
1

The BoND-tree: An Efficient Indexing Method for
Box Queries in Non-ordered Discrete Data

Spaces
Changqing Chen Alok Watve Sakti Pramanik Qiang Zhu

Abstract —Box queries (or window queries) are a type of query which specifies a set of allowed values in each dimension. Indexing
feature vectors in the multi-dimensional Non-ordered Discrete Data Spaces (NDDS) for efficient box queries is becoming increasingly
important in many application domains such as genome sequence databases. Most of the existing work in this field targets the similarity
queries (range queries and k-NN queries). Box queries, however, are fundamentally different from similarity queries. Hence the same
indexing schemes designed for similarity queries may not be efficient for box queries. In this paper, we present a new indexing
structure specifically designed for box queries in the NDDS. Unique characteristics of the NDDS are exploited to develop new node
splitting heuristics. For the BoND-tree, we also provide theoretical analysis to show the optimality of the proposed heuristics. Extensive
experiments with synthetic data demonstrate that the proposed scheme is significantly more efficient than the existing ones when
applied to support box queries in NDDSs. We also show effectiveness of the proposed scheme in a real world application of primer
design for genome sequence databases.

Index Terms —Box Query, Non-ordered Discrete Data, Categorical Data, Indexing

✦

1 INTRODUCTION

BOX query in NDDS is an important type of query which
is defined by specifying a set of allowed values in

each dimension. These queries are useful in many diverse
applications such as bioinformatics, biometrics, data mining
and E-commerce. In general, indexes are used to achieve
improved response time for query execution in large databases.
In this paper we propose an effective indexing scheme for
implementing box queries in NDDS for large databases. There
are many existing indexing schemes for large databases for
continuous data spaces (CDS). These indexing schemes are
not suitable for queries in NDDS because of the fundamental
differences between the two spaces. Indexing techniques inthe
CDS rely on the fact that the indexed values can be ordered
in each dimension which is not the case in NDDS. However,
NDDS has certain value discrimination properties which can
be exploited for efficient implementation of indexes in NDDS.
The proposed work exploits these properties of NDDS to
develop a new indexing scheme, BoND-tree, targeted towards
improving the performance of box queries.

In this paper we focus on the application of box queries
for primer design in genome sequence databases. A box
query in a genome sequence database of q-grams (fixed
length overlapping short sequences created from the database
of variable length long genome sequences) allows a set of
characters in each position of a q-gram. For example, a box

• C. Chen, A. Watve and S. Pramanik are with the Department of Computer
Science and Engineering, 3115 Engineering Building, Michigan State
University, MI 48824-1226, USA
Email : {chencha3, watvealo, pramanik}@cse.msu.edu

• Q. Zhu is with the Department of Computer and Information Science,
University of Michigan, Dearborn, MI 48128, USA
Email : qzhu@umich.edu

query in a database of three character long q-grams can
be {{A}, {G, T }, {C, T }}. This query fetches those q-grams
from the database which have the character A in position one,
G or T in position two and C or T in position three. Thus, the
box query is equivalent to searching for four individual search
keys{AGC,ATC,AGT,ATT }.

A primer in molecular biology is a fixed length short
sequence (strand of nucleotides) that acts as a terminus for
a sub-sequence of a genome sequence. A primer is used
to search a database of variable length genome sequences.
For search purpose, we can consider genome sequences as
a database of q-grams. Developing a good primer is critical
in many genome applications. Although a genome sequence
contains one of the four characters{A,G, T, C} in each
position, a primer may allow more than one characters in some
positions. Such primers are called degenerate primers.

In the process of primer design, a biologist first generates
a set of candidate primers which may be degenerate and
then eliminate those which cannot be used, by matching the
primer against a database of genome sequences. Traditionally,
this search is performed by linearly scanning the genome
sequence files. However, an index scheme like the BoND-
tree can significantly improve the search performance. A
candidate primer can be viewed as a box query having one
or more (in case of degenerate primers) characters along each
dimension. Further, techniques such as DNA synthesis or PCR
(Polymerase Chain Reaction) need two primers to define the
region of the sequence that is to be processed (e.g., amplifies
in case of PCR). The two candidate primers can be combined
together to form a larger box query which can accelerate the
search. In this paper we present performance of Bond-tree in
primer design applications.

Rest of the paper is organized as follows. We present



2

relevant work in this area in the next section. Section 3
introduces the relevant concepts and notations used for our
indexing scheme in the NDDS. Section 4 introduces the new
heuristics to support efficient box queries in the NDDS based
on our theoretical analysis. Section 5 presents the BoND-
tree, including its tree structure, construction algorithms and
relevant operations. Section 6 describes further improvement
of the BoND-tree performance based on the compression
of index nodes. Section 7 reports our experimental results.
Concluding remarks follow in the last section.

2 RELATED WORK

Many indexing schemes have been proposed for the CDS.
Some well-known CDS indexing structures are the K-D-B
tree [22], the R-tree [13], the R*-tree [2], the X-tree [4] and
the LSDh-tree [14]. Indexing multi-dimensional vectors inthe
NDDS is a relatively new problem.

Traditional string indexing techniques such as Tries [9] and
its derivatives (e.g., the suffix tree [27] and the ternary search
tree [3], [9]) could be applied to discrete data when the vectors
to be indexed could be treated as strings. However, they are
in-memory indexing structures which could not be utilized
to support large scale data sets. There exist disk-based string
indexing structures such as the prefix B-tree [1] and String
B-tree [12] but they rely on the fact that indexed strings could
be sorted - a property that does not exists in the NDDS.

The vantage-point tree [15], [29] and its variants like the
MVP tree [5] are indexing techniques designed for the metric
space [7]. As a special case of the metric space, the vector
space [25], [28] including NDDSs could also be indexed by
metric indexing structures. But a major drawback of these
techniques is that they are static main memory-based structures
which focus on reducing the number of distance computations.
As a dynamic metric space indexing structure designed for
large scale databases, the M-tree [8] is another indexing
approach which could be applied to NDDSs. However, it
could only use the relevant distance between vectors when
creating the indexing structure. The special characteristics of
the NDDS such as occurrences and distributions of data points
on each dimension are totally ignored by the M-tree (as well
as other metric space indexing methods), which could affectits
retrieval performance when compared to indexing techniques
designed specifically for the NDDS. It has been shown that
when retrieving data for box queries the M-tree performanceis
significantly worse than that of the ND-tree [20], a technique
recently proposed to support efficient indexing of the NDDS.

De Vries et al. [10] propose an interesting data decomposi-
tion technique for k-NN search in real valued data. They divide
the indexed dimensions vertically to create slices of dimen-
sions. Then each slice is stored sequentially. For k-NN queries,
observing only first few dimensions provides enough informa-
tion to prune most of the data records. Hence, despite lack
of any conventional indexing structure, this method provides
good performance for high dimensional data. However, index-
ing techniques that work well for similarity queries do not
necessarily support box(window) queries efficiently. Thisis
because query conditions for box queries are specified for each

dimension separately - any indexed vector which has conflicts
with the query condition on any dimension is pruned away
immediately from the result set. On the other hand, similarity
queries are interested in vectors similar to the given query
vector. The concept of similarity (or dissimilarity) between
vectors are calculated based on the information combined from
all dimensions. As a result, when organizing vectors in an
indexing structure, heuristics efficient for similarity queries
cannot guarantee good performance for box queries. In fact,
in this paper we propose two new heuristics for distributing
indexed vectors in a new index tree, i.e. the BoND-tree, to
support efficient box queries. Although the two new heuristics
may not be intuitive at a first glance, both our theoretical
analysis and experimental results demonstrate that they are
very effective in supporting box queries in the NDDS. We
also show that for a real world application of primer design
for genome sequence database, our proposed scheme can be
applied with a significant improvement in performance.

3 BASIC CONCEPTS

In this section we introduce critical geometric concepts ex-
tended from the CDS to the NDDS. Like the indexing
techniques in [20] and [21], our new BoND-tree uses these
geometric concepts to optimize the organization of indexed
vectors during its construction time.

A Non-ordered Discrete Data SpaceΩd is a multi-
dimensional vector data space, whered is the total number
of dimensions inΩd. Each dimension inΩd has an alphabet
Ai(1 ≤ i ≤ d) consisting of a finite number of characters,
where no natural ordering exists among the characters.

A rectangleR in Ωd is defined asR = S1 × S2 × S3 . . .×
Sd, whereSi ⊆ Ai. Si is called thei-th component setof R.
The edge lengthof R along dimensioni is defined as|Si|,
which is the cardinality of setSi. If ∀i ∈ {1, 2, . . . , d}, |Si| =
1, R degrades to a vector inΩd. Thearea of a rectangleR is
defined asR =

∏d
i=1 |Si|. The overlapof a set of rectangles

is defined as the Cartesian product of the intersections of all
the rectangles’ component sets on each dimension.

