The BoND-tree: An Efficient Indexing Method for
Box Queries in Non-ordered Discrete Data
Spaces

Changqging Chen Alok Watve Sakti Pramanik Qiang Zhu

Abstract —Box queries (or window queries) are a type of query which specifies a set of allowed values in each dimension. Indexing
feature vectors in the multi-dimensional Non-ordered Discrete Data Spaces (NDDS) for efficient box queries is becoming increasingly
important in many application domains such as genome sequence databases. Most of the existing work in this field targets the similarity
queries (range queries and k-NN queries). Box queries, however, are fundamentally different from similarity queries. Hence the same
indexing schemes designed for similarity queries may not be efficient for box queries. In this paper, we present a new indexing
structure specifically designed for box queries in the NDDS. Unique characteristics of the NDDS are exploited to develop new node
splitting heuristics. For the BoND-tree, we also provide theoretical analysis to show the optimality of the proposed heuristics. Extensive
experiments with synthetic data demonstrate that the proposed scheme is significantly more efficient than the existing ones when
applied to support box queries in NDDSs. We also show effectiveness of the proposed scheme in a real world application of primer
design for genome sequence databases.

Index Terms —Box Query, Non-ordered Discrete Data, Categorical Data, Indexing

O

1 INTRODUCTION query in a database of three character long g-grams can

ox query in NDDS is an important type of query whichP€ {{4},{G,T},{C,T}}. This query fetches those g-grams

Bis defined by specifying a set of allowed values ifrom the database which have the character A in position one,
each dimension. These queries are useful in many divef@@r T in position two and C or T in position three. Thus, the
applications such as bioinformatics, biometrics, dataimgin POX query is equivalent to searching for four individualrséa
and E-commerce. In general, indexes are used to achié@¥S{AGC, ATC, AGT,ATT}. .
improved response time for query execution in large datgas A Primer in molecular biology is a fixed length short
In this paper we propose an effective indexing scheme féggquence (strand of nucleotides) that acts as a terminus for
implementing box queries in NDDS for large databases. TheteSUb-sequence of a genome sequence. A primer is used
are many existing indexing schemes for large databases ¥@rséarch a database of variable length genome sequences.
continuous data spaces (CDS). These indexing schemes F#& Search purpose, we can consider genome sequences as
not suitable for queries in NDDS because of the fundamengadatabase of g-grams. Developing a good primer is critical
differences between the two spaces. Indexing techniquigin in many genome applications. Although a genome sequence
CDS rely on the fact that the indexed values can be order@@ntains one of the four characte{si,G,T,C} in each
in each dimension which is not the case in NDDS. Howevd?osition, a primer may allow more than one characters in some
NDDS has certain value discrimination properties which cdtpsitions. Such primers are called degenerate primers.
be exploited for efficient implementation of indexes in NDDS N the process of primer design, a biologist first generates
The proposed work exploits these properties of NDDS & Set of candidate primers which may be degenerate and
develop a new indexing scheme, BoND-tree, targeted towatf#§" €liminate those which cannot be used, by matching the
improving the performance of box queries. primer against a database of genome sequences. Traditjonal

In this paper we focus on the application of box queridgis search is performed by linearly scanning the genome
for primer design in genome sequence databases. A IR$@AuUeNce files. However, an index scheme like the BoND-
query in a genome sequence database of g-grams (fi€ can significantly improve the search performance. A
length overlapping short sequences created from the daabgandidate primer can be viewed as a box query having one
of variable length long genome sequences) allows a set @fmore (in case of degenerate primers) characters alorig eac

characters in each position of a g-gram. For example, a bdknension. Further, techniques such as DNA synthesis or PCR

(Polymerase Chain Reaction) need two primers to define the

e C.Chen, A. Watve and S. Pramanik are with the Department ofppeer r€gion of the sequence that is to be processed (e.qg., araplifie

Science and Engineering, 3115 Engineering Building, Mjahi State in case of PCR). The two candidate primers can be combined
University, Ml 48824-1226, USA ;

=l . together to form a larger box query which can accelerate the

Email : {chencha3, watvealo, pramani@cse.msu.edu B .

e Q. Zhu is with the Department of Computer and InformationeSee, S€arch. In this paper we present performance of Bond-tree in

University of Michigan, Dearborn, MI 48128, USA primer design applications.
Email : gzhu@umich.edu Rest of the paper is organized as follows. We present

relevant work in this area in the next section. Section dmension separately - any indexed vector which has casflict
introduces the relevant concepts and notations used for aith the query condition on any dimension is pruned away
indexing scheme in the NDDS. Section 4 introduces the némmediately from the result set. On the other hand, sintjlari
heuristics to support efficient box queries in the NDDS basegieries are interested in vectors similar to the given query
on our theoretical analysis. Section 5 presents the BoNidector. The concept of similarity (or dissimilarity) betare
tree, including its tree structure, construction algerithand vectors are calculated based on the information combireed fr
relevant operations. Section 6 describes further imprargmall dimensions. As a result, when organizing vectors in an
of the BoND-tree performance based on the compressimalexing structure, heuristics efficient for similarity efies

of index nodes. Section 7 reports our experimental resultannot guarantee good performance for box queries. In fact,
Concluding remarks follow in the last section. in this paper we propose two new heuristics for distributing
indexed vectors in a new index tree, i.e. the BoND-tree, to
support efficient box queries. Although the two new helassti
may not be intuitive at a first glance, both our theoretical
Many indexing schemes have been proposed for the CDfmalysis and experimental results demonstrate that they ar
Some well-known CDS indexing structures are the K-D-Bery effective in supporting box queries in the NDDS. We
tree [22], the R-tree [13], the R*-tree [2], the X-tree [4]dan also show that for a real world application of primer design
the LSDh-tree [14]. Indexing multi-dimensional vectorgfie for genome sequence database, our proposed scheme can be
NDDS is a relatively new problem. applied with a significant improvement in performance.

Traditional string indexing techniques such as Tries [9] an
its derivatives (e.g., the suffix tree [27] and the ternagree 3 BASIC CONCEPTS
tree [3], [9]) could be applied to discrete data when thesect In this section we introduce critical geometric concepts ex
to be indexed could be treated as strings. However, they &agaded from the CDS to the NDDS. Like the indexing
in-memory indexing structures which could not be utilizetechniques in [20] and [21], our new BoND-tree uses these
to support large scale data sets. There exist disk-based stgeometric concepts to optimize the organization of indexed
indexing structures such as the prefix B-tree [1] and Stringctors during its construction time.

B-tree [12] but they rely on the fact that indexed stringsldou A Non-ordered Discrete Data Spac®; is a multi-
be sorted - a property that does not exists in the NDDS. dimensional vector data space, whetés the total number

The vantage-point tree [15], [29] and its variants like thef dimensions inQ);. Each dimension i), has an alphabet
MVP tree [5] are indexing techniques designed for the metri¢; (1 < i < d) consisting of a finite number of characters,
space [7]. As a special case of the metric space, the veotdrere no natural ordering exists among the characters.
space [25], [28] including NDDSs could also be indexed by A rectangleR in g, is defined as? = S; x Sz x S3... %
metric indexing structures. But a major drawback of thes®;, whereS; C A;. S; is called thei-th component saif R.
techniques is that they are static main memory-based stegct The edge lengthof R along dimensiori is defined ag.S;|,
which focus on reducing the number of distance computationghich is the cardinality of se$;. If Vi € {1,2,...,d}, |S;| =
As a dynamic metric space indexing structure designed for R degrades to a vector 1. Theareaof a rectangleR is
large scale databases, the M-tree [8] is another indexidgfined ask = Hle |S;|. The overlapof a set of rectangles
approach which could be applied to NDDSs. However, i$ defined as the Cartesian product of the intersectionslof al
could only use the relevant distance between vectors whidxe rectangles’ component sets on each dimension.
creating the indexing structure. The special charactesistf Given a set of rectangleSR = {Ri,Rs,...,R;}, if
the NDDS such as occurrences and distributions of datagoift € {1,2,...,d} andVvt € {1,2,...,j}, thei-th component
on each dimension are totally ignored by the M-tree (as weiet of a rectanglé? contains thei-th component set ok, R
as other metric space indexing methods), which could ait@ct is a discrete bounding rectanglef SR. A discrete minimum
retrieval performance when compared to indexing techrsiqueounding rectangl¢DMBR) of SR is such a discrete bound-
designed specifically for the NDDS. It has been shown thitg rectangle that has the least area among all the discrete
when retrieving data for box queries the M-tree performascebounding rectangles of k. The spanof a DMBR R along
significantly worse than that of the ND-tree [20], a techmiqudimensioni is defined as the edge length®falong dimension
recently proposed to support efficient indexing of the NDDS.

