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Abstract—Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs) 
requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on 
modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of 
complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this 
paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge 
representation language like F-logic to support process-related reasoning. The main results of this work include a formalism for 
process representation and a mechanism for automatically translating process diagrams into executable code following such 
formalism. From all the process models authored by SMEs during evaluation 82 percent were well formed, all of which executed 
correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at 
reasoning time of 25 and 30 percent with respect to the base case, respectively. 

1 INTRODUCTION 

BUILDING knowledge-based systems is an activity that has 
been traditionally carried out by a combination of 

software and knowledge engineers (KEs) and of subject 
matter experts (SMEs), also known as domain experts. 
Software engineers (SEs) are focused on architectural and 
user interface issues related to the development of software. 
KEs are focused on knowledge acquisition and representa­
tion tasks, with the aim of building the required knowledge 
bases. For these tasks, KEs usually work in collaboration 
with SMEs, who normally act as repositories of domain 
knowledge. The combination of KEs and SMEs, although 
feasible, has two main drawbacks, first characterized as the 
knowledge acquisition bottleneck [13]: 1) it is costly and 2) it 
can be error prone, especially in complex domains. 

A large amount of work in knowledge-based systems in 
the past three decades, like [11], [4], and [27], has concen­
trated on providing frameworks and tools that support the 
collaboration of KEs and SMEs with the goal of alleviating 
the knowledge acquisition bottleneck. However, despite 
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progress shown by existing knowledge acquisition tools 
like KRAKEN [25], SHAKEN [3] and, more recently, AURA 
[10] and the Halo extension of the Semantic MediaWiki [18], 
it is still a complex problem to enable SMEs to capture the 
knowledge from a domain by themselves, especially for 
some knowledge types. 

Among the different types of knowledge that can be used 
in knowledge-based systems, e.g., factual, rule or causal 
knowledge, we focus on process knowledge, which is widely 
used across domains while posing important challenges for 
knowledge acquisition. A process can be defined as a 
naturally occurring or designed sequence of changes of properties 
of a system or object. Examples of processes include the 
replication of DNA, the mitosis of the cell or a combustion 
reaction. Processes encapsulate such things as precondi­
tions and postconditions, results, contents, actors or causes 
and relate to the sequence of operations and involved 
events taking u p time, space, expertise or other resources, 
which lead to the production of an outcome. For example, 
consider the case of a complex chemical reaction compris­
ing several steps, with different inputs and outputs , where 
it is necessary to reason about what would happen at a 
certain stage if a previous one was suppressed or modified. 

Enabling SMEs to formulate process knowledge without 
the intervention of KEs is a complex problem that needs to be 
addressed from a multidimensional perspective to1) provide 
the required knowledge artifacts that support the acquisition 
of process knowledge and 2) develop usable tools that allow 
SMEs to exploit such artifacts. To this purpose, we have 
produced the following models, methods, and tools: 

1. A process metamodel, which provides the terminology 
necessary to express process entit ies a n d the 
relations between them. 
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Fig. 1 . A jump process. 

2. A library of Problem Solving Methods (PSM) [21], 
which provides high-level reusable abstractions for 
process representation. 

3. A graphical process modeling and reasoning tool, which 
uses the process metamodel and the PSM library 
for process modeling by SMEs without intervention 
of KEs. 

4. A formalism for process knowledge representation and a 
method for the automatic synthesis of executable process 
models from SME-authored process diagrams. 

The results of our work on the first three topics were 
presented in [15]. Fig. 1 shows a screenshot of our process 
editor, which provides SMEs with a modeling and reason­
ing environment for process knowledge. The main entities 
of the process metamodel are resources, actions, decisions, 
and relations (see Fig. 2 for their graphical representations) 
and allow describing domain entities, e.g., energy or 
mitochondrion, in terms of their role in a process (resource 
and tool, respectively). The process metamodel is used by 
SMEs to model their own processes, through drag and d rop 
operations on the drawing canvas, in combination with 
reusable, previously existing process models and templates 
from the PSM library. 

We hereby focus on representing and reasoning with 
process knowledge. The following multiple choice ques­
tions, selected from Advanced Placement competence level 
exams in Biology, illustrate some of the main types of 
process reasoning that we address in this work: 

Reasoning about process entities: The intended goal of this 
type of reasoning is to retrieve information about the role 
played by the elements participating in a given process. The 
following question asks for the role of the agent responsible 
for initiating the synthesis of DNA. Answering this question 
requires that the D N A synthesis process is formally 
described in terms of a process vocabulary like our process 
metamodel. 

The primer that initiates the synthesis of a new DNA 
strand is usually: 

a. RNA 
b. DNA 
c. an Okazaki fragment 
d. a structural protein 

Fig. 2. Resources, conditional fork, and actions. 

The question can be answered correctly, and therefore 
option 1 (RNA) be identified as the agent responsible for the 
DNA replication process, only if RNA is explicitly modeled 
as the agent responsible for such process, following the 
vocabulary provided by the metamodel. In this case, RNA 
would have been modeled as an agent that performs the 
DNA replication process. 

Reasoning on intermediate results: The question below 
focuses on the outcome of an elongation subprocess in the 
context of a larger process, i.e., DNA synthesis. To evaluate 
the first alternative answer, option 1, the query associated 
with the question will need to retrieve all Okazaki fragments 
in the knowledge base resulting from the execution of the 
elongation subprocess. Thus, we will require a knowledge 
representation language with introspective capabilities to 
address reasoning on process steps and intermediate results. 
Approaches based on process description and execution 
languages like BPEL1 d o not completely address this issue 
and systems based on these languages tend to behave as a 
black box. 

The elongation of the leading strand during DNA 
synthesis: 
a. produces Okazaki fragments 
b. depends on DNA polymerase 
c. does not require a template strand 

Reasoning on process stages: This kind of questions 
requires reasoning on the effect that the different process 
steps have on the overall process, and their relation with the 
entities involved. In this case, the example question aims at 
situating the occurrences of particular cell organelles in the 
appropriate mitosis stage. 

Which part of the animal cell is required only in the 
first stage of mitosis and what is the name of such 
stage? 

a. chromatin and prophase 
b. chromatid and prometaphase 
c. centromere and anaphase 
d. plasma membrane and telophase 

An interesting application of reasoning about process 
stages is the identification of similar processes, potentially 
from different domains, through analogies detected in their 
structure and in the roles of the entities involved. This 
feature can be especially useful to analyze processes by 
contrasting them against well-known process specifications 
(or patterns), and projecting the properties of the latter 
against the former. 

Reasoning on process preconditions: In addition to reason­
ing on process inputs, outputs, and intermediate results, a 

1. http://www.oasis-open.org/committees/wsbpel. 
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fourth type of process reasoning addresses questions 
related to the preconditions that must hold to accomplish 
a process, as illustrated by the example question below. 

