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Abstract

Clustering has been a subject of extensive research in datagnpattern recognition and other areas for several
decades. The main goal is to assign samples, which are Bypr@n-Gaussian and expressed as points in high-
dimensional feature spaces, to one of a number of clustasswell-known that in such high-dimensional settings, the
existence of irrelevant features generally compromisedatiiog capabilities. In this paper, we propose a variationa
inference framework for unsupervised non-Gaussian feagalection, in the context of finite generalized Dirichlet
(GD) mixture-based clustering. Under the proposed priadipariational framework, we simultaneously estimate, in
a closed-form, all the involved parameters and determiaetimplexity (i.e. both model an features selection) of the
GD mixture. Extensive simulations using synthetic datanglwith an analysis of real-world data and human action

videos demonstrate that our variational approach achlestsr results than comparable techniques.
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I. INTRODUCTION

N important traditional step in pattern recognition andadatining is to select the relevant features, with

good discriminatory power, for a given application [1-7]heTsurge of research interests in the areas of
machine learning, data mining, computer vision, stagséind related fields has produced a wide variety of feature
selection approaches especially in supervised settingsarFexcellent review and in-depth discussions of the rekea
in feature selection the reader is referred to [8—10] aneresices therein. In recent years there has been consklerabl
interest in formulating the feature selection problem isupervised settings using mixture models learned using
different optimization algorithms [9-16]. The primary ebijive is the identification and the reduction of the inflleenc
of extraneous (or irrelevant) features which do not contalinformation about the true clusters structure. The main
assumption in many of these approaches is that the featitew fa multivariate normal distribution with diagonal
variance-covariance matrix (see, for instance, [9, 11, 7]3, This assumption is rarely met, is unrealistic in maayeas
and is generally violated by real life applications [15,.18jdeed, in many applications the per-class distributianes
not Gaussian as shown in [10] where a mixture-based approalging on GD distribution and benefiting from its
interesting mathematical properties and flexibility [1@],2has been proposed.
The unsupervised feature selection model in [10] has besnett using a minimum message length (MML) [21]
objective function with the expectation-maximization (E[N2] algorithm. Despite the fact that the EM algorithm
is the procedure of choice for parameter estimation in tise cd incomplete data problems where part of the data is
hidden, several studies have shown theoretically and expatally that the EM algorithm, in deterministic settings
(e.g. maximum likelihood estimation), converges eithes tocal maximum or to a saddle point solution and depends
on an appropriate initialization (see, for instance, [28}-#&hich may compromise the modeling capabilities. Rdgent
learning research has been directed towards Bayesianaagb@® which allow the formal treatment of uncertainty in
modeling through the incorporation of prior knowledge abitie model’'s parameters and then the combination of
these prior beliefs with the observed data which resultsostgrior distributions [25]. The calculation and updating
of these posteriors is generally untractable and involvgs-tlimensional integrations. Markov Chain Monte Carlo
(MCMC) techniques are the methods of choice in this case Ho@ & approximate the Bayesian inference, but

its computational cost is known to be prohibitive [25, 26]. daterministic approximation alternative, of posterior



distributions, is now possible thanks to variational mdghahich at the same time prevent overfitting and allow model
selection [27,28]. The main idea of variational Bayes lgagiis to find an accurate and tractable approximation to the
true model’s posterior that minimizes the divergence [2]-3

The aim of this paper is to extend our feature selection ambrpreviously proposed in [10] by reformulating it within

a variational framework. We are mainly motivated by the goeslilts obtained recently using variational learning
techniques in machine learning applications in generat3d] and for the unsupervised feature selection problem in
particular [13,17]. The rest of the article is organized @kivs. Section 2 presents the details of our unsupervised
feature selection model and describes it as a probabiBstiesian model. In Section 3, we describe our variational
approximation procedure for the proposed model learnirgti® 4 presents results on synthetic data, real data and
a challenging application namely human action videos caiegtion. Section 5 closes with conclusions, discussions

and future directions.

II. BAYESIAN GD MIXTURE MODEL WITH FEATURE SELECTION

We start by briefly reviewing our unsupervised feature selecmodel previously proposed in [10]. Then, we

propose a Bayesian version of this model. Although this pegself-contained, the reader is urged to refer to [10].

A. Model Specification

Consider a set ofV vectorsy = {Yi,..., Yy}, where each vector; = (Yi,...,Y;p) is represented in &-
dimensional space and assumed to be generated from a finiteig&ire model with)M components [20]:

M
p(Yilm, &, 8) = > m;GD(Yi|ay, B;)

=1

WhereGD(ﬁ-\a]—,ﬁj) is a GD distribution with parametefgx;, 3;), a; = (aj1,---,5p), B; = (Bj1,---,B8ip),

a = (ay,...,on), B = (B4,..-,8By), andw = (m1,...,mpr) is the vector of mixing coefficients which are
positive and sum to one. Each observed vedfois assigned to all the components with posterior probagslit
p(j|Y;) o m;GD(Y;|ey;, B;), which are also known aesponsibilities[35]. Based on the mathematical properties

of the GD thoroughly discussed in [10, 20], it is possibletiows that the responsibilities can be written as [10]:

D
p(j[Y3) oc w5 | [ Beta(Xalagi, Bj1)
=1



whereX;; = Y;; andX;; = Y;;/(1 — k 1 Yii) for I > 1, andBeta(X;|a;;, ;1) is a Beta distribution defined as

U(aji + Bjn)

