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Abstract

Clustering has been a subject of extensive research in data mining, pattern recognition and other areas for several

decades. The main goal is to assign samples, which are typically non-Gaussian and expressed as points in high-

dimensional feature spaces, to one of a number of clusters. It is well-known that in such high-dimensional settings, the

existence of irrelevant features generally compromises modeling capabilities. In this paper, we propose a variational

inference framework for unsupervised non-Gaussian feature selection, in the context of finite generalized Dirichlet

(GD) mixture-based clustering. Under the proposed principled variational framework, we simultaneously estimate, in

a closed-form, all the involved parameters and determine the complexity (i.e. both model an features selection) of the

GD mixture. Extensive simulations using synthetic data along with an analysis of real-world data and human action

videos demonstrate that our variational approach achievesbetter results than comparable techniques.
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I. INTRODUCTION

AN important traditional step in pattern recognition and data mining is to select the relevant features, with

good discriminatory power, for a given application [1–7]. The surge of research interests in the areas of

machine learning, data mining, computer vision, statistics and related fields has produced a wide variety of feature

selection approaches especially in supervised settings. For an excellent review and in-depth discussions of the research

in feature selection the reader is referred to [8–10] and references therein. In recent years there has been considerable

interest in formulating the feature selection problem in unsupervised settings using mixture models learned using

different optimization algorithms [9–16]. The primary objective is the identification and the reduction of the influence

of extraneous (or irrelevant) features which do not contribute information about the true clusters structure. The main

assumption in many of these approaches is that the features follow a multivariate normal distribution with diagonal

variance-covariance matrix (see, for instance, [9,11,13,17]). This assumption is rarely met, is unrealistic in many cases

and is generally violated by real life applications [15, 18]. Indeed, in many applications the per-class distributionsare

not Gaussian as shown in [10] where a mixture-based approach, relying on GD distribution and benefiting from its

interesting mathematical properties and flexibility [19,20], has been proposed.

The unsupervised feature selection model in [10] has been trained using a minimum message length (MML) [21]

objective function with the expectation-maximization (EM) [22] algorithm. Despite the fact that the EM algorithm

is the procedure of choice for parameter estimation in the case of incomplete data problems where part of the data is

hidden, several studies have shown theoretically and experimentally that the EM algorithm, in deterministic settings

(e.g. maximum likelihood estimation), converges either toa local maximum or to a saddle point solution and depends

on an appropriate initialization (see, for instance, [22–24]) which may compromise the modeling capabilities. Recently,

learning research has been directed towards Bayesian approaches which allow the formal treatment of uncertainty in

modeling through the incorporation of prior knowledge about the model’s parameters and then the combination of

these prior beliefs with the observed data which results in posterior distributions [25]. The calculation and updating

of these posteriors is generally untractable and involves high-dimensional integrations. Markov Chain Monte Carlo

(MCMC) techniques are the methods of choice in this case and allow to approximate the Bayesian inference, but

its computational cost is known to be prohibitive [25, 26]. Adeterministic approximation alternative, of posterior
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distributions, is now possible thanks to variational methods which at the same time prevent overfitting and allow model

selection [27,28]. The main idea of variational Bayes learning is to find an accurate and tractable approximation to the

true model’s posterior that minimizes the divergence [27–30].

The aim of this paper is to extend our feature selection approach previously proposed in [10] by reformulating it within

a variational framework. We are mainly motivated by the goodresults obtained recently using variational learning

techniques in machine learning applications in general [31–34] and for the unsupervised feature selection problem in

particular [13, 17]. The rest of the article is organized as follows. Section 2 presents the details of our unsupervised

feature selection model and describes it as a probabilisticBayesian model. In Section 3, we describe our variational

approximation procedure for the proposed model learning. Section 4 presents results on synthetic data, real data and

a challenging application namely human action videos categorization. Section 5 closes with conclusions, discussions

and future directions.

II. BAYESIAN GD MIXTURE MODEL WITH FEATURE SELECTION

We start by briefly reviewing our unsupervised feature selection model previously proposed in [10]. Then, we

propose a Bayesian version of this model. Although this paper is self-contained, the reader is urged to refer to [10].

A. Model Specification

Consider a set ofN vectorsY = {~Y1, . . . , ~YN}, where each vector~Yi = (Yi1, . . . , YiD) is represented in aD-

dimensional space and assumed to be generated from a finite GDmixture model withM components [20]:

p(~Yi|π, ~α, ~β) =
M∑

j=1

πjGD(~Yi|αj ,βj)

whereGD(~Yi|αj ,βj) is a GD distribution with parameters(αj ,βj), αj = (αj1, . . . , αjD), βj = (βj1, . . . , βjD),

~α = (α1, . . . ,αM ), ~β = (β1, . . . ,βM ), andπ = (π1, . . . , πM ) is the vector of mixing coefficients which are

positive and sum to one. Each observed vector~Yi is assigned to all the components with posterior probabilities

p(j|~Yi) ∝ πjGD(~Yi|αj ,βj), which are also known asresponsibilities[35]. Based on the mathematical properties

of the GD thoroughly discussed in [10,20], it is possible to show that the responsibilities can be written as [10]:

p(j|~Yi) ∝ πj

D∏

l=1

Beta(Xil|αjl, βjl)
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whereXi1 = Yi1 andXil = Yil/(1 −
∑l−1

k=1 Yik) for l > 1, andBeta(Xil|αjl, βjl) is a Beta distribution defined as

Beta(Xil|αjl, βjl) =
Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
X

αjl−1
il (1−Xil)

βjl−1

Therefore, the clustering structure underlying data setY can be represented by a new data setX = { ~X1, . . . , ~XN}

governed by the mixture model

p( ~Xi|π, ~α, ~β) =

M∑

j=1

πj

D∏

l=1

Beta(Xil|αjl, βjl)

This is actually an important property of the GD mixture, since the independence between the features becomes a fact

and not an assumption as considered in previous unsupervised feature selection Gaussian mixture-based approaches

[9, 11, 13, 17]. For each vector~Xi, we assign a latent variablezi = (zi1, zi2, . . . , ziM ), such thatzij ∈ {0, 1},

∑M
j=1 zij = 1 andzij = 1 if ~Xi belongs to class (or component)j and 0, otherwise. The conditional distribution of

the latent variablesZ = {z1, . . . , zN} givenπ is defined as

p(Z|π) =
N∏

i=1

M∏

j=1

π
zij
j (1)

Then, the conditional distribution of data setX given the class labelsZ can be written as

p(X|Z, ~α, ~β) =

N∏

i=1

M∏

j=1

( D∏

l=1

Beta(Xil|αjl, βjl)

)zij

It is noteworthy that the previous model assumes actually that all the featuresXil are equally important for the cluster-

ing task which is not realistic in general since some of the features might be irrelevant and then mask1 completely the

cluster structure and its recovery [36, 38, 39]. The automatic selection of relevant features in the context of unsuper-

vised learning is challenging and is far from trivial because inference has to be made on both the selected features and

the clustering structure [7,9–13,16,40]. [9] is an early influential paper advocating the use of finite mixture models for

unsupervised feature selection. The main idea is to supposethat a given featureXil is generated from a mixture of two

univariate distributions. The first one is assumed to generate relevant features and is different for each cluster and the

second one is common to all clusters (i.e. independent from class labels) and assumed to generate irrelevant features2.