At least, what 
consume in 

a. 
b. 
c. 
d. 
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50 cal 
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In the remainder of this paper, we present an approach 
to bridge the gap between the formulation of process 
knowledge by SMEs and the formal representation of the 
resulting process models. We present our process repre­
sentation formalism and mechanism for automatically 
translating process diagrams into executable code and 
apply two main optimizations for reasoning with process 
knowledge. In Section 2, we summarize previous related 
work and describe the formalism for representing and 
reasoning with processes. Section 3 analyzes the require­
ments, especially in terms of the process frame, of the 
underlying language for process representation and pro­
poses F-logic as such language. In Section 4, we present the 
code generation mechanism, focusing on how process 
diagrams are automatically translated into different types 
of F-logic rules and how they relate with our process 
metamodel. Section 5 describes the optimizations applied to 
the generated process code. In Section 6, we present the 
results of the evaluation of our approach from a perfor­
mance perspective. Finally, Section 7 concludes the paper 
and presents future and related lines of work. 

2 AFORMALISM FOR REPRESENTING AND 
REASONING WITH PROCESSES 

Process modeling by SMEs needs to be supported by a 
formalism that endows the resulting models with the 
corresponding operational semantics, thus bridging the 
gap between the knowledge level and the symbolic and 
operational levels [24] and enabling reasoning. Our form­
alism is based on the concept of process frame and 
addresses data a n d control flow management as an 
incarnation of the frame problem [26]. 

2.1 The Process Frame 
One of the main challenges for our process knowledge 
representation and reasoning (KRR, from now on) formalism 
deals with expressing the portion of the knowledge base that 
a process action can have effect on, and how such effects 
propagate throughout the process. We define the frame of a 
process as the relevant portion of the knowledge base for 
each process step. For example, in Fig. 1, the process frame 
of muscle contraction contains the updated amount of energy 
resulting from the previous step, accumulate energy. The 
process frame is dynamic; it changes throughout execution 
and propagates among successive actions, which modify it as 
they occur, in a similar way to previous work in Logic 
Programming [30], [7], [6]. 

The process frame needs to be kept as terse and small as 
possible. This contributes to reduce the number of concepts 
and instances to reason with and to minimize the need of 
complex and potentially costly evaluation mechanisms for 
reasoning. As we will show, an effective management of the 

process frame based on these principles is essential to 
implement process data and control flow. 

In our process KRR formalism, we address frame 
management as a case of ontology modularization [16] 
in a dynamic setting. Ontology modules containing the 
process frame are created during process execution, where 
the actions to be executed at each process step perform their 
computations and whose updates are then used in sub­
sequent actions. This modularization structure addresses a 
threefold goal: 

1. Building the initial (preexecution) process frame by 
encapsulating the relevant parts of the knowledge 
base required for the execution of a process to be 
triggered. 

2. Building the process frame at each process step by 
encapsulating the relevant portion of the knowledge 
base, including the updates produced by the execu­
tion of previous actions, which are required for the 
current computation. 

3. Enabling the computational flow between actions, 
calculating their prestates and poststates and support­
ing process data and control flow. 

2.2 Formalization 
Our formalism is action centric, built on the basis of actions 
as the backbone entities of processes. A process consists of a 
partially ordered set of actions, connected as a directed 
graph , wi th precondit ions and postcondit ions whose 
evaluation both determines the flow of data between the 
steps comprised by the process and controls the order in 
which such actions are executed. Such ordering allows a 
number of behavioral patterns, including forks, joins, and 
parallelism. 

We define the prestates and poststates of an action as the 
content of the process frame immediately before and after 
its execution, respectively. The prestate contains all the 
knowledge base entities that serve as inputs to the action, 
while the poststate contains the outcomes of its execution, 
obtained by the computations performed on the contents of 
the prestate. The process frame comprises the prestates of all 
the actions ready to be executed. After execution of an 
action, its poststate fits into the new process frame as part of 
the prestate of the subsequent action(s). Thus, the process 
frame corresponds exactly to the aggregation of the prestates 
of the actions ready to be executed. 

Fig. 1 shows a process d iagram that represents a 
particular type of body locomotion i.e., a jump process. In 
this case, the prestate of action accumulate energy in the 
process model comprises concepts energy and mitochondrion, 
as well as their respective instances and the relations 
between them. Likewise, the poststate of the action com­
prises the resulting instances of concept energy upda ted by 
the execution of the action. 

Actions can be classified in terms of their prestates and 
poststates as input, output, or intermediate actions. In the process 
diagram of Fig. 1, accumulate energy is an input action, 
whereas muscle contraction is an output action. In a process 
model, the prestate of an input action does not contain the 
output of any other action. Likewise, the updates to the 
process frame contained in the poststate of an output action 
contribute to noneof the prestates of other actions in its model, 
because such action has no further successors. The remaining 



TABLE 1 
Process Rules per Type of Process Action 

Setup rules 
Transition rules 
Precedence rules 

Input 
actions 

Intermediate Output 
actions actions 

X 
X 

X 
X 

actions are intermediate , wi th both predecessors and 
successors. 

We propose to formally describe process models as a 
directed (weakly) connected graph G [14] denoted by (N, E), 
where E is the set of edges and A'̂  the set of nodes. 
According to our process metamodel, A'̂  consists of the 
disjoint subsets 

NResource, NAction, NDeasion SO that {Njjesource H NACUOTI) 

= 0 A {NRcso„rce n Noecision) = 9 A {NACUOU H Noecision) 

= 0 A V n (z N : n (z {Nuesource U NAction U NDecision)-

Each node n € N has a set of incoming and outgoing 
edges Ein(n) and Eoutin), respectively. The source node of 
an edge e is described by Nsaurce{e), while its target node is 
NTarget{e). Thus, the actions connected to each particular 
action can be classified as predecessor and successor actions 
as follows: 

Vn, m e NAction : m e Predecessor{n)—> 3r e NRCSOUTCC 

A 3e1 e E,n{n) A 3e2 e Eoutim)/r = NTarget{e-2) 

Ar = Nsource{s-1)-"^n,m 6 NAction : iTi G Successoriji) 

> 3r 6 Nuesource A 3e1 6 Einim) 

A 3 e 2 G Eiyut{'n)/r = NTarget{s-2) Ar = Nsource{s-1)-

According to the previous classification of actions as 
input, output, and intermediate actions, we can say that 

" ^ G ^^Action : ^ G \-^^Input ^ ^^Intermediate ^ ^^Output). A s w e 

will show in Section 4, this determines the type of inference 
required to evaluate the prestates and poststates of actions 
(Table 1). This classification is formally expressed as: 

• VTl Kz ^^Action : ^ G ^^Input ^ rVCdCCCSSOTyTLj v 

• v?2 t ^^Action : ^ G ^^Output jUCCCSSOTynj yj 

• Vn e NAction : n e Nintermediate—> Predecessor{n) ^ 
0 n Successoriji) ^ 0 

In case a process is formed by a single, atomic action, the 

first two definitions would hold, but not the third. Accord­

ingly, intermediate actions will only occur in processes with 

at least three actions. So, two constraints need to be defined 

for NDecision, the third subset of nodes in a process graph: 

• Vn e Noecision : \Ein{n)\ = 1 A \E^t{n)\ < 2, i.e., all 
decisions are preceded by one action and have a 
maximum of two successors, associated with the true 
and false branches, respectively. 