Given a set of rectanglesSR = {R1, R2, . . . , Rj}, if
∀i ∈ {1, 2, . . . , d} and∀t ∈ {1, 2, . . . , j}, the i-th component
set of a rectangleR contains thei-th component set ofRt, R
is a discrete bounding rectangleof SR. A discrete minimum
bounding rectangle(DMBR) of SR is such a discrete bound-
ing rectangle that has the least area among all the discrete
bounding rectangles ofSR. The spanof a DMBR R along
dimensioni is defined as the edge length ofR along dimension
i.

In order to control the contribution of each dimension in
the geometric concepts such as the area, a normalization is
applied (i.e., the edge length of each dimension is normalized
by the domain size of the corresponding dimension). Detailed
definition and explanation of these concepts could be found
in [21].

4 OPTIMIZATION OF INDEX TREES FOR BOX
QUERIES IN THE NDDS
We start by discussing box queries in the NDDS in section
4.1. In section 4.2 we present a method to calculate estimated



3

Symbol Explanation
d Number of dimensions
Ωd d-dimensional NDDS
Ai Alphabet size of theith dimension
R Rectangle inΩd

Di Component ofR along theith dimension
SR Set of rectangles.inΩd

q A fixed box query
Q Random box query inΩd

w Query window ofq
W Query window ofQ

TABLE 1: Table of important symbols used in the paper
box query I/O for hierarchical indexing structures. In section
4.3 we discuss the splitting problem of index trees and show
that box queries require specifically designed heuristics when
building a tree. New heuristics to support efficient box queries
in the NDDS are introduced in section 4.4.

4.1 Box Queries in the NDDS
A box queryq on a data set in an NDDS is a query which
is specified by listing the set of values that each dimension is
allowed to take. More formally, given an NDDSΩd, suppose
qci ⊆ Ai (Ai is the alphabet ofΩd on dimensioni, 1 ≤ i ≤ d)
is the set of values allowed by a box queryq along dimension
i, we usew =

∏d

i=1 qci to represent the query window of
box queryq. Any vectorV = (v1, v2, . . . , vd) insidew (i.e.,
vi ∈ qci, ∀ i ∈ {1, 2, . . . , d}) is returned in the result of the
box queryq.

Given a hierarchical indexing structure, supposeF (N, q) is
a boolean function which returns true when and only when the
query window of a box queryq overlaps with the DMBR of a
nodeN in an index tree, box queryq is typically evaluated as
follows: starting from the root nodeR (let N = R), the query
window of q is compared with the DMBRs of all the child
nodes ofN . Any child nodeN ′ for which F (N ′, q) = 1 is
recursively evaluated using the same procedure. However, if q
does not overlap with a child nodeN ′′ (i.e., F (N ′′, q) = 0),
N ′′ and its child nodes can be pruned from the search path.
Assuming each node occupies one disk block, the query I/O is
the total number of nodes accessed during the query process.

In section 4.2 we show how to estimate box query I/O for
an index tree in the NDDS.

4.2 Expected I/O for Box Queries
From the generic query execution procedure described in the
previous section, it is clear that a nodeN needs to be accessed
(and thus contributes to the query I/O) if and only if its DMBR
overlaps with the query windoww of the box queryq. Hence
we have the following proposition:

Proposition 1: The number of I/O for evaluating a box
queryq with query windoww using an index treeT is given
by:

IO(T, q) =
∑

N is T ′s node

O(N,w) ,

where

O(N,w) =

{

1 if w overlaps with DMBR of N

0 otherwise

Proof: Note that, execution of a box query will access
every node whose DMBR overlaps with the query window.
As each node access in the index tree results in one page
access, the total number of I/O for the query is equal to the
number of the overlapping nodes. Hence the result.

Note that proposition 1 is applied to a given (fixed) box
queryq with query windoww. However, in practice, we are
more interested in the average performance of an indexing
structure when answering a large number of box queries. More
specifically, we need a way to evaluate an indexing structure
T ’s average performance on supporting a query classQ in an
NDDS Ωd. Here we use a query class to represent a class of
fixed box queries whose query windows have the same edge
length on every dimension inΩd. A query classQ in Ωd is
defined as follows:

Q ={qδ |1 ≤ δ ≤ n; ∀i, j ∈ {1, 2, . . . , n}, ∀k ∈ {1, 2, . . . ,

d}, wi and wj have the same edge length on

dimension k, where wδ is the query window of box

query qδ }.

For simplicity, in the rest of this paper, we callQ a random
box querywhich has query windowW (in contrast to a fixed
box queryq with query windoww) in a given NDDS. We use
w to represent a fixed query window which specifies the exact
characters occurred on each dimension of an NDDS. A query
window W is used only to specify the number of characters
on every dimension for a random box queryQ.

Consider an index treeT built in a d-dimensional NDDS
Ωd = A1×A2× . . .×Ad. Suppose a nodeN in T has DMBR
R = S1 × S2 × . . . × Sd and |Si| = mi ( Si ⊆ Ai, 1 ≤ i ≤
d). For any box queryQ with query windowW , if W has
bi (bi ≤ |Ai|) characters along dimensioni, the probability of
R overlapping withW along dimensioni is:

Op,i(N,W ) = 1−
Cbi

|Ai|−mi

Cbi
|Ai|

, (1 ≤ i ≤ d) (1)

Here we use the notationCk
n to denote the number of

combinations ofn objects takenk at a time. From formula
(1), the probability for a nodeN to overlap with a query
window W on all dimensions is calculated as follows.

Op(N,W ) =

d
∏

i=1

(1−
Cbi

|Ai|−mi

Cbi
|Ai|

) (2)

Formula (2) gives the overlapping probability between a
node N ’s DMBR and a query windowW . Clearly, the
overlapping probability is inversely proportional to the filtering
power (pruning power) ofN . In the rest of this paper we
use the termfiltering power to describe the chance thatN is
pruned away from the query path when executing a box query
Q.

We have the following proposition to estimate the average
query I/O of an index treeT for a box queryQ.

Proposition 2: The average (expected) I/O of executing a
random box queryQ with query windowW for an index tree



4

T can be calculated as,

IO(T,Q) =
∑

N is T ′s node

Op(N,W )

Proof: The expected number of I/O for a random query
Q can be calculated as,

IO(T,Q) =
∑

N is T ′s node

Op(N,W )×
I/O required for accessing N

=
∑

N is T ′s node

Op(N,W )× 1

=
∑

N is T ′s node

Op(N,W )

The theoretical analysis in the following subsections uses
Proposition 2 to estimate performance of indexing structures
for box queries in the NDDS.

4.3 A Motivating Example for the Splitting Heuristics

When using a tree structure for indexing data, the algorithms
used for splitting overflow nodes play an important role
in determining the index tree’s query performance. This is
because except the first node (which is created by default) in
the tree, every other node is created by splitting an existing
node. In order to reduce query I/O for box queries in the
NDDS, we want a splitting algorithm which distributes an
overflow node’s entries into the two new nodes in such a
way that the resulting indexing structure will have minimum
expected box query I/O in the NDDS. The expected number
of I/O is given by Proposition 2.

Note that here we are interested in a splitting algorithm
designed for random box queries rather than a particular box
query. This is because we cannot make any assumption about
the box queries which will be performed on the indexing
structure. On the other hand, like other existing indexing
techniques (e.g., the R-tree, the R*-tree, the ND-tree, etc.),
our splitting algorithm optimizes the indexing structure only
based on the information available at the splitting time. That
is, we do not make assumption about vectors which will be
indexed after the splitting.

One of the recently proposed indexing schemes for sup-
porting similarity searches in the NDDS is the ND-tree [20].
It adopts four heuristics for node splitting, which are:(1) SH1-
Minimize Overlap(minimize the overlap between DMBRs
of the new nodes),(2) SH2-Maximize Span(split along the
dimension with the maximum edge length),(3) SH3-Center
Split (balance the edge lengths of new nodes along the splitting
dimension) and(4) SH4-Minimize Area(minimize the total
area of the new nodes’ DMBRs).

Our analysis of box queries in the NDDS suggest that
although the minimize overlap heuristic is important for
supporting efficient box queries, the others may not be. We
illustrate this by the following example.

Consider a dimensioni with alphabet{a, b, c, . . . , h} (note
the characters in the alphabet are non-ordered). LetN be
a node with characters{a, b, c, d} along dimensioni in its
DMBR. Consider two candidate partitions ofN : the first

candidate partitionCP1 splits N into two new nodesN1

andN2 with {a} and{b, c, d} on thei-th dimension in their
respective DMBRs, and the second candidate partitionCP2

splits N into nodesN ′
1 andN ′

2 with {a, c} and{b, d} along
dimensioni in their respective DMBRs. Further, suppose we
are considering a random box queryQ whose query window
W has3 characters along dimensioni. From formula (1), the
probabilities of overlapping with the query windowW on the
i-th dimension is0.375 for nodeN1 and0.821 for nodeN2,
respectively. Similarly the probabilities of overlappingwith
W on thei-th dimension are0.643 and0.643 for N ′

1 andN ′
2,

respectively. Since0.375 + 0.821 < 0.643 + 0.643 = 1.286,
when answering a random box queryQ, CP1 gives better
filtering power on dimensioni than CP2 (becauseN1 and
N2 has less chance of overlapping with the query window on
dimensioni thanN ′

1 andN ′
2).

