
A Formalism and Method for Representing
and Reasoning with Process Models
Authored by Subject Matter Experts

Jose´ Manuel Go´mez-Pe´rez, Michael Erdmann, Mark Greaves, and Oscar Corcho

Abstract—Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs)
requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on
modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of
complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this
paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge
representation language like F-logic to support process-related reasoning. The main results of this work include a formalism for
process representation and a mechanism for automatically translating process diagrams into executable code following such
formalism. From all the process models authored by SMEs during evaluation 82 percent were well formed, all of which executed
correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at
reasoning time of 25 and 30 percent with respect to the base case, respectively.

1 INTRODUCTION

BUILDING knowledge-based systems is an activity that has
been traditionally carried out by a combination of

software and knowledge engineers (KEs) and of subject
matter experts (SMEs), also known as domain experts.
Software engineers (SEs) are focused on architectural and
user interface issues related to the development of software.
KEs are focused on knowledge acquisition and representa­
tion tasks, with the aim of building the required knowledge
bases. For these tasks, KEs usually work in collaboration
with SMEs, who normally act as repositories of domain
knowledge. The combination of KEs and SMEs, although
feasible, has two main drawbacks, first characterized as the
knowledge acquisition bottleneck [13]: 1) it is costly and 2) it
can be error prone, especially in complex domains.

A large amount of work in knowledge-based systems in
the past three decades, like [11], [4], and [27], has concen­
trated on providing frameworks and tools that support the
collaboration of KEs and SMEs with the goal of alleviating
the knowledge acquisition bottleneck. However, despite

J.M. Gomez-Perez is with iSOCO S.A., Av. del Partenon, 16-18, 1° 7a,
Campo de las Naciones, 28042 Madrid, Spain.
E-mail: jmgomez@isoco.com.
M. Erdmann is with Ontoprise GmbH, An der RaumFabrik 33a,
76227 Karlsruhe, Germany. E-mail: erdmann@ontoprise.de.
M. Greaves is with Vulcan Inc., 505 Fifth Ave S, Suite 900, Seattle, WA
98104. E-mail: MarkG@vulcan.com.
O. Corcho is with Departamento de Inteligencia Artificial, Facultad de
Informa´tica, Universidad Politecnica de Madrid, Despacho 2104,
28660 Boadilla del Monte, Madrid, Spain. E-mail: ocorcho@fi.upm.es.

progress shown by existing knowledge acquisition tools
like KRAKEN [25], SHAKEN [3] and, more recently, AURA
[10] and the Halo extension of the Semantic MediaWiki [18],
it is still a complex problem to enable SMEs to capture the
knowledge from a domain by themselves, especially for
some knowledge types.

Among the different types of knowledge that can be used
in knowledge-based systems, e.g., factual, rule or causal
knowledge, we focus on process knowledge, which is widely
used across domains while posing important challenges for
knowledge acquisition. A process can be defined as a
naturally occurring or designed sequence of changes of properties
of a system or object. Examples of processes include the
replication of DNA, the mitosis of the cell or a combustion
reaction. Processes encapsulate such things as precondi­
tions and postconditions, results, contents, actors or causes
and relate to the sequence of operations and involved
events taking u p time, space, expertise or other resources,
which lead to the production of an outcome. For example,
consider the case of a complex chemical reaction compris­
ing several steps, with different inputs and outputs , where
it is necessary to reason about what would happen at a
certain stage if a previous one was suppressed or modified.

Enabling SMEs to formulate process knowledge without
the intervention of KEs is a complex problem that needs to be
addressed from a multidimensional perspective to1) provide
the required knowledge artifacts that support the acquisition
of process knowledge and 2) develop usable tools that allow
SMEs to exploit such artifacts. To this purpose, we have
produced the following models, methods, and tools:

1. A process metamodel, which provides the terminology
necessary to express process entit ies a n d the
relations between them.

mailto:jmgomez@isoco.com
mailto:erdmann@ontoprise.de
mailto:MarkG@vulcan.com
mailto:ocorcho@fi.upm.es

Fig. 1 . A jump process.

2. A library of Problem Solving Methods (PSM) [21],
which provides high-level reusable abstractions for
process representation.

3. A graphical process modeling and reasoning tool, which
uses the process metamodel and the PSM library
for process modeling by SMEs without intervention
of KEs.

4. A formalism for process knowledge representation and a
method for the automatic synthesis of executable process
models from SME-authored process diagrams.

The results of our work on the first three topics were
presented in [15]. Fig. 1 shows a screenshot of our process
editor, which provides SMEs with a modeling and reason­
ing environment for process knowledge. The main entities
of the process metamodel are resources, actions, decisions,
and relations (see Fig. 2 for their graphical representations)
and allow describing domain entities, e.g., energy or
mitochondrion, in terms of their role in a process (resource
and tool, respectively). The process metamodel is used by
SMEs to model their own processes, through drag and d rop
operations on the drawing canvas, in combination with
reusable, previously existing process models and templates
from the PSM library.

We hereby focus on representing and reasoning with
process knowledge. The following multiple choice ques­
tions, selected from Advanced Placement competence level
exams in Biology, illustrate some of the main types of
process reasoning that we address in this work:

Reasoning about process entities: The intended goal of this
type of reasoning is to retrieve information about the role
played by the elements participating in a given process. The
following question asks for the role of the agent responsible
for initiating the synthesis of DNA. Answering this question
requires that the D N A synthesis process is formally
described in terms of a process vocabulary like our process
metamodel.

The primer that initiates the synthesis of a new DNA
strand is usually:

a. RNA
b. DNA
c. an Okazaki fragment
d. a structural protein

Fig. 2. Resources, conditional fork, and actions.

The question can be answered correctly, and therefore
option 1 (RNA) be identified as the agent responsible for the
DNA replication process, only if RNA is explicitly modeled
as the agent responsible for such process, following the
vocabulary provided by the metamodel. In this case, RNA
would have been modeled as an agent that performs the
DNA replication process.

Reasoning on intermediate results: The question below
focuses on the outcome of an elongation subprocess in the
context of a larger process, i.e., DNA synthesis. To evaluate
the first alternative answer, option 1, the query associated
with the question will need to retrieve all Okazaki fragments
in the knowledge base resulting from the execution of the
elongation subprocess. Thus, we will require a knowledge
representation language with introspective capabilities to
address reasoning on process steps and intermediate results.
Approaches based on process description and execution
languages like BPEL1 d o not completely address this issue
and systems based on these languages tend to behave as a
black box.

The elongation of the leading strand during DNA
synthesis:
a. produces Okazaki fragments
b. depends on DNA polymerase
c. does not require a template strand

Reasoning on process stages: This kind of questions
requires reasoning on the effect that the different process
steps have on the overall process, and their relation with the
entities involved. In this case, the example question aims at
situating the occurrences of particular cell organelles in the
appropriate mitosis stage.

Which part of the animal cell is required only in the
first stage of mitosis and what is the name of such
stage?

a. chromatin and prophase
b. chromatid and prometaphase
c. centromere and anaphase
d. plasma membrane and telophase

An interesting application of reasoning about process
stages is the identification of similar processes, potentially
from different domains, through analogies detected in their
structure and in the roles of the entities involved. This
feature can be especially useful to analyze processes by
contrasting them against well-known process specifications
(or patterns), and projecting the properties of the latter
against the former.

Reasoning on process preconditions: In addition to reason­
ing on process inputs, outputs, and intermediate results, a

1. http://www.oasis-open.org/committees/wsbpel.

http://www.oasis-open.org/committees/wsbpel

fourth type of process reasoning addresses questions
related to the preconditions that must hold to accomplish
a process, as illustrated by the example question below.

At least, what
consume in

a.
b.
c.
d.