1Indeed, some authors have referred to irrelevant features as “masking variables” (see, for instance, [36,37]).
2Several other quantitative formalisms for relevance in thecase of feature selection have been proposed in the past (see, for instance, [41]).
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In [10] we have extended this work for non-Gaussian featuresby approximating the feature distribution as following:

p(Xil|φil, αjl, βjl, wilk, λlk, τlk) ≃
(
Beta(Xil|αjl, βjl)

)φil
( K∏

k=1

Beta(Xil|λlk, τlk)
wilk

)1−φil (2)

whereφil is a binary latent variable, such thatφil = 1 if featurel is relevant (i.e. supposed to follow a Beta distribution,

Beta(Xil|αjl, βjl), that depends on the class labels), andφil = 0 if featurel is irrelevant and then supposed to follow

a mixture ofK Beta distributions independent from the class labels3:

p(Xil|ηl,λl, τ l) =
K∑

k=1

ηlkBeta(Xil|λlk, τlk) (3)

whereλl = (λl1, . . . , λlK), τ l = (τl1, . . . , τlK), ηl = (ηl1, . . . , ηlK) such thatηlk represents the prior probability that

Xil comes from thekth component of the Beta mixture representing irrelevant feature, and
∑K

k=1 ηlk = 1. wilk in

Eq. 2 is a binary variable such that
∑K

k=1wilk = 1 andwilk = 1 indicates thatXil comes from thekth component

of the mixture in Eq. 3. AssumingW = {~w1, . . . , ~wN} with ~wi = (wi1, . . . ,wiD) andwil = (wil1, . . . , wilK), the

distribution of the latent variablesW given the mixing probabilities~η = (η1, . . . ,ηD) is defined as

p(W|~η) =
N∏

i=1

D∏

l=1

K∏

k=1

ηwilk

lk (4)

And since eachφil is a Bernoulli variable, the distribution of the hidden variables~φ = {φ1, . . . ,φN}, with elements

φi = {φi1, . . . , φiD}, is defined as

p(~φ|ǫ) =

N∏

i=1

D∏

l=1

ǫφil

l (1− ǫl)
1−φil (5)

whereǫ = {ǫl} represents the features saliencies (i.e. the probabilities that the features are relevant) such thatp(φil =

1) = ǫl andp(φil = 0) = 1− ǫl. Having all the model’s parameters at hand, the likelihood of the observed data can be

written as

p(X|Z,W, ~φ, ~α, ~β,~λ,~τ ) =
N∏

i=1

M∏

j=1

[
D∏

l=1

Beta(Xil|αjl, βjl)
φil

( K∏

k=1

Beta(Xil|λlk, τlk)
wilk

)1−φil

]zij

(6)

where~λ = {λ1, . . . ,λD} and~τ = {τ 1, . . . , τD}.

3An important distinction between the model in [9] and the oneproposed in [10] is that the nonsalient feature is modeled asa mixture

of distributions rather than a usual single distribution. Our specific choice is justified by the fact that a Beta mixture allows the accurate

approximation of any univariate distribution (e.g. uniform, Gaussian, Gamma, etc.) [42].
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B. Bayesian Framework

The EM algorithm can be applied for inferencing the model presented in the previous section [10]. However, it

requires the integration of an entropy measure [19] or an information criterion such as MML [20] as done in [10]

for the determination of the optimal number of components. In this paper, we adopt a Bayesian variational inference

approach which allows simultaneously the estimation of allthe involved parameters and model selection (i.e. both

feature selection and determination of the optimal number of clusters). Indeed, variational learning has been used

recently as an approximation of Bayesian learning and as an alternative to both fully Bayesian MCMC techniques

and fully deterministic likelihood-based approaches which can be justified by its computational tractability and good

generalization performance [27–30].

In order to perform variational Bayes, we need to introduce conjugate priors over parameters~α, ~β,~λ and~τ . It is

noteworthy thatǫ, π and~η will be considered as parameters and not as random variableswithin our framework, thus

priors shall not be imposed on them as we will explain furtherin next section. The conjugate priors, that can be

developed using the fact that the Beta distribution belongsto the exponential family (see, for instance, [43, 44]), are

analytically intractable and cannot be used within a variational framework as shown in [45]. Thus, we use Gamma

priors as suggested in [45], for the Beta distribution, by assuming that the different model’s parameters are independent:

p(~α|u,v) =

M∏

j=1

D∏

l=1

v
ujl

jl

Γ(ujl)
α
ujl−1
jl e−vjlαjl p(~β|p,q) =

M∏

j=1

D∏

l=1

q
pjl
jl

Γ(pjl)
βpjl−1e−qjlβjl (7)

p(~λ|g,h) =

D∏

l=1

K∏

k=1

hglklk

Γ(glk)
λglk−1e−hlkλlk p(~τ |s, t) =

D∏

l=1

K∏

k=1

tslklk

Γ(slk)
τ slk−1e−tlkτlk (8)

where all the hyperparametersu = {ujl},v = {vjl},p = {pjl},q = {qjl},g = {glk},h = {hlk}, s = {slk} and

t = {tlk} of the above conjugate priors are positive. Then, by using Eqs.1, 4, 5, 6, 7, and 8, the joint distribution of all

the random variables, conditioned on parameters, is given by

p(X ,Z,W , ~φ, ~α, ~β,~λ,~τ |π, ~η, ǫ) = p(X|Z,W , ~φ, ~α, ~β,~λ,~τ )p(Z|π)p(W|~η)p(~φ|ǫ)p(~α)p(~β)p(~λ)p(~τ )

=
N∏

i=1

M∏

j=1

{
πj

D∏

l=1

[
Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
X

αjl−1
il (1−Xil)

βjl−1

]φil
[ K∏

k=1

( Γ(λlk + τlk)

Γ(λlk)Γ(τlk)
Xλlk−1

il (1−Xil)
τlk−1

)wilk

]1−φil}zij

×

N∏

i=1

D∏

l=1

ǫφil

l (1− ǫl)
1−φil

N∏

i=1

D∏

l=1

K∏

k=1

ηwilk

kl

M∏

j=1

D∏

l=1

[ v
ujl

jl

Γ(ujl)
α
ujl−1
jl e−vjlαjl

q
pjl
jl

Γ(pjl)
βpjl−1e−qjlβjl

]
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×

D∏

l=1

K∏

k=1

[ hglklk

Γ(glk)
λglk−1e−hlkλlk

tslklk

Γ(slk)
τ slk−1e−tlkτlk

]
(9)

A directed graphical representation of this model is illustrated in Fig. 1.

Fig. 1. Graphical model representation of our unsupervisedfeature selection model. Symbols in circles denote random variables; otherwise,

they denote model parameters. Plates indicate repetition (with the number of repetitions in the lower right), and arcs describe conditional

dependencies between variables.

III. VARIATIONAL LEARNING OF THE MODEL

In this section, we describe a variational Bayes learning approach for our model by following the inference method-

ology proposed in [46]. The proposed variational frameworkis used to prevent overfitting and allows simultaneously

the parameters estimation, the automatic determination ofthe number of clusters, and the saliencies of the features.

