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Abstract
Particle simulation has become an important research tool in many scientific and engineering
fields. Data generated by such simulations impose great challenges to database storage and query
processing. One of the queries against particle simulation data, the spatial distance histogram
(SDH) query, is the building block of many high-level analytics, and requires quadratic time to
compute using a straightforward algorithm. Previous work has developed efficient algorithms that
compute exact SDHs. While beating the naive solution, such algorithms are still not practical in
processing SDH queries against large-scale simulation data. In this paper, we take a different path
to tackle this problem by focusing on approximate algorithms with provable error bounds. We first
present a solution derived from the aforementioned exact SDH algorithm, and this solution has
running time that is unrelated to the system size N. We also develop a mathematical model to
analyze the mechanism that leads to errors in the basic approximate algorithm. Our model
provides insights on how the algorithm can be improved to achieve higher accuracy and
efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy
tradeoff. Experimental results confirm our analysis.
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1 Introduction
MANY scientific fields have undergone a transition to data/computation intensive science,
as the result of automated experimental equipments and computer simulations. In recent
years, much progress has been made in building data management tools suitable for
processing scientific data [1], [2], [3], [4], [5]. Scientific data impose great challenges to the
design of database management systems that are traditionally optimized toward handling
business applications. First, scientific data often come in large volumes that require us to
rethink the storage, retrieval, and replication techniques in current DBMSs. Second, user
accesses to scientific databases are focused on complex high-level analytics and reasoning
that go beyond simple aggregate queries. While many types of domain-specific analytical
queries are seen in scientific databases, the DBMS should support efficient processing of
those that are frequently used as building blocks for more complex analysis. However, many
of such basic analytical queries need superlinear processing time if handled in a straight-
forward way, as in current scientific databases. In this paper, we report our efforts to design
efficient algorithms for a type of query that is extremely important in the analysis of particle
simulation data.

Particle simulations are computer simulations in which the basic components (e.g., atoms,
stars, etc.) of large systems (e.g., molecules, galaxies, etc.) are treated as classical entities
that interact for certain duration under postulated empirical forces. For example, molecular
simulations (MSs) explore relationship between molecular structure, movement, and
function. These techniques are primarily applicable in modeling of complex chemical and
biological systems that are beyond the scope of theoretical models. MS has become an
important research tool in material sciences [6], astrophysics [7], biomedical sciences, and
biophysics [8], motivated by a wide range of applications. In astrophysics, the N-body
simulations are predominantly used to describe large scale celestial structure formation [8],
[9], [10], [11]. Similar to MS in applicability and simulation techniques, the N-body
simulation comes with even larger scales in terms of total number of particles simulated.

Results of particle simulations form large data sets of particle configurations. Typically,
these configurations store information about the particle types, their coordinates, and
velocities—the same type of data we have seen in spatial-temporal databases [12]. While
snapshots of configurations are interesting, quantitative structural analysis of interatomic
structures are the mainstream tasks in data analysis. This requires the calculation of
statistical properties or functions of particle coordinates [9]. Of special interest to scientists
are those quantities that require coordinates of two particles simultaneously. In their brute-
force form, these quantities require O(N2) computations for N particles [8]. In this paper, we
focus on one such analytical query: the Spatial Distance Histogram (SDH) query, which
asks for a histogram of the distances of all pairs of particles in the simulated system.

1.1 Problem Statement
The problem can be defined as follows: given the coordinates of N points in space, we are to
compute the counts of point-to-point distances that fall into a series of l ranges in the IR
domain: [r0, r1), [r1, r2), [r2, r3), …, [rl−1, rl]. A range [ri, ri+1) in such series is called a
bucket, and the span of the range ri+1 − ri is called the width of the bucket. In this paper, we
focus our discussions on the case of standard SDH queries, where all buckets have the same
width p and r0 = 0, which gives the following series of buckets: [0, p), [p, 2p], …, [(l − 1)p,

Grupcev et al. Page 2

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2014 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



lp]. Generally, the boundary of the last bucket lp is set to be the maximum distance of any
pair of points in the data set. Although almost all scientific data analysis only require the
computation of standard SDH queries, our solutions can be easily extended to handle
histograms with nonuniform bucket width and/or arbitrary values of r0 and rl.1 The answer
to an SDH query is basically a series of nonnegative integers h = (h1, h2, …, hl), where hi (0
< i ≤ l) is the number of pairs of points whose distances are within the bucket [(i − 1)p, ip).

1.2 Motivation
The SDH is a fundamental tool in the validation and analysis of particle simulation data. It
serves as the main building block of a series of critical quantities to describe a physical
system. Specifically, SDH is a direct estimation of a continuous statistical distribution
function called radial distribution functions (RDF) [7], [9], [13] that is defined as

(1)

where N(r) is the expected number of atoms in the shell between r and r + δr around any
particle, ρ is the average density of particles in the whole system, and 4πr2δr is the volume
of the shell. Since SDH directly provides the value for N(r), the RDF can be viewed as a
normalized SDH.

The RDF is of great importance in computation of thermodynamic quantities about the
simulated system. Some of the important quantities like total pressure,

and energy,

can be derived in terms of structure factor that can be expressed using g(r) [14]. For
monoatomic systems, the relation between RDF and the structure factor of the system [15]
takes simple form, viz.,

The definitions of all notations in the above formulas can be found in [14] and [15]. To
compute SDH in a straightforward way, we have to calculate distances between all pairs of
particles and put the distances into bins with a user-specified width, as done in state-of-the-
art simulation data analysis software packages [7], [16]. MS or N-body techniques generally
consist of large number of particles. For example, the Virgo consortium has accomplished a
simulation containing 10 billion particles to study the formation of galaxies and quasars
[17]. This kind of scale prohibits the analysis of large data sets following the brute-force

1The only complication of nonuniform bucket width is that, given a distance value, we need O(log l) time to locate the bucket instead
of constant time for equal bucket width.
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approach. From a database viewpoint, it would be desirable to make SDH a basic query type
with the support of scalable algorithms.