100 cal
50 cal
250 cal
1 cal

orde
amount of
r to]unip

energy doe
more than

s
8m

an athlete
long?

need to

In the remainder of this paper, we present an approach
to bridge the gap between the formulation of process
knowledge by SMEs and the formal representation of the
resulting process models. We present our process repre­
sentation formalism and mechanism for automatically
translating process diagrams into executable code and
apply two main optimizations for reasoning with process
knowledge. In Section 2, we summarize previous related
work and describe the formalism for representing and
reasoning with processes. Section 3 analyzes the require­
ments, especially in terms of the process frame, of the
underlying language for process representation and pro­
poses F-logic as such language. In Section 4, we present the
code generation mechanism, focusing on how process
diagrams are automatically translated into different types
of F-logic rules and how they relate with our process
metamodel. Section 5 describes the optimizations applied to
the generated process code. In Section 6, we present the
results of the evaluation of our approach from a perfor­
mance perspective. Finally, Section 7 concludes the paper
and presents future and related lines of work.

2 AFORMALISM FOR REPRESENTING AND
REASONING WITH PROCESSES

Process modeling by SMEs needs to be supported by a
formalism that endows the resulting models with the
corresponding operational semantics, thus bridging the
gap between the knowledge level and the symbolic and
operational levels [24] and enabling reasoning. Our form­
alism is based on the concept of process frame and
addresses data a n d control flow management as an
incarnation of the frame problem [26].

2.1 The Process Frame
One of the main challenges for our process knowledge
representation and reasoning (KRR, from now on) formalism
deals with expressing the portion of the knowledge base that
a process action can have effect on, and how such effects
propagate throughout the process. We define the frame of a
process as the relevant portion of the knowledge base for
each process step. For example, in Fig. 1, the process frame
of muscle contraction contains the updated amount of energy
resulting from the previous step, accumulate energy. The
process frame is dynamic; it changes throughout execution
and propagates among successive actions, which modify it as
they occur, in a similar way to previous work in Logic
Programming [30], [7], [6].

The process frame needs to be kept as terse and small as
possible. This contributes to reduce the number of concepts
and instances to reason with and to minimize the need of
complex and potentially costly evaluation mechanisms for
reasoning. As we will show, an effective management of the

process frame based on these principles is essential to
implement process data and control flow.

In our process KRR formalism, we address frame
management as a case of ontology modularization [16]
in a dynamic setting. Ontology modules containing the
process frame are created during process execution, where
the actions to be executed at each process step perform their
computations and whose updates are then used in sub­
sequent actions. This modularization structure addresses a
threefold goal:

1. Building the initial (preexecution) process frame by
encapsulating the relevant parts of the knowledge
base required for the execution of a process to be
triggered.

2. Building the process frame at each process step by
encapsulating the relevant portion of the knowledge
base, including the updates produced by the execu­
tion of previous actions, which are required for the
current computation.

3. Enabling the computational flow between actions,
calculating their prestates and poststates and support­
ing process data and control flow.

2.2 Formalization
Our formalism is action centric, built on the basis of actions
as the backbone entities of processes. A process consists of a
partially ordered set of actions, connected as a directed
graph , wi th precondit ions and postcondit ions whose
evaluation both determines the flow of data between the
steps comprised by the process and controls the order in
which such actions are executed. Such ordering allows a
number of behavioral patterns, including forks, joins, and
parallelism.

We define the prestates and poststates of an action as the
content of the process frame immediately before and after
its execution, respectively. The prestate contains all the
knowledge base entities that serve as inputs to the action,
while the poststate contains the outcomes of its execution,
obtained by the computations performed on the contents of
the prestate. The process frame comprises the prestates of all
the actions ready to be executed. After execution of an
action, its poststate fits into the new process frame as part of
the prestate of the subsequent action(s). Thus, the process
frame corresponds exactly to the aggregation of the prestates
of the actions ready to be executed.

Fig. 1 shows a process d iagram that represents a
particular type of body locomotion i.e., a jump process. In
this case, the prestate of action accumulate energy in the
process model comprises concepts energy and mitochondrion,
as well as their respective instances and the relations
between them. Likewise, the poststate of the action com­
prises the resulting instances of concept energy upda ted by
the execution of the action.

Actions can be classified in terms of their prestates and
poststates as input, output, or intermediate actions. In the process
diagram of Fig. 1, accumulate energy is an input action,
whereas muscle contraction is an output action. In a process
model, the prestate of an input action does not contain the
output of any other action. Likewise, the updates to the
process frame contained in the poststate of an output action
contribute to noneof the prestates of other actions in its model,
because such action has no further successors. The remaining

TABLE 1
Process Rules per Type of Process Action

Setup rules
Transition rules
Precedence rules

Input
actions

Intermediate Output
actions actions

X
X

X
X

actions are intermediate , wi th both predecessors and
successors.

We propose to formally describe process models as a
directed (weakly) connected graph G [14] denoted by (N, E),
where E is the set of edges and A'̂ the set of nodes.
According to our process metamodel, A'̂ consists of the
disjoint subsets

NResource, NAction, NDeasion SO that {Njjesource H NACUOTI)

= 0 A {NRcso„rce n Noecision) = 9 A {NACUOU H Noecision)

= 0 A V n (z N : n (z {Nuesource U NAction U NDecision)-

Each node n € N has a set of incoming and outgoing
edges Ein(n) and Eoutin), respectively. The source node of
an edge e is described by Nsaurce{e), while its target node is
NTarget{e). Thus, the actions connected to each particular
action can be classified as predecessor and successor actions
as follows:

Vn, m e NAction : m e Predecessor{n)—> 3r e NRCSOUTCC

A 3e1 e E,n{n) A 3e2 e Eoutim)/r = NTarget{e-2)

Ar = Nsource{s-1)-"^n,m 6 NAction : iTi G Successoriji)

> 3r 6 Nuesource A 3e1 6 Einim)

A 3 e 2 G Eiyut{'n)/r = NTarget{s-2) Ar = Nsource{s-1)-

According to the previous classification of actions as
input, output, and intermediate actions, we can say that

" ^ G ^^Action : ^ G \-^^Input ^ ^^Intermediate ^ ^^Output). A s w e

will show in Section 4, this determines the type of inference
required to evaluate the prestates and poststates of actions
(Table 1). This classification is formally expressed as:

• VTl Kz ^^Action : ^ G ^^Input ^ rVCdCCCSSOTyTLj v

• v?2 t ^^Action : ^ G ^^Output jUCCCSSOTynj yj

• Vn e NAction : n e Nintermediate—> Predecessor{n) ^
0 n Successoriji) ^ 0

In case a process is formed by a single, atomic action, the

first two definitions would hold, but not the third. Accord­

ingly, intermediate actions will only occur in processes with

at least three actions. So, two constraints need to be defined

for NDecision, the third subset of nodes in a process graph:

• Vn e Noecision : \Ein{n)\ = 1 A \E^t{n)\ < 2, i.e., all
decisions are preceded by one action and have a
maximum of two successors, associated with the true
and false branches, respectively.

•

V n e NDecision,^e.in € Ei„{n),\lC^at € Eout{n) :

Ns ouTcei^in) C ^Action A I^Targeti^in) C ^Action,

i.e., all the nodes connected to a decision node are
actions

Next, we provide a formal definition of the prestates
and poststates of an action, where we elaborate on the
previous informal definition. Respectively, we define the
prestates a n d poststates of a n ac t ion as

• Mr e NResource, « € NAction : T € Pre{a) >

3e 6 Ei„{a) A 3c 6 C/r = Nsource{^) A r is_a c.

• V r e Nljcsource, « € NAction : T € Post(a) >

3e 6 £'out(tt) A 3c 6 C/r = N^argeti^) A r is_a c.

As described in [15], the components of a process
diagram are first modeled by choosing a role of the process
metamodel and then mapping them manually against
concrete domain entities. Class c in the previous definition
illustrates this, where C is the set of classes in the
knowledge base.

