
IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 1

Failure-Aware Cascaded Suppression
in Wireless Sensor Networks

Yi Zhang, Kristian Lum, and Jun Yang

Abstract—Wireless sensor networks are widely used to continuously collect data from the environment. Because of energy constraints
on battery-powered nodes, it is critical to minimize communication. Suppression has been proposed as a way to reduce communication
by using predictive models to suppress reporting of predictable data. However, in the presence of communication failures, missing data
is difficult to interpret because it could have been either suppressed or lost in transmission. There is no existing solution for handling
failures for general, spatiotemporal suppression that uses cascading. While cascading further reduces communication, it makes failure
handling difficult, because nodes can act on incomplete or incorrect information and in turn affect other nodes. We propose a cascaded
suppression framework that exploits both temporal and spatial data correlation to reduce communication, and applies coding theory
and Bayesian inference to recover missing data resulted from suppression and communication failures. Experiment results show that
cascaded suppression significantly reduces communication cost and improves missing data recovery compared to existing approaches.

Index Terms—Spatiotemporal suppression, wireless sensor networks, coding theory

✦

1 INTRODUCTION

WIRELESS sensor networks have been widely used
to monitor and study the environment [1], [2]. In

many applications, sensor nodes sample at a given fre-
quency and report all collected data to a base station for
further analysis (without strict real-time requirements).
A major constraint in designing many such networks
is energy. Sensor nodes, often running on batteries, are
expected to operate for a long time in order to mini-
mize the labor cost of maintenance and intrusiveness to
the environment. Conventional wisdom is that wireless
communication tends to dominate energy consumption
on sensor nodes, so reducing communication is key to
designing energy-efficient sensor applications.

Reducing Communication Various techniques have
been proposed to reduce communication in sensor net-
works. One of the proposed approaches is suppression [3],
[4], which is based on the idea that most sensor readings
are “predictable” and therefore need not be reported.
In suppression, both the sender and the receiver agree
on a predictive model for the data being monitored.
The sender can suppress the transmission of a reading
if and only if its value can be predicted by the model
within a prescribed error bound. Barring the possibility
of transmission failure, the receiver would know that
the value of a missing report lies within the error bound
around the model-predicted value. A simple example is
the value-based temporal suppression [4], where the model
always predicts the current value to be the same as the

• Y. Zhang and J. Yang are with the Department of Computer Science, Duke
University, Durham, NC 27708. Email: {yizhang, junyang}@cs.duke.edu

• K. Lum is with the Institute of Mathematics at UFRJ, Brazil. Email:
kristian@dme.ufrj.br

last transmitted value. With this scheme, a reading is
reported only if it differs from the last transmitted value
by more than some threshold ε. Clearly, the amount of
communication saved depends on how well the model
predicts data. Fortunately, many measurements of the
environment (e.g., temperature, humidity) do change
in predictable ways, making suppression effective in
reducing communication.

For greater reduction in communication, we need to
exploit data correlation more aggressively than temporal
suppression. Most environmental variables exhibit corre-
lation not only in time but also in space. For instance,
two nearby nodes often have identical or similar temper-
ature readings. Without knowing the perfect correlation
model, spatiotemporal suppression is a realistic way of
exploiting such correlation and further reducing com-
munication. For example, in Ken [3], suppression based
on disjoint-cliques models works by collecting multiple,
distributed sensor readings at a clique root, which then
uses a spatiotemporal model on these readings to decide
which ones (if any) to report to the base station.

Cascaded Suppression We consider a natural tech-
nique called cascading to extend suppression. The idea
is that a node uses suppression in reporting its readings
to another node, which then uses suppression again in
further reporting this reading together with others to a
third node, etc. The following example illustrates a two-
tier cascaded suppression scheme, or CS2 for short.

Example 1. We group nodes into clusters according to spatial
vicinity, as illustrated in Figure 1. Each cluster has an elected
head; others are called child nodes. Child nodes in a cluster
report to their head, which then exploits the spatiotemporal
correlation among the received readings to suppress reporting

Digital Object Indentifier 10.1109/TKDE.2012.26 1041-4347/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 2

3 4 5 6

1 2

0

{(3
, ε
′)}

{4, ε ′)}

{(1,
ε
′′), (

3, ε
′′), (

4, ε
′′)}

child

head

base station

multihop comm.

