property views are seen as auxiliary, rather than core, indexes. 
This is because there is no general criteria to know which subjects and which 
properties to group. Oracle uses statistics to find possibly good groupings 
(i.e., views), otherwise, queries are executed one the original G data graph; 
hence queries with many joins remain a challenge. 

7 To avoid the I/O dominance, we did not include GROUB-BY and 
ORDER-BY, and only the top 10000 rows are retrieved.   
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Figure 17. 9 queries are needed to formulate this MashQL query. 

Query (B32) 32 M  (B16) 16 M  (B8) 8 M  

 GS Oracle GS Oracle GS Oracle 
Q1 0.003 0.017 0.003 0.012 0.003 0.008 
Q2 0.002 172 0.002 118 0.002 85 
Q3 0.005 859 0.004 592 0.003 423 
Q4 0.005 2576 0.004 1776 0.004 1269 
Q5 0.005 3864 0.004 2665 0.004 1903 
Q6 0.005 - 0.005 - 0.005 - 
Q7 0.007 - 0.007 - 0.007 - 
Q8 0.005 - 0.005 - 0.005 - 
Q9 0.007 - 0.007 - 0.007 - 

Figure 18. Time cost of the background queries in Figure 17. 
Queries taking more than 5000sec were terminated and their time is 

not reported. 

This experiment also shows that the time cost for all 
queries remains very small indeed, although the dataset 
is larger, more heterogeneous, and the queries involve 
longer join-path expressions. 

Experiment 3 (Extreme): This experiment might not be 
faced in practice; but its goal is to expose the limits of both 
our Graph Signature and Oracle’s index. Figure 19 shows a 
query where all nodes and properties are variables. It 
means, what are the properties of the properties of … (at 9 
level) of properties of anything. After selecting the query 
subject as the variable Anything, and then move to select 
from the list of its properties, the user decides to make the 
property as a variable, at each level. The query editor, at 
each level, generates the list of the possible properties 
depending on the previous selections. For example, at the 
2nd level, the editor’s query �: P:(?Anything ?RelatedTo1 ?O1)(?O1 ?P 
?O2); at the 3rd level �: P:(?Anything ?RelatedTo1 ?O1)(?O1 ?RelatedTo2 
?O2)(?O2 ?P ?O4); and so on. Notice that executing such queries 
is very expensive as the whole index must be scanned and 
joined with itself i-1 times, at level i.  

 
Figure 19. A query with all predicates are variables. 

Query (B32) 32 M  (B16) 16 M  (B8) 8 M  

 GS Oracle GS Oracle GS Oracle 

Q1 0.003 0.017 0.003 0.012 0.003 0.008 

Q2 0.031 151 0.020 104 0.012 75 

Q3 0.058 606 0.022 418 0.020 298 

Q4 0.091 3028 0.044 2088 0.034 1492 

Q5 0.124 - 0.072 - 0.064 - 

Q6 0.151 - 0. 110 - 0.096 - 

Q7 0.172 - 0. 162 - 0.122 - 

Q8 0.204 - 0.196 - 0.144 - 

Q9 0.259 - 0. 220 - 0. 184 - 

Figure 20. A query involving many background joins. 

This is indeed the worst-case scenario for both indexes. 
As shown in Figure 20, the response of the Oracle’s 
Semantic Technology after the 4rd level, was larger than 
5000 seconds, thus we terminated the queries. On the 
other side, although the execution time using our index 
increases at each level, the important thing is that this 
increase remains fairly acceptable, for such type of 
extreme queries. The GS index results to faster 

background queries because the graph signature fits in a 
small memory, even with some magnitudes of self joins. 
Oracle’s Semantic Technology, on the other hand, 
performs the self-joins on the whole dataset, which is too 
large. In other words, the GS index joins only the Graph 
Signature, which is 1M edges, whereas Oracle’s joins the 
whole data graph, which is 32M edges.  

To conclude, as shown by these three experiments, 
because the size of the graph-signature index is small, 
long join-path queries can be executed very fast. This 
speed enables the MashQL editor to perform its 
background queries instantly, regardless of the dataset’s 
size. 