• 

V n e NDecision,^e.in € Ei„{n),\lC^at € Eout{n) : 

Ns ouTcei^in) C ^Action A I^Targeti^in) C ^Action, 

i.e., all the nodes connected to a decision node are 
actions 

Next, we provide a formal definition of the prestates 
and poststates of an action, where we elaborate on the 
previous informal definition. Respectively, we define the 
prestates a n d poststates of a n ac t ion as 

• Mr e NResource, « € NAction : T € Pre{a) > 

3e 6 Ei„{a) A 3c 6 C/r = Nsource{^) A r is_a c. 

• V r e Nljcsource, « € NAction : T € Post(a) > 

3e 6 £'out(tt) A 3c 6 C/r = N^argeti^) A r is_a c. 

As described in [15], the components of a process 
diagram are first modeled by choosing a role of the process 
metamodel and then mapping them manually against 
concrete domain entities. Class c in the previous definition 
illustrates this, where C is the set of classes in the 
knowledge base. 

For a given action to be triggered, its prestate must be 
completely instantiated, i.e., all the process resources 
contained in the prestate must be instantiated in the knowl­
edge base. As we will show in following sections, the 
implementation of our formalism encapsulates the frame of 
such action and the process in which it occurs, thus enabling 
actions and resources to appear simultaneously in several 
processes without risk of inconsistencies during reasoning. 
In our example process, instances of concepts energy and 
mitochondrion, respectively, represented as a resource and a 
tool in terms of the process metamodel comprise the prestate 
of the action accumulate energy. Analogously, once updated 
by the execution of such action, energy becomes its poststate 
a n d , s u b s e q u e n t l y , t he prestate of muscle contraction. 

The formalism provides the means to represent and 
reason with processes as directed graphs consisting of 
actions, their inputs and outputs (associated to their 
prestates and poststates), and directed arcs corresponding to 
the process relations between resources and actions, which 
run from inputs to actions and from those actions to their 
outputs. According to this representation, we define data 
and control flow as 

• Dataflow is the path followed from process inputs to 
process outputs across the directed graph represent­
ing the process. 

• Control flow is the mechanism that evaluates and 
enacts the actual flow of data upon process execution. 

We have kept the process metamodel deliberately simple 
with respect to control flow primitives to facilitate modeling 
by SMEs from target domains like Biology and Chemistry, 
with limited requirements in this directions. However, the 
formalism supports complex forms of control flow, which 
can be leveraged to model processes in other domains, like 
business or software, simply by extending the metamodel. 
In our approach, control flow is, therefore, based on two 
main constructs, forks and loops, as building blocks for 
more complex forms of controlling the execution of a 
process. Forks correspond to conditional arcs, informing 
process decisions from the metamodel , between two 
actions, which explicitly represent a precedence relation 
enabled only upon satisfaction of a certain condition. In the 
example of Fig. 1, process decision enough energy to jump?, 
represents a condition whose satisfaction is required to 



enable the true branch of the fork, i.e., the subsequent action 
muscle contraction. 

Loops, e.g., accumulate energy, can be explicitly imple­
mented as iterative actions from the metamodel, which are 
repeatedly executed while (or until) a given condition 
holds. Iterative actions follow a structured loop pattern2 

with an associated pretest or posttest, which are evaluated 
either at the beginning or at the end of the loop to determine 
whether it should continue iterating or not. Additionally, 
the formalism supports arbitrary cycles in process models 
without requiring specific loop operators or restrictions. 

3 LANGUAGE SUPPORT FOR THE PROCESS K R R 
FORMALISM 

The formalism introduced in the previous section needs to 
be g rounded in a computer language, which allows 
expressing process entities and their interactions, the 
problem-solving behavior associated to processes, and the 
management of process data and control flow. The under­
lying language needs to provide high expressivity and 
efficient and safe reasoning capabilities to support SMEs to 
model and reason with process knowledge. Furthermore, 
modularization capabilities are required that support the 
effective manipulation of the process frame, which is 
fundamental for the realization of our approach. 

3.1 Requirements 
Several approaches have been proposed from different 
areas and perspectives to represent process knowledge, 
including 

1. knowledge acquisit ion and representat ion lan­
guages, e.g., OWL [22], OCML,3 and F-Logic [17]; 

2. process-specific representation and reasoning lan­
guages, e.g., PSL [5] and SPARK-L [23]; 

3 . Semantic Web service ontologies, e.g., WSMO4 and 
OWL-S5; and 

4. process specification and execution languages, e.g., 
BPEL and XPDL.6 

However, while individually each of these approaches is 
expressive in terms of workflow constructions and reason­
ing capabilities, SMEs still require further support to 
effectively model processes, as shown in [31] and [15]. 

Knowledge representation languages, e.g., OWL and 
OCML, are well suited to semantically describe lower-level 
(compared to processes) declarative knowledge entities like 
concepts, instances, and rules, as well as problem-solving 
behavior. However, the complexity of process representa­
tion hinders the straightforward adoption of these lan­
guages as exclusive means to effectively represent processes 
at the required level of abstraction for SMEs and to support 
their execution. 

On the other hand, process-specific description and 
execution languages, e.g., BPEL and XPDL, can be effec­
tively used to express processes as workflows and to enact 
them. Though their formal semantics is usually based on 

2. http://www.workflowpatterns.com. 
3. http://technologies.kmi.open.ac.uk/ocml. 
4. http://www.wsmo.org. 
5. http://www.w3.org/Submission/OWL-S. 
6. http://www.wfmc.org/standards/XPDL.htm. 

Petri nets, these approaches use to focus on the operational 
aspects of processes and therefore fail at reasoning with 
processes at the knowledge level. For example, reasoning 
about the consequences of removing a certain stage from 
the overall mitosis process in Biology or analyzing the 
influence of an additional compound in a chemical reaction 
is not possible through such approach exclusively. On the 
other hand, languages like PSL and SPARK-L provide 
higher expressivity and allow defining constraints. How­
ever, like general pu rpose knowledge representat ion 
languages, they can be complex for use by SMEs. 

Other approaches, like Episodic Logic (EL) and their 
implementations as in the EPILOG [29] system, allow for 
explicit situational variables denoting episodes, events, and 
states of affairs linked to arbitrary formulae that describe 
them. However, though the expressiveness and inference 
capabilities of EL are certainly high, the extensive use of 
second order reasoning tends to compromise performance. 

Thus, while fundamental for the construction of knowl­
edge-based and workflow systems, further solutions are 
required that can be used to address the problem for 
process knowledge. We therefore propose an integrated 
approach that addresses the above-mentioned issues for 
process KRR in a way that 

1. supports the symbolic representation of process entities, 
according to the process metamodel, 

2. supports process execution, following the specification 
of the operat ional semantics described by the 
process KRR formalism, which defines the possible 
interactions between process entities, 

3 . enables a single entry point for reasoning across the 
whole system independently from the knowledge 
types involved, 

4. allows domain-level reasoning within processes, e.g., by 
means of rule-based inference, and 

5. keeps introspective properties for reasoning with meta-
level information about processes, like, e.g., sub-
processes or intermediate process results. 