De Vries et al. [10] propose an interesting data decomposi-m order to control the contribution of each dimension in
tion technique for k-NN search in real valued data. Theydtivi the geometric concepts such as the area, a normalization is
the indexed dimensions vertically to create slices of dimeapplied (i.e., the edge length of each dimension is norredliz
sions. Then each slice is stored sequentially. For k-NNigagr by the domain size of the corresponding dimension). Detaile
observing only first few dimensions provides enough inferma&efinition and explanation of these concepts could be found
tion to prune most of the data records. Hence, despite labk[21].
of any conventional indexing structure, this method presid
good performance for high dimensional data. However, inde OPTIMIZATION OF INDEX TREES FOR BOX
ing techniques that work well for similarity queries do noQUERIES IN THE NDDS
necessarily support box(window) queries efficiently. This We start by discussing box queries in the NDDS in section
because query conditions for box queries are specified fiir ed.1. In section 4.2 we present a method to calculate estimate

2 RELATED WORK

Symbol | Explanation . . .

y Number of dimensions Proof: Note that, execution of a b_ox query will access

Q d-dimensional NDDS every node whose DMBR overlaps with the query window.

A; Alphabet size of the? dimension As each node access in the index tree results in one page

g Zectangle ;mde ™ _ access, the total number of I/O for the query is equal to the
i omponent ofR along the:*” dimension .

SE Set of rectangles. iy, number of the overlla.ppmg .nodes.. Hence thg resullt. O

q A fixed box query Note that proposition 1 is applied to a given (fixed) box

Q Random box query if2q query ¢ with query windoww. However, in practice, we are

w Query window ofg ; ; ; ;

7 Suery window of0 more interested in the average performance of an indexing

structure when answering a large number of box queries. More
TABLE 1: Table of important symbols used in the paper specifically, we need a way to evaluate an indexing structure

box query I/O for hierarchical indexing structures. In g&tt 7’s average performance on supporting a query ofass an

4.3 we discuss the splitting problem of index trees and Sh(N‘DDS Q4. Here we use a query class to represent a class of

that box queries require specifically designed heuristioerw fixed box queries whose query windows have the same edge

bU|Id|ng a tree. New heuristics to support efficient box (iRE?I' |ength on every dimension if,;. A query classQ in Qg is
in the NDDS are introduced in section 4.4. defined as follows:

4.1 Box Queries in the NDDS Q={gs |1 <6<m; Vi,je{1,2,...,n}, Vke{1,2,...,
A box queryq on a data set in an NDDS is a query which g}, w; and w; have the same edge length on

is specified by listing the set of values that each dimenson i
allowed to take. More formally, given an NDDS,, suppose
qc; C A; (A, is the alphabet of2; on dimension, 1 < i < d) query gs }-
is the set of values allowed by a box queralong dimension
i, wWe usew = Hle qc; to represent the query window of

dimension k, where ws is the query window of box

For simplicity, in the rest of this paper, we cé)larandom
box querywhich has query windowV (in contrast to a fixed

box queryq. Any vectorV = (vq,vs,...,v4) insidew (i.e.,) : . .
v; € qe;, Vi € {1,2,...,d}) is returned in the result of the box queryg with query wmdow@ inagiven NDD.S.‘ We use
box queryq. w to represent a fixed query window which specifies the exact

characters occurred on each dimension of an NDDS. A query
I3{\@"ndow W is used only to specify the number of characters
on every dimension for a random box quepy

Consider an index treg&' built in a d-dimensional NDDS

Given a hierarchical indexing structure, supp@3éVv, q) is

a boolean function which returns true when and only when t
qguery window of a box query overlaps with the DMBR of a

nodeN in an index tree, box query s typically evaluated as :
follows: starting from the root nodg (let N = R), the query {3g = Ay x A3 x... x Aq. Suppose a nod¥ in T has DMBR
window of ¢ is compared with the DMBRs of all the child = 51 % 52 X ... X S and|S;| = m; (8; C A, 1< i<

nodes of N. Any child nodeN’ for which F(N’,q) =1 is d). For any box quen with query w_|r_1dowW, if W has
recursively evaluated using the same procedure. Howéver, pi (bi = |Ai!) characters along dlmeQS@_nt_he probability of
does not overlap with a child nod€” (i.e., F(N",q) = 0), R overlapping with” along dimension is:

N and its child nodes can be pruned from the search path. Cbi

Assuming each node occupies one disk block, the query I/O is Opi(N,W) =1~ ‘bi , (1<i<ad) Q)

the total number of nodes accessed during the query process. C|},l.|

In section 4.2 we show how to estimate box query 1/O for

an index tree in the NDDS. Here we use the notation’® to denote the number of
combinations ofn objects takerk at a time. From formula

4.2 Expected I/O for Box Queries (1), the probability for a nodeV to overlap with a query

From the generic query execution procedure described in #{dow W on all dimensions is calculated as follows.

previous section, it is clear that a nodfeneeds to be accessed d Cbi

(and thus contributes to the query I/O) if and only if its DMBR O,(N, W) = H(1 — M) 2)

. . ? b,;
overlaps with the query window of the box query;. Hence =1 C|Ai|

we have the following proposition:) i .
Proposition 1: The number of 1/O for evaluating a box Formula (2) gives the overlapping probability between a

queryq with query windoww using an index tred is given Node N's DMBR and a query windowlV. Clearly, the

by: overlapping probability is inversely proportional to thigsfiing
power (pruning power) ofV. In the rest of this paper we
I0(T,q) = > O0W,w), use the ternfiltering powerto describe the chance that is
N is T's node pruned away from the query path when executing a box query
Q.
where We have the following proposition to estimate the average
1 if w overlaps with DMBR of N query I/O. Qf an index tre€” for a box queryQ. _
O(N,w) = 0 otherwi Proposition 2: The average (expected) I/O of executing a
otherwise random box query) with query windowlWW for an index tree

T can be calculated as, candidate partitionC'P; splits N into two new nodesN;
and N, with {a} and{b, c,d} on thei-th dimension in their
10(T,Q) = ‘ Z Op(N, W) respective DMBRs, and the second candidate parti€ign:
N is T's mode splits NV into nodesN| and N} with {a,c} and{b,d} along
Proof: The expected number of I/O for a random quergimension: in their respective DMBRs. Further, suppose we

@ can be calculated as, are considering a random box quegywhose query window
O, (N, W)x W has3 characters along dimensienFrom formula (1), the
I10(T,Q) = Z |/8 re7quired for accessing N probabilities of overlapping with the query winddw on the
N is T's node i-th dimension i90.375 for node N; and0.821 for node N,
= Z Op(N, W) x 1 respectively. Similarly the probabilities of overlappimgth
N is T’s node W on thei-th dimension ar®.643 and0.643 for N and N4,
- Z O, (N, W) respectively. Sincé®.375 + 0.821 < 0.643 + 0.643 = 1.286,
N is T's node when answering a random box quefy, CP; gives better

filtering power on dimension than CP, (becauseN; and

| . . .
The theoretical analysis in the following subsections usé@ has less chance of overlapping with the query window on

H . ! !
Proposition 2 to estimate performance of indexing strlﬂsurd'mens'om than N; and N2)'_ . .
for box queries in the NDDS. However, the ND-tree splitting algorithm would prefer the

candidate partitionCP, over CP; based on its heuristic
S Hs. This suggests that there exist better ways of splitting
4.3 A Motivating Example for the Splitting Heuristics a dimension for box queries in the NDDS. Similarly, we
When using a tree structure for indexing data, the algosthroan also come up with examples showing that splitting an
used for splitting overflow nodes play an important roleverflow node on the dimension with a shorter span (edge
in determining the index tree’'s query performance. This length) can result in better filtering power (i.e., less poibity
because except the first node (which is created by default)ah overlapping with the query window) than splitting the
the tree, every other node is created by splitting an exjstidimension with the maximum span (i.&Hs).
node. In order to reduce query I/O for box queries in the In the following subsection we introduce the theoretical
NDDS, we want a splitting algorithm which distributes arbases for the heuristics to be used in the proposed BoND-
overflow node’s entries into the two new nodes in such teee to support efficient box queries in the NDDS based on
way that the resulting indexing structure will have minimunour theoretical analysis.
expected box query I/O in the NDDS. The expected number
of I/0 is given by Proposition 2. 4.4 Theoretical Basis for Node Splitting Heuristics
Note that here we are interested in a splitting algorithiwwhen distributing vectors in an overflow node into two new
designed for random box queries rather than a particular bogdes, we try to obtain overlap-free partitions in order to
query. This is because we cannot make any assumption aboitriimize the chance of searching both paths at query time.
the box queries which will be performed on the indexin@nlike in the CDS, more overlap-free partitions are avadab
structure. On the other hand, like other existing indexing the NDDS due to the fact that elements in the NDDS are
techniques (e.g., the R-tree, the R*-tree, the ND-tree),etmon-ordered and discrete. In this section we introduce ®wo n
our splitting algorithm optimizes the indexing structunelyo heuristics for choosing overlap-free partitions of an ear
based on the information available at the splitting timeafThnode N of an index tree in the NDDS.
is, we do not make assumption about vectors which will be For the purpose of simplicity, we assume the NDDS to be
indexed after the splitting. indexed has the same alphabet size for each dimension and
One of the recently proposed indexing schemes for sugensider box queries which ammiform A random box query
porting similarity searches in the NDDS is the ND-tree [20]) is said to be uniform if the edge lengths of the query window
It adopts four heuristics for node splitting, which afEY SH,- are the same along all dimensions. The common edge length
Minimize Overlap(minimize the overlap between DMBRsis said to be thdox sizeof the uniform box queryy. In fact,
of the new nodes)(2) SH,-Maximize Spar(split along the the theoretical analysis provided here could be extended to
dimension with the maximum edge lengtli3) SHs-Center more complex situations where box queries are not uniform.
Split (balance the edge lengths of new nodes along the splittingConsider ad-dimensional NDDS?,, an overflow nodeV,
dimension) and4) SH4-Minimize Area(minimize the total and a splitting dimension with edge lengthz. Consider two
area of the new nodes’ DMBRS). candidate partition€' P, and C P, alongu: C P, distributes
Our analysis of box queries in the NDDS suggest th#tte entries inV between two new nodes; and Ny; similarly
although the minimize overlap heuristic is important fo€' P, splits N into two new nodesV; and N). Suppose the
supporting efficient box queries, the others may not be. Véelge lengths on dimensianis [in N;'s DMBR and it isxz —1
illustrate this by the following example. in No's DMBR. And suppose the edge lengths on dimension
Consider a dimensiohwith alphabet{a,b,c,...,h} (note inthe DMBRs ofN] and N} aret andx—t, respectively. Here
the characters in the alphabet are non-ordered). Xebe we assumé < x—[andt < x—t. The filtering powers of the
a node with character§a, b, c,d} along dimension in its new nodes generated fro6i\P; and C' P, could be evaluated
DMBR. Consider two candidate partitions df: the first using the following theorem.