XS — Xt
TG 0

Beta(Xy|aj, Bj1) =

Therefore, the clustering structure underlying data)sean be represented by a new dataXet {Xl, X N}

governed by the mixture model

::]u

M
p(XZ|7rv 7 Zﬂj

j=1 l

Beta(Xi|ovi, Bj1)
1

This is actually an important property of the GD mixture cgirthe independence between the features becomes a fact
and not an assumption as considered in previous unsuperféature selection Gaussian mixture-based approaches
[9, 11, 13, 17]. For each vectoi’i, we assign a latent variable = (z;1, 22, ..., 2zim), such thatz;; € {0,1},

>, zi; = 1andz; = 1if X; belongs to class (or componerjtand 0, otherwise. The conditional distribution of

the latent variable€ = {z,...,zx} given is defined as
N M
p(Z|mw) = H H T, Q)
i=1j=1

Then, the conditional distribution of data sgtgiven the class label€ can be written as

N M

pxiz.a.0 =[] (H Beta(Xaloyr. 1))

i=1j=1
It is noteworthy that the previous model assumes actuadiiyath the features(;; are equally important for the cluster-
ing task which is not realistic in general since some of tlaguiees might be irrelevant and then masiompletely the
cluster structure and its recovery [36, 38, 39]. The autansaiection of relevant features in the context of unsuper-
vised learning is challenging and is far from trivial beaairference has to be made on both the selected features and
the clustering structure [7,9-13,16,40]. [9] is an earfiuiential paper advocating the use of finite mixture modeis fo
unsupervised feature selection. The main idea is to sughasa given featur&;; is generated from a mixture of two

univariate distributions. The first one is assumed to geéagmevant features and is different for each cluster aad th

second one is common to all clusters (i.e. independent fiags ¢abels) and assumed to generate irrelevant fedtures

'Indeed, some authors have referred to irrelevant featgrémasking variables” (see, for instance, [36, 37]).
2Several other quantitative formalisms for relevance incdmge of feature selection have been proposed in the pasfdseestance, [41]).



In [10] we have extended this work for non-Gaussian feathyespproximating the feature distribution as following:
K 1
(Xl dir, ajis Bty Witks Nk, Tike) = (Beta(Xil’ajl75jl))¢ll(H Beta (X[ A, i) ) o (2
k=1
whereg,; is a binary latent variable, such that = 1 if featurel is relevant (i.e. supposed to follow a Beta distribution,
Beta(X;|aj1, B51), that depends on the class labels), @pd= 0 if feature! is irrelevant and then supposed to follow

a mixture of K Beta distributions independent from the class laBels

K
p(Xalm, M, 1) = D maBeta(Xal i, 7ir) 3
k=1
whereh; = (N1, ..., k), 71 = (i1, -+, Tig ), My = (M1, - - -, i) Such thaty, represents the prior probability that

X; comes from theith component of the Beta mixture representing irrelevaatuie, anaz,le me = 1. wy in

Eq. 2 is a binary variable such th@fle wyr = 1 andwy, = 1 indicates thatX;; comes from théith component

of the mixture in Eq. 3. Assuminyy = {w1,..., Wy} with w; = (w;1,...,w;p) andw; = (w1, ..., w;x), the
distribution of the latent variableg’ given the mixing probabilitief = (n,,...,np) is defined as
D K
pWVIF) = TTTT TT (4)
i=11=1 k=1
And since eacly;; is a Bernoulli variable, the distribution of the hidden \zduibsq_5 ={¢1,...,onN}, with elements

¢i = {bi1,...,0ip}, is defined as

N D
= [TIIe"a—ea)' )

1=11[=1

wheree = {¢;} represents the features saliencies (i.e. the probabithiat the features are relevant) such fiat; =

1) = ¢ andp(¢;; = 0) = 1 — ¢.. Having all the model’'s parameters at hand, the likelihobithe observed data can be

written as
N M 1=i | =
p(X|Z>W7¢>&7B7)\>7? HH HBeta Zl|a]l?ﬁ]l Ll(H Beta Zl|/\lk77_lk) le) ] (6)
i=1j=1Li=1
whereX = {A(,...,Ap}and? = {r,...,7p}.

3An important distinction between the model in [9] and the @meposed in [10] is that the nonsalient feature is modeled asxture
of distributions rather than a usual single distributionur@pecific choice is justified by the fact that a Beta mixtulteves the accurate

approximation of any univariate distribution (e.g. unifgrGaussian, Gamma, etc.) [42].



B. Bayesian Framework

The EM algorithm can be applied for inferencing the modekprged in the previous section [10]. However, it
requires the integration of an entropy measure [19] or aorinétion criterion such as MML [20] as done in [10]
for the determination of the optimal number of componemntsthis paper, we adopt a Bayesian variational inference
approach which allows simultaneously the estimation oftalinvolved parameters and model selection (i.e. both
feature selection and determination of the optimal numlbalusters). Indeed, variational learning has been used
recently as an approximation of Bayesian learning and adtamative to both fully Bayesian MCMC techniques
and fully deterministic likelihood-based approaches Wwldan be justified by its computational tractability and good
generalization performance [27-30].