Fig. 1. Two-tier cascaded suppression.

to the base station.1 For example, for the cluster headed by
node 1, both node 1 and the base station maintain a model
for the readings of nodes 1, 3, and 4. If the current values
for the cluster can be predicted to within some error bound
(±ε′′), the head suppresses transmission; otherwise, it selects a
subset of values to transmit so that the others can be predicted
conditioned on the transmitted.

Within each cluster, between every child and the head,
temporal suppression is applied. A child does not have to
always transmit; instead, they can agree on a temporal model
for the child’s reading, and the child can suppress a report to
the head if its value can be predicted to within ±ε′. Assuming
reliable communication, the base station can bound all sensor
readings to within ±ε, where ε = ε′ + ε′′. Now, we have a
two-tier cascaded suppression scheme.

Previously proposed suppression schemes can be seen
as special cases of cascaded suppression. For example,
value-based temporal suppression is obtained by letting
each node form its own cluster. With the disjoint-cliques
model of Ken [3], cluster members report to their heads
in every timestep; therefore, this scheme can be seen as a
special case of CS2 with ε′ = 0 and ε′′ = ε. The generality
of cascaded suppression, as we shall see in Section 8, can
lead to greater communication savings.

Coping with Failures So far, cascaded suppression
seems like a simple generalization of suppression. Once
we consider the reality of transient message failures,
however, things become more challenging. Failures in-
troduce ambiguity into suppression. If a receiver receives
nothing, it cannot tell whether the missing data was due
to suppression or failure. Depending on which case is
true, we have completely opposite interpretation of the
missing data. If a suppression occurred, the actual value
should be well predicted by the model; if it was a failure,
the actual value would be outside the error bound
of the prediction. Hence, without addressing failures,
suppression will have little practical use.

How can we deal with failures in suppression? A
common practice is Automatic Repeat reQuest (ARQ),
where receivers reply to successfully received messages
with ACKs, and senders retransmit up to a number of
times or until they receive ACKs. However, ACKs and
retransmissions consume extra energy. Also, they still
cannot resolve ambiguity—a missing message might still
be caused by the failure of multiple retransmissions.

1. A head need not be within direct communication distance
from the base station; messages between them can go through
multiple nodes. Figure 1 is a conceptual view of the suppres-
sion hierarchy, not the network topology.

TABLE 1
A possible outcome of cascaded suppression with

transmission failures. Wrong values/bounds are boxed.

Node 3’s Node 1’s
Time reading 3 → 1 prediction 1 → 0 Bound at base
1 x(1) √

x(1) √
x(1) ± ε′

2 x(2) ⊥ x(1) ⊥ x(1) ± (ε′ + ε′′)

3 x(3) × x(1) ⊥ x(1) ± (ε′ + ε′′)

4 x(4) ⊥ x(1) ⊥ x(1) ± (ε′ + ε′′)
5 x(5) √

x(5) √
x(5) ± ε′

BaySail [4] proposes an alternative to ARQ based on
the following observation. Knowing just the fact that a
transmission has been attempted (even without knowing
its actual content) is sometimes enough for the purpose
of recovering data. To this end, BaySail lets the sender in
a temporal suppression scheme inject redundancy into
its messages in the form of the timestamps of its last
few transmissions. Using this information, the receiver
(base station) can retroactively reconstruct the history of
attempted transmissions from the sender, and use this
history to help recover missing data.

Failure handling for cascaded suppression, however,
is fundamentally more challenging. Note that the re-
ceiver reconstructs the correct transmission history only
retroactively. This issue does not pose a problem for
BaySail, where suppression is not cascaded. With cas-
cading, unfortunately, the receiver of a reading x may
act as sender in another suppression setup, and it may
act (i.e., decide what to report) based on its current guess
of x, which may turn out later to be wrong. This intricate
chain effect is illustrated below.

Example 2. Consider again Example 1. Table 1 gives an
example of how node 3’s reading are reported. We denote a
successful transmission by

√
, a failure by ×, and a suppres-

sion by ⊥.
At time 3, node 3 realizes its current value x(3) differs from

its last transmitted value x(1) by more than ε′, so it transmits
x(3) to node 1, but the message is lost. At this point, node 1
is unaware of the attempted transmission. Thinking that the
missing value as suppression, node 1 now has a wrong guess
of node 3’s reading.