However, the ND-tree splitting algorithm would prefer the
candidate partitionCP2 over CP1 based on its heuristic
SH3. This suggests that there exist better ways of splitting
a dimension for box queries in the NDDS. Similarly, we
can also come up with examples showing that splitting an
overflow node on the dimension with a shorter span (edge
length) can result in better filtering power (i.e., less probability
of overlapping with the query window) than splitting the
dimension with the maximum span (i.e.,SH2).

In the following subsection we introduce the theoretical
bases for the heuristics to be used in the proposed BoND-
tree to support efficient box queries in the NDDS based on
our theoretical analysis.

4.4 Theoretical Basis for Node Splitting Heuristics
When distributing vectors in an overflow node into two new
nodes, we try to obtain overlap-free partitions in order to
minimize the chance of searching both paths at query time.
Unlike in the CDS, more overlap-free partitions are available
in the NDDS due to the fact that elements in the NDDS are
non-ordered and discrete. In this section we introduce two new
heuristics for choosing overlap-free partitions of an overflow
nodeN of an index tree in the NDDS.

For the purpose of simplicity, we assume the NDDS to be
indexed has the same alphabet size for each dimension and
consider box queries which areuniform. A random box query
Q is said to be uniform if the edge lengths of the query window
are the same along all dimensions. The common edge length
is said to be thebox sizeof the uniform box queryQ. In fact,
the theoretical analysis provided here could be extended to
more complex situations where box queries are not uniform.

Consider ad-dimensional NDDSΩd, an overflow nodeN ,
and a splitting dimensionu with edge lengthx. Consider two
candidate partitionsCP1 andCP2 along u: CP1 distributes
the entries inN between two new nodesN1 andN2; similarly
CP2 splits N into two new nodesN ′

1 andN ′
2. Suppose the

edge lengths on dimensionu is l in N1’s DMBR and it isx− l
in N2’s DMBR. And suppose the edge lengths on dimensionu
in the DMBRs ofN ′

1 andN ′
2 aret andx−t, respectively. Here

we assumel < x− l andt < x− t. The filtering powers of the
new nodes generated fromCP1 andCP2 could be evaluated
using the following theorem.



5

Theorem 1: For the given splitting dimensionu, if l < t,
the probability of overlapping between the query windowW
of a uniform box queryQ and DMBRs ofN1 and N2 is
smaller than the probability of overlapping betweenW and
the DMBRs ofN ′

1 andN ′
2.

Proof: For any node with edge lengthx and query
window with edge lengthb on dimensionu, the probability of
nodesN1 andN2 not overlapping with the query window onu

is P1 =
Cb

A−x+l

Cb
A

+
Cb

A−l

Cb
A

, whereA is the domain size of dimen-
sion u. Similarly, we have the non-overlapping probability of

N ′
1 andN ′

2 with the query window asP2 =
Cb

A−x+t

Cb
A

+
Cb

A−t

Cb
A

.
Thus, we want to showP1 ≥ P2, which equals to:

Cb
A−x+l + Cb

A−l ≥ Cb
A−x+t + Cb

A−t (l < t) (3)

Let α = A− x+ t, β = A− x+ l andδ = x− l− t. Then
formula (3) simplifies to,

Cb
α+δ − Cb

β+δ ≥ Cb
α − Cb

β (4)

Using mathematical induction onb, whenb = 1, inequality
(4) holds. Suppose it holds whenb = b′. Since Cn+1

m =
m− n

n+ 1
Cn

m, whenb = b′ + 1, formula (4) becomes

Cb′

α+δ

α+ δ − b′

b′ + 1
− Cb′

β+δ

δ

b′ + 1
≥ Cb′

α

α− b′

b′ + 1
(5)

SinceCb′

α+δ > Cb′

β+δ,

Cb′

α+δ

α+ δ − b′

b′ + 1
− Cb′

β+δ

δ

b′ + 1
≥ Cb′

β+δ

α+ δ − b′

b′ + 1
−

Cb′

β+δ

δ

b′ + 1
= Cb′

β+δ

α− b′

b′ + 1
≥ Cb′

α

α− b′

b′ + 1

Inequality (5) shows the correctness of Theorem 1 for
uniform box queries. The following corollary proves that
theorem holds even for non-uniform box queries.

Corollary 1: For the given splitting dimensionu, if l < t,
the probability of overlapping between the query windowW
of a non-uniform box queryQ and DMBRs ofN1 andN2

is smaller than the probability of overlapping betweenW and
the DMBRs ofN ′

1 andN ′
2.

Proof: For any dimension1 ≤ u ≤ d, we want to show:
s

∑

i=1

(Cbiu
A−x+l + Cbiu

A−l) ≥

s
∑

i=1

(Cbiu
A−x+t + Cbiu

A−t) (l ≤ t) (6)

We have already proved that inequality (3) holds. Thus we
know givenbiu(1 ≤ i ≤ u), inequality

(Cbiu
A−x+l + Cbiu

A−l) ≥ (Cbiu
A−x+t + Cbiu

A−t) (l ≤ t) (7)

holds. Substitution of (7) into inequality (6) proves the cor-
rectness of inequality (6).

Theorem 1 suggests splitting an overflow node by putting
as many characters as possible into one new node on the
splitting dimension. This is contrary to heuristicSH3 used
by the ND-tree. Note that a data-partitioning based index tree
has a minimum utilization criterion, which enforces that a
certain percentage of the disk block for a tree node should
always be filled. When applying Theorem 1, the minimum

utilization criterion needs to be considered. This means that
the most unbalanced candidate partition which satisfies the
minimum utilization criterion should be selected because it
has the least overlapping probability (among all candidate
partitions generated from a splitting dimensionu which satisfy
the minimum utilization criterion) based on Theorem 1.

We use the following theorem to choose splitting dimen-
sions for box queries in the NDDS:

Theorem 2: Given an overflow nodeN and a uniform box
query (i.e. all the sides of the box have the same length)Q with
query windowW , splittingN on a dimensionu in {u | ELu >
1; for any 1 ≤ i ≤ d, either ELi ≥ ELu or ELi = 1}
gives less probability of overlap betweenW and the DMBRs
of the two newly created nodes than splittingN on other
dimensions, whereELi(1 ≤ i ≤ d) is the edge length of
N ’s DMBR along dimensioni

Proof: First we show that, when supporting uniform box
queries, splitting a node on a dimensionp with edge lengthx
gives more filtering power than splitting on dimensionq with
edge lengthx + 1. From Theorem 1, we know that the best
way to split a dimension is the most unbalanced split. Suppose
that both dimensions have alphabet sizeA, when splitting the
dimension with edge lengthx, the overlapping probability is
calculated as:

(1−
Cb

A−1

Cb
A

+ 1−
Cb

A−(x−1)

Cb
A

)(1 −
Cb

A−(x+1)

Cb
A

) (8)

Similarly, the overlapping probability when splitting thedi-
mension with edge lengthx+ 1 is

(1−
Cb

A−1

Cb
A

+ 1−
Cb

A−x

Cb
A

)(1−
Cb

A−x

Cb
A

) (9)

Substituting Cb
A−x+1 =

A− x+ 1

A− x+ 1− b
Cb

A−x and

Cb
A−x−1 =

A− x− b

A− x
Cb

A−x into expressions 8 and 9, and

noting thatCb
A−1 = (1−

b

A
)Cb

A, we need to prove that,

(A− bx+ b− b2)

A
≤

Cb
A−x

Cb
A

(10)

Using mathematical induction onb, formula (10) holds
whenb = 1. Suppose it holds whenb = b′.

Let
(A− b′x+ b′ − b′

2

)

A
= α,

Cb′

A−x

Cb′

A

= β, we know that

α ≤ β. Whenb = b′ + 1, the left side of (10) becomes

A− b′x− x+ b′ + 1− b′
2

− 2b′ − 1

A
= α−

x+ 2b′

A

and the right side of formula (10) becomes

Cb′+1
A−x

Cb′+1
A

=
Cb′

A−x

Cb′

A

A− x− b′

b′ + 1
A− b′

b′ + 1

= β(1 −
x

A− b′
)

So we want to show that

α−
x+ 2b′

A
≤ β(1−

x

A− b′
) (11)



6

Sinceα ≤ β, we only need to show:

x+ 2b′

A
≥ β

x

A− b′
(12)

⇐⇒

x+ 2b′

x
≥

(A− x)(A − x− 1) . . . (A− x− b′ + 1)

(A− 1) . . . (A− b′)
(13)

Left side of (13) has

x+ 2b′

x
= 1 +

2b′

x
≥ 1

On the right side of (13), sincex > 1, we have

(A− x)(A − x− 1) . . . (A− x− b′ + 1)

(A− 1) . . . (A− b′)
< 1

Thus we know (13) holds, which shows that splitting
on dimensionp with length x gives better filtering power
than splitting on dimensionq with length x + 1 for fixed
query box sizes. It is straightforward to deduce that for any
n ≥ 1, dimension with lengthx will give better splitting than
dimension with lengthx+ n.