3.2 F-Logic as a Process Representation and 
Reasoning Language 

Our approach builds on previously existing KRR languages 
and focuses on the knowledge representation aspects 
required to describe and reason with process knowledge. 
We aim at emphasizing the relevance of the knowledge 
level over the operational level for use by SMEs through the 
appropriate user interfaces and at facilitating the combina­
tion of the process knowledge type with others, like rules 
and factual knowledge. 

More specifically, we build on F-logic as the underlying 
language for process KRR. F-logic provides high expressiv­
ity and inference capabilities and combines the advantages 
of frame-based languages and the expressivity, compact 
syntax, and well-defined semantics of logic programming 
languages. The original features of F-logic include signa­
tures, object identity, complex objects, methods, classes, 
inheritance, encapsulation, and deductive rules, which 
make it suitable to represent and reason seamlessly with 
both the static and dynamic aspects of processes. F-logic 

http://www.workflowpatterns.com
http://technologies.kmi.open.ac.uk/ocml
http://www.wsmo.org
http://www.w3.org/Submission/OWL-S
http://www.wfmc.org/standards/XPDL.htm


jumpExample:PROCESS@ProcessModule. 
jumpExample[SUBPROCESS->accumulateEnergY]SProcessModule. 
jumpExample[SUBPROCESS->muscleContraction]SProcessModule. 
accumulateEnergy[PRECEEDS->muscleContraction] 

@ProcessModule(jumpExample). 
accumulateEnergy:WHILE@ProcessModule(jumpExample). 
muscleContraction:ATOMIC@ProcessModule(jumpExample). 

Fig. 3. F-logic axioms in process jump example. 

supports negation and well-founded model semantics [32], 
allowing safe execution of nonstratified rules. 

There are several implementations of reasoners for the F-
logic language, e.g., FLORA-2,7 FLORID,8 and OntoBroker,9 
which provide different means for efficient reasoning in F-
logic, ranging between bottom-up evaluation to magic set 
[2] and dynamic filtering [17]. In all cases, F-logic reasoning 
is based on a forward chaining approach, which facilitates 
deduction and thus fits nicely with the propagation of 
reasoning results throughout process steps, from process 
inputs to outputs, as defined in our formalism. 

In our implementation, we have adopted the OntoBroker 
F-logic language and reasoning engine, which is based on 
dynamic filtering and supports computationally complex 
cases like nonstratified negation by means of well-founded 
evaluation. It also incorporates a mechanism for answer 
explanation that allows inspecting rule execution, support­
ing the analysis of the reasoning trace. Though OntoBro-
ker’s performance and scalability have been proved in the 
OpenRuleBench [19] suite of benchmarks, well-founded 
semantics is in general costly and needs to be avoided 
whenever possible. As we will show in Sections 4 and 5, we 
achieve this by maximizing the amount of stratified F-logic 
process code synthesized for each process model, whose 
evaluation does not require well-founded semantics even in 
the presence of negation. 

OntoBroker also allows defining parameterized modules 
through the @/2 operator to manage the process frame and 
encapsulate the contents of action prestates and poststates. 
For example, p {a)@m. states that p {a) is true in module m 
but, following the open world assumption, no statement is 
made with respect to the rest of the knowledge base. Such 
modularization capabilities provide means to create a well-
defined interface to the process frame at each process step. 
Thus, it is possible to constrain the scope of a particular 
action to the portion of the knowledge base encapsulated 
by the corresponding module and to approach the creation 
of the prestate and the propagation of the updates produced 
by such action from its poststate into the following process 
steps. 

4SYNTHESIS OF PROCESS CODE 

At modeling time, we automatically synthesize, from 
process diagrams, executable code in the form of F-logic 
axioms and rules (see [1] for a detailed description of 
OntoBroker’s F-logic syntax). The synthesized F-logic 
axioms describe the process, its actions, and its data flow 
in terms of the process metamodel, and encapsulate them in 
the corresponding module as shown in Fig. 3. Paraphrasing 

7. http://flora.sourceforge.net. 
8. http://www.informatik.uni-freiburg.de/ dbis/florid. 
9. http://www.ontoprise.de/en/home/products/ontobroker. 

Fig. 4. Correlation between process actions and rules. 

the code, jump example is a process with two subprocesses 
(accumulate energy and muscle contraction), which, in the 
context of this particular process, are modeled, respectively, 
as a while iterative action and an atomic action, where the 
later is preceded by the former. 

Associated with each action in a process model, a set of 
F-logic rules are generated. These process rules have the 
fundamental role of coping with the frame problem to 
define how resources are consumed within actions and to 
address management of data and control flow. In a broad 
sense, which we will refine in the following sections, the 
rules resulting from this synthesis process can be classified 
in terms of their inference behavior on the prestates and 
poststates of actions as follows: 

. Setup rules, which build the prestate of input actions 
from the overall knowledge base, therefore addres­
sing the creation of the initial process frame (see first 
goal in Section 2.1). 

. Transition rules, which describe the actual execution 
of an action, i.e., the necessary inference to be 
applied to the prestate of actions to produce new 
computation results and to enable the propagation of 
such results into the poststate. Transition rules are, 
thus, the main enablers of the construction of the 
process frame at each process step (second goal). 

. Precedence rules, which build the prestate of inter­
mediate and output actions from the poststate of their 
predecessor actions. Precedence rules, thus, enable 
the data flow between actions (third goal). 

Table 1 shows the type of process rules used in each 
type of process action. While setup rules are only used in 
input actions, transition rules apply to all action types, 
which emphasizes the relevance of frame management for 
data and control flow. Transition rules are, therefore, 
fundamental for reasoning with process knowledge. They 
describe how the inputs of an action are transformed into 
its outputs and update the process frame with the results 
of such reasoning. Precedence rules are in charge of 
establishing the da ta flow throughout a process by 
connecting actions through their inputs and outputs . 
Finally, setup rules create the initial frame of a process, 
enabling its execution. 

Fig. 4 illustrates the correlation between process rules 
and actions, as described in the process metamodel. In the 
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FORALL m, e, V 
mrmitochondrionOpreState(accumulateEnergy) AND 
in:TOOL@preState (accumulateEnergy) AND 
e: energyQpreState(accumulateEnergy) AND 
e:RESOURCE@preState(accumulateEnergy) AND 
e[hasEnergyValue -> v]gpreState(accumulateEnergy) 

<-
mimitochondrion AND 
e:energy AND 
e[hasEnergyValue -> v]. 

FORALL m 
mrmuscle @preState(muscleContraction) AND 
m:TOOL@preState(muscleContraction) 

<-
mrmuscle. 

Fig. 5. Setup rules in jump example process. 

next sections, we describe these process rules and detail 
their role in the formalism. 

4.1 Synthesis of Setup Rules for the Construction 
of the Initial Frame 

The code synthesis mechanism generates setup rules that 
encapsulate the inputs of input actions into their prestate 
module to build the process frame corresponding to the 
input actions of a process. Fig. 5 shows the setup rules 
corresponding to the input actions of the example process 
in Fig. 1. 

The first rule corresponds to the input action accumulate 
energy, whose inputs are instances of concepts energy and 
mitochondrion. According to the process diagram, these 
concepts have been represented by the SME as resources and 
tools from the process metamodel , respectively. The 
associated setup rule asserts this information in the prestate 
of the action, declaring that all mitochondrion are tools and 
energy is a resource. 