In order to perform variational Bayes, we need to introduscejugate priors over parameteds E, X and7. Itis
noteworthy thak, = and#j will be considered as parameters and not as random variaditleis our framework, thus
priors shall not be imposed on them as we will explain furtimenext section. The conjugate priors, that can be
developed using the fact that the Beta distribution beldogbe exponential family (see, for instance, [43, 44]), are
analytically intractable and cannot be used within a vimet framework as shown in [45]. Thus, we use Gamma
priors as suggested in [45], for the Beta distribution, suasing that the different model’'s parameters are independe
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where all the hyperparametetss= {u;},v = {v;i},p = {pji},a = {¢;i},g = {gn}, h = {h},s = {si} and
t = {t;} of the above conjugate priors are positive. Then, by usigyEd, 5, 6, 7, and 8, the joint distribution of all

the random variables, conditioned on parameters, is giyen b
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A directed graphical representation of this model is iatgtd in Fig. 1.
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Fig. 1. Graphical model representation of our unsupervisatlre selection model. Symbols in circles denote randanavles; otherwise,
they denote model parameters. Plates indicate repetitith (he number of repetitions in the lower right), and aresatibe conditional

dependencies between variables.

I1l. VARIATIONAL LEARNING OF THEMODEL

In this section, we describe a variational Bayes learnimg@gch for our model by following the inference method-
ology proposed in [46]. The proposed variational framewsrised to prevent overfitting and allows simultaneously

the parameters estimation, the automatic determinatidimeoiumber of clusters, and the saliencies of the features.

A. Variational Learning

To simplify notation, let us defin® = {Z,é, W, &, 3, X, 7} as the set of random variables and denate=

{m, 1, €} as the set of parameters. Our goal is to estimate the pan@retsy maximizing the marginal likelihood

pXIA) = > //// (X,O|A)da dB dX d7

Z,6W
Since this marginalization is intractable, variationaprgach is then adopted to find a tractable lower bound on

p(X|A):

p(X|A). By applying Jensen’s inequality, the lower boufidf the logarithm of the marginal likelihoobh p(X'|A)



can be found as [27-30]

(X,0[A)

Inp(X|A) :1n/®p(x,@m)d@ :m/@q;(@)p Lo p(X,©[A)

p _
d@)z/@Q(@)ln ) d® =£(Q) (10)

where@(®) is an approximation to the true posterior distributigi®|X’, 7v). The lower bound’(Q) is maximized
whenQ(®) = p(®|X, A). However, in practice the true posterior distribution isnguitationally intractable and can
not be directly used for variational inference. Thus, arietetd family of distributions (®) needs to be considered.
Here, we restrict the form af(®) by adopting a factorization assumption that will allow tharginalization to be
carried out efficiently as we shall see later. This approfimnaapproach, which has been developed from statistical
mechanics [47], is known asean field theorand has been used efficiently by several researchers in $h@8a49].
With the factorization assumption, the posterior distitnu)(®) can be factorized into disjoint tractable distributions
such tha)(®) = [, Q:(©;). Note that this is the only assumption about the distriloytamd no restriction is placed
on the functional forms of the individual facto€g;(®;). In order to maximize the lower bounfi(Q), we need to
make a variational optimization @f(Q) with respect to each of the distributiof(®;) in turn. For a specific factor
Qs(©;) in a standard variational inference approach, the gengpaéssion for its optimal solution can be found by

[30, 46]
exp(Inp(X,©)), (11)

Qu(O4) = e Tl ©));2,1®

where(-);, denotes an expectation with respect to all the distribst@r{©;) except fori = s. Since the expression
for the optimal solutior)(®;) depends on calculating the expectations with respect tottrer factors);(©;) for

i # s, we need to cycle through all the factors for finding the maximof the lower bound. In general, in order to
perform the variational inference, all the fact6ys(®,) need to be suitably initialized first, then each factor isatpd

in turn with a revised value obtained by Eq. 10 using the eurvalues for all of the other factors. Convergence is
guaranteed since bound is convex with respect to each chthers); (©;) [50]. We apply the variational approach to
our model by assuming tha}(®) can be factorized as following@(®) = Q(Z)Q(#)Q(W)Q(&)Q(B)QX)Q(F).

By applying Eqg. 11 to each factor, we obtain the optimal sohg for the factors of the variational posterior (see
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whereg represents the Gamma distribution and where we define
Pij
Ti; =
’ Zy:l Pid
D
pPij = eXp{lnﬂ-j + Z @bzl ]l + (a]l —1)In Xy + (B]l —1)In(1 - X; )]}
=1
R = SR s aluta+ 5) — vl@)l((na) - na) + Ao + 5) — o(E](Ip) ~ )

+ 058°[Y (a+fB) — ¢/ (@)]((Ina—na)®) + 0582[ (@ + 5) — ¢'(B)|((In g — In §)?)
+ aBy(a+pB)((Ina) —Ina)((Ing) —nj)

o
i

fi= i
67;(l¢zl) _I_éfll_d)zl)

M
52(7)”) = exp{z<zij> [Rj+ (aj — 1) In Xy + (B — 1) In(1 — X3)] +1n El}

j=1
K
s = eXp{Z<wzlk>[]:lk + Mk — 1) In Xy + (7 — 1) In(1 — Xy)] + In(1 — El)}
k=1
F = In 11:((;—11:(?) + AN +7) = pN)]({(InA) —InA) + F[p(A +7) —¢(7)]((InT) — In7)

+ 05X A+7) —¢'V{(In A —InX)?) + 0572/ (A + 7) — ' (F){(InT — In7)?)
+ MY A+7)((InA) —InA)((InT) —In7)

Pilk

Mik = g
Zdzl Pild

Pilk = eXp{<1 — ¢u) [Far + Oui — 1) In Xy + (7 — 1) In(1 — Xy)] + 1n77lk}

(12)

(13)