Theorem 1: For the given splitting dimension, if [< ¢, utilization criterion needs to be considered. This meams$ th
the probability of overlapping between the query winddWw the most unbalanced candidate partition which satisfies the
of a uniform box query@ and DMBRs of N; and N, is minimum utilization criterion should be selected because i
smaller than the probability of overlapping betwedn and has the least overlapping probability (among all candidate
the DMBRs of N; and N, partitions generated from a splitting dimensiowhich satisfy

Proof: For any node with edge lengtk and query the minimum utilization criterion) based on Theorem 1.
window with edge lengtth on dimensionu, the probability of ~ We use the following theorem to choose splitting dimen-
nodesN; and N, not overlapping with the query window an sions for box queries in the NDDS:
is P = %4_ Cg’{l , whereA is the domain size of dimen- Theorem 2: Given an overflow nodéV and a uniform box
sion . Similarly, wé have the non-overlapping probability oflu€ry (i-e. all the sides of the box have the same length)th
N7 and N/, with the query window as? — o n ¢y, query windowlV, splitting N on a dimensiom in {u | EL,, >

1 2 o2 ch Ch " 1; forany 1 <i < d, either EL; > EL, or EL; = 1}
Thus, we want to show, > P, which equals to: gives less probability of overlap betwe&h and the DMBRs

Chwi +CY > Ch_ +Ch, (1<) (3) of the two newly created nodes than splitting on other
dimensions, where&&L;(1 < ¢ < d) is the edge length of
lLeta=A—z+t,0=A—z+landd=x—1—t. Then pN's DMBR along dimensioni
formula (3) simplifies to, Proof: First we show that, when supporting uniform box
b _ b b _ b queries, splitting a node on a dimensipmith edge lengthe
Cots = Chs 2 Ca = O @ gives more filtering power than splitting on dimensigmvith
Using mathematical induction dn whenb = 1, inequality edge lengthr + 1. From Theorem 1, we know that the best

(4) holds. Suppose it holds wheh = b'. Since C;*! = way to split a dimension is the most unbalanced split. Suppos
_ "C;;l, whenb =t + 1, formula (4) becomes that both dimensions have alphabet sikewhen splitting the
n+1 dimension with edge length, the overlapping probability is
y a+o-=V) ya—10 calculated as:
Coromgrr ~ Owgr12Ceyrr O b ct cb
L% Yaeey g Yasey 8
N (1- A=ty) =) (®)
SinceCy, s > Cp 4, 4 4 Cy
y a+o—=V b) y a+do—0 Similarly, the overlapping probability when splitting trs-
Cors—1 ~Coroygr1 201 mension with edge length + 1 is
’ 0 o o—1b b/Oz—b/ Cb Cb Cb
Corsgry = Cowoyry = Co iy -t +1- 550 - =55 (@
A A A
]
Inequality (5) shows the correctness of Theorem 1 for gypstituting Ch Mcﬁkz and
uniform box queries. The following corollary proves that A b A-z+1-0b
} . . b _ — T — b . .
theorem holds even for non-uniform box queries. ChA g . CY%_, into expressions 8 and 9, and
— X

Corollary 1: For the given splitting dimension, if | < ¢, b
the probability of overlapping between the query winddiw noting thatC?% _, = (1 — Z)Cfip we need to prove that,
of a non-uniform box query) and DMBRs of N; and N,) b
is smaller than the probability of overlapping betwé&nand (A—br+b—-1b%) < Ca—u (10)
the DMBRs of N} and N, A e

Proof: For any dimension <« < d, we want to show:

Using mathematical induction oh, formula (10) holds
o , N , whenb = 1. Suppose it holds wheh=b'.
Cut o +CA) = O e FCO™ 1<t) (6) Y. ;P oY
;(A—z+l ALt ;(A—att ate)) Let (A bx;li—b b):oz, g;m:ﬂ'we know that
A
We have already proved that inequality (3) holds. Thus we< 8. Whenb =¥’ + 1, the left side of (10) becomes
know givenb;u(1 < i < u), inequality

A-bVe—z+b +1-0 -2/ —1 42
(Ch% gy T C42) 2 (CRt oy + CG2) (18 (7) A YT
holds. Substitution of (7) into inequality (6) proves ther-co @nd the right side of formula (10) becomes
rectness of inequality (6). O) o A—a-V
Theorem 1 suggests spIittin_g an overflow node by putting ng; B ch . v +1 a0 x
as many characters as possible into one new node on the 5T — ct AU =B~ —A—b')
splitting dimension. This is contrary to heuristitH; used A b+ 1

by the ND-tree. Note that a data-partitioning based indeg tr
has a minimum utilization criterion, which enforces that a
certain percentage of the disk block for a tree node should o — x + 20 < B(1— z) (11)
always be filled. When applying Theorem 1, the minimum A~ A=V

So we want to show that

Sincea < 3, we only need to show: Theorem 2 suggests splitting an overflow node along a
dimension which has a shorter edge length in the node’s

T+ 20 T o) o
) > BA — (12) DI\/!BR. This is oppomtg of heuristi§ H, used by the ND-tree_
— splitting algorithm. Again we see that, to support box geeri
, , in the NDDS, there could be better ways to select splitting
e+ (A-z)(A-z-1)..(A-z-b+1) (13) dimensions compared to the heuristics used by the ND-tree.
x (A=1)...(A=DV)
Left side of (13) has 4.5 Splitting Heuristics
r+20 14 2_17’ >1 Given theorems 1 and 2, we propose the following heuristics
r r = for splitting an overflow node in the NDDS. The heuristics are
On the right side of (13), since > 1, we have applied in the order they are specified.

, R1: Minimum Overlap
A-2)d-z-1)..(4 _,x —V+D <1 Of all the candidate partitions, heuristic R1 selects the on
(A=1)...(A=V) that results in the minimum overlap between the DMBRs of
Thus we know (13) holds, which shows that splittinghe newly created nodes. This heuristic is the same as the one
on dimensionp with length = gives better filtering power used by some of the existing works [2], [20].
than splitting on dimensioy with length « + 1 for fixed R2: Minimum Span
query box sizes. It is straightforward to deduce that for anfyR1 generates more than one overlap-free partitions,istar
n > 1, dimension with length: will give better splitting than R2 selects one of those partitions which is generated from
dimension with length: + n. O splitting a dimension with the smallest span. This follows
Theorem 2 strictly applies to uniform box queries. Theirectly from theorem 2.
following corollary proves that the theorem also holds for R3: Minimum Balance
non-uniform box queries. Given a splitting dimensiom, heuristic R3 chooses the most
Corollary 2: Given an overflow nodé&V and a non-uniform unbalanced overlap-free partition (i.e., the one that @ss
box query@ with query windowW, splitting NV on a dimen- few characters as possible in one node’s DMBR and as many
sionw in {u|EL, > 1; for any 1 <i <d, either EL; > characters as possible in the other node’s DMBR on dimension
EL, or EL; = 1} gives less probability of overlap between,) among all candidate partitions which satisfy the minimum
W and the DMBRs of the two newly created nodes thaumilization criterion and tied on R2. This follows directisom

splitting N on other dimensions. theorem 1.
Proof: Consider a query bo®;(1 < i < s), Overlapping It is possible that, even after applying all the heuristics,
probability when splitting dimensiop is there remain more than one candidate partition. In suchscase
cbiv obip obir a partition is chosen randomly from the tied ones.
(1- 4=ty Ay “A-@hl, (14) Heuristics R2 and R3 may not be intuitive at a first glance
chr chiv chp (e.g. the binary search has been proved to be an efficient
Overlapping probability when splitting dimensianis sear_c_hing algo_rithm in the CDS, which implies a_bglanced
bia bia bia parUU_on of the mdgxed da!ta space). But th_ese_ heuristycot
(1- Cily 1 (O)(1— CA;I) (15) exploit the properties pertinent to box queries in the NDIS.
Cﬁ{'q C«Ziq C«Ziq is the nature of the data space that makes seemingly umigtuit

splitting heuristics perform better than the ones used & th

When the edge lengths of, ~ @, are uniformly CDS. We will see the experimental results in section 7.