Theorem 2 strictly applies to uniform box queries. The
following corollary proves that the theorem also holds for a
non-uniform box queries.

Corollary 2: Given an overflow nodeN and a non-uniform
box queryQ with query windowW , splittingN on a dimen-
sion u in {u|ELu > 1; for any 1 ≤ i ≤ d, either ELi ≥
ELu or ELi = 1} gives less probability of overlap between
W and the DMBRs of the two newly created nodes than
splitting N on other dimensions.

Proof: Consider a query boxQi(1 ≤ i ≤ s), Overlapping
probability when splitting dimensionp is

(1−
Cbip

A−1

Cbip
A

+ 1−
Cbip

A−(x−1)

Cbip
A

)(1 −
Cbip

A−(x+1)

Cbip
A

) (14)

Overlapping probability when splitting dimensionq is

(1−
Cbiq

A−1

Cbiq
A

+ 1−
Cbiq

A−x

Cbiq
A

)(1 −
Cbiq

A−x

Cbiq
A

) (15)

When the edge lengths ofQ1 ∼ Qs are uniformly
distributed within [t1, tr], formulas (14) and (15) could be
rewritten as,

γ

r
∑

j=1

(1 −
C

tj
A−1

C
tj
A

+ 1−
C

tj
A−(x−1)

C
tj
A

)(1 −
C

tj
A−(x+1)

C
tj
A

) (16)

and

γ
s

∑

i=1

(1−
C

tj
A−1

C
tj
A

+ 1−
C

tj
A−x

C
tj
A

)(1−
C

tj
A−x

C
tj
A

) (17)

correspondingly, whereγ is a constant factor.
We need to show that the value of expression 16 is less

than or equal to the value of expression 17. But as a part of
the proof of theorem 2, we have already shown that individual
terms of the summation obey the inequality (i.e. value of the
expression 8 is less than or equal to the value of expression 9).
Hence, the summation must obey the inequality. This proves
the corollary for non-uniform query boxes.

Theorem 2 suggests splitting an overflow node along a
dimension which has a shorter edge length in the node’s
DMBR. This is opposite of heuristicSH2 used by the ND-tree
splitting algorithm. Again we see that, to support box queries
in the NDDS, there could be better ways to select splitting
dimensions compared to the heuristics used by the ND-tree.

4.5 Splitting Heuristics

Given theorems 1 and 2, we propose the following heuristics
for splitting an overflow node in the NDDS. The heuristics are
applied in the order they are specified.
R1: Minimum Overlap
Of all the candidate partitions, heuristic R1 selects the one
that results in the minimum overlap between the DMBRs of
the newly created nodes. This heuristic is the same as the one
used by some of the existing works [2], [20].
R2: Minimum Span
If R1 generates more than one overlap-free partitions, heuristic
R2 selects one of those partitions which is generated from
splitting a dimension with the smallest span. This follows
directly from theorem 2.
R3: Minimum Balance
Given a splitting dimensionu, heuristic R3 chooses the most
unbalanced overlap-free partition (i.e., the one that putsas
few characters as possible in one node’s DMBR and as many
characters as possible in the other node’s DMBR on dimension
u) among all candidate partitions which satisfy the minimum
utilization criterion and tied on R2. This follows directlyfrom
theorem 1.

It is possible that, even after applying all the heuristics,
there remain more than one candidate partition. In such cases
a partition is chosen randomly from the tied ones.

Heuristics R2 and R3 may not be intuitive at a first glance
(e.g. the binary search has been proved to be an efficient
searching algorithm in the CDS, which implies a balanced
partition of the indexed data space). But these heuristics try to
exploit the properties pertinent to box queries in the NDDS.It
is the nature of the data space that makes seemingly unintuitive
splitting heuristics perform better than the ones used in the
CDS. We will see the experimental results in section 7.

5 CONSTRUCTION OF THE BOND-TREE

In this section, we describe the data structure and important
algorithms for constructing the proposed BoND-tree.

5.1 Insertion procedure

A BoND-tree is a balanced indexing structure which has the
following properties:(1) Each tree node occupies one disk
block; (2) All nodes must have at least a given minimum
amount of space filled by indexed entries unless it is the root
node (the minimum space utilization requirement);(3) The
root node has at least2 indexed entries unless it is a leaf
node; (4) A leaf node entry structure has the form(V, P ),
whereV is an indexed vector (key) andP is the pointer to
the relevant tuple in the database corresponding toV ; (5) A
non-leaf node entry structure has the form(D,P ), whereD



7

is the DMBR of the entry’s corresponding child node andP
is the pointer to that child node.

We use a bitmap structure to represent DMBR information
in a non-leaf node entry. The overall data structure of the
BoND-tree is inspired by that of the ND-tree. It is further
optimized through the compressed BoND-tree introduced in
section 6.

Inserting a vector in the BoND-tree involves two steps. First,
we find a suitable leaf nodeL for the new vector. Then we
put the vector intoL and updateL’s ancestor nodes’ DMBRs
as needed. The second step may cause a split of the leaf node
(when an overflow occurs), which might trigger cascaded splits
all the way to the root node.

5.1.1 Selecting a Leaf Node
Given a nodeN , the BoND-tree uses aselect-nodealgorithm
to pick an appropriate child node ofN which will accommo-
date a new vectorV . If there is only one child node whose
DMBR containingV , that node will be chosen to insertV . In
caseV is covered by more than one child nodes’ DMBRs,
the node whose DMBR size is the smallest is selected. If
V is covered byN ’s DMBR but not covered by any of
N ’s child nodes’ DMBRs, we use the3 heuristics proposed
by the ND-tree [20] for selecting a child node, which are:
Minimum Overlap Enlargement, Minimum Area Enlargement,
and Minimum Area. The heuristics are applied in the order
they are presented. That is, a heuristic will be used if and
only if application of the previous heuristic(s) results inone
or more ties.

To insert a new vector into the BoND-tree, we need to find
a leaf node to accommodate the vector. This is achieved by
invoking theselect-nodealgorithm recursively, starting from
the root node of the tree, until a leaf node is selected.

5.1.2 Splitting an Overflow Node
As discussed in section 4.4, a better way to split an overflowing
nodeN in the NDDS is to get an overlap-free and unbalanced
split along a dimensioni, which has the minimum span among
all dimensions whose spans are larger than1. Among the
heuristics suggested in section 4.4, R2 could be achieved by
comparing the span of each dimension in nodeN ’s DMBR.
However, implementation of R3 in the BoND-tree is more
complex, especially at the non-leaf levels of the tree. Thisis
because the component sets of the DMBRs of non-leaf node
entries could have more than one character on a dimension.
Table 2 shows an example of differenti-th component sets
from 8 non-leaf node entries (E1, E2, . . . , E8) on a dimension
i which has the alphabet{a, b, c, d, e, f, g}.

Non-leaf entry E1 E2 E3 E4

Component set {a, b} {b, c} {a, c} {a, b, c}

Non-leaf entry E5 E6 E7 E8

Component set {a, b, e} {e} {e, f, g} {f}

TABLE 2: Different component sets of non-leaf entries on
dimensioni.

When generating candidate partitions on dimensioni, we
could have a component set which is a proper subset of other

sets like{e} and {e, f, g}; sets which are disjoint or partly
overlapped like{a, b}, {e} and {a, b, e}; sets whose union
is only part of the alphabet or the whole alphabet such as
{a, b, c}, {f} and{e, f, g}; or a single component set which
contains all the characters from the alphabet. The relationship
among component sets at a non-leaf level could be very
complex in the NDDS.

5.2 The Node Splitting Problem

In this section we analyze how an overflow nodeN is split in
the BoND-tree using heuristic R3. Supposeu is the dimension
along which we will generate candidate partitions forN , we
first group all entries which share common characters along
dimensionu such that theu-th component sets of any two
entries from different groups are disjoint. Each group is then
treated as a single item when splitting the node. Grouping
entries this way avoids distributing entries with the same
character(s) along dimensionu into two different nodes (in
which case an non-overlap-free partition is generated). Each
group has a certain number of characters along dimensionu
and requires a certain amount of space to store the entries in
it. We useG1, G2, . . . , Gn to represent these groups.

SupposeSd is the disk block size occupied by each tree
node and the minimum space utilization criterion requires that
a certain sizeSmin of each node must be filled. Based on
our discussion, the BoND-tree node splitting problem using
heuristic R3 could be defined as follows.

Node Splitting Problem of the BoND-tree Using Heuris-
tic R3 (NSP): Given entry groupsG1, G2, . . . , Gn

in an overflow nodeN , suppose the number of charac-
ters (along the splitting dimension) and the storage space
of each of the groups areGV1, GV2, . . . , GVn and
GW1, GW2, . . . , GWn respectively. The BoND-tree splitting
algorithm distributes the entry groups to two new nodesN1

andN2 such that,
(1) The total number of charactersVtotal =

∑

Gi in N1

GVi is

the maximum.
(2) Both NW1 =

∑

Gi in N1

GWi andNW2 =
∑

Gi in N2

GWi

satisfy the minimum space utilization criterion of the tree(i.e.,
NW1 ≥ Smin andNW2 ≥ Smin).