Previous work [18], [19] have addressed this problem by developing algorithms that
compute exact SDHs with time complexity lower than quadratic. The main idea is to
organize the data in a space-partitioning tree and process pairs of tree nodes instead of pairs
of particles (thus saving processing time). The tree structure used include kd-tree in [18] and
region quad/oct-tree in our previous work [19], which also proved that the time complexity

of such algorithms is , where d ∈ {2, 3} is the number of dimensions in the data
space. While beating the naive solution in performance, such algorithms´ running time for
large data sets can still be undesirably long. On the other hand, an SDH with some bounded
error can satisfy the needs of users. In fact, there are cases where even a coarse SDH will
greatly help the fine-tuning of simulation programs [9]. Generally speaking, the main
motivation to process SDHs is to study the statistical distribution of point-to-point distances
in the simulated system [9]. Since a histogram by itself is an approximation of the
underlying distribution g(r) (1), an inaccurate histogram generated from a given data set will
still be useful in a statistical sense. Therefore, in this paper, we focus on approximate
algorithms with very high performance that deliver query results with low error rates. In
addition to experimental results, we also evaluate the performance/accuracy tradeoffs
provided by the proposed algorithms in an analytical way. The running time of our proposed
algorithm is only related to the desired accuracy. Our experimental results show significant
improvement in performance/accuracy trade-off of our algorithm over the previous
algorithms—the error rates in query results are very small even when the running time is
reasonably short.

1.3 Roadmap of the Paper
We continue this paper by a survey of related work and a list of our contributions in Section
2; we introduce the technical background on which our approximate algorithm is built in
Section 3; we describe the details of a basic approximate algorithm and relevant empirical
evaluation in Section 4; we dedicate Section 6 to mathematical analysis of the key
mechanisms in our basic algorithm; the results of our analytical work are used to develop a
new algorithm with improved performance and we introduce and evaluate that algorithm in
Section 7; Section 8 concludes this paper.

2 Related Work and Our Contributions
The scientific community has gradually moved from processing large data files toward using
database systems for the storage, retrieval, and analysis of large-scale scientific data [2],
[20]. Conventional (relational) database systems are designed and optimized toward data
and applications from the business world. In recent years, the database community has
invested much efforts into constructing database systems that are suitable for handling
scientific data. For example, the BDBMS project [3] handles annotation and provenance of
biological sequence data; and the PeriScope [5] project is aimed at efficient processing of
declarative queries against biological sequences. In addition to that, there are also proposals
of new DBMS architectures for scientific data management [21], [22], [23]. The main
challenges and possible solutions of scientific data management are discussed in [1].

Traditionally, MS data are stored in large files and queries are implemented in stand-alone
programs, as represented by popular simulation/analytics packages [16]. Recent efforts have
been dedicated to building simulation data management systems on top of relational
databases, as represented by the BioSimGrid [4] and SimDB [24] projects developed for
MSs. However, such systems are still in short of efficient query processing strategies. To the

Grupcev et al. Page 4

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2014 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



best of our knowledge, the computation of SDH in such software packages is done in a
brute-force way, which requires O(N2) time.

In particle simulations, the computation of (gravitational/ electrostatic) force is similar to the
SDH problem. Specifically, the force is the sum of all pairwise interactions in the system,
thus requires O(N2) steps to compute. The simulation community has adopted approximate
solutions represented by the Barnes-Hut algorithm that runs on O(N log N) time [25] and the
Multipole algorithm [26] with linear running time. Although all above algorithms use a tree-
like data structure to hold the data, they provide little insights on how to solve the SDH
problem. The main reason is that these strategies take advantage of two features of force: 1)
for any pairwise interaction, its contribution to the force decreases dramatically when
particle distance increases; 2) the effects of symmetric interactions cancel out. However,
neither features are applicable to SDH computation, in which every pairwise interaction
counts and all are equally important. Another method for force computation is based on
well-separated pair decomposition (WSPD) [27] and was found to be equivalent to the
Barnes-Hut algorithm. A WSPD is a collection of pairs of subsets of the data such that all
point-to-point distances are covered by such pairs. The pairs of subsets are also well
separated in that the smallest distance between the smallest balls covering the subsets (with
radius r) is at least sr, where s is a user-defined parameter. Although relevant by intuition,
the WSPD does not produce fast solution for SDH computation.

It is worth mentioning that there has been work done on a broader problem of histogram
computation in the context of data stream management [28]. The data stream systems
usually work with distributive aggregates [28] such as COUNT, SUM, MAX, and MIN
which may be computed incrementally using constant space and time. They also tackle so
called holistic aggregates such as TOP-k [29], [30], QUANTILE [31], and COUNT
DISTINCT [32], [33]. When computing the holistic aggregates they have utilized hash-
based functions that produce histograms [30], [34]. But the data stream community has
never specifically worked on the problem of computing a histogram that will disclose the
distance counts belonging to a particular range (a bucket), i.e., an SDH. After thoroughly
reviewing their work, we believe that none of their proposed solutions is directly applicable
to the problem of SDH computation stated in this paper.

Another similar problem to the SDH computation is to find k-nearest neighbors (kNN) in a
high-dimensional space [35]. In such a problem, avoidance of distance computation is the
primary goal in algorithmic design due to the high cost of such operations. The main
technique is to choose a set of reference points (i.e., pivots) in the database and precompute
distances between data points to the pivots. In processing kNN queries, the search space can
be pruned based on the precomputed distances. However, being a searching problem, kNN
is very different from the counting- based SDH problem. As a result, the data structures and
algorithmic details shown in [35] have little overlap with our solutions to the SDH problem.