distributed within [¢1,¢,.], formulas (14) and (15) could be
rewritten as,

. ot o 5 CONSTRUCTION OF THE BOND-TREE

T j J J

72:(1 _ OAtfl +1— —(f_—l))(1— ‘(f_*l)) (16) In this section, we describe the data structure and impbrtan
j=1 Ci Ci Ci algorithms for constructing the proposed BoND-tree.

and

S

ot ot 5.1 Insertion procedure
Az Az

cy
vy (1- 2;1 -7)1 oh) (17) A BoND-tree is a balanced indexing structure which has the
i=1 A A A following properties:(1) Each tree node occupies one disk
correspondingly, wherg is a constant factor. block; (2) All nodes must have at least a given minimum
We need to show that the value of expression 16 is leamount of space filled by indexed entries unless it is the root
than or equal to the value of expression 17. But as a partradde (the minimum space utilization requiremer{8) The
the proof of theorem 2, we have already shown that individuadot node has at least indexed entries unless it is a leaf
terms of the summation obey the inequality (i.e. value of theode; (4) A leaf node entry structure has the for(W, P),
expression 8 is less than or equal to the value of expres$ionhere V' is an indexed vector (key) an® is the pointer to
Hence, the summation must obey the inequality. This proviee relevant tuple in the database correspondingyt@5) A
the corollary for non-uniform query boxes. O non-leaf node entry structure has the foftM, P), where D

is the DMBR of the entry’s corresponding child node aRd sets like{e} and {e, f,g}; sets which are disjoint or partly
is the pointer to that child node. overlapped like{a, b}, {e} and {a,b,e}; sets whose union
We use a bitmap structure to represent DMBR informatidae only part of the alphabet or the whole alphabet such as
in a non-leaf node entry. The overall data structure of the,b,c}, {f} and{e, f, g}; or a single component set which
BoND-tree is inspired by that of the ND-tree. It is furthecontains all the characters from the alphabet. The relsttipn
optimized through the compressed BoND-tree introduced @among component sets at a non-leaf level could be very
section 6. complex in the NDDS.
Inserting a vector in the BoND-tree involves two steps.tFirs
we find a suite_lble leaf nodé for the new vector. Then we ¢ 5 The Node splitting Problem
put the vector intal and update.’s ancestor nodes’ DMBRs .) , .
as needed. The second step may cause a split of the leaf n§diS Section we analyze how an overflow nales split in

(when an overflow occurs), which might trigger cascadedsplfhe BoND_-tree usir_1g heuristic R3. S_upposts t_h_e dimension
all the way to the root node. along which we will generate candidate partitions fér we

first group all entries which share common characters along
5.1.1 Selecting a Leaf Node dimensionu such that theu-th component sets of any two
entries from different groups are disjoint. Each group inth
to pick an appropriate child node @f which will accommo- tréated as a single item when splitting the node. Grouping
date a new vectol’. If there is only one child node whose€ntries this way aV(_)lds d_|str|_but|ng ent_rles with the same
character(s) along dimensian into two different nodes (in

DMBR containingV/, that node will be chosen to insért In) o
caseV is covered by more than one child nodes’ DMBRs",Vh'Ch case an non-overlap-free partition is generated¢ghEa

the node whose DMBR size is the smallest is selected. 4foUP has a certain number of characters along dimension
V is covered byN's DMBR but not covered by any of and requires a certain amount of space to store the entries in

N's child nodes’ DMBRs, we use th heuristics proposed t- We Us€G1, Ga, ..., G, to represent these groups.
by the ND-tree [20] for selecting a child node, which are: SupposeSy IS t_he disk block _s_lze_occuple(_j by ea<_:h tree
Minimum Overlap Enlargementinimum Area Enlargement node ar_ld the minimum space utilization Crlte_rlon requineg t
and Minimum Area The heuristics are applied in the ordef Certain sizeS,,;, of each node must be filled. Based on
they are presented. That is, a heuristic will be used if a/f" discussion, the BoND-tree node splitting problem using
only if application of the previous heuristic(s) resultsdne Neuristic R3 could be defined as follows.
or more ties. L .)

To insert a new vector into the BoND-tree, we need to fingode Splitting _P“?b'em of the BoND-tree Using Heuris-
a leaf node to accommodate the vector. This is achieved # R3 (NSP): Given entry groupsGi, Gz, ..., Gy

invoking the select-nodealgorithm recursively, starting from IN” @n overflow nodeXN, suppose the number of charac-
the root node of the tree, until a leaf node is selected. €S (along the splitting dimension) and the storage space
of each of the groups ar&:Vy, GV, ..., GV, and

5.1.2 Splitting an Overflow Node GWy, GWs, ..., GW, respectively. The BoND-tree splitting

As discussed in section 4.4, a better way to split an overfigwi 2/90rithm distributes the entry groups to two new nodés
nodeX in the NDDS is to get an overlap-free and unbalanceti'd V2 such that, _
split along a dimensiof, which has the minimum span amond 1) The total number of charactet$o..; = Y GViis
all dimensions whose spans are larger tHanAmong the the maximum. Gi in Ny
heuristics suggested in section 4.4, R2 could be achieved _ _ _ _
comparing the span of each dimension in ndds DMBR. @/ Both NW1 = G_%:N GW: and NW; = GV;N GWi
However, implementation of R3 in the BoND-tree is moreatisfy the minimum space utilization criterion of the ttee.,
complex, especially at the non-leaf levels of the tree. This NW, > S,,;, and NWy > Spin).

because the component sets of the DMBRs of non-leaf nodedne brute force way to solve probled8Pis to compute all
entries could have more than one character on a dimensipgrmutations of the entry groups in an overflow node, and then
Table 2 shows an example of differeisth component sets put splitting points tentatively between adjacent grompszch

Given a nodeV, the BoND-tree uses select-nodalgorithm

from 8 non-leaf node entried;, F», ..., Eg) on a dimension permutation to generate candidate partitions. But thiartje
i which has the alphabdt, b, ¢, d, e, f, g}. demands a heavy computation overhead. Even for a small
number of entry groups, it would be impractical to evaluate
Non-leaf entry Ey Es Es3 Ey all permutations (e.g., fol0 entry groups, the number of
Component setl {a,b} {b,c} {a,¢} {a,bc} candidate partitions would be more than one million). Tasol

Non-leaf entry | Fs Fe o s the problem efficiently, we further analyze the node splitti
Component seff {a,b,e} {e} {e, f, g} {f} problem as fO!IOWS' . .
” 2 SupposeS, is the size of each node entry. The maximum
TABLE 2: Different component sets of non-leaf entries ostorage spacé,, ., that could be utilized by a new node is
dimension. calculated as:
When generating candidate partitions on dimensgiowe
could have a component set which is a proper subset of other Smaz = ([Sa/Se] + 1= [Smin/Se]) x Se (18)

For example, consider a nodé containing4 entries and guarantee the minimum space requirement on both nodes
each entry usingS. = 90 bytes, the total space occupiedspecified in problenNSP. Our discussion above has already
by these4 entries is90 x 4 = 360 bytes. Suppose the diskshown that both the requirements dvy, and N, defined
block sizeS; is 400 bytes, NV will overflow if the 5-th entry in NSP will be satisfied by enforcing the maximum space
is inserted into it. Further suppose the minimum utilizatioconstraintS,,,,,. on the nodeV;.
criterion specifies that at least 100 bytes of each node naust b The redefined splitting problem can be mapped to the O-
filled (S, = 100). If N is split into two new nodes, eachl Knapsack problem if we consider each entry group as the
new node must have at led#t,,,;,,/S. | = 2 entries distributed objects to be filled in the knapsack afgd,., as the knapsack
to it. As a result, each of the new nodes could have at mastpacity. This mapping greatly simplifies the solution foe t
[Sa/Se] +1—[Smin/Se| = 3 entries after the splitting. Thus splitting problem.

a new node could use at maS,.. = 3 x S, = 270 bytes to
store index entries distributed to it. - .

Formula (18) gives the maximum amount of space Whic%'3 The Node Splitting Algorithm
could be utilized in each of the newly generated nodes t@stdks the node splitting problem is mapped to the 0-1 knapsack
indexed entries (so the remaining entries will be put in theroblem, a dynamic programming solution [16], [23] can be
other node). From formula (18), we could get the followingised to solve it optimally and efficiently. After the itemsiey
property ofS,,qz : groups) to be put into the knapsack (na¥lg) is decided, the

remaining items (entry groups) are put into natle.
Smaz < ([Sa/Se] +1) X Se = Smin Algorithm 1 summarizes all the important steps involved in

From formula (19), we know that|.Sy/S.| + 1) x S —

inserting a new entry into a tree node.
Smaz = Smin, Which means by allowing one new node to us AI?.oZthmdl:]\;nse(rjt _entryt(N, fj)b . ted inV

no more thanS,,,, size of space for storing node entries, th%p;J .t' I\r/lwdi' datm artl entryE tr(l) te Inserte oII ‘ : 0
other node is guaranteed to have at lefst,, space filled by uiput- Vodilied tree structure that accommodates ety
entries distributed to it.