One brute force way to solve problemNSP is to compute all
permutations of the entry groups in an overflow node, and then
put splitting points tentatively between adjacent groups in each
permutation to generate candidate partitions. But this clearly
demands a heavy computation overhead. Even for a small
number of entry groups, it would be impractical to evaluate
all permutations (e.g., for10 entry groups, the number of
candidate partitions would be more than one million). To solve
the problem efficiently, we further analyze the node splitting
problem as follows.

SupposeSe is the size of each node entry. The maximum
storage spaceSmax that could be utilized by a new node is
calculated as:

Smax = (⌊Sd/Se⌋+ 1− ⌈Smin/Se⌉)× Se (18)



8

For example, consider a nodeN containing4 entries and
each entry usingSe = 90 bytes, the total space occupied
by these4 entries is90 × 4 = 360 bytes. Suppose the disk
block sizeSd is 400 bytes,N will overflow if the 5-th entry
is inserted into it. Further suppose the minimum utilization
criterion specifies that at least 100 bytes of each node must be
filled (Smin = 100). If N is split into two new nodes, each
new node must have at least⌈Smin/Se⌉ = 2 entries distributed
to it. As a result, each of the new nodes could have at most
⌊Sd/Se⌋+1−⌈Smin/Se⌉ = 3 entries after the splitting. Thus
a new node could use at mostSmax = 3× Se = 270 bytes to
store index entries distributed to it.

Formula (18) gives the maximum amount of space which
could be utilized in each of the newly generated nodes to store
indexed entries (so the remaining entries will be put in the
other node). From formula (18), we could get the following
property ofSmax :

Smax ≤ (⌊Sd/Se⌋+ 1)× Se − Smin (19)

From formula (19), we know that(⌊Sd/Se⌋ + 1) × Se −
Smax ≥ Smin, which means by allowing one new node to use
no more thanSmax size of space for storing node entries, the
other node is guaranteed to have at leastSmin space filled by
entries distributed to it.

Given the maximum spaceSmax defined in formula (18),
we tackle the node splitting problemNSP in the following
way.

When a nodeN is split to nodesN1 andN2, the splitting
algorithm tries to distribute as many entries as possible toN1,
but the maximum space utilized inN1 is no more thanSmax.
Suppose the spaces occupied by entries distributed toN1 and
N2 areS1 andS2 respectively. ClearlyS1 is no less thanS2

(since the splitting algorithm tries to put more entries intoN1).
We already know from formula (19) thatS2 is no smaller than
Smin. SinceS1 ≥ S2, S1 will be no less thanSmin either.

Based on our analysis above, we provide an alternative
definition of the node splitting problem using heuristic R3,
which is equivalent to the previous problemNSP. Note that
in both definitions we distribute entry groups instead of entries
in order to get overlap-free partitions.

Redefined Node Splitting Problem of the BoND-tree Using
Heuristic R3 (RNSP): Given entry groupsG1, G2, . . . , Gn

in an overflow nodeN , suppose the number of char-
acters (along the splitting dimension) and the storage
space of all groups areGV1, GV2, . . . , GVn and
GW1, GW2, . . . , GWn respectively. The BoND-tree splitting
algorithm distributes the entry groups to two new nodesN1

andN2 such that,
(1) The total number of charactersVtotal =

∑

Gi in N1

GVi is

the maximum.
(2) The total storage spaceWtotal =

∑

Gi in N1

GWi satisfies

the constraintWtotal ≤ Smax, whereSmax is calculated from
formula (18).

Note that in the definition of problemRNSP, we use the
maximum space constraintSmax on a single nodeN1 to

guarantee the minimum space requirement on both nodes
specified in problemNSP. Our discussion above has already
shown that both the requirements onN1 and N2 defined
in NSP will be satisfied by enforcing the maximum space
constraintSmax on the nodeN1.

The redefined splitting problem can be mapped to the 0-
1 Knapsack problem if we consider each entry group as the
objects to be filled in the knapsack andSmax as the knapsack
capacity. This mapping greatly simplifies the solution for the
splitting problem.

5.3 The Node Splitting Algorithm

As the node splitting problem is mapped to the 0-1 knapsack
problem, a dynamic programming solution [16], [23] can be
used to solve it optimally and efficiently. After the items (entry
groups) to be put into the knapsack (nodeN1) is decided, the
remaining items (entry groups) are put into nodeN2.

Algorithm 1 summarizes all the important steps involved in
inserting a new entry into a tree node.

Algorithm 1: insert entry(N , E)
Input : A nodeN and an entryE to be inserted inN .
Output : Modified tree structure that accommodates entryE.
Method:
1. if N has space forE
2. InsertE in the list of entries inN
3. Update DMBR ofN ’s parent node as needed
4. else// We need to splitN
5. Record dimensions with span larger than1 into a listL
6. SortL based on dimension span in ascending order
7. for every dimensioni in L do
8. Group entries inN based on their component sets

on dimensioni
9. Calculate each entry group’s weight and

value //mapped to the0− 1 Knapsack Problem
10. if N is a leaf node
11. Solve the special case of the0− 1 knapsack

problem using the greedy approach
12. else
13. Solve the0− 1 knapsack problem

using dynamic programming
14. end if
15. if a solution satisfying the minimum utilization

criterion is found
16. return the solution
17. end if
18. end for
19. if no solution that is overlap-free and satisfies the

minimum utilization criterion could be found
20. Generate candidate partitions based on the

descending order ofri and select a partition
with the least overlap

21. return the solution
22. end if
23. end if

Mapping the splitting problemRNSP into the 0-1 Knapsack
Problem not only provides an efficient way to find the most



9

suitable partition for an overflow node, but also allows the
freedom of using different ways to build the BoND-tree based
on the particular requirement and purpose of indexing.

For example, when both the query performance and the time
needed to construct the indexing structure are critical, parallel
algorithms [11], [18] for the 0-1 knapsack problem could be
applied to build the BoND-tree efficiently and quickly. On
the other hand, when the BoND-tree is created as a temporary
indexing structure, the query I/O is usually not the only (orthe
most important) consideration: sometimes people want to build
index trees quickly and discard them after performing a limited
number of queries. In such cases, the BoND-tree could be
generated using algorithms introduced in [17] and [24], which
provide approximate solutions with guaranteed closeness to
the optimal solution with much a less time complexity and
system resource requirements.

We illustrate the BoND-tree splitting algorithm using an
example as shown below.

Let the entries in an overflow non-leaf node beE1 . . . E12.
Further, suppose DMBRs of these entries have the component
sets along a splitting dimensionu as shown in table 3. After the

Entry E1 E2 E3 E4 E5 E6

Component set {a} {b} {a, b, c} {d} {e} {e, f}

Entry E7 E8 E9 E10 E11 E12

Component set {f} {h, i} {i} {j} {j} {k}

TABLE 3: Different component sets for non-leaf entriesE1 ∼
E12.
grouping process we obtain the following6 groups as shown
in table 4. Each groupGi has a set of charactersGSi on the

Group G1 G2 G3

Entries {E1, E2, E3} {E4} {E5, E6, E7}

Group G4 G5 G6

Entries {E8, E9} {E10, E11} {E12}

TABLE 4: Grouping of non-leaf entries.
splitting dimension (by applying the set union operation onthe
component sets of all group members’ DMBRs on dimension
u). Here we useGVi to represent the number of characters
in GSi. Also each group requires certain space to store the
entries in it. Let the amount of space required for each entry
be one unit and the capacity of the node be 11 units. Further
suppose the minimum space utilization requires each new node
must utilize at least3 units. We useGWi to represent the
space required byGi. Table 5 shows the item weights and
values of the 0-1 knapsack problem mapped from the node
splitting problem. According to heuristic R3, after splitting

Item G1 G2 G3 G4 G5 G6

Weight 3 1 3 2 2 1

Value 3 1 2 2 1 1

TABLE 5: The item weights and values in the0− 1 knapsack
problem.
a nodeN into N1 and N2, we want one node to have the
maximum number of characters on the splitting dimension in

its DMBR, while the other node to have the minimum number
of characters. And both new nodes must satisfy the minimum
space utilization criterion in our example. If we solve the 0-
1 knapsack problem as mentioned above, it will give us the
best candidate partition (according to proposed heuristicR3)
for splitting the nodeN as shown in table 6. Note that for a

Entries in nodeN1 G1, G2, G4, G5, G6

Entries in nodeN2 G3

TABLE 6: The candidate partition for an overflow nodeN
found by solving the 0-1 knapsack problem.

leaf node, the optimal solution to this splitting problem iseven
simpler since all the entries in the overflow leaf node have only
a single character on a splitting dimension. This is a special
case of the 0-1 knapsack problem which could be solved
using a greedy algorithm (instead of dynamic programming)
as follows. We first sort all items based on their weights. Then
we put those sorted items into a knapsackK (new tree node
N1) one by one, starting from the items with smaller weights
until no more item could be put intoK. All the remaining
items are put into tree nodeN2. This distribution approach will
guarantee to obtain the best partition of entries in an overflow
leaf node as required by R3.