In timesteps 3 and 4, node 1 acts on this wrong guess,
incorrectly concluding that it need not report readings of either
node 3 or 4 to the base station. At this point, the bounds
derived by the base station on node 3’s reading may be wrong.

Finally, at time 5, node 1 receives a message from node 3
and discovers the previous failure at time 3 (recall that node
3 “piggybacks” on each message the timestamps of its last
few transmissions). Node 1 now knows that it had wrong
values of node 3 in timesteps 3 and 4, but it has already
made suppression decisions based these wrong values. Should
it now somehow reconcile with the base station to undo
these mistakes? If so, how? And what if some messages for
reconciliation fail as well?

Contributions Designing a failure-aware cascaded
suppression framework is challenging in many ways.
How do we systematically cope with cases where a

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 3

single failure has a rippling effect on other readings and
nodes? What information is necessary for interpreting
missing data resulted from failures and cascaded sup-
pression? How should that information be communi-
cated efficiently? What suppression models can we use
to capture spatiotemporal correlations, without making
failure handling and data analysis intractable?

In this paper, we provide a holistic solution to these
questions. We propose a general framework for cas-
caded suppression that is both communication-efficient
and failure-resilient. Inspired by prior studies on spa-
tiotemporal suppression and on the Bayesian approach
to handling failures, our work not only goes beyond
them in terms of their respective strengths, but also
provides a solution that unifies them for the first time.
We believe our work is an important step toward making
suppression a practical paradigm for data collection in
wireless sensor networks.

More specifically, we show that cascaded suppres-
sion beats previously proposed suppression techniques
(namely, disjoint-cliques of Ken [3] and value-based
temporal suppression in BaySail [4]) in terms of flexi-
bility of control and the ability to exploit spatiotemporal
correlations in sensor data to reduce communication.

Another compelling advantage of our solution is the
principled approach towards failure handling. The only
existing solution with this feature works only for simple
temporal suppression [4], and it deals with none of
the intricacies that arise with cascading. We show how
to resolve the problem of nodes acting on inaccurate
information—not by scrambling for corrective actions,
but by carefully logging and forwarding information that
will allow the base station to reconstruct history and
interpret data later.

To communicate such information efficiently, we fur-
ther apply the idea of convolutional coding [5] from coding
theory. Using a novel decoding technique tailored to our
setting, our coding-based redundancy scheme holds a
clear advantage over BaySail’s method.

Finally, we evaluate our solution in terms of the en-
ergy cost and the quality of information recovered on
both synthetic and real-world datasets. By quantifying
the energy cost of computation and comparing it with
that of communication—an aspect often overlooked by
previous work on suppression—we provide additional
insight on the choices of suppression algorithms and
cluster sizes. Compared with previous work, our solu-
tion offers better tradeoffs between cost and quality of
data collection.

2 RELATED WORK

Many approaches have been proposed to reduce
communication in sensor networks. Tiny AGgregation
(TAG) [6] utilizes in-network processing to aggregate
data as it travels toward the base station. However,
TAG is not suited for raw data collection. BBQ [7]
proposes probabilistic model-driven data acquisition.
Queries about sensor data are answered by consulting a

correlation-aware statistical model. If the model cannot
provide results with enough confidence, the base station
acquires readings from a subset of nodes in order to
reach the desired confidence level. However, the model
must be trustworthy; otherwise, an answer could be
wrong and there is no way of knowing it.

The idea of model-based suppression has been applied
in Ken [3], which uses dynamic, spatiotemporal proba-
bilistic models. Our solution differs from Ken in three
significant ways. First, as discussed in Section 1, our cas-
caded suppression is more general and creates more op-
portunities for reducing communication. Second, Ken re-
covers data in the form of deterministic bounds, whereas
we combine information obtained from the suppression
scheme with statistical models to recover data in the
form of posterior distributions. Third, Ken does not
directly address the issue of transient communication
failures. The Markovian nature of their models only
guarantees that, once a new value for a reading arrives
at the base station, the models are synchronized with
respect to this reading. However, nothing can be said
about the data during the time when the base station
receives nothing. This issue weakens the data quality
guarantee offered by Ken.