A. Variational Learning

To simplify notation, let us defineΘ = {Z, ~φ,W, ~α, ~β,~λ,~τ} as the set of random variables and denoteΛ =

{π, ~η, ǫ} as the set of parameters. Our goal is to estimate the parameters Λ by maximizing the marginal likelihood

p(X|Λ):

p(X|Λ) =
∑

Z,~φ,W

∫

~α

∫

~β

∫

~λ

∫

~τ

p(X ,Θ|Λ) d~α d~β d~λ d~τ

Since this marginalization is intractable, variational approach is then adopted to find a tractable lower bound on

p(X|Λ). By applying Jensen’s inequality, the lower boundL of the logarithm of the marginal likelihoodln p(X|Λ)
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can be found as [27–30]

ln p(X|Λ) = ln

∫

Θ
p(X ,Θ|Λ)dΘ = ln

∫

Θ
Q(Θ)

p(X ,Θ|Λ)

Q(Θ)
dΘ ≥

∫

Θ
Q(Θ) ln

p(X ,Θ|Λ)

Q(Θ)
dΘ = L(Q) (10)

whereQ(Θ) is an approximation to the true posterior distributionp(Θ|X ,π). The lower boundL(Q) is maximized

whenQ(Θ) = p(Θ|X ,Λ). However, in practice the true posterior distribution is computationally intractable and can

not be directly used for variational inference. Thus, a restricted family of distributionsQ(Θ) needs to be considered.

Here, we restrict the form ofQ(Θ) by adopting a factorization assumption that will allow the marginalization to be

carried out efficiently as we shall see later. This approximation approach, which has been developed from statistical

mechanics [47], is known asmean field theoryand has been used efficiently by several researchers in the past [48,49].

With the factorization assumption, the posterior distributionQ(Θ) can be factorized into disjoint tractable distributions

such thatQ(Θ) =
∏

iQi(Θi). Note that this is the only assumption about the distribution, and no restriction is placed

on the functional forms of the individual factorsQi(Θi). In order to maximize the lower boundL(Q), we need to

make a variational optimization ofL(Q) with respect to each of the distributionsQi(Θi) in turn. For a specific factor

Qs(Θs) in a standard variational inference approach, the general expression for its optimal solution can be found by

[30,46]

Qs(Θs) =
exp

〈
ln p(X ,Θ)

〉
i 6=s∫

exp
〈
ln p(X ,Θ)

〉
i 6=s
dΘ

(11)

where〈·〉i 6=s denotes an expectation with respect to all the distributionsQi(Θi) except fori = s. Since the expression

for the optimal solutionQs(Θs) depends on calculating the expectations with respect to theother factorsQi(Θi) for

i 6= s, we need to cycle through all the factors for finding the maximum of the lower bound. In general, in order to

perform the variational inference, all the factorsQi(Θi) need to be suitably initialized first, then each factor is updated

in turn with a revised value obtained by Eq. 10 using the current values for all of the other factors. Convergence is

guaranteed since bound is convex with respect to each of the factorsQi(Θi) [50]. We apply the variational approach to

our model by assuming thatQ(Θ) can be factorized as followingQ(Θ) = Q(Z)Q(~φ)Q(W)Q(~α)Q(~β)Q(~λ)Q(~τ ).

By applying Eq. 11 to each factor, we obtain the optimal solutions for the factors of the variational posterior (see
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Appendix):

Q(Z) =
N∏

i=1

M∏

j=1

r
zij
ij Q(~φ) =

N∏

i=1

D∏

l=1

fφil

il (1− fil)
(1−φil) Q(W) =

N∏

i=1

D∏

l=1

K∏

k=1

mwilk

ilk (12)

Q(~α) =

M∏

j=1

D∏

l=1

G(αjl|u
∗
jl, v

∗
jl) Q(~β) =

M∏

j=1

D∏

l=1

G(βjl|p
∗
jl, q

∗
jl) (13)

Q(~λ) =

D∏

l=1

K∏

k=1

G(λlk|g
∗
lk, h

∗
lk) Q(~τ ) =

D∏

l=1

K∏

k=1

G(τlk|s
∗
lk, t

∗
lk) (14)

whereG represents the Gamma distribution and where we define

rij =
ρij∑M
d=1 ρid

ρij = exp

{
lnπj +

D∑

l=1

〈
φil

〉
[R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)]

}

R̃ = ln
Γ(ᾱ+ β̄)

Γ(ᾱ)Γ(β̄)
+ ᾱ[ψ(ᾱ + β̄)− ψ(ᾱ)](

〈
lnα

〉
− ln ᾱ) + β̄[ψ(ᾱ + β̄)− ψ(β̄)](

〈
ln β

〉
− ln β̄)

+ 0.5ᾱ2[ψ′(ᾱ+ β̄)− ψ′(ᾱ)]
〈
(lnα− ln ᾱ)2

〉
+ 0.5β̄2[ψ′(ᾱ+ β̄)− ψ′(β̄)]

〈
(ln β − ln β̄)2

〉

+ ᾱβ̄ψ′(ᾱ+ β̄)(
〈
lnα

〉
− ln ᾱ)(

〈
ln β

〉
− ln β̄)

fil =
δ
(φil)
il

δ
(φil)
il + δ

(1−φil)
il

δ
(φil)
il = exp

{ M∑

j=1

〈
zij

〉[
R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)

]
+ ln ǫl

}

δ
(1−φil)
il = exp

{ K∑

k=1

〈
wilk

〉
[F̃lk + (λ̄lk − 1) lnXil + (τ̄lk − 1) ln(1−Xil)] + ln(1− ǫl)

}

F̃ = ln
Γ(λ̄+ τ̄ )

Γ(λ̄)Γ(τ̄ )
+ λ̄[ψ(λ̄ + τ̄)− ψ(λ̄)](

〈
lnλ

〉
− ln λ̄) + τ̄ [ψ(λ̄+ τ̄)− ψ(τ̄ )](

〈
ln τ

〉
− ln τ̄)

+ 0.5λ̄2[ψ′(λ̄+ τ̄)− ψ′(λ̄)]
〈
(ln λ− ln λ̄)2

〉
+ 0.5τ̄2[ψ′(λ̄+ τ̄)− ψ′(τ̄)]

〈
(ln τ − ln τ̄)2

〉

+ λ̄τ̄ψ′(λ̄+ τ̄)(
〈
lnλ

〉
− ln λ̄)(

〈
ln τ

〉
− ln τ̄)

milk =
ϕilk∑K
d=1 ϕild

ϕilk = exp

{〈
1− φil

〉[
F̃kl + (λ̄lk − 1) lnXil + (τ̄lk − 1) ln(1 −Xil)

]
+ ln ηlk

}
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u∗jl = ujl +

N∑

i=1

〈
zij

〉〈
φil

〉
ᾱjl

[
ψ(ᾱjl + β̄jl)− ψ(ᾱjl) + β̄jlψ

′(ᾱjl + β̄jl)(〈ln βjl〉 − ln β̄jl)
]

v∗jl = vjl −

N∑

i=1

〈
zij

〉〈
φil

〉
lnXil

p∗jl = pjl +

N∑

i=1

〈
zij

〉〈
φil

〉
β̄jl

[
ψ(ᾱjl + β̄jl)− ψ(β̄jl) + ᾱjlψ

′(ᾱjl + β̄jl)(
〈
lnαjl

〉
− ln ᾱjl)