Although SDH is an important analytics, there is not much elaboration on efficient SDH
algorithms. An earlier work from the data mining community [18] opened the direction of
processing SDHs by space-partitioning trees. The core idea is to process all the particles in a
tree node as one single entity to take advantage of the nonzero bucket width p. By this,
processing time is saved by avoiding computation of particle-to-particle distances. Our
earlier paper [19] proposed a similar algorithm as well as rigorous mathematical analysis
(not found in [18]) of the algorithm’s time complexity. Specifically, in [19], we proposed a
novel algorithm (named DM-SDH) to compute SDH based on a data structure called density
map, which can be easily implemented by augmenting a Quadtree index. Contrary to that,
the data structure adapted in [18] is the kd-tree. Our mathematical analysis [36] has shown

that the algorithm runs on  for two-dimensional data and  for three-
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dimensional data, respectively. The technical details of such an algorithm will be introduced
in Section 3.

This paper significantly extends our earlier work [19] by focusing on approximate
algorithms for SDH processing. In particular, we claim the following contributions via this
work:

1. We present an approximate SDH processing strategy that is derived from the basic
exact algorithm, and this approximate algorithm has constant-time complexity and
a provable error bound;

2. We develop a mathematical model to analyze the effects of error compensation that
led to high accuracy of our algorithm; and

3. We propose an improved approximate algorithm based on the insights obtained
from the above analytical results.

It is also worth mentioning that we have recently published another paper [37] in this field.
That paper focuses on a more sophisticated heuristics to generate approximate results based
on spatial uniformity of data items. Such heuristics improves the accuracy of each distance
distribution, which is the basic operation of our approximate algorithm (Section 4.1). In this
paper, we introduce the design of the approximate algorithm and its performance analysis.
Technically, we emphasize the impacts of error compensation among different distribution
operations. As a result, we do not require low error rates to be obtained from each operation,
as we show the total error is low even when a primitive heuristics is used. In other words,
these two papers, although both take approximate SDH processing as the basic theme, make
their contributions at two different levels of the problem. Work in [37] focuses on improving
accuracy of single distribution operations while this paper, in addition to a systematic
description of the algorithm, studies how errors from different distribution operations cancel
out each other, and to what extent such error compensation affects the accuracy of the final
results.

3 Preliminaries
In this section, we introduce the algorithm we developed in [19] to compute exact SDHs.
Techniques and analysis related to this algorithm are the basis for the approximate algorithm
we focus on in this paper. In Table 1, we list the notations that are used throughout this
paper. Note that symbols defined and referenced in a local context are not listed here.

3.1 Overview of the Density Map-Based SDH (DM-SDH) Algorithm
To beat the O(N2) time needed by the naive solution, we need to avoid the computation of
all particle-to-particle distances. An important observation here is: a histogram bucket
always has a nonzero width p. Given a pair of points, their bucket membership could be
determined if we only know a range that the distance belongs to and this range is contained
in a histogram bucket. The central idea of our approach is a data structure called density
map, which is basically a grid containing cells of equal size.2 In every cell of the grid, we
record the number of particles that are located in the space represented by that cell as well as
the four coordinates that determine the exact boundary of the cell in space. The reciprocal of
the cell size in a density map is called the resolution of the density map. To process the SDH
query, we build a series of density maps with different resolutions. We organize all such
density maps into a point region (PR) Quadtree [38], in which the resolution of a density

2From now on, we use 2D data and grids to elaborate our ideas unless specified otherwise. Note that extending our discussions to 3D
data/space would be straightforward, as studied in [36].
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map (i.e., all nodes on level i of the tree) is always doubled as compared to the previous one
(i.e., those on level i − 1) in the series.

The pseudocode of the DM-SDH algorithm can be found in Fig. 1. The core of the algorithm
is a procedure named RESOLVETWOCELLS, which is given as input a pair of cells M1 and M2 on
the same density map. In RESOLVETWOCELLS, we first compute the minimum and maximum
distances between any particle from M1 and any one from M2 (line 1). Obviously, this can
be accomplished in constant time given the corner coordinates of two cells stored in the
density map. When the minimum and maximum distances between M1 and M2 fall into the
same histogram bucket i, we say these two cells are resolvable on this density map, and they
resolve into bucket i. If this happens, the histogram is updated (lines 2–5) by incrementing
the count of the specific bucket i by n1n2, where n1, n2 are the particle counts in cells M1 and
M2, respectively. If the two cells do not resolve on the current density map, we move to a
density map with higher (doubled) resolution and repeat the previous step. However, on this
new density map, we try resolving all four partitions of M1 with all those of M2 (lines 12–
16). In other words, there are 4 × 4 = 16 recursive calls to RESOLVETWOCELLS if M1 and M2 are
not resolvable on the current density map. In another scenario, where M1 and M2 are not
resolvable yet no more density maps are available, we have to calculate the distances of all
particles in the nonresolvable cells (lines 6–11). The DM-SDH algorithm starts at the first
density map DMo whose cell diagonal length is smaller than the histogram bucket width p
(line 2). It is easy to see that no pairs of cells are resolvable in density maps with resolution
lower than that of DMo. Within each cell on DMo, we are sure that any intracell point-to-
point distance is smaller than p; thus, all such distances are counted into the first bucket with
range [0, p) (lines 3–5). The algorithm proceeds by resolving intercell distances (i.e., calling
RESOLVETWOCELLS) for all pairs of cells in DMo (lines 6–7).

In DM-SDH, an important implementation detail that is relevant to our approximate
algorithm design is the height of the quadtree (i.e., the number of density map levels). Recall
that DM-SDH saves time by resolving cells such that we need not to calculate the point-to-
point distances one by one. However, when the total point counts in a cell decreases, the
time we save by resolving that cell also decreases. Imagine a cell with only four or fewer
(eight for 3D data/space) data points; it does not give us any benefit in SDH query
processing to further partition this cell on the next level: the cost of resolving the partitions
could be higher than directly retrieving the particles and calculating distances (lines 7–11 in
RESOLVETWOCELLS). Based on this observation, the total level of density maps H is set to be

(2)

where d is the number of dimensions, 2d is the degree of the nodes in the tree (4/8 for 2D/3D
data), and β is the average number of particles we desire in each leaf node. In practice, we
set β to be slightly greater than 4 in 2D (8 for 3D data) because the CPU cost of resolving
two cells is higher than computing the distance between two points.