While one can add temporal suppression between
individual cluster members and cluster heads in Ken,
doing so without properly handling failures will further
weaken Ken’s data quality guarantee—now that cluster
heads can have incorrect values for cluster members,
values received by the base station may be incorrect! This
issue highlights the need for coping with failures.

PAQ [8] is another example of utilizing multivariate
time-series models to reduce communication. Each node
builds an autoregressive model for predicting local read-
ings. When needed, nodes can send outlier readings
or updates to model parameters. Like Ken, PAQ does
not cascade models or handle transient communication
failures; a lost update can mislead the base station.

Compression is an alternative approach to saving com-
munication. From a theoretical perspective, Slepian and
Wolf have shown that multiple sources can be coded
with rate less than or equal to their joint entropy, even
without communication among them [9]. To achieve this
bound, distributed compression (source coding) [10], [11] has
been proposed. However, there is a strong assumption:
the joint distribution quantifying the correlations of the
sources must be known. In many wireless sensor net-
works, this assumption does not hold; learning correla-
tion structures is often one of the purposes of deploying
a sensor network.

As shown in [12], with packet loss, compression al-
gorithms such as LZW, LZ77, and adaptive Huffman
Coding perform even worse than not using compres-
sion at all. This problem is caused by the dependency
on previously decompressed data for decompressing
subsequent data. The authors propose a fault-tolerant
algorithm, which tries to keep the dictionaries used by
senders and receivers synchronized. However, it cannot

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 4

interpret lost packets or recover missing information.
BaySail [4] is a framework for resolving uncertainty

caused by failures in suppression. It relies on Bayesian
inference to reconstruct missing data using the knowl-
edge of the suppression schemes and the redundancy in-
jected by senders. On a high level, our approach towards
failure handling is similar. The key difference is that
BaySail considers only temporal suppression between
a node and the base station. We tackle the problem
for cascaded spatiotemporal suppression, which is more
general and efficient than temporal suppression. Also,
as motivated in Section 1, failure handling for cascaded
suppression is fundamentally more challenging—more
nodes are involved (because of spatial aspect of suppres-
sion), and some nodes may act on inaccurate information
and in turn affect others (because of cascading).

The idea of injecting redundancy has been combined
with explicit retransmission requests in [13]. Bloom fil-
ters are used to encode past transmission timestamps.
However, Bloom filters introduce false positives; a sup-
pression can be misidentified as a failure. To reduce false
positives, Bloom filters need more bits. The authors sug-
gest 10 bits per transmission timestamp, which may not
be better than sending the timestamps themselves. Also,
it is unclear how to interpret data if the retransmission
requests/replies are themselves lost. Finally, like BaySail,
this approach does not address the complexity of failure
handling for cascaded suppression.

3 PROBLEM AND FRAMEWORK OVERVIEW

Consider a wireless sensor network of N nodes (num-
bered with 0, . . . , N − 1) with sensors attached. For
simplicity of exposition, assume a single sensor per
node; it is easy to extend our results to cases where a
node has multiple sensors. We assume each node takes
readings at predetermined timesteps. The reading taken
by node k at timestep t is denoted by x

(t)
k . The network

is responsible for reporting each x
(t)
k to a base station

node (designated 0), such that the base station, barring
transmission failures, knows x

(t)
k to within ±ε when

timestep t ends.
The wireless network is multi-hop and unreliable; a

message can travel through multiple nodes to reach its
destination and can fail in the process. Without addi-
tional mechanisms such as ACK, we do not assume that
the destination node knows about the failed attempt, or
that the source node knows its message has failed. Due
to unreliable communication, it is inevitable that the base
station may not know every sensor reading to within ±ε.

Typically, the goal of environmental sensing is
twofold. Suppose that the sequence of sensor
readings X

(1), . . . ,X(t) is governed by a model
M(X(1), . . . ,X(t);Θ), where Θ denotes the model
parameters (unknown or with some prior). We want
to 1) recover any missing readings as accurately as
possible, and 2) learn about Θ from the information
received by the base station.