Method:
Given the maximum spac§,,., defined in formula (18),

(19)

1. if N has space foF

we tackle the node splitting probleMSP in the following g IS;S;Z Ql\ﬂtgzlls;]\?’fsepnat:s}ri ':(])\;e as needed
way.) .
. . - 4. elsel/l We need to splitV

When a r_10deN IS S.pl't to nodesV, an(_:i N2, the spllttlng 5. Record dimensions with span larger thHaimto a list L
algorithm tries to distribute as many entries as possibl¥to 6 SortZ based on dimension span in ascending order
but the maximum space utilized iN; is no more thars,,,,.. 7' for every dimensiori in I do P 9
Suppose the spaces occupied by entries distributéd, tand 8. Group entries inV based on their component sets
N, are S; and .S, respectively. Clearlys; is no less tharbs ' on dimension
(since the splitting algorithm tries to put more entrie®ing). 9 Calculate each entry group’s weight and

We already know from formula (19) th&b is no smaller than
Simin. SincesS; > S5, S1 will be no less thars,,,;, either.

Based on our analysis above, we provide an alternati
definition of the node splitting problem using heuristic R3, ™
which is equivalent to the previous probleRSP. Note that

value //mapped to the — 1 Knapsack Problem
if N is a leaf node
Solve the special case of the- 1 knapsack
problem using the greedy approach

. o S . : . else
in both definitions we distribute entry groups instead ofiest 13, Solve thed — 1 knapsack problem
in order to get overlap-free partitions. : ; X
using dynamic programming
end if

Redefined Node Splitting Problem of the BoND-tree Using ig
Heuristic R3 (RNSP): Given entry group$s;, Ga, ..., Gy ’
in an overflow nodeN, suppose the number of char-

if a solution satisfying the minimum utilization
criterion is found
return the solution

acters (along the splitting dimension) and the storaqc%'

space of all groups areGVi, GV, and
GWy, GWa, ..
algorithm distributes the entry groups to two new nodés
and N; such that,

(1) The total number of charactel§,iq; =

GVa, ...,

. Gz n N]
the maximum.

(2) The total storage spad@,i.; =

) G»L in_ N1
the constrainWW;,1q1 < Simaz, WhereS,,.... is calculated from 23.

formula (18).

., GW,, respectively. The BoND-tree splitting 19'
Z Qv is 20.

Z GW, satisfies 21-
22.

end if

end for

if no solution that is overlap-free and satisfies the

minimum utilization criterion could be found
Generate candidate partitions based on the
descending order af; and select a partition
with the least overlap
return the solution

end if

end if

Note that in the definition of probler®NSP, we use the Mapping the splitting problenRNSP into the 0-1 Knapsack
maximum space constrairfi,,,,, on a single nodeN; to Problem not only provides an efficient way to find the most

suitable partition for an overflow node, but also allows thigs DMBR, while the other node to have the minimum number
freedom of using different ways to build the BoND-tree baseaaf characters. And both new nodes must satisfy the minimum
on the particular requirement and purpose of indexing. space utilization criterion in our example. If we solve the 0
For example, when both the query performance and the tiheknapsack problem as mentioned above, it will give us the
needed to construct the indexing structure are criticaklfge best candidate partition (according to proposed heuri®8E
algorithms [11], [18] for the 0-1 knapsack problem could b#or splitting the nodeN as shown in table 6. Note that for a
applied to build the BoND-tree efficiently and quickly. On
the other hand, when the BoND-tree is created as a temporary Entries in nodeN; | G1, Ga, Ga, Gs, Ge
indexing structure, the query 1/O is usually not the onlytfer Entries in nodeNy G3
most important) consideration: sometimes people wantitd bu
index trees quickly and discard them after performing atuahi
number of queries. In such cases, the BoND-tree could)]] o)
generated using algorithms introduced in [17] and [24],chi '€af node, the optimal solution to this splitting probleneisen
provide approximate solutions with guaranteed closenessSimpler since all the entries in the overflow leaf node havg on

the optimal solution with much a less time complexity ané single character on a splitting dimension. This is a specia
system resource requirements. case of the 0-1 knapsack problem which could be solved

We illustrate the BoND-tree splitting algorithm using ar/Sing & greedy algorithm (instead of dynamic programming)
example as shown below. as follows. We first sort all items based on their weights.nmhe

Let the entries in an overflow non-leaf node Be. .. E,,. W€ put those sorted items into a knapsdc¢knew tree node

Further, suppose DMBRs of these entries have the compon&ii One by one, starting from the items with smaller weights

sets along a splitting dimensianas shown in table 3. After the Until no more item could be put intd. All the remaining
items are put into tree nodg,. This distribution approach will

Entry £ £ s Fr s Fo guarantee to obtai_n the best partition of entries in an awerfl
Componentsel {a} {0} {abc] {4 Lo {ef) leaf node a_s required by R3
By mapping the node splitting problem to the 0-1 knapsack

Entry Er Es Eo B Eu FEn problem, our proposed BoND-tree’s splitting algorithm is
Component set {f} {h,i} {i} U i {&} guaranteed to find an overlap-free partition satisfying the
minimum utilization criterion as long as there exists such a
partition. Theoretically there may be cases when it is sjmpl
impossible to get any overlap-free split without affectihg
space utilization. To safeguard the situation, the BoN&2-tr
generates a candidate partition for each dimension byngutti

TABLE 6: The candidate partition for an overflow nodé
oeund by solving the 0-1 knapsack problem.

TABLE 3: Different component sets for non-leaf entrigg ~
E12.

grouping process we obtain the followitiggroups as shown
in table 4. Each grougr; has a set of charactesS; on the

Group - Gs Gs gs mar:jy entri(;:-s zz; possi/ble toha new ntohde bads_edl_?n the
, escending order of; = v;/w;, wherev; is the cardinality
Ent E\,E2, E E Es,Es, E . X
niries | {1, o, Bs) {Fa) (Fs, Eo, Er} of an entryE;’s (1 < i < n, n is the total number of entries
Group Ga Gs Gs in the node) component set on the splitting dimensionand
Entries | {Es,Eo} {E10, B11} {E12} is the storage space @&;. Then we use heuristic R1 to pick

one candidate partition which gives the least overlap vdtue

splitting dimension (by applying the set union operatiorttzz othe_r_ word_s, only heuristic R1 is used when no ovgrlap—free
component sets of all group members’ DMBRS on dimensi(ﬁ?mt'on exists for an overflow node (a random one is chosen
u). Here we useGV; to represent the number of characters (N€re are ties for R1).

in G'S;. Also each group requires certain space to store theNOt that, because of the nature of the NDDS as we
entries in it. Let the amount of space required for each enf{Scribed in section 4.4, in most splits the BoND-tree could
be one unit and the capacity of the node be 11 units. Furtfd at least one overlap-free partition for an overflow node.
suppose the minimum space utilization requires each new nd@Ple 7 shows the percentage of non-overlap-free splés, .
must utilize at leasB units. We useGW; to represent the N0 Overlap-free partition could be found) among the total
space required bys,;. Table 5 shows the item weights andumber of splits in our experiments with synthetic data.

values of the 0-1 knapsack problem mapped from the nodlgese experiments are described in detail in section 7. in ou
splitting problem. According to heuristic R3, after spfig experiments with real data, it was observed that an overlap
free partition was found in all the splits. This is due to thetf

that real data has more dimensions (21 dimensional g-grams
from genome sequences) and, therefore, has significantly mo
possibility of finding overlap-free partitions.

In algorithm 1, if a solution is returned in ling6, it is
TABLE 5: The item weights and values in tibe- 1 knapsack guaranteed to be an overlap-free partition which satisfies t
problem. minimum utilization criterion. Otherwise the code segment
a nodeN into N; and N2, we want one node to have thebetween lined9 ~ 22 finds (and returns) a partition which is
maximum number of characters on the splitting dimension imot overlap-free but satisfies the minimum utilizationemibn.

TABLE 4: Grouping of non-leaf entries.

Item | Gi G2 Gs G4 Gs Gs
Weight 3 1 3 2 2 1
Value 3 1 2 2 1 1

10

Number of I&Ctors indexed Percentage Ogr;%g'gverlap'free SRS Markov transition matrix [19] describing the probability §'s
2M 0:61802 size after adding one random character fronto S is shown
3M 0.577% in (20).
am 0.586%
5M 0.558%
TABLE 7: The percentage of non-overlap-free splits when 1 2 3 A
building the BoND-tree 1 1/A (1-1/A) 0 0
L 2 0 2/A 1-2/A 0
5.4 Deletion in the BoND-tree P = 3 0 {) (3/14() 0
If removing a vector from a leaf node does not cause any N
underflow (i.e., the minimum space utilization requirememt A 0 0 0 .. 10

L is satisfied after the deletion), the vector is directly rest
and DMBRs of L’s ancestor nodes are adjusted as needed. (20)

If an underflow occurs for, the procedure is described as Now suppose we are creating an indexing structure for an

follows. NDDS with domainD for dimensioni. Further suppose the
Node L is removed from its parent nod€, and if V' under- sjze of D is 10. Using the Markov transition matrix in (20),

flows again,V is removed from its parent node. The procedufige can calculate the probability of a node having all the

propagates toward the root until no underflow occurs. ThaQ characters inD on dimension after indexingV;, vectors,
the subtree represented by the underflow node closest to aeshown in table 8.

root node is removed, its ancestor nodes’ DMBRs are adjusted

as needed and all the remaining vectors in the subtree are v, 20 40 60 80 100
reinserted. In the worst case, if the root node has only tWoO propapiity | 21.47% 85.81% 98.21% 99.78% 99.97%
children and one of them is removed, the remaining child node
becomes the new root of the tree (i.e., tree height decrea$88LE 8: Probability of having #ull dimension after index-
by one). ing X vectors.