For a given action to be triggered, its prestate must be
completely instantiated, i.e., all the process resources
contained in the prestate must be instantiated in the knowl­
edge base. As we will show in following sections, the
implementation of our formalism encapsulates the frame of
such action and the process in which it occurs, thus enabling
actions and resources to appear simultaneously in several
processes without risk of inconsistencies during reasoning.
In our example process, instances of concepts energy and
mitochondrion, respectively, represented as a resource and a
tool in terms of the process metamodel comprise the prestate
of the action accumulate energy. Analogously, once updated
by the execution of such action, energy becomes its poststate
a n d , s u b s e q u e n t l y , t he prestate of muscle contraction.

The formalism provides the means to represent and
reason with processes as directed graphs consisting of
actions, their inputs and outputs (associated to their
prestates and poststates), and directed arcs corresponding to
the process relations between resources and actions, which
run from inputs to actions and from those actions to their
outputs. According to this representation, we define data
and control flow as

• Dataflow is the path followed from process inputs to
process outputs across the directed graph represent­
ing the process.

• Control flow is the mechanism that evaluates and
enacts the actual flow of data upon process execution.

We have kept the process metamodel deliberately simple
with respect to control flow primitives to facilitate modeling
by SMEs from target domains like Biology and Chemistry,
with limited requirements in this directions. However, the
formalism supports complex forms of control flow, which
can be leveraged to model processes in other domains, like
business or software, simply by extending the metamodel.
In our approach, control flow is, therefore, based on two
main constructs, forks and loops, as building blocks for
more complex forms of controlling the execution of a
process. Forks correspond to conditional arcs, informing
process decisions from the metamodel , between two
actions, which explicitly represent a precedence relation
enabled only upon satisfaction of a certain condition. In the
example of Fig. 1, process decision enough energy to jump?,
represents a condition whose satisfaction is required to

enable the true branch of the fork, i.e., the subsequent action
muscle contraction.

Loops, e.g., accumulate energy, can be explicitly imple­
mented as iterative actions from the metamodel, which are
repeatedly executed while (or until) a given condition
holds. Iterative actions follow a structured loop pattern2

with an associated pretest or posttest, which are evaluated
either at the beginning or at the end of the loop to determine
whether it should continue iterating or not. Additionally,
the formalism supports arbitrary cycles in process models
without requiring specific loop operators or restrictions.

3 LANGUAGE SUPPORT FOR THE PROCESS K R R
FORMALISM

The formalism introduced in the previous section needs to
be g rounded in a computer language, which allows
expressing process entities and their interactions, the
problem-solving behavior associated to processes, and the
management of process data and control flow. The under­
lying language needs to provide high expressivity and
efficient and safe reasoning capabilities to support SMEs to
model and reason with process knowledge. Furthermore,
modularization capabilities are required that support the
effective manipulation of the process frame, which is
fundamental for the realization of our approach.

3.1 Requirements
Several approaches have been proposed from different
areas and perspectives to represent process knowledge,
including

1. knowledge acquisit ion and representat ion lan­
guages, e.g., OWL [22], OCML,3 and F-Logic [17];

2. process-specific representation and reasoning lan­
guages, e.g., PSL [5] and SPARK-L [23];

3 . Semantic Web service ontologies, e.g., WSMO4 and
OWL-S5; and

4. process specification and execution languages, e.g.,
BPEL and XPDL.6

However, while individually each of these approaches is
expressive in terms of workflow constructions and reason­
ing capabilities, SMEs still require further support to
effectively model processes, as shown in [31] and [15].

Knowledge representation languages, e.g., OWL and
OCML, are well suited to semantically describe lower-level
(compared to processes) declarative knowledge entities like
concepts, instances, and rules, as well as problem-solving
behavior. However, the complexity of process representa­
tion hinders the straightforward adoption of these lan­
guages as exclusive means to effectively represent processes
at the required level of abstraction for SMEs and to support
their execution.

On the other hand, process-specific description and
execution languages, e.g., BPEL and XPDL, can be effec­
tively used to express processes as workflows and to enact
them. Though their formal semantics is usually based on

2. http://www.workflowpatterns.com.
3. http://technologies.kmi.open.ac.uk/ocml.
4. http://www.wsmo.org.
5. http://www.w3.org/Submission/OWL-S.
6. http://www.wfmc.org/standards/XPDL.htm.

Petri nets, these approaches use to focus on the operational
aspects of processes and therefore fail at reasoning with
processes at the knowledge level. For example, reasoning
about the consequences of removing a certain stage from
the overall mitosis process in Biology or analyzing the
influence of an additional compound in a chemical reaction
is not possible through such approach exclusively. On the
other hand, languages like PSL and SPARK-L provide
higher expressivity and allow defining constraints. How­
ever, like general pu rpose knowledge representat ion
languages, they can be complex for use by SMEs.

Other approaches, like Episodic Logic (EL) and their
implementations as in the EPILOG [29] system, allow for
explicit situational variables denoting episodes, events, and
states of affairs linked to arbitrary formulae that describe
them. However, though the expressiveness and inference
capabilities of EL are certainly high, the extensive use of
second order reasoning tends to compromise performance.

Thus, while fundamental for the construction of knowl­
edge-based and workflow systems, further solutions are
required that can be used to address the problem for
process knowledge. We therefore propose an integrated
approach that addresses the above-mentioned issues for
process KRR in a way that

1. supports the symbolic representation of process entities,
according to the process metamodel,

2. supports process execution, following the specification
of the operat ional semantics described by the
process KRR formalism, which defines the possible
interactions between process entities,

3 . enables a single entry point for reasoning across the
whole system independently from the knowledge
types involved,

4. allows domain-level reasoning within processes, e.g., by
means of rule-based inference, and

5. keeps introspective properties for reasoning with meta-
level information about processes, like, e.g., sub-
processes or intermediate process results.

3.2 F-Logic as a Process Representation and
Reasoning Language

Our approach builds on previously existing KRR languages
and focuses on the knowledge representation aspects
required to describe and reason with process knowledge.
We aim at emphasizing the relevance of the knowledge
level over the operational level for use by SMEs through the
appropriate user interfaces and at facilitating the combina­
tion of the process knowledge type with others, like rules
and factual knowledge.

More specifically, we build on F-logic as the underlying
language for process KRR. F-logic provides high expressiv­
ity and inference capabilities and combines the advantages
of frame-based languages and the expressivity, compact
syntax, and well-defined semantics of logic programming
languages. The original features of F-logic include signa­
tures, object identity, complex objects, methods, classes,
inheritance, encapsulation, and deductive rules, which
make it suitable to represent and reason seamlessly with
both the static and dynamic aspects of processes. F-logic

http://www.workflowpatterns.com
http://technologies.kmi.open.ac.uk/ocml
http://www.wsmo.org
http://www.w3.org/Submission/OWL-S
http://www.wfmc.org/standards/XPDL.htm

jumpExample:PROCESS@ProcessModule.
jumpExample[SUBPROCESS->accumulateEnergY]SProcessModule.
jumpExample[SUBPROCESS->muscleContraction]SProcessModule.
accumulateEnergy[PRECEEDS->muscleContraction]

@ProcessModule(jumpExample).
accumulateEnergy:WHILE@ProcessModule(jumpExample).
muscleContraction:ATOMIC@ProcessModule(jumpExample).

Fig. 3. F-logic axioms in process jump example.

supports negation and well-founded model semantics [32],
allowing safe execution of nonstratified rules.

There are several implementations of reasoners for the F-
logic language, e.g., FLORA-2,7 FLORID,8 and OntoBroker,9
which provide different means for efficient reasoning in F-
logic, ranging between bottom-up evaluation to magic set
[2] and dynamic filtering [17]. In all cases, F-logic reasoning
is based on a forward chaining approach, which facilitates
deduction and thus fits nicely with the propagation of
reasoning results throughout process steps, from process
inputs to outputs, as defined in our formalism.