]

q∗jl = qjl −

N∑

i=1

〈
zij〉

〈
φil〉 ln(1−Xil)

g∗lk = glk +
N∑

i=1

〈
1− φil

〉〈
wilk

〉
λ̄lk

[
ψ(λ̄lk + τ̄lk)− ψ(λ̄lk) + τ̄lkψ

′(λ̄lk + τ̄lk)(
〈
ln τlk

〉
− ln τ̄lk)

]

h∗lk = hlk −
N∑

i=1

〈
1− φil

〉〈
wilk

〉
lnXil

s∗lk = slk +
N∑

i=1

〈
1− φil

〉〈
wilk

〉
τ̄lk

[
ψ(λ̄lk + τ̄lk)− ψ(τ̄lk) + λ̄lkψ

′(λ̄lk + τ̄lk)(
〈
lnλlk

〉
− ln λ̄lk)

]

t∗lk = tlk −

N∑

i=1

〈
1− φil

〉〈
wilk

〉
ln(1−Xil)

ᾱjl =
〈
αjl

〉
=
ujl
vjl

β̄jl =
〈
βjl

〉
=
pjl
qjl

λ̄lk =
〈
λlk

〉
=
glk
hlk

τ̄lk =
〈
τlk

〉
=
slk
tlk

(15)

whereψ(·) is the digamma function and defined as:ψ(a) = d ln Γ(a)/da. The expected values in the above formulas

are given by

〈
zij

〉
= rij ,

〈
wilk

〉
= milk,

〈
φil

〉
= fil,

〈
1− φil

〉
= 1− fil

〈
lnα

〉
= ψ(u)− ln v,

〈
ln β

〉
= ψ(p) − ln q,

〈
lnλ

〉
= ψ(g) − lnh,

〈
ln τ

〉
= ψ(s)− ln t

〈
(lnα− ln ᾱ)2

〉
= [ψ(u)− lnu]2 + ψ′(u),

〈
(ln β − ln β̄)2

〉
= [ψ(p) − ln p]2 + ψ′(p)

〈
(lnλ− ln λ̄)2

〉
= [ψ(g) − ln g]2 + ψ′(g),

〈
(ln τ − ln τ̄)2

〉
= [ψ(s)− ln s]2 + ψ′(s)

B. Variational Lower Bound

In order to monitor the convergence and check the correctness of the proposed variational learning approach, we can

evaluate its variational lower bound. After obtaining the functional forms for the variational factors, the lower bound
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(Eq. 10) of the model can be obtained as following

L =

∫
Q(Θ) ln

p(Θ,X|Λ)

Q(Θ)
dΘ =

〈
ln p(X ,Θ|Λ)

〉
−
〈
lnQ(Θ)

〉

=
〈
ln p(X|Z, ~φ,W, ~α, ~β,~λ,~τ )

〉
+

〈
ln p(Z|π)

〉
+
〈
ln p(W|~φ, ~η)

〉
+

〈
ln p(~φ|ǫ)

〉
+

〈
ln p(~α)

〉

+
〈
ln p(~β)

〉
+

〈
ln p(~λ)

〉
+

〈
ln p(~τ )

〉
−

〈
lnQ(Z)

〉
−
〈
lnQ(~φ)

〉
−

〈
lnQ(W)

〉
−

〈
lnQ(~α)

〉

−
〈
lnQ(~β)

〉
−

〈
lnQ(~λ)

〉
−

〈
lnQ(~τ )

〉
(16)

Here, each expectation is evaluated with respect to all of the random variables in its argument. It is straightforward to

obtain these expectations according to the results from previous section:

〈
ln p(X|Z, ~φ,W, ~α, ~β,~λ,~τ )

〉
=

N∑

i=1

M∑

j=1

rij

{ D∑

l=1

fil
[
R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)

]

+
D∑

l=1

(1− fil)
K∑

k=1

milk

[
F̃ + (λ̄lk − 1) lnXil + (τ̄lk − 1) ln(1−Xil)

]}
(17)

〈
ln p(Z|π)

〉
=

N∑

i=1

M∑

j=1

rij lnπj
〈
ln p(W|~φ, ~η)

〉
=

N∑

i=1

D∑

l=1

K∑

k=1

milk ln ηlk (18)

〈
ln p(~φ|ǫ)

〉
=

N∑

i=1

D∑

l=1

fil ln ǫl + (1− fil) ln(1− ǫl) (19)

〈
ln p(~α)

〉
=

M∑

j=1

D∑

l=1

[
ujl ln vjl − ln Γ(ujl) + (ujl − 1)

〈
lnαjl

〉
− vjlᾱjl

]
(20)

〈
ln p(~β)

〉
=

M∑

j=1

D∑

l=1

[
pjl ln qjl − ln Γ(pjl) + (pjl − 1)

〈
ln βjl

〉
− qjlβ̄jl

]
(21)

〈
ln p(~λ)

〉
=

D∑

l=1

K∑

k=1

[
glk lnhlk − ln Γ(glk) + (glk − 1)

〈
lnλlk

〉
− hlkλ̄lk

]
(22)

〈
ln p(~τ )

〉
=

D∑

l=1

K∑

k=1

[
slk ln tlk − ln Γ(slk) + (slk − 1)

〈
ln τlk

〉
− tlk τ̄lk

]
(23)

〈
lnQ(Z)

〉
=

N∑

i=1

M∑

j=1

rij ln rij
〈
lnQ(W)

〉
=

N∑

i=1

D∑

l=1

K∑

k=1

milk lnmilk (24)

〈
lnQ(~φ)

〉
=

N∑

i=1

D∑

l=1

fil ln fil + (1− fil) ln(1− fil) (25)

〈
lnQ(~α)

〉
=

M∑

j=1

D∑

l=1

[
u∗jl ln v

∗
jl − ln Γ(u∗jl) + (u∗jl − 1)

〈
lnαjl

〉
− v∗jlᾱjl

]
(26)
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〈
lnQ(~β)

〉
=

M∑

j=1

D∑

l=1

[
p∗jl ln q

∗
jl − ln Γ(p∗jl) + (p∗jl − 1)

〈
ln βjl

〉
− q∗jlβ̄jl

]
(27)

〈
lnQ(~λ)

〉
=

D∑

l=1

K∑

k=1

[
g∗lk lnh

∗
lk − ln Γ(g∗lk) + (g∗lk − 1)

〈
lnλlk

〉
− h∗lkλ̄lk

]
(28)

〈
lnQ(~τ )

〉
=

D∑

l=1

K∑

k=1

[
s∗lk ln t

∗
lk − ln Γ(s∗lk) + (s∗lk − 1)

〈
ln τlk

〉
− t∗lk τ̄lk

]
(29)

C. Optimizing the Mixing Coefficients and Complete Algorithm

Now, that we have obtained a variational lower boundL(Q) which approximates the true marginal log likelihood

ln p(X|Λ), the model parametersΛ can be estimated by maximizingL(Q) with respect toπ, ~η andǫ. Setting the

derivative of the lower bound with respect toπj, ηlk andǫl to zero, we get

πj =
1

N

N∑

i=1

rij ηlk =
1

N

N∑

i=1

milk ǫl =
1

N

N∑

i=1

fil (30)

Since the solutions for the variational posteriorQ and the value of the lower bound depend on the values ofπ, ~η andǫ,

the optimization of the model can be solved in a way analogousto the EM algorithm. In the variational equivalent of

the E-step, we optimize the variational solutions for each variational factor (Eq. 12 to Eq. 14). Then, in the subsequent

variational equivalent of the M-step, we maximize the lowerboundL(Q) with respect to the current values ofπ, ~η

andǫ. These two steps are repeated until convergence. The complete algorithm can be summarized as follows4:

1) Initialization

• Choose initial number of components forM andK, and the initial values for hyper-parametersujl, vjl, pjl,

qjl, glk, hlk, slk andtlk.