(14)
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N
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N
e = tix — Z<1 — ¢a){wir ) In(1 — Xy)
=1
aj = (o) = % Bii=(Bu) = % ik = () = }%Z T = (TR) = ZL: (15)

where)(-) is the digamma function and defined agu) = d1InT'(a)/da. The expected values in the above formulas
are given by
(zij) =1y, {wak) =mak, (Pu) =fu, (1—ou) =1—fu
<ln a> =(u) — Inwv, <ln 5> =1(p) — Ing, <ln )\> =1(g) — Inh, <ln 7'> =(s) — Int
(Ina—ma)®) =) —nu)® +¢'(u), ((InB—1np)*) = [¢(p) —Inp]* + ' (p)

(InA—X)?) = [(g) —Ingl* +¢'(g), ((In7—1In7)*) = [(s) — Ins]* +¢'(s)

B. Variational Lower Bound

In order to monitor the convergence and check the correstighe proposed variational learning approach, we can

evaluate its variational lower bound. After obtaining thadtional forms for the variational factors, the lower bdun
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(Eqg. 10) of the model can be obtained as following

p(©, X[A)
Q(©)

= (Inp(X|Z, dW, &, 8, X, 7 )) + (Inp(Z|7)) + (Inp(W W), ) )) + (Inp( Ple )) + (Inp(&))

L = /Q(@)ln d® = (Inp(X,6[A)) — (InQ(O))

+  (Inp( _’)> + <lnp(X)> + (Inp(7)) — (I Q(Z)) — (InQ( _’)> —(lnQW)) — (InQ(&))
— <an > <an > <ln Q(F)> (16)

Here, each expectation is evaluated with respect to alleofahdom variables in its argument. It is straightforward to

obtain these expectations according to the results frowiqure section:

N M

(Inp(X|2,6.W, 8,8, X, 7)) => > {Z fu[Rj + (@ — )In Xy + (B — 1) In(1 — Xy)]
i=1 j=1 =1
D K o ’
+ Z(l - le) Zmilk [F + ()\lk - 1) In Xil + (ﬂk - 1) 111(1 - le)] } (17)
1=1 k=1
N M N D
(Inp(Z|w)) Z Z rij In; (Inp( Wi, 7)) Z Z Mk Iy (18)
=1 j=1 =1 I=1 k=1
N D
(Inp(@le)) =D falne + (1 — fu) In(1—e) (19)
=1 =1
M D
<lnp(d’)> = Z Z [ujl Invj; —InT(uj) + (uj — 1)<ln ozjl> — vjlo_zjl] (20)
j=11=1
_ M D )
(Inp(B)) = Z Z [pjiIngj —InT(pji) + (pjr — 1){In Bj1) — q;1B1] (21)
j=11=1
. D K )
(Inp(X)) = g In by — InT(gur) + (gir — 1){In Nige) — P Aug] (22)
I=1 k=1
D K
(Inp(F)) =D [swlnty —InT(sy) + (s — 1){In7p) — tu ) (23)
1=1 k=1
N M N K
<ln Q(Z)> = Z Z rij Inr; ln QW)) = Z Z Mk I myg, (24)
i=1 j=1 i=1 1=1 k=1
. N D
Q@) =D fulnfu+ (1 - f)In(1— fu) (25)
=1 =1
M D
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(nQ(B)) = [P Ingj — InD(p5)) + (pf; — 1){In B5) — 45,851 (27)
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C. Optimizing the Mixing Coefficients and Complete Alganith

Now, that we have obtained a variational lower bouiid)) which approximates the true marginal log likelihood
In p(X|A), the model parameterA can be estimated by maximizing(Q)) with respect torr, 77 ande. Setting the

derivative of the lower bound with respect#g, n;;, ande; to zero, we get

N L
Z; Milk o= Z; fil (30)

2=

N
Ty = N ;n‘j Nk =
Since the solutions for the variational postetipand the value of the lower bound depend on the values gfande,
the optimization of the model can be solved in a way analogodise EM algorithm. In the variational equivalent of
the E-step, we optimize the variational solutions for eaatational factor (Eq. 12 to Eq. 14). Then, in the subsequent
variational equivalent of the M-step, we maximize the loweund£(Q) with respect to the current values of 77
ande. These two steps are repeated until convergence. The cenapg@rithm can be summarized as follofvs
1) Initialization
« Choose initial number of components fof and K, and the initial values for hyper-parameters, vj;, pji,
@jts Gk Mugs sie andtyy,.
« Initialize the value of-;; andm;;, by K-means algorithm.
2) The variational E-step: Update the variational solugithrough Eqg. 12 to Eq. 14.
3) The variational M-step: maximize lower boudd@) with respect to the current values of 7j and e using
Eq. 30.
4) Repeat steps 2 and 3 until convergence.

5) Detect the correct/ and K by eliminating the components with small mixing coeffice(iess thari0—?).

“The complete source codes are available from the authors.



13
It is noteworthy that the proposed algorithm allows imphciand simultaneously model selection with parameter
estimation and feature selection. This is different froassic approaches which perform model selection using model
selection rules, derived generally under asymptoticalragsion and information theoretic reasoning, such as MML,
MDL and AIC [51]. A major drawback of these traditional apacbes is that they require the entire learning process

to be repeated for different models (i.e. different valuked/foand K in our case).