In our implementation, we have adopted the OntoBroker
F-logic language and reasoning engine, which is based on
dynamic filtering and supports computationally complex
cases like nonstratified negation by means of well-founded
evaluation. It also incorporates a mechanism for answer
explanation that allows inspecting rule execution, support­
ing the analysis of the reasoning trace. Though OntoBro-
ker’s performance and scalability have been proved in the
OpenRuleBench [19] suite of benchmarks, well-founded
semantics is in general costly and needs to be avoided
whenever possible. As we will show in Sections 4 and 5, we
achieve this by maximizing the amount of stratified F-logic
process code synthesized for each process model, whose
evaluation does not require well-founded semantics even in
the presence of negation.

OntoBroker also allows defining parameterized modules
through the @/2 operator to manage the process frame and
encapsulate the contents of action prestates and poststates.
For example, p {a)@m. states that p {a) is true in module m
but, following the open world assumption, no statement is
made with respect to the rest of the knowledge base. Such
modularization capabilities provide means to create a well-
defined interface to the process frame at each process step.
Thus, it is possible to constrain the scope of a particular
action to the portion of the knowledge base encapsulated
by the corresponding module and to approach the creation
of the prestate and the propagation of the updates produced
by such action from its poststate into the following process
steps.

4SYNTHESIS OF PROCESS CODE

At modeling time, we automatically synthesize, from
process diagrams, executable code in the form of F-logic
axioms and rules (see [1] for a detailed description of
OntoBroker’s F-logic syntax). The synthesized F-logic
axioms describe the process, its actions, and its data flow
in terms of the process metamodel, and encapsulate them in
the corresponding module as shown in Fig. 3. Paraphrasing

7. http://flora.sourceforge.net.
8. http://www.informatik.uni-freiburg.de/ dbis/florid.
9. http://www.ontoprise.de/en/home/products/ontobroker.

Fig. 4. Correlation between process actions and rules.

the code, jump example is a process with two subprocesses
(accumulate energy and muscle contraction), which, in the
context of this particular process, are modeled, respectively,
as a while iterative action and an atomic action, where the
later is preceded by the former.

Associated with each action in a process model, a set of
F-logic rules are generated. These process rules have the
fundamental role of coping with the frame problem to
define how resources are consumed within actions and to
address management of data and control flow. In a broad
sense, which we will refine in the following sections, the
rules resulting from this synthesis process can be classified
in terms of their inference behavior on the prestates and
poststates of actions as follows:

. Setup rules, which build the prestate of input actions
from the overall knowledge base, therefore addres­
sing the creation of the initial process frame (see first
goal in Section 2.1).

. Transition rules, which describe the actual execution
of an action, i.e., the necessary inference to be
applied to the prestate of actions to produce new
computation results and to enable the propagation of
such results into the poststate. Transition rules are,
thus, the main enablers of the construction of the
process frame at each process step (second goal).

. Precedence rules, which build the prestate of inter­
mediate and output actions from the poststate of their
predecessor actions. Precedence rules, thus, enable
the data flow between actions (third goal).

Table 1 shows the type of process rules used in each
type of process action. While setup rules are only used in
input actions, transition rules apply to all action types,
which emphasizes the relevance of frame management for
data and control flow. Transition rules are, therefore,
fundamental for reasoning with process knowledge. They
describe how the inputs of an action are transformed into
its outputs and update the process frame with the results
of such reasoning. Precedence rules are in charge of
establishing the da ta flow throughout a process by
connecting actions through their inputs and outputs .
Finally, setup rules create the initial frame of a process,
enabling its execution.

Fig. 4 illustrates the correlation between process rules
and actions, as described in the process metamodel. In the

http://flora.sourceforge.net
http://www.informatik.uni-freiburg.de/
http://www.ontoprise.de/en/home/products/ontobroker

FORALL m, e, V
mrmitochondrionOpreState(accumulateEnergy) AND
in:TOOL@preState (accumulateEnergy) AND
e: energyQpreState(accumulateEnergy) AND
e:RESOURCE@preState(accumulateEnergy) AND
e[hasEnergyValue -> v]gpreState(accumulateEnergy)

<-
mimitochondrion AND
e:energy AND
e[hasEnergyValue -> v].

FORALL m
mrmuscle @preState(muscleContraction) AND
m:TOOL@preState(muscleContraction)

<-
mrmuscle.

Fig. 5. Setup rules in jump example process.

next sections, we describe these process rules and detail
their role in the formalism.

4.1 Synthesis of Setup Rules for the Construction
of the Initial Frame

The code synthesis mechanism generates setup rules that
encapsulate the inputs of input actions into their prestate
module to build the process frame corresponding to the
input actions of a process. Fig. 5 shows the setup rules
corresponding to the input actions of the example process
in Fig. 1.

The first rule corresponds to the input action accumulate
energy, whose inputs are instances of concepts energy and
mitochondrion. According to the process diagram, these
concepts have been represented by the SME as resources and
tools from the process metamodel , respectively. The
associated setup rule asserts this information in the prestate
of the action, declaring that all mitochondrion are tools and
energy is a resource.

For performance reasons (see the optimizations de­
scribed in Section 5 and empirically demonstrated in
Section 6), it is important that concept and attribute names
appear as grounded terms instead of as free variables.
Therefore, all concept attributes appear explicitly in the
synthesized code. Consequently, hasEnergyValue explicitly
appears both in the head and the body of the rule, ensuring
that the specific values of the attribute are also preserved in
the context of the prestate of the action.

The second rule corresponds to the input action muscle
contraction and situates all instances of concept muscle in the
prestate of the action. The metamodel entity used by the
SME to model such input is tool. This information is also
asserted in the prestate. Additionally, in this case, concept
muscle has been modeled by the SME without any attributes
in the underlying ontology, and therefore, the synthesized
code focuses only on its is-a relations.

4.2 Synthesis of Transition Rules between Action
Prestates and Poststates

Transition rules are a specific type of rules produced by the
code generation mechanism that describe the conditions
required to accomplish an action and to transit from its
prestate to its poststate. For example, Fig. 6 shows the
transition rule associated with atomic action muscle contrac­
tion (see English transcription below):

FORALL m, e, j
j: jumpgpostState(muscleContraction) AND
j: OUIPUTSpostState(muscleContraction) AND
muscleContraction[PROVIDES -> j]

SpostState(muscleContraction)
<-
mrmuscle SpreState(muscleContraction) AND
miTOOLSpreState(muscleContraction) AND
m[IS_USED_BY -> muscleContraction]

SpreState(muscleContraction) AND
e:energy@ preState(muscleContraction) AND
e:RESOURCE@preState(muscleContraction) AND
e[IS_CONSUMED_BY -> muscleContraction]
@preState(muscleContraction).

Fig. 6. Transition rule in jump example process.

when a muscle is used as a tool in a muscle contraction
and energy is a resource consumed in such muscle
contraction, then the muscle contraction provides a
jump as a result.

The code shows a simplified version of a transition rule,
where variable j appears only in the head of the rule and
should be existentially quantified. In terms of our formal­
ism, this means that the action (muscle contraction) produces
a resource of a given class (jump) that was not one of its
inputs but, quite on the contrary, has been produced from
those inputs, by transforming the process frame contained
in the action prestate, and added to its poststate. Since F-logic
does not allow existential quantifiers in the head of rules,
the code generation mechanism uses Skolem functions to
address this issue, following the F-logic proof theory in [17].

Transition rules describe, in the context of the action,
how inputs are taken from the prestate, transformed, and left
in the poststate as outputs . They also describe, in terms of
the process metamodel, the semantics of the relations of
inputs and outputs with the action itself, as well as the
changes in the process roles associated with them through­
out the process. Thus, transition rules are also instrumental
for the inference occurring in a process and, in addition,
their evaluation determines its control flow.