By mapping the node splitting problem to the 0-1 knapsack
problem, our proposed BoND-tree’s splitting algorithm is
guaranteed to find an overlap-free partition satisfying the
minimum utilization criterion as long as there exists such a
partition. Theoretically there may be cases when it is simply
impossible to get any overlap-free split without affectingthe
space utilization. To safeguard the situation, the BoND-tree
generates a candidate partition for each dimension by putting
as many entries as possible to a new node based on the
descending order ofri = vi/wi, wherevi is the cardinality
of an entryEi’s (1 ≤ i ≤ n, n is the total number of entries
in the node) component set on the splitting dimension andwi

is the storage space ofEi. Then we use heuristic R1 to pick
one candidate partition which gives the least overlap value. In
other words, only heuristic R1 is used when no overlap-free
partition exists for an overflow node (a random one is chosen
if there are ties for R1).

Note that, because of the nature of the NDDS as we
described in section 4.4, in most splits the BoND-tree could
find at least one overlap-free partition for an overflow node.
Table 7 shows the percentage of non-overlap-free splits (i.e.,
no overlap-free partition could be found) among the total
number of splits in our experiments with synthetic data.
These experiments are described in detail in section 7. In our
experiments with real data, it was observed that an overlap
free partition was found in all the splits. This is due to the fact
that real data has more dimensions (21 dimensional q-grams
from genome sequences) and, therefore, has significantly more
possibility of finding overlap-free partitions.

In algorithm 1, if a solution is returned in line16, it is
guaranteed to be an overlap-free partition which satisfies the
minimum utilization criterion. Otherwise the code segment
between lines19 ∼ 22 finds (and returns) a partition which is
not overlap-free but satisfies the minimum utilization criterion.



10

Number of vectors indexed Percentage of non-overlap-free splits
1M 0.552%
2M 0.618%
3M 0.577%
4M 0.586%
5M 0.558%

TABLE 7: The percentage of non-overlap-free splits when
building the BoND-tree

5.4 Deletion in the BoND-tree

If removing a vector from a leaf nodeL does not cause any
underflow (i.e., the minimum space utilization requirementon
L is satisfied after the deletion), the vector is directly removed
and DMBRs ofL’s ancestor nodes are adjusted as needed.
If an underflow occurs forL, the procedure is described as
follows.

NodeL is removed from its parent nodeN , and ifN under-
flows again,N is removed from its parent node. The procedure
propagates toward the root until no underflow occurs. Then
the subtree represented by the underflow node closest to the
root node is removed, its ancestor nodes’ DMBRs are adjusted
as needed and all the remaining vectors in the subtree are
reinserted. In the worst case, if the root node has only two
children and one of them is removed, the remaining child node
becomes the new root of the tree (i.e., tree height decreases
by one).

An update operation can be implemented as a combination
of deletion and insertion. In order to update a vector, we first
delete it from the database, and insert the modified vector.

5.5 Box Query on the BoND-tree

The algorithm for executing box queries on the BoND-tree is
implemented as follows. Letq be the query box andN be a
node in the tree (which is initialized to rootR of the tree).
For each entryE in N , if the query windoww overlaps with
the DMBR ofE, entryE is searched. Otherwise, the subtree
rooted atE is pruned.

6 COMPRESSION TECHNIQUE FOR THE
BOND-TREE

We now present a possible improvement in the BoND-tree
structure using node compression.

6.1 Motivation

In the CDS, the minimum bounding rectangle (MBR) infor-
mation on a continuous dimension is stored by recording the
lower and upper bounds of that dimension. Since the number
of available values in a continuous domain is usually unlim-
ited (or very large), the MBR information on a continuous
dimensioni in a hierarchical indexing structure (e.g., the R*-
tree) is unlikely to cover the whole domain ofi. However,
in the NDDS the number of characters in a discrete domain
is limited (and typically quite small). This means a discrete
dimension for a DMBR will getfull (i.e., all characters in the
domain have appeared on that dimension) much faster than a
continuous dimension.

Consider a setS which contains characters from a non-
ordered discrete domainD with domain size|D| = A. The

Markov transition matrix [19] describing the probability of S’s
size after adding one random character fromD to S is shown
in (20).

P =

1 2 3 . . . A

1
2
3
. . .
A













1/A
0
0
. . .
0

(1− 1/A)
2/A
0
. . .
0

0
(1− 2/A)

3/A
. . .
0

. . .

. . .

. . .

. . .

. . .

0
0
0
. . .
1.0

















(20)

Now suppose we are creating an indexing structure for an
NDDS with domainD for dimensioni. Further suppose the
size ofD is 10. Using the Markov transition matrix in (20),
we can calculate the probability of a nodeN having all the
10 characters inD on dimensioni after indexingVn vectors,
as shown in table 8.

Vn 20 40 60 80 100

Probability 21.47% 85.81% 98.21% 99.78% 99.97%

TABLE 8: Probability of having afull dimension after index-
ing X vectors.

As we can see from the table, after indexing100 vectors,
the probability that all the10 characters inD have appeared
in nodeN ’s DMBR on dimensioni is 99.97%. And it will
become even higher for a smaller alphabet size (i.e.,|D| < 10)
or a larger number of vectors (X > 100).

The splitting heuristics of the BoND-tree prefer an overlap-
free candidate partition generated from a shorter dimension.
This leads to morefull dimensions in the DMBRs of non-leaf
nodes of the BoND-tree (especially at higher levels of the tree)
compared to the ND-tree. Table 9 shows the percentage of full
dimensions in the non-leaf nodes’ DMBRs when indexing5
million vectors from16−dimensional NDDSs with varying
alphabet sizes. From the above statistics, we see that a large
percentage of dimensions recorded in the DMBRs of non-leaf
nodes arefull in the BoND-tree. This fact can be exploited to
reduce the amount of space required to store the DMBR. In
the following subsections we explain our compression scheme
and its effect on the node splitting algorithm.

6.2 The Compressed BoND-tree Structure

In a non-leaf node entry of the compressed BoND-tree, we
use one additional bit to indicate if the DMBR is full or not
on each dimension. Only when it is not full, we record the
occurrence of each character on that dimension. As the space
requirement of a single DMBR is reduced, the fanout of the
node increases. This high fanout results in reduction in the
height of the tree and reduced I/O at the time of querying.

Alphabet size 10 15 20 25

% of full dimensions 75.33% 75.44% 79.04% 81.30%

TABLE 9: Percentage offull dimension at non-leaf levels of
the BoND-tree with different alphabet sizes.



11

Note that the compression of DMBRs applies only to
non-leaf nodes because the leaf node entry in the BoND-
tree has only one character along each dimension. Thus the
performance gain of the compressed BoND-tree is achieved
through a more effective representation of DMBRs in the non-
leaf nodes, especially nodes at higher levels of the tree.

6.3 Effect of Compression on Splitting Overflow
Non-leaf Nodes

When a non-leaf node entry’s DMBR is split along one
dimension, the resulting DMBRs may also shrink along other
(full) dimensions. Thus those previously compressed (omitted)
dimensions may become uncompressed, leading to more space
required. This may give rise to a concern whether two new
nodes are sufficient to hold all the entries from splitting an
overflow node. However, it is not difficult to see that this is
not a problem.

In a non-leaf nodeN , the need for its splitting comes when
one of its node entriesE gets replaced with two new entries
E′ andE′′ (due to the split of a child nodeNE).

The entries inN that need to be stored after splittingNE

are:E′, E′′, and all original entries inN exceptE. If N does
not have enough space for these entries, it needs to be split.
In the worse case (i.e., no dimension in DMBRs ofE′ and
E′′ could remain compressed), the space required for storing
all the entries from splittingN is equal to the space needed
for storing all original entries inN exceptE plus the space
required to hold two uncompressed entries (E′ andE′′). As
any node must be able to hold at least two uncompressed
node entries for indexing to be possible, two new nodes are
sufficient for holding all the entries in the overflow node.

7 EXPERIMENTAL RESULTS

To evaluate the performance of the BoND-tree we conducted
extensive experiments. The results are reported in this section.

7.1 Experimental setup

The BoND-tree was implemented in C++. Experiments were
conducted on machines with Intel Xeon quad-core processors
with 8 GB ECC DDR2 RAM running SuSE Enterprise Linux
10 in a high performance computing cluster system.

Performance of the proposed BoND-tree (with and without
compression) was evaluated using synthetic data with various
dimensions, alphabet sizes and database sizes (the number of
vectors indexed). We generated uniform and skewed (Zipfian)
data for the experiments. Each data record is generated by
randomly generating a letter in each dimension. The proba-
bility of each letter in the alphabet is the same for uniform
data (so for alphabet size of 10, each letter will have prob-
ability of 0.1). For Zipfian data, probability of each letter
is inversely proportional to its rank among all the letters in
the alphabet. For example, let{a, b, c} be the alphabet for
a certain dimension and let ranks of lettersa, b, c be 1, 2, 3
respectively. Then the probability of these three letters will be
0.55, 0.27 and0.18 respectively. Besides the evaluation based
on synthetic data sets, we also used real data for performance

comparison of box queries. In each of the tests,200 random
box queries were executed and the average number of I/O
and average running time was measured. As box queries are
the focus of this paper, we do not present results on range
(similarity) queries. However we would like to note that the
ND-Tree provides better performance than the BoND-tree for
range queries.