An update operation can be implemented as a combinatiorAs we can see from the table, after indexif@) vectors,
of deletion and insertion. In order to update a vector, we firthe probability that all thel0 characters inD have appeared
delete it from the database, and insert the modified vector.in node N's DMBR on dimension: is 99.97%. And it will

become even higher for a smaller alphabet size (i¥.< 10)
5.5 Box Query on the BoND-tree or a larger number of vectorsX(> 100).

The algorithm for executing box queries on the BoND-tree 1‘5 The Srg'.gmtg heutr_lts_tlcs of the tB(c)ijD-tree prhefetr ar(;_ovefla_p
implemented as follows. Lej be the query box andV be a ree candidate partition generated irom a shorter dimensio

node in the tree (which is initialized to rodt of the tree). Th(|js Iea?tshtoBmoNrngl d|men3|ops,|lln tthﬁ. DhMBlRS cl)f n]?tll}-leaf
For each entny in N, if the query windoww overlaps with nodes of the BoND-tree (especially at higher levels of tae)tr

the DMBR of E, entry E is searched. Otherwise, the Subtregpmpar_ed o thtehND-trele. 'If'ablzg ,Sr;),\\;l\/;;he pﬁrceptggeﬁ:f full
rooted atE is pruned. imensions in the non-leaf nodes s when indexing

million vectors from16—dimensional NDDSs with varying
alphabet sizes. From the above statistics, we see that @ larg
percentage of dimensions recorded in the DMBRs of non-leaf

6 COMPRESSION TECHNIQUE FOR THE

BOND-TREE nodes ardull in the BoND-tree. This fact can be exploited to
We now present a possible improvement in the BoND-treeduce the amount of space required to store the DMBR. In
structure using node compression. the following subsections we explain our compression sehem

and its effect on the node splitting algorithm.
6.1 Motivation

In the CDS, the minimum bounding rectangle (MBR) infor6.2 The Compressed BoND-tree Structure
mation on a continuous dimension is stored by recording the . - 1.o¢ ode entry of the compressed BoND-tree, we
lower ‘?‘”d upper bo_unds of that d'menS'on' $|nce the ”””_‘tifsre one additional bit to indicate if the DMBR is full or not
of available values in a continuous domain is usually unlmb-

ited | the MBR. inf i ’ n each dimension. Only when it is not full, we record the
e (or_ very argg), € MBbR Information on a ContinuoUy...,.rence of each character on that dimension. As the space
dimension: in a hierarchical indexing structure (e.g., the R*

i . likelv t the whole d N of H requirement of a single DMBR is reduced, the fanout of the
ree) is unlikely to cover the whole domain of However, node increases. This high fanout results in reduction in the

@n t_he_ NDDS the r_1umber c.)f characters _in a discrete _dom"’W%ight of the tree and reduced I/O at the time of querying.
is limited (and typically quite small). This means a diseret

dimension for a DMBR will gefull (i.e., all characters in the
domain have appeared on that dimension) much faster than a aphabet size 10 15 20 25
continuous dimension.
Consider a setS which contains characters from a non-
ordered discrete domaif® with domain size|D| = A. The TABLE 9: Percentage ofull dimension at non-leaf levels of
the BoND-tree with different alphabet sizes.

% of full dimensions| 75.33% 75.44% 79.04% 81.30%

11

Note that the compression of DMBRs applies only tocomparison of box queries. In each of the te&t¥) random
non-leaf nodes because the leaf node entry in the BoNBex queries were executed and the average number of 1/O
tree has only one character along each dimension. Thus #mel average running time was measured. As box queries are
performance gain of the compressed BoND-tree is achieviba focus of this paper, we do not present results on range
through a more effective representation of DMBRs in the nofsimilarity) queries. However we would like to note that the
leaf nodes, especially nodes at higher levels of the tree. ND-Tree provides better performance than the BoND-tree for
range queries.

To the best of our knowledge so far there has been no in-
dexing technique specifically designed to support effidient
gueries in the NDDS. Query performance of the BoND-tree

When a non-leaf n(_)de entry's DMBR is SP"t along ong,¢ compared with that of the ND-tree, Data decompaosition
dimension, the resulting DMBRs may also shrink along oth%D) the 10% linear scan and the M-tree.

(full) dimensions. Thus those previously compressed @)t ~ rpe ND-tree is an indexing scheme designed exclusively
dimgnsions may beco.me gncompressed, leading to more S%?erange gueries in the NDDS, which is reported to be a
required. This may give rise to a concern whether _tV_/o N&Y¥bust technique compared to other known indexing methods
nodes are sufficient to hold all the entries from splitting ag Npps [20]. Since the sequential scan (i.e., flat files witho
overflow node. However, it is not difficult to see that this '?‘ndexing) is much faster than the random disk access needed
not a problem. ! " for indexing, 10% of the total I/0O needed for sequential scan
Ina non-leaf nodé_\f, the need for its sp_httmg COmes Wh_en[G], [20], [26] is used to compare with that of the BoND-tree.
Or,‘e of |tsﬂn0de entries’ gets replat;ed with two new entriesq yertical data decomposition scheme discussed in [19] ha
E' andB _(dut_a to the split of a child nod&/). . an effective strategy for the nearest neighbor search. Hemne
The entries inV thgt_need tol be. stored after splittingg for a box query it may be very difficult to come up with
are:E', £, and all original entries iV exceptE. If N .does 5 4404 pruning strategy. Hence, even though this method is
not have enough space for these gntrlgs, it needs to be SEB ceptually similar to BoND-tree heuristics, it fails tmogide
In the worse case (i-e., no dimension in DMBRSM and any improvement in the search performance. Our experiments
E" could remain compressed), the space required for Storgghw that this strategy is worse than the 10% linear scan in
all the entries from splittingV is equal to the space neededy gt of the cases. The M-tree was designed for the metric
for storing all original entries inV exceptE plus th?/ SPACE ghaces. Although it could be utilized to support indexing of
required to hold two uncompressed entriés @nd £”). As the NDDS, its performance is quite poor. Our experimental
any node_must t_)e ab_le to hold at I_east two uncompres%gluns show that the M-tree needs more 1/O than the 10%
nod_e_entrles for |_ndeX|ng o be_pos_3|ble, two new nodes 4ffear scan to support box queries in the NDDS. Since M-tree
sufficient for holding all the entries in the overflow node. and DD are not optimized for the NDDS and are found to be
worse than linear scan, we do not consider their performance
7 EXPERIMENTAL RESULTS in rest of performance comparisons.

To evaluate the performance of the BoND-tree we conducted
extensive experiments. The results are reported in thisosec 7.2 Tree construction time

6.3 Effect of Compression on Splitting Overflow
Non-leaf Nodes

Figure 1 compares construction time of BoND-tree with that
7.1 Experimental setup of ND-tree for increasing database sizes. It can be seen that

The BoND-tree was implemented in C++. Experiments wefRuilding BoND-tree takes much more time than building the
conducted on machines with Intel Xeon quad-core processbi@-tree. This is not surprising since BoND-tree insertion
with 8 GB ECC DDR2 RAM running SuSE Enterprise Linux@/gorithm is fairly complex compared to that of ND-tree.
10 in a high performance computing cluster system.

Performance of the proposed BoND-tree (with and withogt3 |mpact of each heuristic on performance

compression) was evaluated using synthetic data with Ma”q:i%ure 2 compares the query I/O when heuristic R1 alone,

dimensions, alphabet sizes and database sizes (the nuib
vectors indexed). We generated uniform and skewed (Zipfiaﬁg‘ followed by R2 and R1 followed by R2 followed by R3

data for the experiments. Each data record is generated by

randomly generating a letter in each dimension. The proba- L
bility of each letter in the alphabet is the same for uniform gl
data (so for alphabet size of 10, each letter will have prob- g 25000

ability of 0.1). For Zipfian data, probability of each letter
is inversely proportional to its rank among all the lettems i
the alphabet. For example, I€t,b, ¢} be the alphabet for OJGM ——
a certain dimension and let ranks of letterd,c be 1,2,3 Database size

respectively. Then the probability of these three letteitshve)))]

0.55,0.27 and0.18 respectively. Besides the evaluation basdg9- 1: Comparison of construction times of BoND-tree and

on synthetic data sets, we also used real data for perfornah©-tree

Insertion tim
=)
3
3
3

12

el a—a—a—a— As the alphabet size increases, the ability of the tree to find

— e————t an overlap-free partition increases which results in a e
2 000 = in the 1/0. The number of dimensions of indexed vectors was
3 =RIR2 16. The database size and query box size wemillion and

= R1R2R3
7001%::: = 2, respectively.