For performance reasons (see the optimizations de­
scribed in Section 5 and empirically demonstrated in 
Section 6), it is important that concept and attribute names 
appear as grounded terms instead of as free variables. 
Therefore, all concept attributes appear explicitly in the 
synthesized code. Consequently, hasEnergyValue explicitly 
appears both in the head and the body of the rule, ensuring 
that the specific values of the attribute are also preserved in 
the context of the prestate of the action. 

The second rule corresponds to the input action muscle 
contraction and situates all instances of concept muscle in the 
prestate of the action. The metamodel entity used by the 
SME to model such input is tool. This information is also 
asserted in the prestate. Additionally, in this case, concept 
muscle has been modeled by the SME without any attributes 
in the underlying ontology, and therefore, the synthesized 
code focuses only on its is-a relations. 

4.2 Synthesis of Transition Rules between Action 
Prestates and Poststates 

Transition rules are a specific type of rules produced by the 
code generation mechanism that describe the conditions 
required to accomplish an action and to transit from its 
prestate to its poststate. For example, Fig. 6 shows the 
transition rule associated with atomic action muscle contrac­
tion (see English transcription below): 

FORALL m, e, j 
j: jumpgpostState(muscleContraction) AND 
j: OUIPUTSpostState(muscleContraction) AND 
muscleContraction[PROVIDES -> j] 

SpostState(muscleContraction) 
<-
mrmuscle SpreState(muscleContraction) AND 
miTOOLSpreState(muscleContraction) AND 
m[IS_USED_BY -> muscleContraction] 

SpreState(muscleContraction) AND 
e:energy@ preState(muscleContraction) AND 
e:RESOURCE@preState(muscleContraction) AND 
e[IS_CONSUMED_BY -> muscleContraction] 
@preState(muscleContraction). 

Fig. 6. Transition rule in jump example process. 

when a muscle is used as a tool in a muscle contraction 
and energy is a resource consumed in such muscle 
contraction, then the muscle contraction provides a 
jump as a result. 

The code shows a simplified version of a transition rule, 
where variable j appears only in the head of the rule and 
should be existentially quantified. In terms of our formal­
ism, this means that the action (muscle contraction) produces 
a resource of a given class (jump) that was not one of its 
inputs but, quite on the contrary, has been produced from 
those inputs, by transforming the process frame contained 
in the action prestate, and added to its poststate. Since F-logic 
does not allow existential quantifiers in the head of rules, 
the code generation mechanism uses Skolem functions to 
address this issue, following the F-logic proof theory in [17]. 

Transition rules describe, in the context of the action, 
how inputs are taken from the prestate, transformed, and left 
in the poststate as outputs . They also describe, in terms of 
the process metamodel, the semantics of the relations of 
inputs and outputs with the action itself, as well as the 
changes in the process roles associated with them through­
out the process. Thus, transition rules are also instrumental 
for the inference occurring in a process and, in addition, 
their evaluation determines its control flow. 

Transition rules can host domain-specific reasoning in 
the form of domain rules. Transition rules alone allow 
representing and reasoning with process-specific aspects 
like the phases of the process, accumulate energy and muscle 
contraction in the example, how resources like muscles are 
used, and how the accumulated energy is finally consumed. 
On the other hand, domain rules allow reasoning on aspects 
like the available amount of energy to determine whether 
such energy is sufficient to jump or not. By importing 
domain rules into actions SMEs are able to use rule 
inference capabilities within process models. We consider 
two main types of rules for domain-level reasoning on the 
process frame: 

. Update rules, whose inference modifies the process 
frame, transforming the prestate of an action into its 
poststate. 

. Check rules, which implement predicates used to 
evaluate the process frame to compute control flow 
conditions. 

For example, the rule in Fig. 7 obtains the estimated 
length of a jump using a certain amount of energy. The 
code generation mechanism automatically rewrites it to 
use it as an update rule in the context of action muscle 



FORALL aJump, length, anEnergy, v 
aJump:jump AND 
aJump [hasLength -> length] 

<-
anEnergy:energy AND 
aJump:jump AND 
anEnergy:energy[hasEnergyValue 
multiply(length, 2, v). 

-> V] AND 

Fig. 7. Domain-level rule for jump length calculation. 
FORALL length, anEnergy, v 

aJump(out(hasLength,length):jump 
@upciate (muscleContraction) 

aJump(out(hasLength,length)[hasLength -> length] 
@update(muscleContraction) 

<-
anEnergy:energySpreState(muscleContraction) AND 
anEnergy:energy[hasEnergyValue -> v] 

@preState(muscleContraction) AND 
multiply(length,2,v). 

Fig. 8. Update rule for jump length calculation. 

contraction (Fig. 8). Domain rules are applied within the 
scope of the action, where they are imported. Thus, rule 
bodies access facts from the prestate of the action. Similarly, 
rule heads build the next process frame by asserting new 
facts in the poststate. 

In the example, occurrences of concept jump appear only 
in the head of the transition rule, i.e., jump is an output of 
action muscle contraction but not an input according to the 
process model (see Fig. 1). So, skolemization is needed for 
muscle contraction. In the case of update rules, existential 
quantification is applied to the domain rule and not to the 
transition rule that imports it. This enables the invocation of 
the former from the body of the latter and simplifies the 
code generation process. The result of the inference of the 
update rule is encapsulated as an OntoBroker module, e.g., 
update(muscle contraction), ensuring rule stratification and 
preventing undesired inference cycles. 

We also use domain rules as check rules for the 
evaluation of control flow conditions, like loop termination 
and forks. In our example, action muscle contraction is 
triggered only if there is sufficient energy for the muscle to 
contract. Following the same principles as in the case of 
update rules, the code of the rules implementing this kind 
of predicates is rewrit ten. This enables control flow 
evaluation by allowing invocation of such predicates from 
within the body of transition rules against the prestate of the 
action. The result of such evaluation is encapsulated in a 
specific OntoBroker module for the particular action at 
hand (Fig. 9). 

Fig. 10 shows the resulting transition rule, including both 
update (highlighted in light gray) and check (highlighted in 
a darker gray) rules imported into the transition rule of 
action muscle contraction. Note that the evaluation of the 
false branch of the predicate enough energy for contraction 
requires negating the invocation of the check rule. Rule 
stratification prevents cycles introduced by negation, which 
would require well-founded semantics evaluation and 
reduce performance. 

4.3 Synthesis of Precedence Rules for Data Flow 
Management 

The third type of process rules, precedence rules, focuses on 
data flow. Precedence rules describe which actions can be 
connected with each other by means of their outputs and 

FORALL anEnergy, v 
enough_energy_for_contraction(anEnergy) 

@chec]c_enough_energy_f or_contraction (accumulateEnergy) 
<-

anEnergy:energy SpreState(muscleContraction) AND 
anEnergyienergy[hasEnergyValue -> v] 

@preState(muscleContraction) AND 
greater(v, 5). 