To the best of our knowledge so far there has been no in-
dexing technique specifically designed to support efficientbox
queries in the NDDS. Query performance of the BoND-tree
was compared with that of the ND-tree, Data decomposition
(DD), the 10% linear scan and the M-tree.

The ND-tree is an indexing scheme designed exclusively
for range queries in the NDDS, which is reported to be a
robust technique compared to other known indexing methods
in NDDS [20]. Since the sequential scan (i.e., flat files without
indexing) is much faster than the random disk access needed
for indexing, 10% of the total I/O needed for sequential scan
[6], [20], [26] is used to compare with that of the BoND-tree.
The vertical data decomposition scheme discussed in [10] has
an effective strategy for the nearest neighbor search. However,
for a box query it may be very difficult to come up with
a good pruning strategy. Hence, even though this method is
conceptually similar to BoND-tree heuristics, it fails to provide
any improvement in the search performance. Our experiments
show that this strategy is worse than the 10% linear scan in
most of the cases. The M-tree was designed for the metric
spaces. Although it could be utilized to support indexing of
the NDDS, its performance is quite poor. Our experimental
results show that the M-tree needs more I/O than the 10%
linear scan to support box queries in the NDDS. Since M-tree
and DD are not optimized for the NDDS and are found to be
worse than linear scan, we do not consider their performance
in rest of performance comparisons.

7.2 Tree construction time

Figure 1 compares construction time of BoND-tree with that
of ND-tree for increasing database sizes. It can be seen that
building BoND-tree takes much more time than building the
ND-tree. This is not surprising since BoND-tree insertion
algorithm is fairly complex compared to that of ND-tree.

7.3 Impact of each heuristic on performance

Figure 2 compares the query I/O when heuristic R1 alone,
R1 followed by R2 and R1 followed by R2 followed by R3

Fig. 1: Comparison of construction times of BoND-tree and
ND-tree



12

Fig. 2: Improvement due to each of the heuristics in query I/O

are used. We also include I/O for ND-tree (labeled ‘ND’)
as the baseline for comparison. It can be seen that each
heuristic helps in reducing the I/O for the query. HeuristicR1
alone provides about 75% improvement in I/O over ND-tree.
Combination of R1 and R2 provides further improvement of
about 80% over R1. The combination R1-R2-R3 reduces I/O
even further by about 30% over R1-R2. This clearly justifies
the use of all three heuristics.

7.4 Effect of Different Database Sizes

In this set of tests we evaluate the performance of the BoND-
tree for different database sizes. We varied the number of
indexed data vectors from 5 millions to 10 millions. The data
set used for the tests has16 dimensions and the alphabet size
for each dimension is10. The average query I/O performance
for box size2 is shown in figure 3a. It can be seen that, as
the number of indexed data points increases, the query I/O
increases for all the techniques in our tests. However, the
BoND-tree is a clear winner for all database sizes. The average
query I/O for the BoND-tree is several orders of magnitude
smaller than that of the ND-tree. The total time for BoND-
tree was much better than that for ND-tree. However, due to
space constraints, we could not include any tables/graphs in
the paper.

7.5 Effect of Different Numbers of Dimensions

This set of tests evaluates the performance of the BoND-tree
when indexing data sets with different numbers of dimensions
(see figure 3b). In the experiments, the number of dimensions
was varied from 8 to 20. Other parameters such as the
database size, the alphabet size and the query box size were
kept constant at 5 millions, 10 and 2, respectively. With the
increasing number of dimensions, more space is required to
store the DMBR information in the BoND-tree as well as in the
ND-tree. This results in reduction of the fanout of tree nodes
and a subsequent increase in the height of the tree. Thus, the
I/O for both trees (as well as the 10% linear scan) increases.
The relative number of I/O for the BoND-tree is much less
than both the ND-tree and the 10% linear scan. Further, as
figure 3b shows, the BoND-tree is much less affected by the
increased number of dimensions than the ND-tree.

7.6 Effect of Alphabet Size

In this set of tests, the alphabet size was varied from 10 to 30
in steps of 5. Figure 3c shows performances of the BoND-tree,
the ND-tree and the 10% linear scan for various alphabet sizes.

As the alphabet size increases, the ability of the tree to find
an overlap-free partition increases which results in a decrease
in the I/O. The number of dimensions of indexed vectors was
16. The database size and query box size were5 million and
2, respectively.

7.7 Effect of Different Query Box Sizes

This set of tests compares the performance of the BoND-tree
with those of the ND-tree and the 10% linear scan for different
box sizes. The number of dimensions and the alphabet size
were fixed at 16 and 10, respectively. We experimented with
both uniform boxes (i.e., all the sides have the same length)
as well as non-uniform boxes (sides of the box are chosen
randomly).

7.7.1 Uniform Boxes
For this set of experiments, the database size was fixed at 5
millions and the box size was increased from 1 to 5. As the
query box size increases, both the BoND-tree and the ND-
tree require more I/O while the number of I/O for the 10%
linear remains constant. As we can see from figure 3d, the
performance gain of the BoND-tree is significant for all box
sizes given. Our proposed BoND-tree maintains its superior
performance even at a box size of5. For larger box sizes
however, the 10% linear scan proves to be the best method.
This is expected as the result set is huge when the query box
size is large, in which case, no index is beneficial.

7.7.2 Non-uniform Boxes
This section compares the performance of the BoND-tree for
non-uniform box sizes. We varied the database size from
5 million to 10 million records. A query box is generated
by randomly selecting an edge length along each dimension.
The maximum edge length was limited to 5 (i.e., 50% of
alphabet size). We generated 200 such queries and calculated
the average query I/O. Figure 3e shows our findings. It can be
seen that BoND-tree significantly outperforms both the other
schemes.

7.8 BoND-tree with skewed data

Figure 3f shows the effect of applying BoND-tree and ND-tree
to skewed data (having Zipf distribution) for increasing box
size. The database size was set to 5 million and the number of
dimensions was 16. It should be noted that the BoND-tree is
significantly better than the ND-tree or the linear scan evenfor
relatively large box size of 5. This demonstrates effectiveness
of BoND-tree in non-uniform data spaces.

7.9 Application in Primer Design

As explained earlier, box queries in NDDS are useful in primer
design for genome sequence databases. In this section we
present results of applying the BoND-tree for this application.

In order to enable a sub-sequence search, the index is
built of all possible overlapping sub-sequences (Q-grams)of a
genome sequence having the given primer length. Hence, the
actual data needed to create the index is several times more



13

(a) Database size (b) Number of dimensions (c) Alphabet size

(d) Uniform query box size (e) Non-uniform query boxes (f) Skewed (zipf) data

Fig. 3: Experimental evaluation of impact of various parameters on performance of BoND-tree

(a) Query I/O (b) Running time

Fig. 4: Performance of indexing genome sequence data

than the sequence data. But despite the increased index size,
searching is remarkably efficient in the BoND-tree.

We carried out experiments with varying sizes of genome
sequence databases. The smallest database contains 50 thou-
sand genome sequences while the largest one contains 150
thousand sequences. The database size was increased in steps
of 25 thousand sequences. Simple fasta file (which is the
standard file format used in computational biology) was used
as the input. Figure 4 shows the number of I/O and query
running time for each of the schemes. The BoND-tree and the
ND-Tree were built for overlapping Q-grams. We calculated
I/O for 10 % linear scan using fasta file as the input (labeled
‘10% Linear Fasta’ in the figure) as well as Q-grams as input
(labeled ‘10% Linear’). It can be seen that the BoND-tree is
by far the best indexing scheme. In fact, as the number of
indexed sequences increases, improvement due to the BoND-
tree also increases. For the largest database (size = 172MB)
containing 150000 sequences, BoND-tree provides about 60%
improvement. This highlights importance of BoND-tree in
certain class of applications.

7.10 Comparison of running time
Experiments so far show that in terms of number of disk page
accesses (or query I/O), BoND-tree significantly outperforms
ND-tree as well as linear scan under various conditions. Since
query I/O is the major contributor in running time for any

index based query, we expect BoND-tree to perform much
better in terms of query execution time as well. In this
section, we present the results confirming superior running
time of queries in BoND-tree. The hardware and setup used
for these experiments are already described in section 7.1.
Unless explicitly specified otherwise, database size, box size
and the number of dimensions were set to 5 million, 4 and
16 respectively. As shown in the figures 5a through 5f, query
execution time of BoND-tree is considerably smaller than that
of linear scan or ND-tree.