3.2 Performance Analysis of DM-SDH
Clearly, by only considering atom counts in the density map cells (i.e., quadtree nodes),
DM-SDH processes multiple point-to-point distances between two cells in one shot. This
translates into significant performance improvement over the brute-force approach. We have
accomplished a rigorous analysis of the performance of DM-SDH and derived its time
complexity. The analysis focuses on the quantity of number of point-to-point distances that
can be covered in resolved cells. We generate closed-form formulas for such quantities via a
geometric modeling approach; therefore, rigorous analysis of the time complexity becomes
possible. While the technical details of the analytical model are complex and can be found in
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a recent article [36], it is necessary to sketch the most important (and also most relevant)
analytical results here for the purpose of laying out a foundation for the proposed
approximate algorithm.

Theorem 1. For any given standard SDH query with bucket width p, let DMo be the first
density map, where the DM-SDH algorithm starts running, and α(m) be the ratio of
nonresolvable pairs of cells on a density map that lies m levels below DMo (i.e., map
DMo+m) to the total number of cell pairs on that density map. We have

Proof. See [36, Section 4].

What Theorem 1 tells us is: the chance that any pair of cells is not resolvable decreases by
half with the density map level increases by one. In other words, for a pair of nonresolvable
cells on DMj where j ≥ o, among the 16 pairs of subcells on the next level, we expect

 pairs to be resolvable. Our analysis also shows that Theorem 1 not only works
well for large l (i.e., smaller p, and more meaningful in simulation data analysis), but also
quickly converges even when l is reasonably small. Furthermore, the above result is also true
for 3D data (see [36, Section 5.1]). The importance of Theorem 1 is in that it shows that the
number of pairs of cells that do not resolve declines exponentially when the algorithm visits
more levels of the density map. This is critical in studying the time complexity of DM-SDH
that can be derived as follows: Given an SDH query with parameter p, the starting level
DMo is fixed. Suppose there are I nonresolvable pairs of cells on DMo. On the next level
DMo+1, total number of cell pairs considered by the algorithm becomes I22d. According to
Theorem 1, half of them will be resolved, leaving only I22d−1 pairs unresolved. On level

DMo+2, the number of nonresolvable pairs of cells becomes . Thus,
after visiting the n + 1 levels of the tree, the total number of calls to resolve cells made by
DM-SDH is

(3)

When N increases to 2dN, n increases by 1. Following the previous equation, we get

which derives

The second part of the running time of DM-SDH involves the number of distances
computed, which also follows the aforementioned recurrence relation. Details of such
derivations can be found in [36, Section 6].
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4 The Approximate DM-SDH Algorithm
In this section, we introduce a modified SDH algorithm to give such approximate results to
gain better performance in return. Our solution targets at two must-have features of a decent
approximate algorithm: 1) provable and controllable error bounds such that the users can
have an idea on how close the results are to the fact; and 2) analysis of costs to reach
(below) a given error bound, which guides desired performance/correctness tradeoffs.

In the DM-SDH algorithm, we have to: 1) keep resolving cells till we reach the lowest level
of the tree; 2) calculate point-to-point distances when we cannot resolve two cells on the leaf
level of the tree. Our idea for approximate SDH query processing is: stop at a certain tree
level and totally skip all distance calculations if we are sure that the number of distances in
the unvisited cell pairs fall below some error tolerance threshold. We name the new
algorithm as ADM-SDH (that stands for Approximate Density Map-based SDH), and it can
be easily implemented by modifying the DM-SDH algorithm. In particular, we stop the
recursive calls to RESOLVETWOCELLS after m levels. The critical problem, however, is how to
determine the value of m given a user-specified error tolerance bound ε. In this paper, we
use the following metric to quantify the errors:

where for any bucket i, hi is the accurate count and  the count given by the approximate

algorithm. Obviously, we have .

For any given density map DMo+m and total number of buckets l, our analytical model
(Theorem 1) gives the percentage of nonresolvable cell pairs α(m). Furthermore, due to the
existence of a closed-form formula (see [36, Section 4.4]), α(m) can be efficiently
computed. Table 2 lists some values of 1 − α(m) (the percentage of resolvable cell pairs).

Given a user-specified error bound ε, we can find the appropriate levels of density maps to

visit such that the unvisited cell pairs only contain less than  distances. For
example, for an SDH query with 128 buckets and error bound of ε = 3%, we get m = 5 by
consulting the table. This means, to ensure the 3 percent error bound, we only need to visit
five levels of the tree (excluding the starting level DMo), and no distance calculation is
needed. Table 2 serves as an excellent validation of Theorem 1: α(m) almost exactly halves
itself when m increases by 1, even when l is as small as 2. Since the numbers on the first row
(i.e., values for 1 − α(1)) are also close to 0.5, the correct choice of m for the guaranteed
error rate ε is

(4)

The cost of the approximate algorithm only involves resolving cells on m + 1 levels of the
tree. Such cost can be derived following (3). After visiting m + 1 levels of the tree, the total
number of calls to resolve cells made by ADM-SDH is
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(5)

Plugging (4) into (5), we have

(6)

in which I is solely determined by the query parameter p. Therefore, we conclude that the
running time of the ADM-SDH algorithm is not related to the input size N, but only to the
user-defined error bound ε and the bucket width p.

4.1 Heuristic Distribution of Distance Counts
Now let us discuss how to deal with those nonresolvable cells after visiting m + 1 levels on
the tree. In giving the error bounds in our approximate algorithm, we are conservative in
assuming that the distances in all the unresolved cells will be placed into the wrong bucket.
In fact, this will almost never happen because we can distribute the distance counts in the
unvisited cells to the histogram buckets heuristically and some of them will be done
correctly. Consider two nonresolvable cells in a density map with particle counts n1 and n2
(i.e., total number of n1n2 distances between them), respectively. We know their minimum
and maximum distances u and υ (these are calculated beforehand in our attempt to resolve
them) fall into multiple buckets. Fig. 2 shows an example that spans three buckets.