5M M ™ 8M oM 10M
Database size

7.7 Effect of Different Query Box Sizes

Fig. 2: Improvement due to each of the heuristics in query I/@hjs set of tests compares the performance of the BoND-tree

with those of the ND-tree and the 10% linear scan for differen
) box sizes. The number of dimensions and the alphabet size

are used. We also include 1/O for ND-tree (labeled ‘ND"}yere fixed at 16 and 10, respectively. We experimented with
as the baseline for comparison. It can be seen that eaghin uniform boxes (i.e., all the sides have the same length)

heuristic helps in reducing the 1/O for the query. Heuri®t 55 well as non-uniform boxes (sides of the box are chosen
alone provides about 75% improvement in I/O over ND'tre?andome).

Combination of R1 and R2 provides further improvement of
about 80% over R1. The combination R1-R2-R3 reduces 187 1 Uniform Boxes

even further by about 30% over R1-R2. This clearly jUStiﬁel§or this set of experiments, the database size was fixed at 5

the use of all three heuristics. millions and the box size was increased from 1 to 5. As the
guery box size increases, both the BoND-tree and the ND-

7.4 Effect of Different Database Sizes tree require more 1/0 while the number of I/O for the 10%

In this set of tests we evaluate the performance of the BoNIiear remains constant. As we can see from figure 3d, the

tree for different database sizes. We varied the number Rgrformance gain of the BoND-tree is significant for all box

indexed data vectors from 5 millions to 10 millions. The datdizes given. Our proposed BoND-tree maintains its superior

set used for the tests hag dimensions and the alphabet sizé#€rformance even at a box size &f For larger box sizes

for each dimension i$0. The average query /O performancdiowever, the 10% linear scan proves to be the best method.

for box size2 is shown in figure 3a. It can be seen that, ahis is expected as the result set is huge when the query box

the number of indexed data points increases, the query #3€ is large, in which case, no index is beneficial.

increases for all the techniques in our tests. However, the

BoND-tree is a clear winner for all database sizes. The geera-7-2 Non-uniform Boxes

query 1/O for the BoND-tree is several orders of magnitudghis section compares the performance of the BoND-tree for

smaller than that of the ND-tree. The total time for BoNDnon-uniform box sizes. We varied the database size from

tree was much better than that for ND-tree. However, due fomillion to 10 million records. A query box is generated

space constraints, we could not include any tables/graphsby randomly selecting an edge length along each dimension.

the paper. The maximum edge length was limited to 5 (i.e., 50% of
alphabet size). We generated 200 such queries and caftulate
7.5 Effect of Different Numbers of Dimensions the average query I/O. Figure 3e shows our findings. It can be

. seen that BoND-tree significantly outperforms both the othe
This set of tests evaluates the performance of the BoND-trg g y oulp

when indexing data sets with different numbers of dimension&lemes'

(see figure 3b). In the experiments, the number of dimensions)

was varied from 8 to 20. Other parameters such as th& BOND-tree with skewed data

database size, the alphabet size and the query box size wegare 3f shows the effect of applying BoND-tree and ND-tree
kept constant at 5 millions, 10 and 2, respectively. With the skewed data (having Zipf distribution) for increasingkbo
increasing number of dimensions, more space is requiredsige. The database size was set to 5 million and the number of
store the DMBR information in the BoND-tree as well as in thdimensions was 16. It should be noted that the BoND-tree is
ND-tree. This results in reduction of the fanout of tree rodesignificantly better than the ND-tree or the linear scan deen
and a subsequent increase in the height of the tree. Thus, rlatively large box size of 5. This demonstrates effecinss

I/O for both trees (as well as the 10% linear scan) increase$.BoND-tree in non-uniform data spaces.

The relative number of 1/O for the BoND-tree is much less

than both the ND-tree and the 10% linear scan. Further, fg Application in Primer Design

figure 3b shows, the BoND-tree is much less affected by tt&e lained earlier. b ies in NDDS ful'in ori
increased number of dimensions than the ND-tree. S explained earlier, box queries In are usetutin prime

design for genome sequence databases. In this section we
) present results of applying the BoND-tree for this appiaat
7.6 Effect of Alphabet Size In order to enable a sub-sequence search, the index is
In this set of tests, the alphabet size was varied from 10 to BQilt of all possible overlapping sub-sequences (Q-gravhg)
in steps of 5. Figure 3c shows performances of the BoND-treggnome sequence having the given primer length. Hence, the
the ND-tree and the 10% linear scan for various alphabes sizactual data needed to create the index is several times more

13

100000 10000 / 10000

10000 P
ULy & ND-Tree 1000
1000 & ND-Tree - BoND-»iree B ND-Tree
%= 10% Linear

== BoND-tree =*=BoND-tree
10% Linear L . 100

“¥10% Linear
i —_— .
—

10 10 10
5 6 7 8 9 10 8 12 16 20 10 15 20 25 30
Database Size (Millions) Number of Dimensions Alphabet Size

Query IO
Query IO
Query /O

(a) Database size (b) Number of dimensions (c) Alphabet size

1000000 100000 100000

100000 /./I—_—. 10000
10000 10000 v——*‘_"___'___'__'
<] o o 1000
> 1000 = — @ ND-Tree =
g g g ==BoND-Tree o 100
5 100 e SSNgjfee & 1000 = 10%Linear <]
10 ¥ 10% Linear 10
1 100 1
1 2 3 4 5 5 6 7 8 9 10 1 2 3 4 5
Query Box Sizes Database Size (Millions) Boxsize
(d) Uniform query box size (e) Non-uniform query boxes (f) Skewed (zipf) data

Fig. 3: Experimental evaluation of impact of various partareon performance of BoND-tree

90000 Lty
e
100 -
_=

o
b3
- —
Q ./-—__.-__.—_- == BoND-tree g 1 7 -)¢ ==BoND
o Ly @ ND-Tree = Y)
] o 10%L Fasta > —— g ™ 10%LFasta
° T 0.1 p—— 109
S/ - 10%L g S
> & . o
. © 001 — o *
200 /’ 0
62MB 91MB 120MB 150MB 172MB 62MB 91MB 120MB 150MB 172MB
Database size (in megabytes) Database size (in megabytes)
(a) Query 1/O0 (b) Running time

Fig. 4: Performance of indexing genome sequence data

than the sequence data. But despite the increased index dizgex based query, we expect BoND-tree to perform much
searching is remarkably efficient in the BoND-tree. better in terms of query execution time as well. In this
We carried out experiments with varying sizes of genonsection, we present the results confirming superior running
sequence databases. The smallest database contains 50 tirne of queries in BoND-tree. The hardware and setup used
sand genome sequences while the largest one contains fifOthese experiments are already described in section 7.1.
thousand sequences. The database size was increasedsin &tafess explicitly specified otherwise, database size, hox s
of 25 thousand sequences. Simple fasta file (which is thad the number of dimensions were set to 5 million, 4 and
standard file format used in computational biology) was usd® respectively. As shown in the figures 5a through 5f, query
as the input. Figure 4 shows the number of I/O and queexecution time of BoND-tree is considerably smaller thaat th
running time for each of the schemes. The BoND-tree and tb&linear scan or ND-tree.
ND-Tree were built for overlapping Q-grams. We calculated
I/O for 10 % linear scan using fasta file as the input (labeletill Performance of the Compressed BoND-tree

‘10% Linear Fasta’ in the figure) as well as Q-grams as inpye also examined the performance of BoND-tree using the
(labeled 10% Linear’). It can be seen that the BoND-tree {sroposed compression strategy. First we show the perfarenan
by far the best indexing scheme. In fact, as the number @4in for varying number of dimensions. The database size
indexed sequences increases, improvement due to the BoNRBed for this set of tests is 5 millions. The query box size
tree also increases. For the largest database (size = 172MRj the alphabet size are set to 2 and 10, respectively. As
containing 150000 sequences, BoND-tree provides about 6Q96 can see from figure 6a, for all the test cases, the BoND-
improvement. This highlights importance of BoND-tree ifiree without compression of DMBR uses more than 10%
certain class of applications. of 1/0 than the compressed BoND-tree to answer the same
) o queries. Figure 6b shows the performance of the compressed
7.10 Comparison of running time BoND-tree for different alphabet sizes. The number of viecto
Experiments so far show that in terms of number of disk pagedexed is fixed at 5 millions, the number of dimensions
accesses (or query 1/0), BoND-tree significantly outperi®r is set to 16 and the query box size i8. This set of tests
ND-tree as well as linear scan under various conditioncesindemonstrates the effectiveness of the compression sjrateg
query I/O is the major contributor in running time for anywhen indexing NDDSs with different alphabet sizes. Althibug

14

Running time (sec
°
Running time (sec)
°
L]
38
B
&
Running time (sec)
o
o o
ot
4
$°3
F 6 J

5M 6M ™ 8M oM 10M 8 12 16 20 10 15 20 25 30
Database size Number of dimensions Alphabet size

(a) Database size (b) Number of dimensions (c) Alphabet size

10.000 10

== BoND ==BoND

1.000 — s 10%L - 1 - 10%L

0.100

Running time (sec)

Running time (sec
°
Running time (sec

\

0.010

0.001 o 0.01
1 2 3 4 ™ M oM 10M 1 2 3 4
Boxsize Database size Boxsize

a
a
<
2}
K4
o

(d) Uniform query box size (e) Non-uniform query boxes (f) Skewed(zipf) data

Fig. 5: Comparison of running time of the queries for varipasameters

75
& BoND
== Comp-
65 BoND

70 9.5 ==Comp-

©

60

el
o

55

Query IO
Query IO
Query IO

®

50

~
o

a5

40

=

8 12 16 20 10 15 20 25 5 6 7 8 9 10
Number of Dimensions Alphabet Sizes Database Size