Transition rules can host domain-specific reasoning in
the form of domain rules. Transition rules alone allow
representing and reasoning with process-specific aspects
like the phases of the process, accumulate energy and muscle
contraction in the example, how resources like muscles are
used, and how the accumulated energy is finally consumed.
On the other hand, domain rules allow reasoning on aspects
like the available amount of energy to determine whether
such energy is sufficient to jump or not. By importing
domain rules into actions SMEs are able to use rule
inference capabilities within process models. We consider
two main types of rules for domain-level reasoning on the
process frame:

. Update rules, whose inference modifies the process
frame, transforming the prestate of an action into its
poststate.

. Check rules, which implement predicates used to
evaluate the process frame to compute control flow
conditions.

For example, the rule in Fig. 7 obtains the estimated
length of a jump using a certain amount of energy. The
code generation mechanism automatically rewrites it to
use it as an update rule in the context of action muscle

FORALL aJump, length, anEnergy, v
aJump:jump AND
aJump [hasLength -> length]

<-
anEnergy:energy AND
aJump:jump AND
anEnergy:energy[hasEnergyValue
multiply(length, 2, v).

-> V] AND

Fig. 7. Domain-level rule for jump length calculation.
FORALL length, anEnergy, v

aJump(out(hasLength,length):jump
@upciate (muscleContraction)

aJump(out(hasLength,length)[hasLength -> length]
@update(muscleContraction)

<-
anEnergy:energySpreState(muscleContraction) AND
anEnergy:energy[hasEnergyValue -> v]

@preState(muscleContraction) AND
multiply(length,2,v).

Fig. 8. Update rule for jump length calculation.

contraction (Fig. 8). Domain rules are applied within the
scope of the action, where they are imported. Thus, rule
bodies access facts from the prestate of the action. Similarly,
rule heads build the next process frame by asserting new
facts in the poststate.

In the example, occurrences of concept jump appear only
in the head of the transition rule, i.e., jump is an output of
action muscle contraction but not an input according to the
process model (see Fig. 1). So, skolemization is needed for
muscle contraction. In the case of update rules, existential
quantification is applied to the domain rule and not to the
transition rule that imports it. This enables the invocation of
the former from the body of the latter and simplifies the
code generation process. The result of the inference of the
update rule is encapsulated as an OntoBroker module, e.g.,
update(muscle contraction), ensuring rule stratification and
preventing undesired inference cycles.

We also use domain rules as check rules for the
evaluation of control flow conditions, like loop termination
and forks. In our example, action muscle contraction is
triggered only if there is sufficient energy for the muscle to
contract. Following the same principles as in the case of
update rules, the code of the rules implementing this kind
of predicates is rewrit ten. This enables control flow
evaluation by allowing invocation of such predicates from
within the body of transition rules against the prestate of the
action. The result of such evaluation is encapsulated in a
specific OntoBroker module for the particular action at
hand (Fig. 9).

Fig. 10 shows the resulting transition rule, including both
update (highlighted in light gray) and check (highlighted in
a darker gray) rules imported into the transition rule of
action muscle contraction. Note that the evaluation of the
false branch of the predicate enough energy for contraction
requires negating the invocation of the check rule. Rule
stratification prevents cycles introduced by negation, which
would require well-founded semantics evaluation and
reduce performance.

4.3 Synthesis of Precedence Rules for Data Flow
Management

The third type of process rules, precedence rules, focuses on
data flow. Precedence rules describe which actions can be
connected with each other by means of their outputs and

FORALL anEnergy, v
enough_energy_for_contraction(anEnergy)

@chec]c_enough_energy_f or_contraction (accumulateEnergy)
<-

anEnergy:energy SpreState(muscleContraction) AND
anEnergyienergy[hasEnergyValue -> v]

@preState(muscleContraction) AND
greater(v, 5).

Fig. 9. Check rule for energy level evaluation.
FORALL j, m, e, length

j:jump@postState(muscleContraction) AND
j:OUTPUT@postState(muscleContraction) AND
muscle contraction[PROVIDES -> j]

@postState(muscleContraction) AND
j[hasLength-> length]@postState(muscleContraction)

<^
m:muscle@preState(muscleContraction) AND
m:TOOL@preState(muscleContraction) AND
m[IS_USED_BY -> muscleContraction]

@preState(muscleContraction) AND
e:energy@ preState(muscleContraction) AND
e:RES0URCE8preState(muscleContraction) AND
e[IS_CONSUMED_BY -> muscleContraction]

@preState(muscleContraction) AND
enough_energy_for_contraction(e)

@chec]c_enough_energY_for_contraction (accumulateEnergy)

AND j:jump@update(muscleContraction) AND

j[hasLength -> length]Supdate(muscleContraction).

Fig. 10. Extended transition rule (incl. check and update).
FORALL e, V

e:energygpreState(muscleContraction) AND
e[hasEnergyValue -> v]@preState(muscleContraction)

<-
e:energy@postState(accumulateEnergy) AND
e[hasEnergyValue -> v]@postState(accumulateEnergy).

Fig. 11. Precedence rule in jump example process.

inputs. Upon reasoning, these rules infer the prestate of an
action whenever all the poststates of its preceding actions are
enabled. The so inferred precedence relation between
actions is transitive. Precedence rules contribute to shift
the process frame from the context of just executed actions
to subsequent actions, building the prestates of the latter
from the poststates of the former.

The code generation mechanism analyzes the directed
graph associated with the process diagram and detects the
actions that are connected with the current one, i.e., those
that produce as output one or several process resources that
are part of the input of the current action. In the example,
accumulate energy a n d muscle contraction a r e c o n n e c t e d b y

energy, an output of the former and an input of the latter.
For each pair of connected actions, a precedence rule is
produced that implements such connection (Fig. 11).

4.4 Code Synthesis for Iterative Actions
In the previous sections, we have described setup, transi­
tion, and precedence rules. In particular, we have shown
how transition and precedence rules can be produced from
SME-authored process diagrams to implement data and
control flow, based on the management of the process
frame. In the case of iterative actions, as defined in the
process metamodel, the number and complexity of the
transition rules to be produced increases and additional
issues need to be considered to endow iterative actions with
the required operational semantics.

In the process metamodel, we define iterative actions as
actions that are repeatedly executed until a termination
condition holds. Iterative actions repeatedly trigger some
inference that modifies the knowledge base and evaluates

FORALL e, V
e:energy@postState(0,iteration,accumulateEnergy) AND
e[hasEnergyValue - >v]
@postState(0,iteration,accumulateEnergy)

<-
e:energy@preState(accumulateEnergy) AND
e[hasEnergyValue -> v]@preState(accumulateEnergy).

Fig. 12. Iterative action—base case rule.

such condition. In our code synthesis mechanism, the
process rules corresponding to an iterative action decom­
pose it into a series of atomic actions, one per iteration,
which encapsulate the process frame in an OntoBroker
module associated to that particular iteration.

As we will show in the following code samples, such
modules are parameterized and represented by the triplet
(i, iteration, action name), where i indicates the iteration
whose frame is encapsulated in such module, iteration is
a fixed tag, which denotes that the module is used in
the context of an iteration, and name stands for the
iterative action to which the present iteration belongs.
The module corresponding to an iteration is related to the
module of the previous by incrementing its counter, i.e.,
in+i = in + ^, thus enabling transfer of the computed
results between their respective prestates and poststates.

Iterative actions do not result into a single transition rule
upon code synthesis. On the contrary, three different types
of transition rules are required with respect to the case of
a t o m i c ac t ions : base case, iteration, a n d interface r u l e s , as

graphically represented in Fig. 14.
Base case rules (Fig. 12) initiate the loop, preparing the

prestate of the first iteration. The prestate of the original
iterative action becomes the prestate of the first action
resulting from its decomposition.