• Initialize the value ofrij andmilk byK-means algorithm.

2) The variational E-step: Update the variational solutions through Eq. 12 to Eq. 14.

3) The variational M-step: maximize lower boundL(Q) with respect to the current values ofπ, ~η andǫ using

Eq. 30.

4) Repeat steps 2 and 3 until convergence.

5) Detect the correctM andK by eliminating the components with small mixing coefficients (less than10−5).

4The complete source codes are available from the authors.
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It is noteworthy that the proposed algorithm allows implicitly and simultaneously model selection with parameter

estimation and feature selection. This is different from classic approaches which perform model selection using model

selection rules, derived generally under asymptotical assumption and information theoretic reasoning, such as MML,

MDL and AIC [51]. A major drawback of these traditional approaches is that they require the entire learning process

to be repeated for different models (i.e. different values of M andK in our case).

IV. EXPERIMENTAL RESULTS

In this section, we shall illustrate our results with a collection of simulation studies involving both artificial and real-

world data, and a real challenging application namely humanaction videos categorization. The goal of the synthetic

data is to investigate the accuracy of the variational approach. The applications involving real data have two main

goals. The first goal is to compare our approach which we referto as varFsGD to the MML-based unsupervised

feature selection approach (MMLFsGD) previously proposedin [10]. The second goal is to compare varFsGD with

the GD mixture learned in a variational way without feature selection (we refer to this approach as varGD). Please

note that it is rather difficult to make a fruitful comparisonamong the many unsupervised feature selection techniques

that have been proposed in the literature and this is not actually the aim of the paper. We have compared, however,

our results with the variational Gaussian mixture-based unsupervised feature selection approach (we shall refer to as

varFsGau) proposed in [13]. In all our experiments, we initialize the number of componentsM andK with large

values (15 and 10, respectively) with equal mixing coefficients, and the feature saliency values are initialized at 0.5.In

order to provide broad non-informative prior distributions, the initial value ofu, p, g ands for the conjugate priors are

set to 1, andv, q, h, t are set to 0.01. Then, the initial values ofᾱ, β̄, λ̄ andτ̄ can be calculated using Eq. 15.

A. Artificial Data

We test the performance of our variational algorithm in terms of estimation and selection, on six eleven-dimensional

ground-truth synthetic data sets (three-dimensional relevant features and eight-dimensional irrelevant features). Fol-

lowing the scheme used in [10], the relevant features are generated in the transformed space from mixtures of Beta

distributions with well-separated components and irrelevant ones from mixtures of overlapped components. The syn-

thetic data sets are constructed based on different values of M (the number of components in the mixture of relevant
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TABLE I

PARAMETERS OF THE DIFFERENT GENERATED DATA SETS. N DENOTES THE TOTAL NUMBER OF ELEMENTS, nj DENOTES THE NUMBER

OF ELEMENTS IN CLUSTERj FOR THE RELEVANT FEATURES. αj1 , βj1 , αj2 , βj2 , αj3 , βj3 AND πj ARE THE REAL PARAMETERS OF THE

MIXTURE MODELS OF RELEVANT FEATURES. α̂j1 , β̂j1 , α̂j2 , β̂j2 , α̂j3 , β̂j3 AND π̂j ARE THE ESTIMATED PARAMETERS FROM

VARIATIONAL INFERENCE.

nj j αj1 βj1 αj2 βj2 αj3 βj3 πj α̂j1 β̂j1 α̂j2 β̂j2 α̂j3 β̂j3 π̂j

Data set 1 300 1 30 15 20 40 33 18 0.33 27.94 14.32 18.65 41.27 32.13 17.52 0.32

(N = 900) 300 2 25 33 30 50 14 62 0.33 23.71 31.15 28.16 48.88 13.57 59.93 0.34

300 3 40 30 35 26 27 12 0.34 39.54 29.36 36.22 24.51 25.33 11.89 0.34

Data set 2 200 1 30 15 20 20 33 18 0.23 28.68 14.14 19.01 19.55 31.76 17.54 0.24

(N = 900) 300 2 25 33 30 50 14 62 0.34 25.03 32.72 28.11 48.39 14.58 64.39 0.34

400 3 40 30 19 21 15 10 0.43 35.57 26.34 18.73 20.58 15.77 9.81 0.42

Data set 3 800 1 45 55 62 47 54 39 0.53 46.01 57.86 60.15 45.29 51.04 41.68 0.54

(N = 1500) 700 2 59 60 50 65 35 45 0.47 58.10 58.16 48.43 61.89 34.51 47.84 0.46

Data set 4 200 1 15 16 20 15 17 36 0.16 15.31 17.09 19.23 15.21 16.33 38.19 0.16

(N = 1200) 200 2 18 35 10 25 20 13 0.16 18.95 37.17 10.15 23.94 22.18 12.57 0.15

400 3 40 28 33 46 18 40 0.33 39.30 27.65 31.17 47.56 19.22 43.83 0.33

400 4 30 44 25 40 35 22 0.35 30.24 45.79 23.61 38.39 33.37 24.15 0.36

Data set 5 300 1 16 33 10 28 25 17 0.25 16.70 35.20 9.75 26.12 27.31 16.55 0.24

(N = 1200) 300 2 19 17 33 14 15 18 0.25 18.05 15.71 35.06 16.21 14.48 18.52 0.25

300 3 30 15 22 15 14 30 0.25 31.50 15.41 20.11 16.29 14.25 29.84 0.25

300 4 26 32 11 19 34 21 0.25 24.67 31.50 11.69 18.38 35.51 20.24 0.26

Data set 6 200 1 16 16 20 19 36 20 0.13 14.56 15.80 18.82 19.36 35.53 20.41 0.13

(N = 1500) 200 2 18 35 33 46 20 13 0.13 19.34 33.53 30.44 43.15 18.18 12.65 0.13

300 3 40 28 36 10 21 22 0.20 38.97 29.15 38.71 10.12 20.08 23.36 0.19

300 4 30 44 18 30 32 29 0.20 29.83 44.09 16.92 31.16 33.42 30.08 0.20

500 5 25 20 43 15 12 19 0.34 23.19 19.28 44.89 15.49 11.73 18.66 0.35

features) andK (the number of components in the mixture of irrelevant features) with the corresponding parameters

of each component. For instance, data set 1 is built with 900 instances. Its mixture of the relevant features has three

components (i.e.j = {1, 2, 3}). Each componentj hasnj instances with its own parameters{αj , βj} and its corre-

sponding mixing coefficientπj. The mixture of the irrelevant features for data 1 contains only one component (i.e.