IV. EXPERIMENTAL RESULTS

In this section, we shall illustrate our results with a cciien of simulation studies involving both artificial andate
world data, and a real challenging application nhamely huawion videos categorization. The goal of the synthetic
data is to investigate the accuracy of the variational aggivo The applications involving real data have two main
goals. The first goal is to compare our approach which we tefers varFsGD to the MML-based unsupervised
feature selection approach (MMLFsGD) previously propasefd0]. The second goal is to compare varFsGD with
the GD mixture learned in a variational way without featueéestion (we refer to this approach as varGD). Please
note that it is rather difficult to make a fruitful comparisamong the many unsupervised feature selection techniques
that have been proposed in the literature and this is notlitine aim of the paper. We have compared, however,
our results with the variational Gaussian mixture-basesliparvised feature selection approach (we shall refer to as
varFsGau) proposed in [13]. In all our experiments, wealiite the number of componenid and K with large
values (15 and 10, respectively) with equal mixing coeffitseand the feature saliency values are initialized atl@.5.
order to provide broad non-informative prior distributipnhe initial value ot., p, g ands for the conjugate priors are

setto 1, and, ¢, h, t are set to 0.01. Then, the initial valuesaf/, A and7 can be calculated using Eq. 15.

A. Artificial Data

We test the performance of our variational algorithm in ohestimation and selection, on six eleven-dimensional
ground-truth synthetic data sets (three-dimensionalaelefeatures and eight-dimensional irrelevant features)-
lowing the scheme used in [10], the relevant features arergted in the transformed space from mixtures of Beta
distributions with well-separated components and ir@i¢ones from mixtures of overlapped components. The syn-

thetic data sets are constructed based on different vafuks @he number of components in the mixture of relevant
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TABLE |
PARAMETERS OF THE DIFFERENT GENERATED DATA SETSN DENOTES THE TOTAL NUMBER OF ELEMENTSn; DENOTES THE NUMBER
OF ELEMENTS IN CLUSTER]j FOR THE RELEVANT FEATURES a1, fj1, @j2, Bj2, @j3, Bj3 AND 7; ARE THE REAL PARAMETERS OF THE
MIXTURE MODELS OF RELEVANT FEATURES &1, 351, &2, Bj2, 43, Bj3 AND 7; ARE THE ESTIMATED PARAMETERS FROM

VARIATIONAL INFERENCE.

n; J oy Bj1 aje  Bj2  ajz B3 5 b1 Bj1 G2 Bj2 &3 Bjs 7
Data set 1 300 1 30 15 20 40 33 18 0.33 27.94 14.32 18.65 41.27 32.13 17.52 0.32
(N =900) 300 2 25 33 30 50 14 62 0.33 23.71 31.15 28.16 48.88 13.57 59.93 0.34

300 3 40 30 35 26 27 12 0.34 39.54 29.36 36.22 2451 25.33 11.89 0.34
Data set 2 200 1 30 15 20 20 33 18 0.23 28.68 14.14 19.01 19.55 31.76 17.54 0.24
(N =900) 300 2 25 33 30 50 14 62 0.34 25.03 32.72 28.11 48.39 14.58 64.39 0.34

400 3 40 30 19 21 15 10 0.43 35.57 26.34 18.73 20.58 15.77 9.81 0.42
Data set 3 800 1 45 55 62 47 54 39 0.53 46.01 57.86 60.15 45.29 51.04 41.68 0.54

(NN =1500) 700 2 59 60 50 65 35 45 0.47 58.10 58.16 48.43 61.89 34.51 47.84 0.46

Data set 4 200 1 15 16 20 15 17 36 0.16 15.31 17.09 19.23 15.21 16.33 38.19 0.16
(IN =1200) 200 2 18 35 10 25 20 13 0.16 18.95 37.17 10.15 23.94 22.18 12.57 0.15
400 3 40 28 33 46 18 40 0.33 39.30 27.65 31.17 47.56 19.22 43.83 0.33

400 4 30 44 25 40 35 22 0.35 30.24 45.79 23.61 38.39 33.37 24.15 0.36

Data set5 300 1 16 33 10 28 25 17 0.25 16.70 35.20 9.75 26.12 27.31 16.55 0.24

(NN =1200) 300 2 19 17 33 14 15 18 0.2% 18.05 15.71 35.06 16.21 14.48 18.52 0.25

300 3 30 15 22 15 14 30 0.24 31.50 15.41 20.11 16.29 14.25 29.84 0.25
300 4 26 32 11 19 34 21 0.25 24.67 31.50 11.69 18.38 35.51 20.24 0.26
Data set 6 200 1 16 16 20 19 36 20 0.13 14.56 15.80 18.82 19.36 35.53 20.41 0.13
(N =1500) 200 2 18 35 33 46 20 13 0.13 19.34 33.53 30.44 43.15 18.18 12.65 0.13

300 3 40 28 36 10 21 22 0.29 38.97 29.15 38.71 10.12 20.08 23.36 0.19

300 4 30 44 18 30 32 29 0.20 29.83 44.09 16.92 31.16 33.42 30.08 0.20

500 5 25 20 43 15 12 19 0.34 23.19 19.28 44.89 15.49 11.73 18.66 0.35

features) andy (the number of components in the mixture of irrelevant fezguwith the corresponding parameters
of each component. For instance, data set 1 is built with 88@nces. Its mixture of the relevant features has three
components (i.ej = {1,2,3}). Each component hasn; instances with its own parametefs;, 5;} and its corre-
sponding mixing coefficient;. The mixture of the irrelevant features for data 1 containly ene component (i.e.

K = 1). This component has the mixing coefficiepnt = 1. Tables | and Il illustrate the different synthetic data
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sets with their real and estimated parameters of the relevahirrelevant mixture models, respectively. Accordiag t
table I, we can observe that our approach is able to estincatgately the parameters of the relevant mixture models.
Table Il shows the true and estimated mixing coefficientdhefitrelevant mixtures. It is clear that the proposed ap-
proach can also calculate the mixing weights for the iri@\mixtures accurately. Note that, due to limited size of
the table, we did not illustrate the estimated values of #mameters\;, and 7, (both with dimensionality of eight).