(&) Number of dimensions (b) Alphabet size (c) Non-uniform queries

Fig. 6: Performance comparison of the Compressed BoNDwirreuncompressed BoND tree

Box size | BoND-tree | Compressed BoND-tree
2 39.8571 36.8929 8 CONCLUSION
3 226.857 219.286 . . .
4 822571 803.429 In this paper, we have presented a new indexing structure,
5 2210.57 2171.68 called the BoND-tree, which exploits exclusive properis

6pe NDDS. Theoretical analysis of box queries in the NDDS
shows that a better filtering power could be achieved usimg ne
splitting heuristics adopted by the BoND-tree. Our extemsi
experimental results using different alphabet sizes, bdesa

both d and 4 indexi thod sizes, dimensions and query box sizes demonstrate that the
oth compressed and uncompressed indexing methods Yighp tree isscp bon significantly more efficient than exigti

lesser 1/O as the alphabet size grows, the compressed niques such as the ND-tree and the 10% linear scan.

outper_forms the uncompressed one for aII_ the alphabet si ectiveness of the BoND-tree in a real world application
used in the experiments. Table 10 and figure 6¢c show t

) ¢ d BoND-tree f i q ?/olving genome sequence databases is demonstrated. We
comparison of compressed BolNL-tree Tor uniform and nogyg, present the use of compression in the NDDS to further
uniform box queries, respectively. In table 10, the datab

. . . rove performance of the BoND-tree.
size and the number of dimensions were kept constant at
million and 16, respectively. As can be seen from the table,
the compressed BoND-tree is consistently better than thie baACKNOWLEDGMENT
BoND-tree. However, as the box size increases the amount of
data space being queried increases exponentially, whichise Research supported by the US National Science Foundation
in both the trees approaching performance of linear scan.(lmder grants #11S-0414576 and #11S-0414594), the Miahiga
figure 6c, the database size was increased from 5 million $tate University and the University of Michigan. We wish to
10 million records. As expected, the compressed BoND-traeknowledge the support of the Michigan State University
consistently performs better than the uncompressed BoNBigh Performance Computing Center and the Institute for
tree. These results highlight the advantages of the propo$&/ber Enabled Research. The authors would like to thank Dr.
compression technique. James Cole and Dr. Benli Chai and Mr. Jordan Fish, who work

TABLE 10: Performance of the Compressed BoND-tree fi
uniform box queries.

15

for Ribosomal Database Project (RDP) under Grant No. DB3] T. J. Rolfe, “An alternative dynamic programming sioat for the 0/1

FG02-99ER62848 supported by the Office of Science of U.S, knapsackSIGCSE Bull. vol. 39, no. 4, pp. 54-56, 2007.
. . [24] S. Sahni, “Approximate algorithms for the 0/1 knapsamkblem,” J.
Department of Energy, for their valuable suggestions agl he ACM, vol. 22, no. 1, pp. 115-124, 1975.
The authors also acknowledge Dr. Gang Qian for his help.[25] G. Salton, A. Wong, and C. S. Yang, “A vector space modal f
automatic indexing,'Communications of the ACMol. 18, no. 11, pp.
613-620, November 1975.
REFERENCES [26] R. Weber, H. J. Schek, and S. Blott, “A quantitative ss& and

) . performance study for similarity-search methods in highehsional
[1] R. Bayer and K. Unterauer, “Prefix B-treesSCM Transactions on

spaces,” pp. 194-205, 1998.
Database Systemgp. 11-26, 1977.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seetjene R*- [27] P. Weiner, “Linear pattern matching algorithmBfoceedings of the 14th
tree: an efficient and robust access method for points artdngles,” Annual Symposium on Switching and Automata Thempy 111, 1973.
Proceedings of ACM SIGMQIpp. 322-331, 1990. [28] S. K Wong_, W. Zlarko, V. V. Ragh_avan, and P. C. Wong, Oodal_lng

[3] J.L.Bentley and R. Sedgewick, “Fast algorithms for ayiand search- of information retrieval concepts in vector space&CM Transactions
ing strings,” Proceedings of the eighth annual ACM-SIAM symposiuy _ On Database Systemgol. 12, no. 2, pp. 299-321, 1987.)
on Discrete algorithmspp. 360-369, 1997. [29] P. N. Yianilos, “Data structures and algorithms for mesa neighbor

[4] S. Berchtold, D. Keim, and H.-P. Kriegel, “The X-tree: amlex struc- search in general metric spaces,” pp. 311-321, 1993.

ture for high-dimensional dataProceedings of the 22nd International
Conference on VLDBpp. 28-39, 1996.

[5] T. Bozkaya and M. Ozsoyoglu, “Indexing large metric sgmcfor
similarity search queries,ACM Transactions on Database Systems
vol. 24, no. 3, pp. 361-404, 1999. Changqing Chen is currently a senior Engineer
[6] K. Chakrabarti and S. Mehrotra, “The hybrid tree: an xdéucture for working at Yahoo! Inc. He received his PhD de-
high dimensional feature spaceffoceedings of the 15th International gree from the Computer Science and Engineer-
Conference on Data Engineeringp. 440-447, 1999. ing Department at Michigan State University,
[7] E.Chavez, G. Navarro, R. Baeza-Yates, and J. L. Mairgd$earching and Bachelor’s degree from Peking University.
in metric spaces, ACM Comput. Suryvol. 33, no. 3, pp. 273-321, 2001. His research interests include large scale data
[8] P.Ciaccia, M. Patella, and P. Zezula, “M-tree: An effitiaccess method processing and high-dimensional data indexing.
for similarity search in metric spaces,” pp. 426-435, 1997.
[9] J. Clement, P. Flajolet, J. Clement, B. Vallée, B.I®a|] T. G. Logiciel,
and P. Algo, “Dynamical sources in information theory: A gea
analysis of trie structuresAlgorithmica vol. 29, pp. 307-369, 1999.
[10] A. P. de Vries, N. Mamoulis, N. Nes, and M. Kersten, “Bfict k-nn Alok Watve is a Ph.D. candidate in the Com-
search on vertically decomposed data,” pp. 322-333, 2002. puter Science and Engineering Department at
[11] M. E. D. El Baz, “Load balancing in a parallel dynamic gramming Michigan State University. He has a Master of
multi-method applied to the 0-1 knapsack problem,” pp. 132 2006. Technlogy degree from Indian Institute of Tech-
[12] P. Ferragina and R. Grossi, “The string B-tree: a neva ddtucture for nology Kharagpur. His research interests include
string search in external memory and its applicatiodggirnal of the database indexing, data mining and image pro-
ACM, pp. 236-280, 1998. cessing.
[13] A. Guttman, “R-Trees: a dynamic index structure fortggaearching,”
Proceedings of ACM SIGMQODpp. 47-57, 1984.
[14] A. Henrich, “The LSDh-tree: an access structure fortuea vectors,”
Proceedings of the 14th International Conference on Datgiigering
pp. 362-369, 1998. Sakti Pramanik received the BE degree in Elec-
[15] G. R. Hjaltason and H. Samet, “Index-driven similarigarch in metric trical Engineering from Calcutta University and
spaces (survey article)ACM Trans. Database Systol. 28, no. 4, pp. awarded University gold medal for securing the
517-580, 2003. highest grade among all branches of Engineer-
[16] D. E. Knuth, The Art of Computer Programming, Volume lIi: Sorting ing. He received the MS degree from the Univer-
and Searching Addison-Wesley, 1973. sity of Alberta, Edmonton, in electrical engineer-
[17] A. Liu, J. Wang, G. Han, S. Wang, and J. Wen, “Improved dated ing, and the PhD degree in computer science
annealing algorithm solving for 0/1 knapsack problem,” pp59-1164, from Yale University. He is currently a professor
2006. in the Department of Computer Science and
[18] W. Loots and T. H. C. Smith, “A parallel algorithm for tifle-1 knapsack Engineering at Michigan State University.
problem,” Int. J. Parallel Program, vol. 21, no. 5, pp. 349-362, 1992.
[19] S. Meyn and R. TweedieMarkov Chains and Stochastic Stability Qiang Zhu received his Ph.D. in Computer Sci-
Springer-Verlag, 1993. ence from the University of Waterloo (Canada)
[20] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “The ND-tree: ya d in 1995. He is currently a Professor in the
namic indexing technique for multidimensional non-ordemiscrete Department of Computer and Information Sci-
data spaces,” pp. 620631, 2003. ence at The University of Michigan - Dearborn.
[21] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “Dynamic indexor mul- He is also an IBM CAS Faculty Fellow at the
tidimensional non-ordered discrete data spaces usingaapaatitioning IBM Toronto Lab and an IEEE Senior Mem-
approach,”ACM Trans. Database Systol. 31, pp. 439-484, June 2006. ber. His current research interests include query
[22] J. Robinson, “The K-D-B-tree: a search structure fagéamultidimen- l optimization, streaming data processing, multi-
sional dynamic indexes,Proceedings of ACM SIGMQDpp. 10 —18, dimensional indexing, self-managing databases

1981.

and Web information systems.