K = 1). This component has the mixing coefficientη1 = 1. Tables I and II illustrate the different synthetic data
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sets with their real and estimated parameters of the relevant and irrelevant mixture models, respectively. According to

table I, we can observe that our approach is able to estimate accurately the parameters of the relevant mixture models.

Table II shows the true and estimated mixing coefficients of the irrelevant mixtures. It is clear that the proposed ap-

proach can also calculate the mixing weights for the irrelevant mixtures accurately. Note that, due to limited size of

the table, we did not illustrate the estimated values of the parametersλk andτk (both with dimensionality of eight).

According to our result, these parameters have been evaluated precisely by our approach as well.

TABLE II

REAL AND ESTIMATED MIXING COEFFICIENTS OF THE IRRELEVANT MIXTURES FOR DIFFERENT DATA SETS. ηk IS THE REAL MIXING

COEFFICIENT OF CLUSTERk. η̂k IS THE ESTIMATED VALUE.

Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Data set 6

k 1 1 2 1 2 3 1 2 1 2 3 1 2 3

ηk 1.00 0.50 0.50 0.33 0.33 0.34 0.50 0.50 0.33 0.33 0.34 0.27 0.33 0.40

η̂k 1.00 0.49 0.51 0.32 0.34 0.34 0.50 0.50 0.33 0.33 0.34 0.27 0.34 0.39
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Fig. 2. Variational likelihood bound as a function of the fixed assumed number of mixture components for the different generated data sets. (a)

Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4, (e) Data set 5, (f) Data set 6.
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Fig. 3. Mixing probabilities of components found for the different generated data sets after convergence. (a) Data set 1, (b) Data set 2, (c) Data

set 3, (d) Data set 4, (e) Data set 5, (f) Data set 6.

Two tests are conducted for estimating the number of components. First, we perform our variational optimization on a

fixed number of components (i.e. without components elimination). Thus, the variational likelihood bound becomes a

model selection score. As shown in Fig. 2, we run our algorithm by varying the number of mixture components from

2 to 15. According to this figure, it is clear that for each dataset, the variational likelihood bound is maximum at the

correct number of components which indicates that the variational likelihood bound can be used as an efficient crite-

rion for model selection. Second, we apply our algorithm directly on these data sets (by starting with 15 components).

Figure 3 shows the estimated mixing coefficients of the different components in each data sets after convergence. It

is clear that the estimated mixing coefficients of the redundant components have values close to 0. By removing the

components with very small mixing coefficients in each data set, we obtain the correct number of components for the

relevant feature mixtures. Note that, here we only display the results of estimating the number of components for the

relevant feature mixtures, the number of components for theirrelevant mixtures is determined using the same proce-

dure. The feature saliencies of all the 11 features for each generated data set are shown in Fig. 4. It is clear that features

1, 2 and 3 have been assigned a high degree of relevance which is consistent with the ground-truth. Therefore, we can

conclude that, for synthetic data sets, the proposed algorithm successfully detects the true number of components and

correctly assigns the importance of features.
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Fig. 4. Feature saliency for synthetic data sets with one standard deviation over ten runs. (a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data

set 4, (e) Data set 5, (f) Data set 6.

B. Real Data

In this section, we evaluate the proposed algorithm on four real-world data sets with different properties, as shown

in table III. The spambase data set (SP) contains a collection of spam and non-spam e-mails. The aim is to determine

TABLE III

THE THREE REAL DATA SETS. N , D AND M DENOTE THE NUMBERS OF INSTANCES, FEATURES AND CLASSES, RESPECTIVELY.

Data set N D M

Spambase 4601 57 2

Statlog 6435 36 6

Image Segmentation 2320 19 7

Handwritten Digits 5620 64 10

if an e-mail is spam or legitimate. It contains 4601 57-dimensional vectors divided into two classes. The statlog data

set (ST) consists of the multi-spectral values of pixels in 3×3 neighborhoods in a satellite image, and the classification

associated with the central pixel in each neighborhood. It contains 6,435 36-dimensional vectors from six classes:

read soil, cotton crop, grey soil, damp grey soil, soil with vegetation stubble and very damp grey soil. The image
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segmentation data set (IS) contains 2320 instances each of which is defined by 18 features. Each instance describes

a 3×3 region drawn from seven types of outdoor images: brickface, sky, foliage, cement, window, path and grass.

The handwritten digits data set (HD) contains 5,620 vectorswith 64 features from ten classes: ‘0’ to ‘9’. All the

data sets are taken from the UCI machine learning repository5. Since the features of all data sets are within some

specific range, normalization is performed as a preprocessing step to transform all the data points into the range of

[0,1]. We evaluate the performance of the proposed algorithm by running it 20 times with 30 initial components. We

also initialize the number of components for irrelevant features to 15. For comparison, we also apply MMLFsGD,

varGD and varFsGau on the same data sets. The results are summarized in table IV. According to this table, we can

TABLE IV

THE AVERAGE ERROR AND AVERAGE NUMBER OF COMPONENTS(M̂ ) COMPUTED USING VARFSGD, MMLFSGD, VARGD AND

VARFSGAU OVER 20 RANDOM RUNS.

varFsGD MMLFsGD varGD varFsGau

Data set error (%) M̂ error (%) M̂ error (%) M̂ M̂ error (%)

SP 6.54± 1.53 2.08± 0.18 7.15± 1.38 2.12± 0.75 9.27± 2.01 2.06± 0.86 9.04± 1.47 2.26± 0.61

ST 9.97±0.86 6.88±1.02 11.38±1.28 7.02±1.57 16.20±0.92 6.56±1.19 15.82±1.53 7.38± 1.36

IS 15.29±1.95 6.53±1.54 15.71±2.13 7.49±1.77 21.13±1.02 7.25±1.82 22.54± 1.87 7.62± 0.97

HD 11.86±1.49 10.78±0.84 13.53±0.58 11.05±1.11 18.64±0.73 10.02±1.64 17.97± 0.68 11.14± 0.22

observe that the improvement is immediately obvious with our method since it decreases the error rate and selects

accurately the correct number of components for all the datasets. The features saliencies for the different tested data

sets are given in Fig. 5.

C. Human Action Videos Categorization

With the rapid development of digital technologies, the increase in the availability of multimedia data such as im-

ages and videos is tremendous. With thousands of videos on hand, grouping them according to their contents is highly

5http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Fig. 5. Feature saliencies for the different real world datasets over 20 runs. (a) IS data set, (b) ST data set, (c) SP data set, (d) HD data set.

important for a variety of visual tasks such as event analysis [52], video indexing, browsing and retrieval, and digital

libraries organization [53]. How to provide efficient videos categorization approaches has attracted many research

efforts and has been addressed by several researchers in thepast (see, for instance, [54–59]). Videos categorization

remains, however, an extremely challenging task due to several typical scenarios such as unconstrained motions, clut-

tered scenes, moving backgrounds, object occlusions, non-stationary camera, geometric changes and deformation of

objects and variations of illumination conditions and viewpoints. In this section, we present an unsupervised learning

method, based on our variational algorithm, for categorizing human action videos. The performance of the proposed

method is evaluated on two challenging video data sets namely the KTH [60] and the Weizmann [61] human action

data sets.