Iteration rules (Fig. 13) define the action that is iteratively
executed, taking its prestate from the poststate of the previous
iteration and storing its output into the prestate of the next.
Additionally, iteration rules evaluate the termination con­
dition of the iterative action. Both the predicate evaluating
the termination condition and the action are implemented

FORALL e, i, v
e:energy@postState(i,iteration,accumulateEnergy) AND
e[hasEnergyValue -> v]

@postState(i,iteration,accumulateEnergy)
<-
e[hasEnergyValue->v]
@update_hasEnergyValue(i,iteration,accumulateEnergy) AND

keep_increasing(e)
@check_keep_increasing(i,iteration, accumulateEnergy).

FORALL e, i, v, vO, iO
e[hasEnergyValue -> v]

@update_hasEnergyValue(i,iteration,accumulateEnergy)
<-
e:energy@postState(iO,iteration,accumulateEnergy) AND
e[hasEnergyValue -> vO]

@postState(iO,iteration,accumulateEnergy) AND
add(vO, 1, V) AND
add(iO, 1, i).

FORALL e, v, i, iO
keep_increasing(e)

@check_keep_increasing(i,iteration,accumulateEnergy)
<-
less(v, 5) AND
e:energy@postState(iO,iteration,accumulateEnergy) AND
e[hasEnergyValue -> v]

@postState(iO,iteration,accumulateEnergy) AND
add(iO, 1, i).

Fig. 14. Types of transition rules in iterative actions.

as domain rules. This type of rules implements the actual
breakdown of the original iterative action into a sequence
of actions for each iteration.

Fig. 13 shows the iteration rule itself plus the domain
(check and update) rules implementing the action executed
on the process frame at each iteration and the predicate
evaluating the termination condition. In the example, the
check rule implementing predicate keep_increasing/1 evalu­
ates whether or not the value of attribute hasEnergyValue of
the instances of concept energy is less than 5. On the other
hand, the update rule increases the value of hasEnergyValue
at each iteration.

Since the prestate to be considered is not informed by the
poststate of the preceding action but of the previous iteration
instead, domain rules are rewritten slightly differently when
used in iterative actions with respect to the case of atomic
actions. In the example, inference results for update and
check rules are, respectively, encapsulated in the Ontobroker
modules update_hasEnergyValue(i,iteration,accumulateEnergy)
and check_keep_increasing(i,iteration,accumulate_energy).

Interface rules (Fig. 15) transfer the results from the
poststate of the last iteration to the poststate of the overall
iterative action to feed the prestate of subsequent actions.
These rules validate that the prestate of the iterative action
is fully and correctly instantiated and connect the output
of the computation produced throughout the different
iterations with its actual poststate. Interface rules also work
at the level of the process metamodel, updat ing the roles

FORALL e, i, v, m
e:energy@postState(accumulateEnergy) AND
e:RESOURCEgpostState(accumulateEnergy) AND
e[hasEnergyValue -> v]@postState(accumulateEnergy) AND
accumulateEnergy[PROVIDES->e]SpostState(accumulateEnergy)

m:mitochondrion@preState(accumulateEnergy) AND
m:TOOL@preState(accumulateEnergy) AND
e:energy@preState(accumulateEnergy) AND
e:RESOURCEgpreState(accumulateEnergy) AND
e[IS_REQUIRED_BY -> accumulateEnergy]
gpreState(accumulateEnergy) AND

m[IS_USED_BY -> accumulateEnergy]
GpreState(accumulateEnergy) AND

e[hasEnergyValue -> v]
@postState(i,iteration,accumulateEnergy) AND

NOT EXISTS iO, vO (

e[hasEnergyValue -> vO]

@postState(iO,iteration,accumulateEnergy) AND

greater(10, i)).

Fig. 13. Iterative action—iteration rules. Fig. 15. Iterative action—interface rule.

associated with input and output process resources as well
as their relations with the action.

Interface rules work in a way analogous to transition
rules in atomic actions. They trigger the execution of the
loop and detect its termination to propagate changes to
subsequent actions. We use negat ion a n d existential
quantification (highlighted in Fig. 15) to retrieve only the
outcomes of the last iteration as the outcome of the whole
action. Those outcomes are, thus, stored in the poststate of
the overall iterative action. Rule stratification a n d a
modular approach that encapsulates each iteration prevent
undesired recursion and, therefore, well-founded semantics
evaluation mode.

5OPTIMIZATION OF THE SYNTHESIZED PROCESS
CODE

Our mechanism for the synthesis of code in the F-logic KRR
language aims at minimizing the amount of process rules
that need to be executed by OntoBroker in well-founded
evaluation mode, preventing long reasoning times and
memory consumption problems due to the overall complex­
ity of the knowledge base. We accomplish such objective by
a combination of the following two optimization methods.

5.1 Optimization 1 : Prevention of Second Order
Reasoning requires F-logic predicate symbols to be trans­
formed into Datalog. This is done through the Lloyd-Topor
transformation [20] and can be achieved in two different
ways. The first approach translates concept and attribute
names into terms of a priori defined predicates like
subclassOf/2, instanceOf/2, and attributeType/3, producing
literals like subclassOf(mammal, animal). Since concepts and
attributes are always arguments, the resulting predicates
will always be valid, even when concept and attribute
names are variables, supporting second-order reasoning
queries like all the instances of class mammal.

However, because the number of these predicates is
small, all knowledge entities of the same type are joined
together by the reasoner, e.g., the internal table correspond­
ing to subclassOf will contain all the tuples of the classes
from the knowledge base with an inheritance relation that
connects them. The number of such tuples is potentially
large. This hinders indexation and retrieval, because they
cannot be uniquely identified by the name of the predicate
(subclassOf), which is common to all of them. Consequently,
reasoning can encounter performance problems in large
knowledge bases in terms of time and memory consumed
and of cycles over negation or aggregations, requiring the
use of well-founded semantics.

The second method translates statements that represent
instance-of and attribute-value relations into a form that
introduces specific predicates for individual concepts and
attributes. This corresponds to the standard interpretation
of first order logic for these primitives. For example, Peter
is a person is mapped to person(Peter). This more efficient
representation maps concepts and attributes to predicates
and can be enabled only if all concept and attribute names
in the knowledge base are ground, i.e., if there is no need
for second-order reasoning. We follow this approach in
the F-logic code automatically produced for processes,

p(X) :
r(X) :
q (a) .
q (b) .
t (a) .

- q (X) ,
- t (X) .

n o t r (X) . (1)
(2)

Fig. 16. Example of stratified logic program.

preventing attributes and concepts from appearing as free
variables in the code and leveraging such optimization.

5.2 Optimization 2: Maximizing Stratified Code
In the presence of negation, inference rules implementing
predicates used in negated subgoals of other rules must be
completely evaluated before the evaluation of the rules
depending on such predicates occurs. This usually requires
costly evaluation modes like well-founded evaluation.
However, if the corresponding Horn logic program follows
a stratified model we can assure that it also follows a well-
founded model and this particular evaluation mode is no
longer necessary.

Dependency graphs are used to evaluate whether or not
a logic program is stratified. In dependency graphs: 1) each
predicate is a node, 2) edges from predicate p to predicate q
occur if both occur in a rule, where q is in the head and p
appears in the body, and 3) edges with negation are
marked. If no cycles with negative edges appear, then the
program is stratified and well founded.

A predicate is in the same stratum as all the predicates
connected with it through positive edges in the dependency
graph. If there is a negative edge leading from a predicate p
to a predicate q, the stratum of q is one higher than the
stratum of p . For example, if rule (1) in Fig. 16 is executed
first, producing p(a) and p(b), the application of the known
facts to rule (2) would produce r(a) as a result. However,
r(a) should have excluded p(a) from the solution. By
calculating the strata in a logic program, the reasoning
engine evaluates the different rules in the right order,
starting wi th the lowest s t ra tum. With not stratified
programs, this is not possible and well-founded evaluation
is required.