Using this example, we describe the following heuristics to distribute the n1n2 total distance
counts into the relevant buckets. These heuristics are ordered in their expected correctness.

1. Put all n1n2 distance counts into one bucket that is predetermined (e.g., always
putting the counts to the leftmost bucket); We name this heuristic as SKEW;

2. Evenly distribute the distance counts into the three buckets that [u, υ] overlaps, i.e.,

each bucket gets  this heuristic is named EVEN;

3. Distribute the distance counts based on the overlaps between range [u, υ] and the
buckets. In Fig. 2, the distances put into buckets i, i + 1, and i + 2 are

, and , respectively. Apparently, by
adapting this approach, we assume the (statistical) distribution of the point-to-point
distances between the two cells is uniform. This heuristic is called PROP (short for
proportional).

The assumption of uniform distance distribution in PROP is obviously an
oversimplification. In [19], we briefly mentioned a fourth heuristic: if we know the spatial
distribution of particles within individual cells, we can generate the statistical distribution of
the distances either analytically or via simulations, and put the n1n2 distances to involved
buckets based on this distribution. This solution involves very nontrivial statistical inference
of the particle spatial distribution and is beyond the scope of this paper.

Note that all above methods require only constant time to compute a solution for two cells.
Therefore, the time complexity of ADM-SDH is not affected no matter which heuristic is
used.
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5 Empirical Evaluation of ADM-SDH
We have implemented the ADM-SDH algorithm using the C programming language and
tested it with various synthetic/real data sets. The experiments are run at an Apple Mac Pro
workstation with two dual-core 2.66-GHz Intel Xeon CPUs, and 8 GB of physical memory.
The operating system is OS X 10.5 Leopard. In these experiments, we set the program to
stop after visiting different levels of density maps and distribute the distances using the three
heuristics (Section 4.1). We then compare the approximate histogram with those generated
by regular DM-SDH. We use various synthetic and real data sets in our experiments. The
synthetic data are generated from: 1) uniform distributions to simulate a system with
particles evenly distributed in space; and 2) Zipf distribution with order 1 to introduce
skewness to data spatial distribution.

The real data sets are extracted from a MS of biomembrane structures (Fig. 3). The data size
in such experiments ranges from 50,000 to 12,800,000.

Table IV in Appendix I, which can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TKDE.2012.149, summarizes the range and
default values of the parameters used in our experiments. The code of the algorithm and the
data sets used in the experiments can be found in [39].

Fig. 5 shows the running time of ADM-SDH under one single p value of 2,500.0. Note that
the “Exact” line shows the results of the basic DM-SDH algorithm, whose running time
obviously increases polynomially with N at a slope of about 1.5. First, we can easily
conclude that the running time after the tree construction stage does not change with the
increase of data set size (Fig. 5a). The only exception is when m is 5—the running time
increases when N is small and then stays as a constant afterwards. This is because the
algorithm has less than five levels to visit in a bushy tree resulted from small N values.
When N is large enough, running time no longer changes with the increase of N. In Fig. 5b,
we plot the total running time that includes the time for quadtree construction. Under small
m values, the tree construction time is a dominating factor because it increases with data size
N (i.e., O (N log N)). However, when m > 3, the shape of the curve does not change much as
compared to those in Fig. 5a, indicating the time for running RESOLVETWOTREES dominates.

We observed surprising results on the accuracy of ADM-SDH. In Fig. 4, we plot the error
rates observed in experiments with three different data sets and three heuristics mentioned in
Section 4.1. First, it is obvious that less error was observed when m increases. The exciting
fact is that, in almost all experiments, the error rate is lower than 10 percent—even for the
cases of m = 1! These are much lower than the error bounds we get from Table 2. The
correctness of heuristic SKEW is significantly lower than that of EVEN, and that of EVEN lower
than PROP, as expected. Heuristic PROP achieves very low error rates even in scenarios with
small m values. For all experiments, the increase of data size N does not cause an increase of
the error rate of the algorithm. The above trends are observed in all three data sets. The
interesting thing is, for the Prop experiments, we can even see the trend of decreasing error
rates as N grows, especially for larger m values. We believe that serves as evidence of a
(possibly) nice feature of the PROP heuristic. Our explanation is: when N is small, we could
make a very big mistake in distributing the counts in individual operations. Imagine an
extreme case in which 1 distance is to be distributed into two buckets—we could easily get a
100 percent error in the operation. Since the error compensation effects in PROP bring the
overall error down to a very low level (as shown in Fig. 4), PROP is more sensitive to the
errors of individual distribution operations than SKEW and EVEN are. More in-depth
explorations of this phenomenon are worthwhile but also beyond the scope of this paper, in
which we focus on an upper bound of the error.
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5.1 Discussions
At this point, we can conclude that the ADM-SDH algorithm is an elegant solution to the
SDH computation problem. According to our experiments, extremely low error rates can be
obtained even when we only visit as few as one level of density map, leading to a very
efficient algorithm yet with high accuracy in practice. It is clearly shown that the required
running time for ADM-SDH grows very slowly with the data size N (i.e., only when m is of
a small value does the tree construction time dominate).

The error rates achieved by ADM-SDH algorithm shown by current experiments are much
lower than what we expected from our basic analysis. For example, Table 2 predicts an error
rate of around 48 percent for the case of m = 1, yet the error we observed for m = 1 in our
experiments is no more than 10 percent. With the Prop heuristic, this value can be as low as
0.5 percent. Our explanation for such low error rates is: in an individual operation to
distribute the distance counts heuristically, we could have rendered a large error by putting
too many counts into a bucket (e.g., bucket i in Fig. 2) than needed. But the effects of this
mistake could be (partially) canceled out by another distribution operation, in which too few
counts are put into bucket i. Note that the total error in a bucket is calculated after all
operations are processed; thus, it reflects the net effects of all positive and negative errors
from individual operations. We call this phenomenon error compensation.