S1

S2

S3

S4

walking jogging running boxing hand waving hand clapping

Fig. 6. Example frames of different human actions within different scenarios from video sequences in the KTH data set.
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1) Experimental Methodology:Several studies have been conducted to provide models and visual features in

order to consistently (i.e. regardless changes in viewpoint angles, position, distance, size, orientation, or deformation)

categorize objects and visual scenes. These studies have shown that a good model is required, and it must be able to

select relevant visual features to improve categorizationperformance [62,63]. Recently several works have been based

on the notion of visual vocabulary constructed via a quantization process, according to a coding rule such as K-Means,

of local features (spatio-temporal features in the case of videos) extracted from a set of detected interest points (space-

time interest points in the case of videos). This approach allows the representation of images and videos as histograms

of visual words and have convincingly proven its effectiveness in several applications (see, for instance, [64]). Here

we consider this approach and our methodology for unsupervised videos categorization can be summarized as follows.

First, local spatio-temporal features from each video sequence are extracted from their detected space-time interest

points. Among many of the existing space-time interest points detectors and local spatio-temporal features [54,65–68],

we employ the space-time interest point detector proposed in [56] 6, which is actually a space-time extension of the

well-known Harris operator, and histograms of optic flow (HoF) as proposed in [65]. Next, a visual vocabulary is

constructed by quantizing these spatio-temporal featuresinto visual words using K-means algorithm and each video is

then represented as a frequency histogram over the visual words. Then, we apply the pLSA model [69] to the obtained

histograms as done in [70] in the case of still images. As a result each video is represented now by aD-dimensional

proportional vector whereD is the number of latent aspects. Finally, we employ our varFsGD model as a classifier to

categorize videos by assigning the video sequence to the group which has the highest posterior probability according

to Bayes’ decision rule.

2) KTH Human Action Data Set:The KTH human action data set is one of the largest available video sequences

data set of human actions [60]. It contains six types of humanaction classes including: walking, jogging, running,

boxing, hand waving and hand clapping. Each action class is performed several times by 25 subjects in four different

scenarios: outdoors (S1), outdoors with scale variation (S2), outdoors with different clothes (S3) and indoors (S4).

This data set contains 2391 video sequences and all sequences were taken over homogenous backgrounds with a static

6We have also tested another popular feature detector namelythe Cuboid detector proposed in [54]. However, we have not noticed a significant

improvement according to our experiments.
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camera with 25ftps frame rate. All video samples were downsampled to the spatial resolution of 160×120 pixels and

have a length of four seconds in average. Examples of frames from video sequences of each category are shown in

Fig. 6. In this experiment, we considered a training set composed of actions related to 16 subjects to construct the

visual vocabulary, by setting the number of clusters in the K-Means algorithm (i.e. number of visual words) to 1000,

as explained in the previous section. The pLSA model was applied by considering 40 aspects and each video in the

database was then represented by a 40-dimensional vector ofproportions. Last, the resulting vectors were clustered

by our varFsGD model. The entire procedure was repeated 20 times for evaluating the performance of our approach.

Figure 7 displays the average likelihood bound as a functionof the number of clusters and shows clearly that the optimal

number of components is actually 6. The confusion matrix forthe KTH data set is shown in Fig. 8. We note that, most
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Fig. 7. The number of components detected by varFsGD for the KTH data set.

of the confusion takes place between “walking” and “jogging”, “jogging” and “running”, as well as between “hand

clapping” and “boxing”. This is due to the fact that similar actions contain similar types of local space-time events.

Table V shows the average classification accuracy and the average number of components obtained by varFsGD,

Fig. 8. Confusion matrix for the KTH data set.
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MMLFsGD, varGD and varFsGau. It clearly shows that our algorithm outperforms the other approaches for clustering

KTH human action videos. We have also tested the effect of different sizes of visual vocabulary on classification

TABLE V

THE AVERAGE CLASSIFICATION ACCURACY AND THE NUMBER OF COMPONENTS (M̂ ) COMPUTED ON THEKTH DATA SET USING

VARFSGD, MMLFSGD, VARGD AND VAR FSGAU OVER 20 RANDOM RUNS.

Algorithm M̂ Accuracy (%)

varFsGD 5.96 78.17

MMLFsGD 5.87 76.69

varGD 5.53 71.34

varFsGau 5.67 72.06

accuracy for varFsGD, MMLFsGD, varGD and varFsGau, as illustrated in Fig. 9(a). As we can see, the classification

rate peaks around 1000. The choice of the number of aspects also influences the accuracy of classification. As shown

in Fig. 9(b), the optimal accuracy can be obtained when the number of aspects is set to 40. Figure 10 illustrates the
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Fig. 9. (a) Classification accuracy vs. vocabulary size for the KTH data set; (b) Classification accuracy vs. the number ofaspects for the KTH

data set.

feature saliency of the aspects. According to this figure, the features have different degrees of relevance and contribute

differently in the clustering.

3) Weizmann Human Action Data Set:In this experiment, the Weizmann human action data set is employed

[61]. It consists of 90 video sequences at a resolution of 180×144 pixels. Ten different types of human actions are
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Fig. 10. Feature saliencies of the different aspect features over 20 runs for the KTH data set.

bend jack jump pjump run

side skip walk wave1 wave2

Fig. 11. Example frames of different human actions from video sequences in the Weizmann human action data set.

performed by 9 subjects. The specific action categories are:”run,” ”walk,” ”skip,” ”jumping-jack” (or shortly ”jack”) ,

”jump-forward-on-two-legs” (or ”jump”), ”jump-in-place-on-two-legs” (or ”pjump”), ”gallop-sideways” (or ”side”),

”wave-two-hands” (or ”wave2”), ”wave-one-hand” (or ”wave1”), and ”bend”. Some example frames of each action

class can be viewed in Fig. 11. Since the data set is small (90 sequences), we adopt a common scheme which extends

the data set by adding a horizontally flipped version of each video sequence to the original data set. We employ a

leave-one-out setup to test the performance of our categorization approach. That is, we construct our visual vocabulary

from the video sequences of eight subjects (original + the flipped versions), by setting the number of clusters to 1200

in the K-Means algorithm, and test the efficiency on the sequences of the remaining subject (only original ones). The

results that we shall discuss in the following are obtained over nine runs. As shown in Fig. 12, the correct number of

components is detected at the maximum value of the average variational likelihood bound using the varFsGD model.

Figure 13 illustrates the confusion matrix for the Weizmanndata set using our variational model. The overall accuracy

over ten runs is around86.80%. As we can see, most errors are generated from similar actioncategorizes, such as “run”
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with “walk”, “jump” with “skip” and “skip” with “jump” and “r un”. The average classification accuracy and the
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Fig. 12. The number of components detected by varFsGD for theWeizmann data set.

Fig. 13. Confusion matrix for the Weizmann data set.
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Fig. 14. (a) Classification accuracy vs. vocabulary size forthe Weizmann data set; (b) Classification accuracy vs. the number of aspects for the

Weizmann data set.

average number of components obtained by varFsGD, MMLFsGD,varGD and varFsGau are shown in table VI. As we
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TABLE VI

THE AVERAGE CLASSIFICATION ACCURACY AND THE NUMBER OF COMPONENTS (M̂ ) COMPUTED ON THEWEIZMANN DATA SET USING

VARFSGD, MMLFSGD, VARGD AND VAR FSGAU OVER 9 RUNS.