According to our result, these parameters have been egdlpagcisely by our approach as well.

TABLE Il
REAL AND ESTIMATED MIXING COEFFICIENTS OF THE IRRELEVANT MIXTURES FOR DIFFERENT DATA SETS7), IS THE REAL MIXING

COEFFICIENT OF CLUSTERk. ) IS THE ESTIMATED VALUE.

Dataset1l| Dataset?2 Data set 3 Data set 4 Data set5 Data set 6

Nk 1.00 0.50 0.50| 0.33 0.33 0.34 0.50 0.50| 0.33 0.33 0.34 0.27 0.33 0.40

Mk 1.00 0.49 0.51] 032 0.34 0.34 050 0.50| 0.33 0.33 0.34 0.27 0.34 0.39
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Two tests are conducted for estimating the number of compsn€girst, we perform our variational optimization on a
fixed number of components (i.e. without components elitiony. Thus, the variational likelihood bound becomes a
model selection score. As shown in Fig. 2, we run our algoribly varying the number of mixture components from

2 to 15. According to this figure, it is clear that for each dsgg the variational likelihood bound is maximum at the
correct number of components which indicates that the tvanial likelihood bound can be used as an efficient crite-
rion for model selection. Second, we apply our algorithnectlly on these data sets (by starting with 15 components).
Figure 3 shows the estimated mixing coefficients of the gfié components in each data sets after convergence. It
is clear that the estimated mixing coefficients of the re@umhedomponents have values close to 0. By removing the
components with very small mixing coefficients in each detawe obtain the correct number of components for the
relevant feature mixtures. Note that, here we only dispgh@yresults of estimating the number of components for the
relevant feature mixtures, the number of components foirtelevant mixtures is determined using the same proce-
dure. The feature saliencies of all the 11 features for eankmgted data set are shown in Fig. 4. It is clear that feature
1, 2 and 3 have been assigned a high degree of relevance wliohsistent with the ground-truth. Therefore, we can
conclude that, for synthetic data sets, the proposed #hgosuccessfully detects the true number of components and

correctly assigns the importance of features.
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B. Real Data

In this section, we evaluate the proposed algorithm on fealkworld data sets with different properties, as shown

in table 1ll. The spambase data set (SP) contains a colifectigpam and non-spam e-mails. The aim is to determine

TABLE 11l

THE THREE REAL DATA SETS N, D AND M DENOTE THE NUMBERS OF INSTANCESFEATURES AND CLASSESRESPECTIVELY

Data set N D M
Spambase 4601 57 2
Statlog 6435 36 6
Image Segmentation 2320 19 7
Handwritten Digits 5620 64 10

if an e-mail is spam or legitimate. It contains 4601 57-disienal vectors divided into two classes. The statlog data
set (ST) consists of the multi-spectral values of pixelsxB3heighborhoods in a satellite image, and the classification
associated with the central pixel in each neighborhood.otitains 6,435 36-dimensional vectors from six classes:

read soil, cotton crop, grey soil, damp grey soil, soil witggtation stubble and very damp grey soil. The image
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segmentation data set (IS) contains 2320 instances eachici vg defined by 18 features. Each instance describes
a 3x 3 region drawn from seven types of outdoor images: brickfakg, foliage, cement, window, path and grass.
The handwritten digits data set (HD) contains 5,620 vecidts 64 features from ten classes: ‘0’ to ‘9. All the
data sets are taken from the UCI machine learning reposttoince the features of all data sets are within some
specific range, normalization is performed as a preprawgssiep to transform all the data points into the range of
[0,1]. We evaluate the performance of the proposed alguorltilr running it 20 times with 30 initial components. We
also initialize the number of components for irrelevantdieas to 15. For comparison, we also apply MMLFsGD,

varGD and varFsGau on the same data sets. The results areasizedhrin table IV. According to this table, we can

TABLE IV
THE AVERAGE ERROR AND AVERAGE NUMBER OF COMPONENT§M ) COMPUTED USING VARFSGD, MMLFSGD, vARGD AND

VARFSGAU OVER 20 RANDOM RUNS.

varFsGD MMLFsGD varGD var FsGau
Data set| error (%) M error (%) M error (%) M M error (%)
SP 6.544+ 1.53 | 2.08+ 0.18 7.15+1.38 | 2.12+0.75 || 9.27+2.01 | 2.06+ 0.86 9.04+ 1.47 2.26+ 0.61
ST 9.97+0.86 | 6.88+1.02 || 11.38+1.28 | 7.024+1.57 || 16.20+0.92 | 6.56+1.19 15.82+1.53 | 7.38+ 1.36
IS 15.2941.95| 6.53+1.54 15.71+2.13 | 7.49+1.77 | 21.13+1.02 | 7.25+1.82 | 22.544+ 1.87 | 7.62+ 0.97
HD 11.86+1.49 | 10.78+0.84 || 13.53+0.58 | 11.05+1.11 || 18.64+0.73 | 10.02+1.64 || 17.97+ 0.68 | 11.144+ 0.22

observe that the improvement is immediately obvious with mmethod since it decreases the error rate and selects
accurately the correct number of components for all the st The features saliencies for the different tested data

sets are given in Fig. 5.