Fig. 9. Check rule for energy level evaluation. 
FORALL j, m, e, length 

j:jump@postState(muscleContraction) AND 
j:OUTPUT@postState(muscleContraction) AND 
muscle contraction[PROVIDES -> j] 

@postState(muscleContraction) AND 
j[hasLength-> length]@postState(muscleContraction) 

<^ 
m:muscle@preState(muscleContraction) AND 
m:TOOL@preState(muscleContraction) AND 
m[IS_USED_BY -> muscleContraction] 

@preState(muscleContraction) AND 
e:energy@ preState(muscleContraction) AND 
e:RES0URCE8preState(muscleContraction) AND 
e[IS_CONSUMED_BY -> muscleContraction] 

@preState(muscleContraction) AND 
enough_energy_for_contraction(e) 

@chec]c_enough_energY_for_contraction (accumulateEnergy) 

AND j:jump@update(muscleContraction) AND 

j[hasLength -> length]Supdate(muscleContraction). 

Fig. 10. Extended transition rule (incl. check and update). 
FORALL e, V 

e:energygpreState(muscleContraction) AND 
e[hasEnergyValue -> v]@preState(muscleContraction) 

<-
e:energy@postState(accumulateEnergy) AND 
e[hasEnergyValue -> v]@postState(accumulateEnergy). 

Fig. 11. Precedence rule in jump example process. 

inputs. Upon reasoning, these rules infer the prestate of an 
action whenever all the poststates of its preceding actions are 
enabled. The so inferred precedence relation between 
actions is transitive. Precedence rules contribute to shift 
the process frame from the context of just executed actions 
to subsequent actions, building the prestates of the latter 
from the poststates of the former. 

The code generation mechanism analyzes the directed 
graph associated with the process diagram and detects the 
actions that are connected with the current one, i.e., those 
that produce as output one or several process resources that 
are part of the input of the current action. In the example, 
accumulate energy a n d muscle contraction a r e c o n n e c t e d b y 

energy, an output of the former and an input of the latter. 
For each pair of connected actions, a precedence rule is 
produced that implements such connection (Fig. 11). 

4.4 Code Synthesis for Iterative Actions 
In the previous sections, we have described setup, transi­
tion, and precedence rules. In particular, we have shown 
how transition and precedence rules can be produced from 
SME-authored process diagrams to implement data and 
control flow, based on the management of the process 
frame. In the case of iterative actions, as defined in the 
process metamodel, the number and complexity of the 
transition rules to be produced increases and additional 
issues need to be considered to endow iterative actions with 
the required operational semantics. 

In the process metamodel, we define iterative actions as 
actions that are repeatedly executed until a termination 
condition holds. Iterative actions repeatedly trigger some 
inference that modifies the knowledge base and evaluates 



FORALL e, V 
e:energy@postState(0,iteration,accumulateEnergy) AND 
e[hasEnergyValue - >v] 
@postState(0,iteration,accumulateEnergy) 

<-
e:energy@preState(accumulateEnergy) AND 
e[hasEnergyValue -> v]@preState(accumulateEnergy). 

Fig. 12. Iterative action—base case rule. 

such condition. In our code synthesis mechanism, the 
process rules corresponding to an iterative action decom­
pose it into a series of atomic actions, one per iteration, 
which encapsulate the process frame in an OntoBroker 
module associated to that particular iteration. 

As we will show in the following code samples, such 
modules are parameterized and represented by the triplet 
(i, iteration, action name), where i indicates the iteration 
whose frame is encapsulated in such module, iteration is 
a fixed tag, which denotes that the module is used in 
the context of an iteration, and name stands for the 
iterative action to which the present iteration belongs. 
The module corresponding to an iteration is related to the 
module of the previous by incrementing its counter, i.e., 
in+i = in + ^, thus enabling transfer of the computed 
results between their respective prestates and poststates. 

Iterative actions do not result into a single transition rule 
upon code synthesis. On the contrary, three different types 
of transition rules are required with respect to the case of 
a t o m i c ac t ions : base case, iteration, a n d interface r u l e s , as 

graphically represented in Fig. 14. 
Base case rules (Fig. 12) initiate the loop, preparing the 

prestate of the first iteration. The prestate of the original 
iterative action becomes the prestate of the first action 
resulting from its decomposition. 

Iteration rules (Fig. 13) define the action that is iteratively 
executed, taking its prestate from the poststate of the previous 
iteration and storing its output into the prestate of the next. 
Additionally, iteration rules evaluate the termination con­
dition of the iterative action. Both the predicate evaluating 
the termination condition and the action are implemented 

FORALL e, i, v 
e:energy@postState(i,iteration,accumulateEnergy) AND 
e[hasEnergyValue -> v] 

@postState(i,iteration,accumulateEnergy) 
<-
e[hasEnergyValue->v] 
@update_hasEnergyValue(i,iteration,accumulateEnergy) AND 

keep_increasing(e) 
@check_keep_increasing(i,iteration, accumulateEnergy). 

FORALL e, i, v, vO, iO 
e[hasEnergyValue -> v] 

@update_hasEnergyValue(i,iteration,accumulateEnergy) 
<-
e:energy@postState(iO,iteration,accumulateEnergy) AND 
e[hasEnergyValue -> vO] 

@postState(iO,iteration,accumulateEnergy) AND 
add(vO, 1, V) AND 
add(iO, 1, i). 

FORALL e, v, i, iO 
keep_increasing(e) 

@check_keep_increasing(i,iteration,accumulateEnergy) 
<-
less(v, 5) AND 
e:energy@postState(iO,iteration,accumulateEnergy) AND 
e[hasEnergyValue -> v] 

@postState(iO,iteration,accumulateEnergy) AND 
add(iO, 1, i). 

Fig. 14. Types of transition rules in iterative actions. 

as domain rules. This type of rules implements the actual 
breakdown of the original iterative action into a sequence 
of actions for each iteration. 

Fig. 13 shows the iteration rule itself plus the domain 
(check and update) rules implementing the action executed 
on the process frame at each iteration and the predicate 
evaluating the termination condition. In the example, the 
check rule implementing predicate keep_increasing/1 evalu­
ates whether or not the value of attribute hasEnergyValue of 
the instances of concept energy is less than 5. On the other 
hand, the update rule increases the value of hasEnergyValue 
at each iteration. 

Since the prestate to be considered is not informed by the 
poststate of the preceding action but of the previous iteration 
instead, domain rules are rewritten slightly differently when 
used in iterative actions with respect to the case of atomic 
actions. In the example, inference results for update and 
check rules are, respectively, encapsulated in the Ontobroker 
modules update_hasEnergyValue(i,iteration,accumulateEnergy) 
and check_keep_increasing(i,iteration,accumulate_energy). 

Interface rules (Fig. 15) transfer the results from the 
poststate of the last iteration to the poststate of the overall 
iterative action to feed the prestate of subsequent actions. 
These rules validate that the prestate of the iterative action 
is fully and correctly instantiated and connect the output 
of the computation produced throughout the different 
iterations with its actual poststate. Interface rules also work 
at the level of the process metamodel, updat ing the roles 

FORALL e, i, v, m 
e:energy@postState(accumulateEnergy) AND 
e:RESOURCEgpostState(accumulateEnergy) AND 
e[hasEnergyValue -> v]@postState(accumulateEnergy) AND 
accumulateEnergy[PROVIDES->e]SpostState(accumulateEnergy) 

m:mitochondrion@preState(accumulateEnergy) AND 
m:TOOL@preState(accumulateEnergy) AND 
e:energy@preState(accumulateEnergy) AND 
e:RESOURCEgpreState(accumulateEnergy) AND 
e[IS_REQUIRED_BY -> accumulateEnergy] 
gpreState(accumulateEnergy) AND 

m[IS_USED_BY -> accumulateEnergy] 
GpreState(accumulateEnergy) AND 

e[hasEnergyValue -> v] 
@postState(i,iteration,accumulateEnergy) AND 

NOT EXISTS iO, vO ( 

e[hasEnergyValue -> vO] 

@postState(iO,iteration,accumulateEnergy) AND 

greater(10, i)). 