While more experiments under different scenarios are obviously needed, investigations from
an analytical viewpoint are necessary. From the above facts, we understand that the bound
given by Table 2 is loose. The real error bound should be described as

(7)

where ε′ is the percentage of unresolved distances given by Table 2, and ε′′ is the error rate
created by the heuristics via error compensation. In the following section, we develop an
analytical model to study how error compensation dramatically boosts accuracy of the
algorithm.

6 Performance Analysis of ADM-SDH
It is difficult to obtain a tight error bound for ADM-SDH due to the fact that the error is
related to data distribution. In this paper, we develop an analytical framework that achieves
qualitative analysis of the behavior of ADM-SDH, with a focus on the generation of errors.
Throughout the analysis, we assume uniform spatial distribution of particles and we consider
only one level in the density map. At the start level (and the only level we visit), the side

length of a cell is .

6.1 The Distribution of Two Cells’ Distance
We study two cells A and B on a density map, with cell A’s row number denoted as t and
column number as j, and cell B’s row number as k and column number as l. We further
denote the minimum distance between A and B as u, and the maximum distance as υ. We
propose the following lemma:

Lemma 1. The range [u, υ] overlaps with at most three buckets in the SDH. In other words,
p < = υ − u < = 2p.

The proof of Lema 1 can be found in Appendix II, available in the online supplemental
material. By Lemma 1, we can easily see that υ must fall into one of the two buckets with

ranges  and .
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Suppose the distance between points from the two cells follow a cumulative distribution
function F over the range [u, υ], then the probabilities of a distance falling into the relevant
bucket can be found in Table 3.

6.2 Compensating the Distance Counts in the SKEW Method
As mentioned earlier, an important mechanism that leads to low error rate in our algorithm
is that the errors made by one distribution operation can be compensated by those of
another. We can use the SKEW heuristic as an example to study this. In SKEW, all distance
counts are put into one bucket, say, the one with the smallest bucket index. In other words,
the distance counts in all three buckets (Table 3) are put into bucket with range

. The error would be large if we only consider this single distribution

operation—by denoting the error as e, we have  for the bucket

. The error e here is positive, meaning counts in the first bucket are
overestimated. However, such errors can be canceled out by other distribution operations
that move all distance counts from this bucket into another one. For example, if there exists
another distribution operation with minimum distance u1 = u − p, it would move some
counts that belong to bucket 1 in Table 3 out, generating a negative error in bucket 1 and,
thus, compensating the positive error mentioned before. Given this, an important goal of our
analysis is to find such compensating distribution operations and study how much error can
be compensated. We first show that under an ideal situation the error can reach zero.

Lemma 2. For any distribution operation with minimum distance u, if there exists another
such operation with minimum distance u1 = u − p, the error generated by ADM-SDH using
the SKEW approach is zero.

Proof. According to Table 3, for any distribution operation, the error to the first SDH bucket

(denoted as bucket i) it involves is , and this error is positive (i.e.,
overestimation). Suppose that there is another distribution with minimum distance u1 = u −

p, then this operation generates a negative error  to bucket i.
For the same reason, a third distribution with minimum distance u2 = u − 2p generates a

negative error of . It is easy to see that the combined error (by putting all
relevant negative and positive errors together) to bucket i is 0.

An example of two cells that contribute to each other’s error compensation in the
aforementioned way can be seen in Fig. 6. Namely, the cells C and C′ when we compute the
minimum distances AC and AC′.

Unfortunately, the above condition of the existence of a u1 value that equals u − p cannot be
satisfied for all pairs of cells. From Lemma 2, however, we can easily see that the error is
strongly related to the quantity u. In the following text, we study how the errors can be
partially compensated by neighboring pairs of cells.

Without loss of generality, we take any pair of cells in the density map that are x cells apart
horizontally and y cells apart vertically, such as cells A and B in Fig. 6.
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For the convenience of presentation, we define p to be a unit (p = 1 unit). Given that fact, a

cell’s side is . Following this, the horizontal and vertical distances between A and B are

 and , respectively, as shown in Fig. 6. Thus, the minimum
distance between the above two cells can be written as

(8)

The critical observation that leads to the success of our analysis is obtained by studying
another cell, such as cell B′ in Fig. 6. Its minimum distance to the cell A is

Let us denote the quantity u − u1 as Δ. We have

(9)

Suppose x >= y and z = y/x, (9) can be rewritten as

(10)

Although x and y are integers, we can treat z as a continuous variable due to the existence of
a large number of possible values of x and y in a density map with many cells. Since dΔ/dz >
0, we conclude that Δ increases with z. Two boundary cases are: 1) when y = 0 we have z = 0

and ; 2) when y = x, we have z = 1 and Δ = 1.

According to Lemma 2, the error of the SKEW method, eskew, can be approximately noted by
the difference between one and Δ, eskew ≈ 1 − Δ. This error, eskewed, ranges from 0 to

, since Δ ranges from  to 1. The compensating process in distance counts is
shown in Fig. 6. As mentioned before, C and C′ are examples of two cells for which the
difference of minimum distances to cell A is 1 and the cells B and B′ are two cells for which
the difference of minimum distances is different from one (less than one in this case).

Let us analyze the minimum distances u and u1 from cell pairs (A, B) and (A, B′),
respectively. We know that each such pair of minimum distances (u, u1) with property u −
u1 ≠ 1 generates an error. In the next few paragraphs, we will quantitatively approximate the
error generated by such pair of minimum distances, and also show that the sum of all such
errors is small (can be qualitatively bounded).

Since we want to give an analytical description of a quantity (1 − Δ or 1 − (u − u1)), we need
to use the underlying distribution of that quantity. The distribution of the distances between
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points from cell A and cell B (or B′) can be viewed as noncentral chi-squared. Without loss
of generality, we can choose one point from cell A and make it a base point with coordinates
(0, 0). The distribution of the distances between this base point and points from cell B (or B′)
can be regarded as triangular.