Our goal is to devise a method for reporting data to
the base station, so that we can support the two tasks
above while minimizing communication, in the presence
of possible transmission failures.

We present a framework for failure-aware cascaded
suppression, which enables an end-to-end solution to
the problem above. Our framework comprises four com-
ponents. 1) A cascaded suppression scheme is used to
minimize communication cost. 2) To cope with transient
message failures in such a cascaded setting, a redundancy
scheme is used to resolve ambiguities caused by failures.
3) Constraint derivation techniques convert basic facts
obtained from the two schemes into hard constraints
relating missing and received data, which are then fed
as input to 4) a Bayesian inference algorithm to produce
estimates of missing data and model parameters.

Previous work on BaySail [4] and Ken [3] both fit
in our framework and can be considered as special
cases of our method. BaySail tackles failures but only
handles temporal suppression; Ken performs spatiotem-
poral suppression but does not cope with failures. Our
results go beyond the mere combination of prior arts,
however. As discussed in Sections 1, failure handling
for cascaded suppression is fundamentally more dif-
ficult than that for temporal suppression, because of
the possibility of nodes acting on incorrect information.
Moreover, cascaded suppression is more general than the
disjoint-cliques model of Ken, and performs better in our
experiments in Section 8. Finally, we also show how to
apply forward error correction in this novel setting.

The next four sections discuss the four components
of our framework in turn. To make the discussion more
concrete, we present a specific instantiation, CS2 (2-tier
Cascaded Suppression, illustrated in Figure 1), as a running
example.

4 SUPPRESSION SCHEME

On a high level, a suppression scheme is a
communication-efficient way of delivering sensor
readings to the base station, such that the base station,
assuming no communication failures, knows every
reading to within ±ε of its true value. We model a
cascaded suppression scheme as an edge-labeled directed
graph over the N nodes in the network. Each edge i → j
in this graph, called a suppression edge, is labeled with a
set of sensor-bound pairs Kij ⊆ {0, . . . , N−1}×R

+. This
suppression edge represents a reporting contract from
node i to node j. Specifically, for each pair (k, εk) ∈ Kij ,
i is responsible for reporting to j such that at each
time t, the value of the reading of sensor k known at
i, denoted by x

(t,i)
k , and the value known at j, denoted

by x
(t,j)
k , differ by no more than εk (assuming no

transmission failures): |x(t,i)
k − x

(t,j)
k | ≤ εk. For example,

we have labeled some suppression edges in Figure 1.
A valid suppression scheme has the property that for
each sensor k, all edges whose labels contain k form
a single, acyclic path from node k to the base station;

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 5

furthermore, all εk’s in the labels on this path sum up
to no more than ε. Intuitively, nodes on this path relay
the reading of sensor k to the base station via a chain
of suppression-based reporting contracts.

We first describe generally how the sender and the
receiver fulfill the suppression contract, and then present
a specific solution used by CS2. We begin by introducing
some notation and terminology. For each suppression
edge (i → j;Kij):

• x
(t,i),x(t,j) denote the values known at sender i and

j at time t; they are vectors of size |Kij |, with one
component per sensor.

• z
(t,i) denotes the transmission bit vector at time t,

which represents the subset of x
(t,i) transmitted

from i to j at time t. The bit z(t,i)k corresponding to
sensor k is 1 if x

(t,i)
k is transmitted, or 0 otherwise.

The transmitted subset of values is then x
(t,i)[z(t,i)].

• s
(t,i) denotes the suppression state, a subset of all

values ever transmitted by i to j, i.e., s
(t,i) ⊆⋃

t′≤t x
(t′,i)[z(t

′,i)]. The choice of this subset depends
on the actual suppression scheme. For each value
we also track the node ID and the time. s

(t,i) is
replicated at both i and j.

• U ij denotes the suppression state update function,
which updates the suppression state as s

(t,i) ←
U ij(s(t−1,i),x(t,i)[z(t,i)]). U ij is replicated at both i
and j.

• F ij denotes the prediction function, which predicts
x
(t,i) using the previous suppression state and the

current transmitted subset: F ij(s(t−1,i),x(t,i)[z(t,i)]).
F ij is replicated at both i and j.