6EVALUATION

This work was evaluated by an independent team in the
context of project Halo.10 A total of six knowledge formula­
tion (KF) SMEs participated, who formulated knowledge on
the selected evaluation syllabi in the scientific domains of
Chemistry and Biology and tested reasoning with it. These
knowledge bases were later used by five Question Formula­
tion (QF) SMEs, with the supportof QF KEs, who formulated
selected AP-level questions that were in tended to be
answered by the system. After receiving a limited amount
of training, SMEs were isolated from developers, evaluators,
and other SMEs and formulated the knowledge contained in
the syllabi.

The scope of this evaluation went beyond usability
aspects in a formative sense and aimed at providing
empirical assessment of the coverage and performance of
the system in a setting that is representative in terms of the
profile of the recruited SMEs and their assigned tasks. In the

10. Vulcan Inc.’s Project Halo ht tp: / /www.projecthalo.com.

http://www.projecthalo.com

TABLE 2
Processes Modeled by the Evaluation KF SMEs

TABLE 3
Performance of C1 and C2 versus Default C0

SME2(Biology)
SME3(Biology)

SME5(Chemistiy)
Total

Number of processes modeled
2
6
3
11

particular case of process knowledge, the evaluation paid
special attention to both direct SME feedback on process KF
and reasoning performance, including the different optimi­
zations applied to the mechanism for process code synthesis
described herein. In this paper, we focus on the latter
(reasoning performance evaluation), while the former,
including complete usability and utility studies, was
described in detail in [15].

The evaluation syllabi are summarized next:

. Chemistry: Sections 3.1 and 3.2 (pp . 75-83) on
Stoichiometry, 4.1-4.4 (pp . 113-133) on aqueous
reactions and solutions, and 16.1-16.11 (pp. 613-
653) on chemical equilibrium, from [8].

. Biology: p p . 112-124, p p . 217-223, and p p . 239-245 on
cell structure and cell processes, including mitosis
and meiosis, and p p . 293-201 and p p . 304-311 on
D N A structure and D N A structure processes,
including D N A replication, repair, transcription,
and translation, from [9].

Our SMEs modeled 806 concepts, 741 instances,
260 attributes, 273 relations, 610 rules, and 11 processes.
The mechanism for process code synthesis generated an
average of nine knowledge base modules per process,
where action prestates and poststates and results from
check and update process rules, where stored before the
final results flowed into the main knowledge base
module . Table 2 shows the distribution of the processes
modeled by the SMEs across the domains.

As expected, we found in Biology (SME2 and SME3) the
largest population of processes among the three domains.
SME5 also produced a considerable number of process
models in Chemistry, typically a poorer domain in terms of
process knowledge. All process models were formulated
by SMEs without intervention of KEs. SMEs only required
initial training and sporadic support in the utilization of
the tools.

The quality of the resulting knowledge bases was
evaluated through the testing and debugging facilities of
the system to check that SME-generated process models
actually behaved as expected during execution. This tooling
allows SMEs to create test sets containing process inputs
and expected outputs , invoking the process, and comparing
their results against expected results. As shown in [15], at
modeling time the process editor continuously checks the
compliance of process models with respect to the process
formalism. This provides SMEs with modeling guidelines
that make the process formulation task easier and at the
same time prevents incorrect processes from being saved
into the knowledge base and ensures the generation of
stratified code. The testing and debugging tool showed
82 percent of the process models executed correctly,
showing evidence of the high expressiveness and coverage

Query
SME3-qO
SME3-ql
SME3-q2
SME3-q3
SME3-q4
SME3-q5
SME3-q6
SME3-q7
SME3-q8
SME3-q9
SME3-qlO
Average
Median

Min
Max

CO
31
63
31
47
15
32
203
63
47
62

203
79,7
47
15

203

CI
0
16
16
16
0
16

219
31
31
32
218
59,5
16
0

219

s(Cl)
0,00
0,25
0,52
0,34
0,00
0,50
1,08
0,49
0,66
0,52
1,07
0,75
0,34
0,00
1,08

C2
16
16
16
16
0
0

234
31
16
16

203
56,4
16
0

234

s(C2)
0,52
0,25
0,52
0,34
0,00
0,00
1,15
0,49
0,34
0,26
1,00
0,71
0,34
0,00
1,15

of the approach. The remaining 18 percent process models
were not executed either because they had design errors,
and consequently were not saved in the knowledge base, or
because the required preconditions for their execution d id
not hold.

As to execution performance, we studied the effects of
the application of the optimizations described in Section 5
to the F-logic code resulting from the process models
formulated by the SMEs. Since the Biology knowledge base
produced by SME3 contained the largest sample of process
knowledge produced in the evaluation, we focused on it to
measure response times of a representative sample of ten
queries with three different configurations of OntoBroker
combining different uses of well-founded evaluation and
second-order reasoning . From the sample types of process
reasoning introduced in Section 1, q1 deals with reasoning
about process entities, q7-q10 refer to intermediate results
while collecting final results, q2 illustrates reasoning on
process stages, and q0, q3, and q4 aim at retrieving
additional process metadata.

Among such configurations, C0 represents the default,
with the well-founded evaluation mode enabled. C1 and C2
apply the optimization methods described in Section 5. C1
aims at increasing performance with respect to C0 by
enabl ing concept a n d at t r ibute names g r o u n d while
C2 extends C1 by additionally disabling well-founded
evaluation.

The results of executing this query set with the three
different configurations are shown in Table 3 . Response
times are measured in milliseconds (values equal to 0
correspond to queries with response times lower than
1 ms). Shaded columns s(C1) and s(C2) show the speedup
obtained with respect to C0 (values inferior to 1 indicate
performance increase) by applying configurations C1 and
C2, respectively. The table shows an average performance
improvement of 25 percent for C1 and almost 30 percent
for C2. The main improvement factor is the consequence of
concept and attribute names being ground both in C1 and
C2. C2 adds little performance beyond C1 because the
code generation mechanism produces most of the code in
well-stratified form, hence reducing the need of well-found
semantics. Furthermore, C1 still allows applying well-
founded evaluation in the eventuality of nonstratified
code. It can be concluded that configuration C1 shows an

appropriate balance between safeness and performance for
the generated code, with a significant speedup over the
default configuration C0.

7CONCLUSIONS

We have presented a process representation formalism and
an optimized method for the automatic generation of high-
performance, executable process models in a knowledge
representation language (F-logic). Our method bridges the
gap between processes modeled graphically at the knowl­
edge level by SMEs and their formal representation, which
follows the formalism and is grounded in the language.
Evaluation results provide evidence that our approach
effectively and efficiently serves this purpose, providing
process models with an operational semantics so that
process-related reasoning can be supported. The insight
obtained has contributed to configure process work in
subsequent stages of the Halo project. However, exciting
research challenges about the process knowledge type still
need to be addressed that will be subject of our research
work in the coming years.

The analysis of the AP questions used in this paper to
illustrate reasoning with process knowledge and specific
comments from SMEs during evaluation evidences a lacking
support for QF to enable SMEs to formulate questions
involving processes in natural and expressive ways. Current
QF approaches based on controlled vocabularies, like [12],
d o not completely address the specific problem of querying
process knowledge nor exploit all the expressive capabilities
of process-specific representation frameworks like the one
presented herein. The translation of process-related ques­
tions, expressed in natural or controlled language, into
formal queries with minimal expressivity loss remains a
problem that still needs to be addressed.

During the evaluation, it also became evident that the
application of the methods presented in this paper to other
domains , like business or software development, will
benefit from extending the metamodel and the process
code generation mechanism with new control flow primi­
tives that suppor t more complex process behavioral
patterns, like parallelism or activity decomposition. This
will allow exploiting the underlying process formalism in a
richer way that can effectively support process reasoning in
new domains.