C. Human Action Videos Categorization

With the rapid development of digital technologies, thedéase in the availability of multimedia data such as im-

ages and videos is tremendous. With thousands of videosrah beouping them according to their contents is highly

Shttp://www.ics.uci.edutmlearn/MLRepository.html
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important for a variety of visual tasks such as event amaljg], video indexing, browsing and retrieval, and digital
libraries organization [53]. How to provide efficient videoategorization approaches has attracted many research
efforts and has been addressed by several researcherspaghésee, for instance, [54-59]). Videos categorization
remains, however, an extremely challenging task due taaktygical scenarios such as unconstrained motions, clut-
tered scenes, moving backgrounds, object occlusionsstationary camera, geometric changes and deformation of
objects and variations of illumination conditions and v@mts. In this section, we present an unsupervised legrnin
method, based on our variational algorithm, for categoegziuman action videos. The performance of the proposed
method is evaluated on two challenging video data sets yathelKTH [60] and the Weizmann [61] human action

data sets.

L
L e
HE

S4

walking jogging running boxing hand waving hand clapping

Fig. 6. Example frames of different human actions withirfied#nt scenarios from video sequences in the KTH data set.
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1) Experimental Methodology: Several studies have been conducted to provide models andlvieatures in
order to consistently (i.e. regardless changes in view@rigles, position, distance, size, orientation, or deétiom)
categorize objects and visual scenes. These studies hawa that a good model is required, and it must be able to
select relevant visual features to improve categorizgigEnfiormance [62,63]. Recently several works have beerdbase
on the notion of visual vocabulary constructed via a quatitn process, according to a coding rule such as K-Means,
of local features (spatio-temporal features in the casédafos) extracted from a set of detected interest pointséspa
time interest points in the case of videos). This approadhwalthe representation of images and videos as histograms
of visual words and have convincingly proven its effecteesin several applications (see, for instance, [64]). Here
we consider this approach and our methodology for unsugahwideos categorization can be summarized as follows.
First, local spatio-temporal features from each video eaqe are extracted from their detected space-time interest
points. Among many of the existing space-time interesttgaietectors and local spatio-temporal features [54, 65—68
we employ the space-time interest point detector propas¢sie] ©, which is actually a space-time extension of the
well-known Harris operator, and histograms of optic flow Fl@s proposed in [65]. Next, a visual vocabulary is
constructed by quantizing these spatio-temporal featntewvisual words using K-means algorithm and each video is
then represented as a frequency histogram over the visudsw®hen, we apply the pLSA model [69] to the obtained
histograms as done in [70] in the case of still images. As alreach video is represented now byadimensional
proportional vector wher® is the number of latent aspects. Finally, we employ our V@iF-snodel as a classifier to
categorize videos by assigning the video sequence to thg grbich has the highest posterior probability according
to Bayes’ decision rule.

2) KTH Human Action Data SetThe KTH human action data set is one of the largest availadkovsequences
data set of human actions [60]. It contains six types of huaion classes including: walking, jogging, running,
boxing, hand waving and hand clapping. Each action classrisqmed several times by 25 subjects in four different
scenarios: outdoors (S1), outdoors with scale variati®),(8utdoors with different clothes (S3) and indoors (S4).

This data set contains 2391 video sequences and all seguaroe taken over homogenous backgrounds with a static

SWe have also tested another popular feature detector naheeGuboid detector proposed in [54]. However, we have niiteta significant

improvement according to our experiments.
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camera with 25ftps frame rate. All video samples were dowmsad to the spatial resolution of 18020 pixels and
have a length of four seconds in average. Examples of frares ¥ideo sequences of each category are shown in
Fig. 6. In this experiment, we considered a training set aused of actions related to 16 subjects to construct the
visual vocabulary, by setting the number of clusters in thkl&ans algorithm (i.e. number of visual words) to 1000,
as explained in the previous section. The pLSA model wasepply considering 40 aspects and each video in the
database was then represented by a 40-dimensional vegboopdrtions. Last, the resulting vectors were clustered
by our varFsGD model. The entire procedure was repeatedri2® tior evaluating the performance of our approach.
Figure 7 displays the average likelihood bound as a funcidine number of clusters and shows clearly that the optimal

number of components is actually 6. The confusion matrixtierK TH data set is shown in Fig. 8. We note that, most

x10°

Likelihood bound

o

148

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mixture components

Fig. 7. The number of components detected by varFsGD for ¢ #ata set.

of the confusion takes place between “walking” and “jogdirigpgging” and “running”, as well as between “hand
clapping” and “boxing”. This is due to the fact that similatians contain similar types of local space-time events.

Table V shows the average classification accuracy and thegezenumber of components obtained by varFsGD,

walking

jogging

running

boxing

handwaving

handclapping

Fig. 8. Confusion matrix for the KTH data set.
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MMLFsGD, varGD and varFsGau. It clearly shows that our athor outperforms the other approaches for clustering

KTH human action videos. We have also tested the effect éérdifit sizes of visual vocabulary on classification

TABLE V

THE AVERAGE CLASSIFICATION ACCURACY AND THE NUMBER OF COMPOENTS(M) COMPUTED ON THEKTH DATA SET USING

VARFSGD, MMLFsGD, VARGD AND VAR FSGAU OVER 20 RANDOM RUNS.