• ε
ij denotes the vector of bounds associated with

this suppression edge, where each component εijk
denotes the bound associated with sensor k; i.e.,
(k, εijk) ∈ Kij .

To simply notation, we shall omit node identity super-
scripts (i and j) when there is no ambiguity.

We use 	 to denote the following relationship between
two vectors a and b: a 	 b iff ∀i (|ai| ≤ bi). The invariant
maintained by the suppression edge i → j is thus x

(t,i)−
x
(t,j) 	 ε.
To establish a suppression edge, sender i and receiver

j need to agree on U and F ; i initializes the suppres-
sion state by sending all readings for K to j in the
first timestep. In each subsequent timestep t, sender i
performs the following steps:

1) Determine the transmission bit vector z
(t), such that

F (s(t−1),x(t,i)[z(t)]) − x
(t,i) 	 ε. We prefer trans-

mitting as few values as possible. In particular, we
set z

(t) = 0 and transmit nothing if F (s(t−1), ∅) −
x
(t,i) 	 ε, i.e., all new values can be predicted to

within ±ε without transmitting anything. To the
other extreme (the worst case), we may need to set
z
(t) = 1 to transmit all readings.

2) Update the suppression state: s
(t) ←

U(s(t−1),x(t,i)[z(t)]).
Receiver j performs the following steps:

1) Make a prediction: If j receives x
(t,i)[z(t)] from i,

set x(t,j) ← F (s(t−1),x(t,i)[z(t)]); otherwise, x(t,j) ←
F (s(t−1), ∅).

2) Update the suppression state: If j receives x
(t,i)[z(t)],

set s
(t) ← U(s(t−1),x(t,i)[z(t)]); otherwise, s

(t) ←
U(s(t−1), ∅).

It is easy to verify the above protocol maintains the
invariant x(t,i) − x

(t,j) 	 ε in the absence of failures.
The prediction function F need not be perfect, because

the sender can always transmit readings (in the worse
case, all of them) to make the prediction bounded.
Hence, the correctness of suppression does not depend
on the accuracy of F . Nevertheless, better F reduces
communication.

At the level of an individual suppression edge, the
above scheme operates similarly as other spatiotemporal
suppression techniques such as Ken [3]. The difference,
which creates potential for higher efficiency, comes from
chaining suppression edges together into a cascaded
suppression scheme. Here, the receiver j of a suppres-
sion edge may in turn serve as a sender for another sup-
pression edge; hence, x(t,j), j’s bounded approximation
of x(t,i), may be used to drive further reporting from j.

4.1 Suppression Scheme in CS2

We consider how to implement the general cascaded
suppression scheme for CS2, where nodes are grouped
into clusters. CS2 employs two types of suppression
edges: those from a child in a cluster to the cluster head,
and those from a cluster head to the base station. The
first type uses simple value-based temporal suppression,
and the second type is based on multivariate statistical
models. Suppose the base station wants to know every
x
(t)
k within ±ε. To this end, we label all child-to-head

suppression edges with bound ε′, and all head-to-base
suppression edges with bound ε′′, such that ε = ε′ + ε′′.

We now discuss the two types of edges in more
detail. For child-to-head suppression edges, it is straight-
forward to cast value-based temporal suppression in
terms of the general description of a suppression edge
introduced earlier in this section. Therefore, we focus on
head-to-base suppression edges below.

Consider a suppression edge (h → b;K) from a
cluster head h to the base station b, where K includes
a (k, ε′′) for each sensor k in the cluster headed by h.
The idea is to exploit the spatiotemporal correlations
among sensor readings within a cluster in order to
reduce h’s communication to b. To this end, we capture
these correlations with a first-order vector autoregressive
model (VAR(1)), and use it to predict current readings
from previously transmitted ones. Specifically, the model
π(X(t),X(t−1);Aπ, cπ,Σπ) is given by:

X
(t) = AπX

(t−1) + cπ + ε
(t), (1)

where X
(t) denotes a vector of random variables rep-

resenting the readings of sensors in K known to h at
time t (i.e., {x(t,h)

k | (k, ·) ∈ K} can be viewed as an

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 6

observation of X
(t)), Aπ is a |K| × |K| matrix, cπ is

constant vector of size |K|, and ε
(t) ∼ N (0,Σπ) is a

random noise vector following a multivariate normal
distribution (MVN) with zero mean and covariance ma-
trix Σπ. Spatial correlation is introduced by ε

(t) and is
further propagated via Aπ, because a single component
of X

(t) depends on all components from the previous
time. Aπ, cπ, and Σπ can be obtained from data collected
from pilot runs and periodically updated.