Fig. 13. Iterative action—iteration rules. Fig. 15. Iterative action—interface rule. 



associated with input and output process resources as well 
as their relations with the action. 

Interface rules work in a way analogous to transition 
rules in atomic actions. They trigger the execution of the 
loop and detect its termination to propagate changes to 
subsequent actions. We use negat ion a n d existential 
quantification (highlighted in Fig. 15) to retrieve only the 
outcomes of the last iteration as the outcome of the whole 
action. Those outcomes are, thus, stored in the poststate of 
the overall iterative action. Rule stratification a n d a 
modular approach that encapsulates each iteration prevent 
undesired recursion and, therefore, well-founded semantics 
evaluation mode. 

5OPTIMIZATION OF THE SYNTHESIZED PROCESS 
CODE 

Our mechanism for the synthesis of code in the F-logic KRR 
language aims at minimizing the amount of process rules 
that need to be executed by OntoBroker in well-founded 
evaluation mode, preventing long reasoning times and 
memory consumption problems due to the overall complex­
ity of the knowledge base. We accomplish such objective by 
a combination of the following two optimization methods. 

5.1 Optimization 1 : Prevention of Second Order 
Reasoning requires F-logic predicate symbols to be trans­
formed into Datalog. This is done through the Lloyd-Topor 
transformation [20] and can be achieved in two different 
ways. The first approach translates concept and attribute 
names into terms of a priori defined predicates like 
subclassOf/2, instanceOf/2, and attributeType/3, producing 
literals like subclassOf(mammal, animal). Since concepts and 
attributes are always arguments, the resulting predicates 
will always be valid, even when concept and attribute 
names are variables, supporting second-order reasoning 
queries like all the instances of class mammal. 

However, because the number of these predicates is 
small, all knowledge entities of the same type are joined 
together by the reasoner, e.g., the internal table correspond­
ing to subclassOf will contain all the tuples of the classes 
from the knowledge base with an inheritance relation that 
connects them. The number of such tuples is potentially 
large. This hinders indexation and retrieval, because they 
cannot be uniquely identified by the name of the predicate 
(subclassOf), which is common to all of them. Consequently, 
reasoning can encounter performance problems in large 
knowledge bases in terms of time and memory consumed 
and of cycles over negation or aggregations, requiring the 
use of well-founded semantics. 

The second method translates statements that represent 
instance-of and attribute-value relations into a form that 
introduces specific predicates for individual concepts and 
attributes. This corresponds to the standard interpretation 
of first order logic for these primitives. For example, Peter 
is a person is mapped to person(Peter). This more efficient 
representation maps concepts and attributes to predicates 
and can be enabled only if all concept and attribute names 
in the knowledge base are ground, i.e., if there is no need 
for second-order reasoning. We follow this approach in 
the F-logic code automatically produced for processes, 

p(X) : 
r(X) : 
q ( a ) . 
q (b ) . 
t ( a ) . 

- q ( X ) , 
- t (X) . 

n o t r (X) . (1) 
(2) 

Fig. 16. Example of stratified logic program. 

preventing attributes and concepts from appearing as free 
variables in the code and leveraging such optimization. 

5.2 Optimization 2: Maximizing Stratified Code 
In the presence of negation, inference rules implementing 
predicates used in negated subgoals of other rules must be 
completely evaluated before the evaluation of the rules 
depending on such predicates occurs. This usually requires 
costly evaluation modes like well-founded evaluation. 
However, if the corresponding Horn logic program follows 
a stratified model we can assure that it also follows a well-
founded model and this particular evaluation mode is no 
longer necessary. 

Dependency graphs are used to evaluate whether or not 
a logic program is stratified. In dependency graphs: 1) each 
predicate is a node, 2) edges from predicate p to predicate q 
occur if both occur in a rule, where q is in the head and p 
appears in the body, and 3) edges with negation are 
marked. If no cycles with negative edges appear, then the 
program is stratified and well founded. 

A predicate is in the same stratum as all the predicates 
connected with it through positive edges in the dependency 
graph. If there is a negative edge leading from a predicate p 
to a predicate q, the stratum of q is one higher than the 
stratum of p . For example, if rule (1) in Fig. 16 is executed 
first, producing p(a) and p(b), the application of the known 
facts to rule (2) would produce r(a) as a result. However, 
r(a) should have excluded p(a) from the solution. By 
calculating the strata in a logic program, the reasoning 
engine evaluates the different rules in the right order, 
starting wi th the lowest s t ra tum. With not stratified 
programs, this is not possible and well-founded evaluation 
is required. 

6EVALUATION 

This work was evaluated by an independent team in the 
context of project Halo.10 A total of six knowledge formula­
tion (KF) SMEs participated, who formulated knowledge on 
the selected evaluation syllabi in the scientific domains of 
Chemistry and Biology and tested reasoning with it. These 
knowledge bases were later used by five Question Formula­
tion (QF) SMEs, with the supportof QF KEs, who formulated 
selected AP-level questions that were in tended to be 
answered by the system. After receiving a limited amount 
of training, SMEs were isolated from developers, evaluators, 
and other SMEs and formulated the knowledge contained in 
the syllabi. 

The scope of this evaluation went beyond usability 
aspects in a formative sense and aimed at providing 
empirical assessment of the coverage and performance of 
the system in a setting that is representative in terms of the 
profile of the recruited SMEs and their assigned tasks. In the 

10. Vulcan Inc.’s Project Halo ht tp: / /www.projecthalo.com. 
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TABLE 2 
Processes Modeled by the Evaluation KF SMEs 

TABLE 3 
Performance of C1 and C2 versus Default C0 

SME2(Biology) 
SME3(Biology) 

SME5(Chemistiy) 
Total 

Number of processes modeled 
2 
6 
3 
11 

particular case of process knowledge, the evaluation paid 
special attention to both direct SME feedback on process KF 
and reasoning performance, including the different optimi­
zations applied to the mechanism for process code synthesis 
described herein. In this paper, we focus on the latter 
(reasoning performance evaluation), while the former, 
including complete usability and utility studies, was 
described in detail in [15]. 

The evaluation syllabi are summarized next: 

. Chemistry: Sections 3.1 and 3.2 (pp . 75-83) on 
Stoichiometry, 4.1-4.4 (pp . 113-133) on aqueous 
reactions and solutions, and 16.1-16.11 (pp. 613-
653) on chemical equilibrium, from [8]. 