Algorithm | M | Accuracy @)
varFsGD | 5.96 78.17
MMLFsGD | 5.87 76.69
varGD 5.53 71.34
varFsGau | 5.67 72.06

accuracy for varFsGD, MMLFsGD, varGD and varFsGau, astithtied in Fig. 9(a). As we can see, the classification

rate peaks around 1000. The choice of the number of aspsctinfliences the accuracy of classification. As shown

in Fig. 9(b), the optimal accuracy can be obtained when thmebau of aspects is set to 40. Figure 10 illustrates the

Accuracy (%)

—>— varFsGD
— —%- - MMLFsGD

4 varGD
— % — varFsGau

800 1000
Vocabulary

(@)

1200
size

1400 1600

Accuracy (%)

=% 7 —p— varFsGD
— % - - MMLFsGD
# & varGD

— % - varFsGau

30 3 40 45 50 55
Number of aspects

25

(b)

Fig. 9. (a) Classification accuracy vs. vocabulary sizelierKTH data set; (b) Classification accuracy vs. the numbaspécts for the KTH

data set.

feature saliency of the aspects. According to this figurefélatures have different degrees of relevance and cotgribu

differently in the clustering.

3) Weizmann Human Action Data Setn this experiment, the Weizmann human action data set idasteq

[61]. It consists of 90 video sequences at a resolution ofxlI8@1 pixels. Ten different types of human actions are
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jump pjump run

side skip walk wavel wave2

Fig. 11. Example frames of different human actions from eidequences in the Weizmann human action data set.

performed by 9 subjects. The specific action categories’am,” "walk,” "skip,” "jumping-jack” (or shortly "jack”),
"jump-forward-on-two-legs” (or "jump”), "jump-in-plac@n-two-legs” (or "pjump”), "gallop-sideways” (or "sidg;’
"wave-two-hands” (or "wave2”), "wave-one-hand” (or "wal/®, and "bend”. Some example frames of each action
class can be viewed in Fig. 11. Since the data set is smalld@@esices), we adopt a common scheme which extends
the data set by adding a horizontally flipped version of eddbhossequence to the original data set. We employ a
leave-one-out setup to test the performance of our categjmn approach. That is, we construct our visual vocakpular
from the video sequences of eight subjects (original + tippdd versions), by setting the number of clusters to 1200
in the K-Means algorithm, and test the efficiency on the sege® of the remaining subject (only original ones). The
results that we shall discuss in the following are obtaineet mine runs. As shown in Fig. 12, the correct number of
components is detected at the maximum value of the averaggional likelihood bound using the varFsGD model.
Figure 13 illustrates the confusion matrix for the Weizmdate set using our variational model. The overall accuracy

over ten runs is arourtb.80%. As we can see, most errors are generated from similar azdii@gorizes, such as “run”



with “walk”, “jump” with “skip” and

“skip” with “jump” and “r un”.
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average number of components obtained by varFsGD, MMLFs@IGD and varFsGau are shown in table VI. As we
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TABLE VI
THE AVERAGE CLASSIFICATION ACCURACY AND THE NUMBER OF COMPORNTS (M) COMPUTED ON THEWEIZMANN DATA SET USING

VARFsSGD, MMLFsGD, VARGD AND VAR FSGAU OVER 9 RUNS.

Algorithm | M | Accuracy (%)
varFsGD | 9.79 86.8
MMLFsGD | 9.61 84.7
varGD 9.48 78.4
varFsGau | 9.51 80.3

can see, our algorithm provides higher classification aayuthan the other algorithms while detecting accuratedy th
number of categories. For instance, the fact that the vabRs&forms better than the varFsGau is actually expected
since videos are represented by vectors of proportions fiichwthe GD mixture is one of the best modeling choices
unlike the Gaussian mixture which implicitly assumes thatfeatures vectors are Gaussian which is far from the case .
The choices of the sizes of visual vocabulary and the nunfiaspects are important since they affect the classification
accuracy as shown in Figs. 14(a) and 14(b), respectivelgorsiing to these figures, the best performance is achieved
when the size of the vocabulary is set to 1200 and the numbeasp#cts is chosen as 40. The corresponding feature
saliency of the 40-dimensional aspects can be viewed inlBigAs illustrated in this figure, the features have différen
relevance degrees and then contribute differently to etirg}. For instance, eight features (features number 20.3,0,

25, 28, 33, 36 and 37) have the high relevance degrees wteefedture saliencies are greater than 0.9. By contrast,
there are seven features (feature number 1, 8, 11, 14, 1892%at have saliencies lower than 0.5, and then provide

less contribution in clustering.

V. CONCLUSION

Most of the feature selection algorithms based on mixtureetsoassume that the data in each component follow
Gaussian distribution, which is seldom the case in realdjfplications. Unlike these approaches, we have proposed

in this paper a principled variational framework for unswieed feature selection in the case of nhon-Gaussian data
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Fig. 15. Feature saliencies for the different aspect feataver 20 runs for the Weizmann data set.

which naturally appear in many application from differeohthins and disciplines. Variational frameworks offer a
deterministic alternative for Bayesian approximate iefexe by maximizing a lower bound on the marginal likelihood
which main advantage is computational efficiency and gueeahconvergence that can be easily assessed as compared
to MCMC-based approaches which make posterior approxamati a stochastic sense. We have shown that the
variational approach can be used to obtain a closed formmeess posteriors for our model. The proposed approach
has been applied to both synthetic and real data, and to kewebialg application which concerns human action videos
categorization, with encouraging results. It is notewprthiat the proposed selection model is also applicable to
many other challenging problems involving non-Gaussiasp@rtional data such as text mining and compression,
and protein sequences modeling in biology. There are demdeaesting possible future works such as handling the
important problem of online learning in the case of dynanaitadsets where the relevancy of the features may vary as
new data arrive or disappear. A possible solution to thiblera could be the extension of the proposed model to the

infinite case by integrating it with the non-parametric Bsiga framework recently proposed in [71].
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