We use Fig. 7 to geometrically describe the background of the error compensation in our
method that leads to lower error. The triangles in Fig. 7 represent the triangular density
distributions of the distances between the base point and the points of three cells. The bases
of the three triangles represent the [min, max] ranges that the distances between points from
a particular cell and the base point fall in. In our analysis, we define G as ⌊u⌋, and we also
define H = G + 1 and I = H + 1. The triangles STU, AEW, and BCF are the density
distributions of u, u1, and u − 1, respectively. The line H′S′D′ is the symmetry line of WFH
with respect to the vertical line which passes through the point D.

As we know, if u1 = u − 1, the error of distance counts produced by the period between H
and I can be compensated by the one produced by the period between G and H. In other
words, according to SKEW, when we count the number of distances between two cells with
minimum distance u, the number of distances between H and I is added and leads to a
positive error. When we count the number of distances between two cells with minimum
distance u − 1, the number of distances between G and H is missed and leads to a negative
error. If the distribution is the same, the area of GBCFH is the same as that of HSTUI, and
no error would be produced.

If u1 ≠ u − 1, there is difference between the area of GAEWH and the area of HSTUI. In
other words, there is difference between the area of GAEWH and the area of GBCFH. This
difference can be computed by the area of ABD′S′ and that represents the error imposed by
the difference between u1 and u − 1, which we denote as eu1,u−1. We know that CE = u1 − u
+ 1 and GH′ < u − u1 = Δ. Considering the fact that the area of each of the three triangles in

Fig. 7 is 1, the height of each of these triangles is  (because the base is υ − u).

Therefore, the ratio  has the following value (more details in Appendix III, available in
the online supplemental material):

(11)

Furthermore, the length of AB is

(12)

The area of ABD′S′, thus the error eu1,u−1, can be computed as follows:

(13)

(14)
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Therefore, the accumulated error,  over the range of z (z ∈ [0, 1]) can be computed by
the following equation (considering (10) for Δ):

(15)

When 0 ≤ z ≤ 1, we can use well-established mathematical tools (Fig. 8) to approximate
 as follows:

(16)

treating z as continuous variable we get

(17)

Equation (17) means that the total error rendered by the SKEW under the assumptions we
stated in the beginning of Section 6 is less than 10.55 percent. Due to the assumptions we
made, we do not claim this as a rigorous bound. However, it clearly shows that our
algorithm is able to produce really good results with low errors by visiting only one level in
the density map. And this conclusion builds the foundation of an improved approximate
algorithm (Section 7).

One special note here is that (17) does not cover the cases in which the minimum distance u
falls into the first SDH bucket (i.e., u < p). However, our analysis shows that such cases do
not impact the results in (17) significantly. More details can be found in Appendix IV,
available in the online supplemental material.

7 Single-Level Approximate Algorithm
Via the performance analysis of ADM-SDH, and looking back to the error bound described
in (7), we concluded that ε″ is very small. Even if we allow ε′ to be 100 percent, meaning no
cell resolution is possible, we can still achieve low and controllable error rates in our results.
Based on such conclusion, we introduce an improved approximate algorithm we call single-
level SDH algorithm (SL-SDH). There are two major differences between the two
algorithms: 1) the number of levels (density maps) each algorithm visits: unlike ADM-SDH,
which visits m + 1 levels, SL-SDH visits only one level of the tree, and is thus given the
name SL-SDH. The single level visited by the SL-SDH is a user-defined variable and can be
any level of the tree. 2) the starting level of the algorithms: ADM-SDH starts at a
predetermined level, based on the bucket width p and the maximum distance between any
two points of the system. SL-SDH, on the other hand, starts at a user-defined level (and
visits only that level), which can be any level of the tree. SL-SDH improves over ADM-
SDH in two important aspects. First, we only need a single DM that can be built in O(N)
time (instead of the O(N log N) time needed to build the quadtree). Second, we reduce the
posttree-construction running time of the algorithm, with little increase of the error, as we
only run RESOLVETWOTREES for cells in one density map (i.e., a single level).

A special note here is that the running time of SL-SDH is no longer determined by the
bucket width p. Recall that ADM-SDH starts at the density map DMo, where the diagonal of
a single cell is less than or equal to p. When p is small, the number of cells in DMo is large,
and we have to invoke the RESOLVETWOTREES procedure more times. To remedy this, we allow
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SL-SDH to run on a (single) density map above DMo, i.e., one with larger cell sizes (and
fewer cells). This is based on a hypothesis motivated by our performance analysis of ADM-
SDH: the error compensation mechanism we studied will also work for density maps above
DMo. We know the error is very small for running RESOLVETWOTREES for those cells in DMo—
doing the same on higher level density maps should still render reasonable (although higher)
error rates. Unfortunately, an analytical study of such errors is very difficult. In the
remainder of this section, we empirically evaluate the error and time tradeoff of the final
version of the SL-SDH algorithm.

7.1 Experimental Results
We have implemented the SL-SDH algorithm using the C programming language and tested
it with various synthetic/real data sets. The experiments are run in the same environment as
the experiments for the ADM-SDH in Section 5.

Since we know, from our previous experiments, that the PROP heuristic for distributing the
distances in nonresolvable cells produces the best results, we have only used that heuristic to
show the results of the single level approximate algorithm. We have run the algorithm on
two synthetic data sets (with uniform and skewed distribution of atoms) under five different
N values (i.e., 1, 3, 5, 7.5, and 12 million). We also ran the algorithm on one real simulation
data set with 891,272 atoms.

Fig. 9 shows the results from the experiments on uniform and skewed data, respectively,
with 7.5 million atoms and the real data with 891,272 atoms. From this figure, we can see
that the error rate decreases when we increase the level in the density map. We also see that
the error rate decreases when the bucket width increases.