. Biology: p p . 112-124, p p . 217-223, and p p . 239-245 on 
cell structure and cell processes, including mitosis 
and meiosis, and p p . 293-201 and p p . 304-311 on 
D N A structure and D N A structure processes, 
including D N A replication, repair, transcription, 
and translation, from [9]. 

Our SMEs modeled 806 concepts, 741 instances, 
260 attributes, 273 relations, 610 rules, and 11 processes. 
The mechanism for process code synthesis generated an 
average of nine knowledge base modules per process, 
where action prestates and poststates and results from 
check and update process rules, where stored before the 
final results flowed into the main knowledge base 
module . Table 2 shows the distribution of the processes 
modeled by the SMEs across the domains. 

As expected, we found in Biology (SME2 and SME3) the 
largest population of processes among the three domains. 
SME5 also produced a considerable number of process 
models in Chemistry, typically a poorer domain in terms of 
process knowledge. All process models were formulated 
by SMEs without intervention of KEs. SMEs only required 
initial training and sporadic support in the utilization of 
the tools. 

The quality of the resulting knowledge bases was 
evaluated through the testing and debugging facilities of 
the system to check that SME-generated process models 
actually behaved as expected during execution. This tooling 
allows SMEs to create test sets containing process inputs 
and expected outputs , invoking the process, and comparing 
their results against expected results. As shown in [15], at 
modeling time the process editor continuously checks the 
compliance of process models with respect to the process 
formalism. This provides SMEs with modeling guidelines 
that make the process formulation task easier and at the 
same time prevents incorrect processes from being saved 
into the knowledge base and ensures the generation of 
stratified code. The testing and debugging tool showed 
82 percent of the process models executed correctly, 
showing evidence of the high expressiveness and coverage 

Query 
SME3-qO 
SME3-ql 
SME3-q2 
SME3-q3 
SME3-q4 
SME3-q5 
SME3-q6 
SME3-q7 
SME3-q8 
SME3-q9 
SME3-qlO 
Average 
Median 

Min 
Max 

CO 
31 
63 
31 
47 
15 
32 
203 
63 
47 
62 

203 
79,7 
47 
15 

203 

CI 
0 
16 
16 
16 
0 
16 

219 
31 
31 
32 
218 
59,5 
16 
0 

219 

s(Cl) 
0,00 
0,25 
0,52 
0,34 
0,00 
0,50 
1,08 
0,49 
0,66 
0,52 
1,07 
0,75 
0,34 
0,00 
1,08 

C2 
16 
16 
16 
16 
0 
0 

234 
31 
16 
16 

203 
56,4 
16 
0 

234 

s(C2) 
0,52 
0,25 
0,52 
0,34 
0,00 
0,00 
1,15 
0,49 
0,34 
0,26 
1,00 
0,71 
0,34 
0,00 
1,15 

of the approach. The remaining 18 percent process models 
were not executed either because they had design errors, 
and consequently were not saved in the knowledge base, or 
because the required preconditions for their execution d id 
not hold. 

As to execution performance, we studied the effects of 
the application of the optimizations described in Section 5 
to the F-logic code resulting from the process models 
formulated by the SMEs. Since the Biology knowledge base 
produced by SME3 contained the largest sample of process 
knowledge produced in the evaluation, we focused on it to 
measure response times of a representative sample of ten 
queries with three different configurations of OntoBroker 
combining different uses of well-founded evaluation and 
second-order reasoning . From the sample types of process 
reasoning introduced in Section 1, q1 deals with reasoning 
about process entities, q7-q10 refer to intermediate results 
while collecting final results, q2 illustrates reasoning on 
process stages, and q0, q3, and q4 aim at retrieving 
additional process metadata. 

Among such configurations, C0 represents the default, 
with the well-founded evaluation mode enabled. C1 and C2 
apply the optimization methods described in Section 5. C1 
aims at increasing performance with respect to C0 by 
enabl ing concept a n d at t r ibute names g r o u n d while 
C2 extends C1 by additionally disabling well-founded 
evaluation. 

The results of executing this query set with the three 
different configurations are shown in Table 3 . Response 
times are measured in milliseconds (values equal to 0 
correspond to queries with response times lower than 
1 ms). Shaded columns s(C1) and s(C2) show the speedup 
obtained with respect to C0 (values inferior to 1 indicate 
performance increase) by applying configurations C1 and 
C2, respectively. The table shows an average performance 
improvement of 25 percent for C1 and almost 30 percent 
for C2. The main improvement factor is the consequence of 
concept and attribute names being ground both in C1 and 
C2. C2 adds little performance beyond C1 because the 
code generation mechanism produces most of the code in 
well-stratified form, hence reducing the need of well-found 
semantics. Furthermore, C1 still allows applying well-
founded evaluation in the eventuality of nonstratified 
code. It can be concluded that configuration C1 shows an 



appropriate balance between safeness and performance for 
the generated code, with a significant speedup over the 
default configuration C0. 

7CONCLUSIONS 

We have presented a process representation formalism and 
an optimized method for the automatic generation of high-
performance, executable process models in a knowledge 
representation language (F-logic). Our method bridges the 
gap between processes modeled graphically at the knowl­
edge level by SMEs and their formal representation, which 
follows the formalism and is grounded in the language. 
Evaluation results provide evidence that our approach 
effectively and efficiently serves this purpose, providing 
process models with an operational semantics so that 
process-related reasoning can be supported. The insight 
obtained has contributed to configure process work in 
subsequent stages of the Halo project. However, exciting 
research challenges about the process knowledge type still 
need to be addressed that will be subject of our research 
work in the coming years. 

The analysis of the AP questions used in this paper to 
illustrate reasoning with process knowledge and specific 
comments from SMEs during evaluation evidences a lacking 
support for QF to enable SMEs to formulate questions 
involving processes in natural and expressive ways. Current 
QF approaches based on controlled vocabularies, like [12], 
d o not completely address the specific problem of querying 
process knowledge nor exploit all the expressive capabilities 
of process-specific representation frameworks like the one 
presented herein. The translation of process-related ques­
tions, expressed in natural or controlled language, into 
formal queries with minimal expressivity loss remains a 
problem that still needs to be addressed. 

During the evaluation, it also became evident that the 
application of the methods presented in this paper to other 
domains , like business or software development, will 
benefit from extending the metamodel and the process 
code generation mechanism with new control flow primi­
tives that suppor t more complex process behavioral 
patterns, like parallelism or activity decomposition. This 
will allow exploiting the underlying process formalism in a 
richer way that can effectively support process reasoning in 
new domains. 

Finally and most interestingly, we anticipate research 
challenges dealing with the acquisition and sharing of 
knowledge by online user communities, their representa­
tion and reasoning, raising problems like non monotonicity, 
inconsistencies between distributed but interacting knowl­
edge bases, performance, and scalability. A particularly 
interesting research problem, which is especially relevant in 
distributed and collaborative environments for knowledge 
acquisition, deals with the detection of decay of higher level 
knowledge entities, especially processes, derived from 
eventual changes in the knowledge base that may render 
such knowledge entities useless [28]. Answer Explanation 
methods able to appropriately keep track of process 
reasoning mechanisms will be important both to detect 
process decay and to provide SMEs with interpretations of 
such reasoning at the required level of abstraction. 
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