Finally and most interestingly, we anticipate research
challenges dealing with the acquisition and sharing of
knowledge by online user communities, their representa­
tion and reasoning, raising problems like non monotonicity,
inconsistencies between distributed but interacting knowl­
edge bases, performance, and scalability. A particularly
interesting research problem, which is especially relevant in
distributed and collaborative environments for knowledge
acquisition, deals with the detection of decay of higher level
knowledge entities, especially processes, derived from
eventual changes in the knowledge base that may render
such knowledge entities useless [28]. Answer Explanation
methods able to appropriately keep track of process
reasoning mechanisms will be important both to detect
process decay and to provide SMEs with interpretations of
such reasoning at the required level of abstraction.

ACKNOWLEDGMENTS

This work was funded by Vulcan Inc.’s project Halo.

REFERENCES
[I] J. Angele, “How to Write F-Logic Programs,” technical report,

Ontoprise GmbH, 2005.
[2] F. Bancilhon, D. Maier, Y. Sagiv, and J.D. Ullman, “Magic Sets and

Other Strange Ways to Implement Logic Programs,” Proc. Fifth
ACM SIGACT-SIGMOD Symp. Principles of Database Systems
(PODS), 1986.

[3] K. Barker, J. Blythe, G. Borchardt, V. Chaudhri, P. Clark, P. Cohen,
J. Fitzgerald, K. Forbus, Y. Gil, B. Katz, J. Kim, G. King, S. Mishra,
K. Murray, C. Otstott, B. Porter, R. Schrag, T. Uribe, J. Usher, and
P. Yeh, “A Knowledge Acquisition Tool for Course of Action
Analysis,” Proc. 15th Innovative Applications of Artificial Intelligence
Conf. (IAAI ’03), 2003.

[4] V.R. Benjamins and M. Aben, “Structure-Preserving Knowledge-
Based System Development through Reusable Libraries: A Case
Study in Diagnosis,” Int’l J. Human-Computer Studies, vol. 47, no. 2
pp. 259-288, 1997.

[5] C. Bock and M. Gru¨ninger, “PSL: A Semantic Domain for Flow
Models,” Software and Systems Modeling J., vol. 4, pp . 209-231, 2005.

[6] A. Bonner and M. Kifer, “An Overview of Transaction Logic,”
Theoretical Computer Science, vol. 133, no. 2, pp . 205-265, Oct. 1994.

[7] S. Brandano, “The Event Calculus Assessed,” Proc. IEEE Eighth
Int’l Symp. Temporal Representation Reasoning (TIME), pp . 7-12,
2001.

[8] T. Brown, H. Lemay, B. Bursten, and J. Burdge, Chemistry: The
Central Science, ninth ed. Prentice Hall, 2002.

[9] N. Campbell and J. Reece, Biology, sixth ed. Pearson Higher
Education, 2001.

[10] V. Chaudhri, B. John, S. Mishra, J. Pacheco, B. Porter, and A.
Spaulding, “Enabling Experts to Build Knowledge Bases from
Science Textbooks,” Proc. Fourth Int’l Conf. Knowledge Capture (K-
CAP), 2007.

[II] W.J. Clancey, “Heuristic Classification,” Artificial Intelligence,
vol. 27, pp. 289-350, 1985.

[12] P. Clark, S. Chaw, K. Barker, V. Chaudhri, P. Harrison, J. Fan, B.
John, B. Porter, A. Spaulding, J. Thompson, and P. Yeh,
“Capturing and Answering Questions Posed to a Knowledge-
Based System,” Proc. Fourth Int’l Conf. Knowledge Capture (KCAP),
2007.

[13] E. Feigenbaum, “The Art of Artificial Intelligence: Themes and
Case Studies of Knowledge Engineering,” Proc. Fifth Int’l Joint
Conf. Artificial Intelligence, 1977.

[14] A. Gibbons, Algorithmic Graph Theory. Cambridge Univ. Press,
1985.

[15] J.M. Go´mez-Pe´rez, M. Erdmann, M. Greaves, O. Corcho, and R.
Benjamins, “A Framework and Computer System for Knowledge-
Level Acquisition, Representation, and Reasoning with Process
Knowledge,” Int’l J. Human-Computer Studies, vol. 68, pp . 641-668,
Oct. 2010.

[16] B.C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler, “Just the Right
Amount: Extracting Modules from Ontologies,” Proc. Sixth Int’l
Conf. World Wide Web (WWW ’07), pp . 717-726, May 2007.

[17] M. Kifer, G. Lausen, and J. Wu, “Logical Foundations of Object-
Oriented and Frame-Based Languages,” J. ACM, vol. 42, pp . 741-
843, 1995.

[18] M. Kro¨tzsch, D. Vrandecic, M. Vo¨lkel, H. Haller, and R. Studer,
“Semantic Wikipedia,” J. Web Semantics, vol. 5, pp. 251-261, 2007.

[19] S. Liang, P. Fodor, H. Wan, and M. Kifer, “OpenRuleBench: An
Analysis of the Performance of Rule Engines,” Proc. 18th Int’l Conf.
World Wide Web (WWW ’09), pp . 601-610, 2009

[20] J.W. Lloyd and R.W. Topor, “Making Prolog More Expressive,”
J. Logic Programming, vol. 1, no. 3, pp. 225-240, 1984.

[21] J. McDermott, “Preliminary Steps Towards a Taxonomy of
Problem-Solving Methods,” Automating Knowledge Acquisition for
Expert Systems, S. Marcus, ed., pp. 225-255, Kluwer, 1988.

[22] D.L. McGuinness and F. van Harmelen, “OWL Web Ontology
Language Overview,” W3C Recommendation, Feb. 2004.

[23] D. Morley and K. Myers, “The SPARK Agent Framework,” Proc.
Third Int’l Joint Conf. Autonomous Agents and Multi Agent Systems
(AAMAS ’04), pp . 712-719, 2004.

[24] A. Newell, “The Knowledge Level,” Artificial Intelligence, vol. 18,
no. 1 pp. 87-127, 1982.

[25] K. Panton, P. Miraglia, N. Salay, R. Kahlert, D. Baxter, and R.
Reagan, “Knowledge Formation and Dialogue Using the Kraken
Toolset,” Proc. 14th Conf. Innovative Applications of Artificial
Intelligence (IAAI ’02), pp . 900-905, 2002.

[26] Z.W. Pylyshyn, The Robot’s Dilemma: The Frame Problem in Artificial
Intelligence. Norwood, 1987.

[27] D. Rajpathak, E. Motta, Z. Zdrahal, and R.K Roy, “A Generic
Library of Problem Solving Methods for Scheduling Applica­
tions,” IEEE Trans. Knowledge and Data Eng., vol. 18, no. 6, pp . 815-
828, June 2006.

[28] D.D. Roure et al., “Towards the Preservation of Scientific Work­
flows,” Proc. Eighth Int’l Conf. Preservation of Digital Objects (iPRES
’11), 2011.

[29] L.K. Schubert and C.H. Hwang, “Episodic Logic Meets Little Red
Riding Hood: A Comprehensive, Natural Representation For
Language Understanding,” Natural Language Processing and Knowl­
edge Representation: Language for Knowledge and Knowledge for
Language, L. Iwanska and S.C. Shapiro, eds., pp . 111-174, MIT/
AAAI Press, 2000.

[30] M. Thielscher, “Introduction to the Fluent Calculus,” Electronic
Trans. Artificial Intelligence, vol. 2, no. 34, pp. 179-192, 1998.

[31] A. Valente andTeam Omniscience, Project Halo Analysis Report,
May 2004.

[32] A.V. Gelder, K.A. Ross, and J.S. Schlipf, “The Well-Founded
Semantics for General Logic Programs,” J. ACM, vol. 38, no. 3,
pp. 620-650, 1991.