Fig. 10 demonstrates the effects of system size N on the accuracy of SL-SDH. Each line in
Fig. 10 plots the error rates of SL-SDH when run at a particular level of density map under a
particular atom count. We can easily see that the lines for the five different system sizes (of
the same density map) are very similar, giving rise to one cluster of lines for each level of
density map. Fig. 10 shows that the error introduced by the SL-SDH algorithm is not
affected by the number of atoms in the data set N, but by the level of density map the
algorithm works at. On the other hand, the running time of the SL-SDH algorithm was also
found to be independent of N, as shown in Fig. 11. The only exceptions are for levels 3 and
4, in which the tree construction time dominates.

The difference between SL-SDH and ADM-SDH can be seen by comparing Fig. 11 with
Fig. 5, and Fig. 10 with Fig. 4. However, to better understand the accuracy/performance
tradeoffs provided by the two algorithms, we introduce a new metric we call Error Delay
Product (EDP), which is defined as the product of the error rate and the running time of the
algorithm. Obviously, higher EDP means worse accuracy/performance tradeoff. Fig. 12
shows the EDPs for both algorithms ran under four different bucket widths (i.e., 100, 500,
1,000, and 2,000). It is obvious that the SL-SDH algorithm produces better EDP than the
regular approximate algorithm. This is especially the case when the bucket width is small—
the EDPs of SL-SDH are orders of magnitude lower than those provided by ADM-SDH.
The reason for this is that the ADM-SDH algorithm starts at a level predetermined by the
bucket width p, whereas SL-SDH can start at any level the user wants (this is why the
number of levels shown in Fig. 12 changes for ADM-SDH and stays constant for SL-SDH
for different bucket widths). In other words, when p gets smaller, ADM-SDH has to start at
a lower level of the tree (higher in number) with more cells to process which makes the
running time longer, thus increasing the EDP. As we can see from Fig. 12, when the bucket
width is 100, ADM-SDH can only work in level 9 (its starting level DMo). This yields long
running time. On the other hand, the SL-SDH can work at any user-defined level of the tree,
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one that yields the desired accuracy while keeping the running time low. The other three
parts of Fig. 12 show that as the bucket width grows, the EDPs of the two algorithms get
closer. Nevertheless, there is always an EDP of the SL-SDH that is better than the EDP of
the ADM-SDH. In general, the EDPs of both algorithms decrease with the decrease of the
density map level (level 9 always showing the worst tradeoff). However, the benefit of the
SL-SDH is that it can work at any user-defined level of the tree, and our experiments show
that its accuracy is already high when working on a coarse density map.

In summary, our experimental results convey three important messages. First, the SL-SDH
algorithm significantly improves the accuracy/performance tradeoff over ADM-SDH. Such
improvements are more obvious under small SDH bucket width. This is very important: the
computation of SDHs is generally preferred to be done under smaller p values as it carries
more information about the distribution of the distances. Second, users can choose the
appropriate (single) level among all the density maps to run the algorithm based only on the
desired accuracy. Third, we also show that, like ADM-SDH, the running time and the error
rate of SL-SDH are not affected by the number of atoms in the data set.

8 Conclusions And Future Work
The main objective of our work is to accomplish efficient computation of SDH, a popular
quantity in particle simulations, with guaranteed accuracy. In this paper, we introduce
approximate algorithm for SDH query processing based on our previous work developed
around a Quadtree-like data structure named density map. The experimental results show
that our approximate algorithm has very high performance (short running time) while
delivering results with astonishingly low error rates. Aside from the experimental results, we
also analytically evaluate the performance/accuracy tradeoffs of the algorithm. Such
analyses showed that the running time of our algorithm is completely independent of the
input size N, and derived a provable error bound under desired running time. We further
developed another mathematical model to perform in-depth study of the mechanism that
leads to low error rates of the algorithm. Aside from administering tighter bounds (under
some assumptions) on the error of the basic approximate algorithm, our model also gives
insights on how the basic algorithm can be improved. Following these insights, a new
single-level approximate algorithm with improved time/accuracy tradeoff was proposed.
Our experimental results supported our analysis. Having these experimental results on hand,
one aspect of our future work will be to establish a provable error bound for the new
algorithm.

Many times, the MS systems are observed over certain period of time and SDH computation
is required for every frame (time instance) over that period. Therefore, another direction of
our on-going work is to efficiently compute the SDHs of consecutive frames by taking
advantage of the temporal locality of data points. We can also extend our work to the
computation of m-body correlation functions with m > 2—a more general form of spatial
statistics that involves counting all possible m-particle tuples.
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Fig. 1.
The DM-SDH algorithm.

Grupcev et al. Page 23

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2014 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Distance range of two resolvable cells overlap with three buckets.
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Fig. 3.
The simulated hydrated dipalmitoylphosphatidylcholine bilayer system. We can see two
layers of hydrophilic head groups (with higher atom density) connected to hydrophobic tails
(lower atom density) are surrounded by water molecules (red dots).
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Fig. 4.
Accuracy of ADM-SDH.
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Fig. 5.
Efficiency of ADM-SDH.
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Fig. 6.
Pairs of cells that lead to total or partial error compensation.
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Fig. 7.
Distance compensation between two pairs of cells.
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Fig. 8.

Approximation of  obtained in Matlab.
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Fig. 9.
Accuracy of SL-SDH under different bucket width for synthetic (uniform and skewed) and
real data.
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Fig. 10.
Accuracy of SL-SDH under different bucket width and different atom counts for synthetic
data (uniform and skewed).
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Fig. 11.
Efficiency of SL-SDH.
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Fig. 12.
Accuracy and performance tradeoffs of ADM-SDH and SL-SDH algorithms under different
SDH bucket widths.
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TABLE 1

Symbols and Notations

Symbol Definition

p width of histogram buckets

l total number of histogram buckets

h the histogram with elements hi (0 < i ≤ l)

N total number of particles in data

i an index symbol for any series

DMi the I-th level density map

d number of dimensions of data

ε error bound for the approximate algorithm

H total level of density maps, i.e., tree height
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TABLE 3

The Buckets Involved in the Distribution of Distances from Two Nonresolvable Cells

Bucket Range Cumulative Probabilities
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