7.4 Usability Evaluation 

To evaluate how easy it is to use MashQL, we invited 
40 people to use the MashQL editor to formulate basic 
and advanced queries over RDF datasets found at 
http://data.semanticweb.org, which contains over 80k triples 
about articles, people, organizations, conferences, and 
workshops. 25 participants were non-IT skilled (i.e., had 
only basic skills for web browsing); and other 15 were IT-
skilled people – but none of them was familiar with RDF 
or SPARQL. A 10-minutes tutorial about MashQL was 
given before the evaluation started, illustrating examples 
of MashQL queries but no hands-on exercises or 
examples from the datasets used. 

Each of the 40 participants was given 6 queries to 
formulate (listed in Figure 21). After formulating each 
query in MashQL, each person was asked to manually 
browse the queried page(s) and compose the answer. The 
average time needed to formulate each query in MashQL 
(versus the manual navigation) was recorded and is 
presented in Figure 22(a). The time needed to formulate a 
query by the IT-skilled (versus the non IT-skilled) is 
presented in Figure 22(b). 

After finishing all queries, each person was asked to 
fill in a questionnaire that evaluated the main features of 
MashQL. The results are summarized in Figure 23. 

This evaluation included the MashQL editor and the 
Firefox add-on. The evaluation conclusions for each case 
were almost the same, thus they are merged here for the 
sake of brevity. We refer to [ 49] for more details about 
each evaluation.  

Q1. “Find the titles of the articles presented at the 4th European Semantic 
Web Conference”. This is a simple query and helps to get familiar with 
the MashQL editor. 

Q2. “To learn more about these articles, find the titles, authors, and 
abstracts of the articles presented at the 4th European Semantic Web 
Conference”. This extends Q1, but this time the participants have to 
compare the easiness of the web navigation with the use of MashQL. 
Q3. “Retrieve all the titles, authors, and abstracts of the articles presented 
at the 4th European Semantic Web Conference that have a title that 
contains the word Semantic”. A more difficult query, to show the 
querying efficiency of the two methods. 

Q4. “Update the previous query by retrieving also and the homepages of the 
authors, and order the results”. This scenario emphasizes the ordering 
functionality of the editor compared to the manual ordering of the 
information, after gathering them in a file. 

Q5. “Retrieve the names of all authors of papers that contain the word 
‘Semantic’ and presented in the 4th European Semantic Web Conference”. 
In the previous queries one should start with “Article”, here it 
should start with “Person”. 
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Q6. “Retrieve the names and homepages of the authors that attended the 
4th European Semantic Web Conference or the 16th International World 
Wide Web Conference, and the authors’ names contain the word Thomas’. 
This query is a mashup involving multiple pages/sources, and 
contains the “OneOf” operator. 

Figure 21. List of queries used in the evaluation. 

 
Figure 22. (a) Manual Navigation vs. MashQL; (b) IT vs. non IT. 

 
Figure 23. Evaluation of the editor interface and features. 

We found that most of the people were generally 
happy and the core ideas of MashQL were appreciated. 
People were able to learn MashQL quickly by practicing 
it; if they were to perform similar queries on other 
datasets they would do it much faster next time. It is 
worth noting that none of the 40 people failed to 
formulate the given queries. We also observed that people 
are still not used with the Data Web paradigm (i.e., 
dealing with structured data and the difficulty of 
querying it). They are used to “google” information and 
then manually navigate to compose answers, without 
noticing how much time they consume or the 
impreciseness of the results.  

Since MashQL is not intended to be used by 
developers (e.g., SPARQL and RDF experts), but rather, 
by people who are unfamiliar with these technologies, 
our usability study did not compare MashQL usability 
with SPARQL usability. However, it is worth noting that 
some users of the MashQL editors have used it to learn 
SPARQL. The tool supports a debugging functionality 
that displays the generated SPARQL script, and allows 
one to directly change this script, and then look back to 
these changes in MashQL. This indicates that the 
MashQL's intuition is easier to learn for SPARQL 
beginners. 

8. CONCLUSIONS AND FUTURE WORK 

We proposed a query formulation language, called 
MashQL. We have specified four assumptions that a Data 
Web query language should have, and shown how MashQL 
implements all of them. The language-design and the 
performance complexities of MashQL are fundamentally 
tackled. We have designed and formally specified the syntax 
and the semantics of MashQL, as a language, not merely a 
single-purpose interface. We have also specified the query 
formulation algorithm, by which the complexity of 
understanding a data source (even it is schema-free) are 
moved to the query editor. We addressed the challenge of 
achieving interactive performance during query formulation 

by introducing a new approach for indexing RDF data. We 
presented two different implementation scenarios of 
MashQL and evaluated our implementation on two large 
datasets. 