7.11 Performance of the Compressed BoND-tree
We also examined the performance of BoND-tree using the
proposed compression strategy. First we show the performance
gain for varying number of dimensions. The database size
used for this set of tests is 5 millions. The query box size
and the alphabet size are set to 2 and 10, respectively. As
we can see from figure 6a, for all the test cases, the BoND-
tree without compression of DMBR uses more than 10%
of I/O than the compressed BoND-tree to answer the same
queries. Figure 6b shows the performance of the compressed
BoND-tree for different alphabet sizes. The number of vectors
indexed is fixed at 5 millions, the number of dimensions
is set to 16 and the query box size is2. This set of tests
demonstrates the effectiveness of the compression strategy
when indexing NDDSs with different alphabet sizes. Although



14

(a) Database size (b) Number of dimensions (c) Alphabet size

(d) Uniform query box size (e) Non-uniform query boxes (f) Skewed(zipf) data

Fig. 5: Comparison of running time of the queries for variousparameters

(a) Number of dimensions (b) Alphabet size (c) Non-uniform queries

Fig. 6: Performance comparison of the Compressed BoND-treewith uncompressed BoND tree

Box size BoND-tree Compressed BoND-tree
2 39.8571 36.8929
3 226.857 219.286
4 822.571 803.429
5 2210.57 2171.68

TABLE 10: Performance of the Compressed BoND-tree for
uniform box queries.

both compressed and uncompressed indexing methods yield
lesser I/O as the alphabet size grows, the compressed one
outperforms the uncompressed one for all the alphabet sizes
used in the experiments. Table 10 and figure 6c show the
comparison of compressed BoND-tree for uniform and non-
uniform box queries, respectively. In table 10, the database
size and the number of dimensions were kept constant at 5
million and 16, respectively. As can be seen from the table,
the compressed BoND-tree is consistently better than the basic
BoND-tree. However, as the box size increases the amount of
data space being queried increases exponentially, which results
in both the trees approaching performance of linear scan. In
figure 6c, the database size was increased from 5 million to
10 million records. As expected, the compressed BoND-tree
consistently performs better than the uncompressed BoND-
tree. These results highlight the advantages of the proposed
compression technique.

8 CONCLUSION

In this paper, we have presented a new indexing structure,
called the BoND-tree, which exploits exclusive propertiesof
the NDDS. Theoretical analysis of box queries in the NDDS
shows that a better filtering power could be achieved using new
splitting heuristics adopted by the BoND-tree. Our extensive
experimental results using different alphabet sizes, database
sizes, dimensions and query box sizes demonstrate that the
BoND-tree isscp bon significantly more efficient than existing
techniques such as the ND-tree and the 10% linear scan.
Effectiveness of the BoND-tree in a real world application
involving genome sequence databases is demonstrated. We
also present the use of compression in the NDDS to further
improve performance of the BoND-tree.

ACKNOWLEDGMENT

Research supported by the US National Science Foundation
(under grants #IIS-0414576 and #IIS-0414594), the Michigan
State University and the University of Michigan. We wish to
acknowledge the support of the Michigan State University
High Performance Computing Center and the Institute for
Cyber Enabled Research. The authors would like to thank Dr.
James Cole and Dr. Benli Chai and Mr. Jordan Fish, who work



15

for Ribosomal Database Project (RDP) under Grant No. DE-
FG02-99ER62848 supported by the Office of Science of U.S.
Department of Energy, for their valuable suggestions and help.
The authors also acknowledge Dr. Gang Qian for his help.

REFERENCES

[1] R. Bayer and K. Unterauer, “Prefix B-trees,”ACM Transactions on
Database Systems, pp. 11–26, 1977.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger,“The R*-
tree: an efficient and robust access method for points and rectangles,”
Proceedings of ACM SIGMOD, pp. 322–331, 1990.

[3] J. L. Bentley and R. Sedgewick, “Fast algorithms for sorting and search-
ing strings,” Proceedings of the eighth annual ACM-SIAM symposium
on Discrete algorithms, pp. 360–369, 1997.

[4] S. Berchtold, D. Keim, and H.-P. Kriegel, “The X-tree: anindex struc-
ture for high-dimensional data,”Proceedings of the 22nd International
Conference on VLDB, pp. 28–39, 1996.

[5] T. Bozkaya and M. Ozsoyoglu, “Indexing large metric spaces for
similarity search queries,”ACM Transactions on Database Systems,
vol. 24, no. 3, pp. 361–404, 1999.

[6] K. Chakrabarti and S. Mehrotra, “The hybrid tree: an index structure for
high dimensional feature spaces,”Proceedings of the 15th International
Conference on Data Engineering, pp. 440–447, 1999.

[7] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n, “Searching
in metric spaces,”ACM Comput. Surv., vol. 33, no. 3, pp. 273–321, 2001.

[8] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” pp. 426–435, 1997.

[9] J. Clément, P. Flajolet, J. Clément, B. Vallée, B. Vallée, T. G. Logiciel,
and P. Algo, “Dynamical sources in information theory: A general
analysis of trie structures,”Algorithmica, vol. 29, pp. 307–369, 1999.

[10] A. P. de Vries, N. Mamoulis, N. Nes, and M. Kersten, “Efficient k-nn
search on vertically decomposed data,” pp. 322–333, 2002.

[11] M. E. D. El Baz, “Load balancing in a parallel dynamic programming
multi-method applied to the 0-1 knapsack problem,” pp. 127–132, 2006.

[12] P. Ferragina and R. Grossi, “The string B-tree: a new data structure for
string search in external memory and its applications,”Journal of the
ACM, pp. 236–280, 1998.

[13] A. Guttman, “R-Trees: a dynamic index structure for spatial searching,”
Proceedings of ACM SIGMOD, pp. 47–57, 1984.

[14] A. Henrich, “The LSDh-tree: an access structure for feature vectors,”
Proceedings of the 14th International Conference on Data Engineering,
pp. 362–369, 1998.

[15] G. R. Hjaltason and H. Samet, “Index-driven similaritysearch in metric
spaces (survey article),”ACM Trans. Database Syst., vol. 28, no. 4, pp.
517–580, 2003.

[16] D. E. Knuth, The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.

[17] A. Liu, J. Wang, G. Han, S. Wang, and J. Wen, “Improved simulated
annealing algorithm solving for 0/1 knapsack problem,” pp.1159–1164,
2006.

[18] W. Loots and T. H. C. Smith, “A parallel algorithm for the0–1 knapsack
problem,” Int. J. Parallel Program., vol. 21, no. 5, pp. 349–362, 1992.

[19] S. Meyn and R. Tweedie,Markov Chains and Stochastic Stability.
Springer-Verlag, 1993.

[20] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “The ND-tree: a dy-
namic indexing technique for multidimensional non-ordered discrete
data spaces,” pp. 620–631, 2003.

[21] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “Dynamic indexing for mul-
tidimensional non-ordered discrete data spaces using a data-partitioning
approach,”ACM Trans. Database Syst., vol. 31, pp. 439–484, June 2006.

[22] J. Robinson, “The K-D-B-tree: a search structure for large multidimen-
sional dynamic indexes,”Proceedings of ACM SIGMOD, pp. 10 –18,
1981.

[23] T. J. Rolfe, “An alternative dynamic programming solution for the 0/1
knapsack,”SIGCSE Bull., vol. 39, no. 4, pp. 54–56, 2007.

[24] S. Sahni, “Approximate algorithms for the 0/1 knapsackproblem,” J.
ACM, vol. 22, no. 1, pp. 115–124, 1975.

[25] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,”Communications of the ACM, vol. 18, no. 11, pp.
613–620, November 1975.

[26] R. Weber, H. J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” pp. 194–205, 1998.

[27] P. Weiner, “Linear pattern matching algorithms,”Proceedings of the 14th
Annual Symposium on Switching and Automata Theory, pp. 1–11, 1973.

[28] S. K. Wong, W. Ziarko, V. V. Raghavan, and P. C. Wong, “On modeling
of information retrieval concepts in vector spaces,”ACM Transactions
on Database Systems, vol. 12, no. 2, pp. 299–321, 1987.

[29] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” pp. 311–321, 1993.

Changqing Chen is currently a senior Engineer
working at Yahoo! Inc. He received his PhD de-
gree from the Computer Science and Engineer-
ing Department at Michigan State University,
and Bachelor’s degree from Peking University.
His research interests include large scale data
processing and high-dimensional data indexing.

Alok Watve is a Ph.D. candidate in the Com-
puter Science and Engineering Department at
Michigan State University. He has a Master of
Technlogy degree from Indian Institute of Tech-
nology Kharagpur. His research interests include
database indexing, data mining and image pro-
cessing.

Sakti Pramanik received the BE degree in Elec-
trical Engineering from Calcutta University and
awarded University gold medal for securing the
highest grade among all branches of Engineer-
ing. He received the MS degree from the Univer-
sity of Alberta, Edmonton, in electrical engineer-
ing, and the PhD degree in computer science
from Yale University. He is currently a professor
in the Department of Computer Science and
Engineering at Michigan State University.

Qiang Zhu received his Ph.D. in Computer Sci-
ence from the University of Waterloo (Canada)
in 1995. He is currently a Professor in the
Department of Computer and Information Sci-
ence at The University of Michigan - Dearborn.
He is also an IBM CAS Faculty Fellow at the
IBM Toronto Lab and an IEEE Senior Mem-
ber. His current research interests include query
optimization, streaming data processing, multi-
dimensional indexing, self-managing databases
and Web information systems.