Algorithm M̂ Accuracy (%)

varFsGD 9.79 86.8

MMLFsGD 9.61 84.7

varGD 9.48 78.4

varFsGau 9.51 80.3

can see, our algorithm provides higher classification accuracy than the other algorithms while detecting accurately the

number of categories. For instance, the fact that the varFsGD performs better than the varFsGau is actually expected

since videos are represented by vectors of proportions for which the GD mixture is one of the best modeling choices

unlike the Gaussian mixture which implicitly assumes that the features vectors are Gaussian which is far from the case .

The choices of the sizes of visual vocabulary and the number of aspects are important since they affect the classification

accuracy as shown in Figs. 14(a) and 14(b), respectively. According to these figures, the best performance is achieved

when the size of the vocabulary is set to 1200 and the number ofaspects is chosen as 40. The corresponding feature

saliency of the 40-dimensional aspects can be viewed in Fig.15. As illustrated in this figure, the features have different

relevance degrees and then contribute differently to clustering. For instance, eight features (features number 2, 10,13,

25, 28, 33, 36 and 37) have the high relevance degrees where the feature saliencies are greater than 0.9. By contrast,

there are seven features (feature number 1, 8, 11, 14, 16, 22,29) that have saliencies lower than 0.5, and then provide

less contribution in clustering.

V. CONCLUSION

Most of the feature selection algorithms based on mixture models assume that the data in each component follow

Gaussian distribution, which is seldom the case in real-life applications. Unlike these approaches, we have proposed

in this paper a principled variational framework for unsupervised feature selection in the case of non-Gaussian data



26

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aspects

F
ea

tu
re

 s
al

ie
n

cy
Fig. 15. Feature saliencies for the different aspect features over 20 runs for the Weizmann data set.

which naturally appear in many application from different domains and disciplines. Variational frameworks offer a

deterministic alternative for Bayesian approximate inference by maximizing a lower bound on the marginal likelihood

which main advantage is computational efficiency and guaranteed convergence that can be easily assessed as compared

to MCMC-based approaches which make posterior approximation in a stochastic sense. We have shown that the

variational approach can be used to obtain a closed form parameters posteriors for our model. The proposed approach

has been applied to both synthetic and real data, and to a challenging application which concerns human action videos

categorization, with encouraging results. It is noteworthy that the proposed selection model is also applicable to

many other challenging problems involving non-Gaussian proportional data such as text mining and compression,

and protein sequences modeling in biology. There are several interesting possible future works such as handling the

important problem of online learning in the case of dynamic data sets where the relevancy of the features may vary as

new data arrive or disappear. A possible solution to this problem could be the extension of the proposed model to the

infinite case by integrating it with the non-parametric Bayesian framework recently proposed in [71].

ACKNOWLEDGMENT

The completion of this research was made possible thanks to the Natural Sciences and Engineering Research Council

of Canada (NSERC).

REFERENCES

[1] J. H. Friedman and J. W. Tukey. A Projection Pursuit Algorithm for Exploratory Data Analysis.IEEE Transactions on Computers,

23(9):881–890, 1974.



27

[2] P. E. Green, F. J. Carmone and J. Kim. A Preliminary Study of Optimal Variable Weighting in K-Means Clustering.Journal of Classifica-

tion, 7(2):271–285, 1990.

[3] F. Z. Brill, D. E. Brown and W. N. Martin. Fast Genetic Selection of Features for Neural Network Classifiers.IEEE Transactions on

Neural Networks, 3(2):324–328, 1992.

[4] F. E. Shaudys and T. K. Leen. Feature Selection for Improved Classification. InProc. of IEEE International Joint Conference on Neural

Networks (IJCNN), pages 697–702, 1992.

[5] P. V. Verveer and R. P. W. Duin. An Evaluation of IntrinsicDimensionality Estimators.IEEE Transactions on Pattern Analysis and

Machine Intelligence, 17(1):81–86, 1995.

[6] C. E. Brodley and P. E. Utgoff. Multivariate Decision Trees.Machine Learning, 19(1):45–77, 1995.

[7] Y. Kim, W. N. Street and F. Menczer. Feature Selection in Unsupervised Learning via Evolutionary Search. InProc. of the International

Conference on Knowledge Discovery and Data Mining (KDD), pages 365–369, 2000.

[8] H. Liu and H. Motoda.Computational Methods of Feature Selection. Chapman & Hall, 2008.

[9] M. H. C. Law, M. A. T. Figueiredo and A. K. Jain. Simultaneous Feature Selection and Clustering Using Mixture Models.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(9):1154–1166, 2004.

[10] S. Boutemedjet, N. Bouguila and D. Ziou. A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data

Clustering.IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(8):1429–1443, 2009.

[11] M. W. Graham and D. J. Miller. Unsupervised Learning of Parsimonious Mixtures on Large Spaces with Integrated Feature and Component

Selection.IEEE Transactions on Signal Processing, 54(4):1289–1303, 2006.

[12] A. E. Raftery and N. Dean. Variable Selection for Model-Based Clustering.Journal of the American Statistical Association, 101(473):168–

178, 2006.

[13] C. Constantinopoulos, M. K. Titsias and A. Likas. Bayesian Feature and Model Selection for Gaussian Mixture Models. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 28(6):1013–1018, 2006.

[14] N. Bouguila. A Model-Based Approach for Discrete Data Clustering and Feature Weighting using MAP and Stochastic Complexity. IEEE

Trans. Knowledge and Data Engineering, 21(12):1649–1664, Dec 2009.

[15] C. Maugis, G. Celleux and M-L. Martin-Magniette. Variable Selection for Clustering with Gaussian Mixture Models.Biometrics,

65(3):701–709, 2009.

[16] H. Lian. Sparse Bayesian Hierarchical Modeling of High-Dimensional Clustering Problems.Journal of Multivariate Analysis,

101(7):1728–1737, 2010.

[17] Y. Li, M. Dong and J. Hua. Simultaneous Localized Feature Selection and Model Detection for Gaussian Mixtures.IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(5):953–960, 2009.

[18] C. Fraley and A. E. Raftery. Model-Based Clustering, Discriminant Analysis, and Density Estimation.Journal of the American Statistical

Association, 97(458):611–631, 2002.



28

[19] N. Bouguila and D. Ziou. A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet

Mixture. IEEE Transactions on Image Processing, 15(9):2657– 2668, 2006.

[20] N. Bouguila and D. Ziou. High-Dimensional Unsupervised Selection and Estimation of a Finite Generalized Dirichlet Mixture Model

Based on Minimum Message Length.IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10):1716–1731, 2007.

[21] C. S. Wallace.Statistical and Inductive Inference by Minimum Message Length. Springer-Verlag, 2005.

[22] G. J. McLachlan and T. Krishnan.The EM Algorithm and Extensions. New York: Wiley-Interscience, 1997.

[23] A. L. Yuille, P. Stolorz and J. Utans. Statistical Physics, Mixtures of Distributions, and the EM Algorithm.Neural Computation, 6(2):334–

340, 1994.

[24] Z. Lu and H. H. S. Ip. Generalized Competetive Learning of Gaussian Mixture Models.IEEE Transactions on Systems, Man, and

Cybernetics-Part B: Cybernetics, 39(4):901–909. 2009.

[25] C.P. Robert and G. Casella.Monte Carlo Statistical Methods. Springer-Verlag, 1999.
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