We plan to extend this work in several directions. We will 
introduce a search-box on top of MashQL to allow keyword-
search and then use MashQL to filter the retrieved results. 
To allow people use MashQL in a typical data integration 
scenario, several reasoning services will be supported, 
including SameAs, Subtype, Sub-property, and Part-of. 
Furthermore, we are collaborating with colleagues to use 
MashQL as a business rules language, thus include several 
reaction and production operators. We plan to also support 
aggregation functions, as soon as their semantics are defined 
and standardized in SPARQL. Supporting such functions in 
MashQL is not difficult since we only need to allow the user 
to select a function (e.g., sum, avg, max, etc.) before a subject, 
property or object. Last but not least, we are currently 
extending the Graph Signature approach for general-
purpose query optimization. In particular, we are seeking to 
extend the Graph Signature to optimize arbitrary 
SPARQL queries; for this, we need to extend our query 
model to retrieve not only the last node/edge, but any 
node/edge, as well as star-shaped queries. This is not 
difficult, because a query path is the building block for 
star-shaped queries. Furthermore, we plan to use our 
approach on keyword-search. In such a scenario, we 
expect to have fast responses, because false positives are 
less important. Last but not least, we need to develop a 
maintenance strategy to support querying dynamic 
datasets. 
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APPENDIX  

Proof of Theorem 1. Given a query Q (on:{o1 p1 o2 p2 … pn-1 
on-1pn on}). Evaluating this query safely means the results set 
ox when evaluating Q on a data graph G, is a subset of the 
results Ox of evaluating it on the O-Signature (ox ∈ Ox).. Let 
p1 be an edge from o1 to o2 in G, then (by definition), its O-
Signature SO must contain p1 from O1 to O2, and for pn from 
on-1 to on there is pn from On-1 to On (where o1∈O1…on∈On). 
Thus for every path (o1p1→o2 p2→… on-1 pn→) in G there is 
exactly the path (O1 

p1→O2
 p2→… On-1 

pn→) in SO. When 
evaluating Q on G we retrieve ox the set of nodes having 
this path into them, and similarly Ox when evaluating Q on 

SO. Since each oi∈Oi, then (ox ∈ Ox). 

Proof of Theorem 2. Given a query Q (pn:{o1 p1 o2 p2 … pn-1 
on-1 pn on}). Evaluating this query precisely means that the 
results set px when evaluating Q on G, is exactly the same 
results Px when evaluating it on the So (px = Px). Now, let 
p1 be an edge from o1 to o2 in G, then (by definition) its O-
Signature SO must contain p1 from O1 to O2, and so for pn 
from on-1 to on there is pn from On-1 to On (where 
o1∈O1…on∈On). Hence for every path (o1 

p1→ o2 
p2→ … on-1 

pn→ on) in G there is exactly the path in SO (O1 
p1→ O2 

p2→ 
… On-1

 pn→ On); and since the path (
p1→ p2→ … pn→) from 

o1 to on-1, is (by definition) the same path from O1 to On-1. 
Then, the set of edges px from on-1 to on is exactly the same 
set of edges Px from O1 to On. 

Proof of Theorem 3. Given query Q (on:{o1 p1 o2 p2 … pn-1 
on-1 pn on}) where every node o is a variable. Evaluating 
this query precisely means retrieving all nodes ox having 
the path (p1→ p2→…pn→) into them, i.e. regardless of 
which previous nodes this path follows to reach them, as 
all previous nodes are variables. Hence, by definition, for 
every node in ox having the path (p1→ p2→…pn→) into it in 
G, there is the same path (p1→ p2→…pn→) into Ox in SI. 
Since, also by definition, the nodes in Ox are exactly the 
nodes in ox that have the same paths, then ox =Ox. 

Proof of Theorem 4. Because (as proven in theorem 1) the 
answer of the O/I-Signature is safe, i.e., a superset of the 
target answer, then if this superset is empty the target 
answer is empty. 
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