We let the suppression state contain the last trans-
mitted values for each node in the cluster. With the
VAR(1) model in (1), the prediction function computes
the expectation for the untransmitted components of
X

(t) conditioned on their last transmitted values (s(t−1))
and the currently transmitted components. Formally,

F (s(t−1),x(t,h)[z(t)]) = E(X(t) | s(t−1),x(t,h)[z(t)]).

For an example of how suppression state is maintained
and the prediction function F is computed in CS2,
consider a cluster with four sensors numbered 1 to 4.
Figure 2 shows an example of how the suppression state
evolves. At time t (Figure 2a), the previous suppression
state s

(t−1) consists of the last transmitted values
x
(t−2,h)
1 , x

(t−1,h)
2 , x

(t−1,h)
3 , and x

(t−3,h)
4 . Then, at time

t+1 (Figure 2b), after h transmits x
(t,h)
2 , the suppression

state s
(t) becomes x

(t−2,h)
1 , x

(t,h)
2 , x

(t−1,h)
3 , and x

(t−3,h)
4 .

At time t, h computes F as
E
(
X

(t)
1 , X

(t)
2 , X

(t)
3 , X

(t)
4 | x(t−2,h)

1 , x
(t−1,h)
2 , x

(t−1,h)
3 , x

(t−3,h)
4

)
and compares them with the actual values
x
(t,h)
1 , x

(t,h)
2 , x

(t,h)
3 , x

(t,h)
4 . Suppose the predictions are not

accurate enough, and h finds that
E
(
X

(t)
1 , X

(t)
3 , X

(t)
4 | x(t−2,h)

1 , x
(t,h)
2 , x

(t−1,h)
3 , x

(t−3,h)
4

)
are now within bounds of the actual values x

(t,h)
1 , x(t,h)

3 ,
and x

(t,h)
4 . Hence, h transmits only x

(t,h)
2 .

To compute the prediction function F , it suffices to
maintain the joint distribution p(X(t), s(t−1)) at each
timestep t, by using the following recursion

p(X(t), s(t−1)) =

∫
X(t−1)

p(X(t−1), s(t−1))p(X(t)|X(t−1)).

(2)
Note p(X(t−1), s(t−1)) can be obtained by a marginaliza-
tion of p(X(t−1), s(t−2)), because s

(t−1) is always a subset
of X(t−1) ∪ s

(t−2). p(X(t)|X(t−1)) is available from (1).
Because of the VAR(1) model we choose, all distri-

butions involved above are MVN. Thus all operations
reduce to standard matrix calculations that can run on
sensor nodes.

Selecting Subset to Transmit One remaining issue is
how a cluster head selects a subset from the |K| current
readings to transmit if transmitting nothing will make
prediction go out of bounds. Selecting the “best” subset
is NP-hard, so we consider greedy algorithms that can
be implemented easily on sensor nodes. We present two
such algorithms, both of which greedily expand the
chosen subset one reading at a time until the prediction
is bounded. For pseudocode, see Algorithm 1.

• The quadratic algorithm evaluates F O(|K|2) times.
In each iteration it chooses the remaining sensor
reading whose addition to the subset would result
in the least overall prediction error.

• The linear algorithm evaluates F O(|K|) times. It
first sorts all sensor readings in decreasing order
of errors in their predictions (assuming nothing is
transmitted). Then, it adds the readings one at the
time in this order.

Algorithm 1: Greedy algorithms for subset selection.
Input: current readings x, suppression state s, error bounds ε

Output: z, bitmap representing the subset to be transmitted
Option 1: quadratic algorithm

z← 0;
while true do

if F (s,x[z])− x � ε then
return z;

emin ←∞;
foreach k where zk = 0 do

z′ ← z; z′k ← 1;
ε
′ ← F (s,x[z′])− x;
if emin > ‖ε′‖ then

emin ← ‖ε
′‖;

kmin ← k;

zkmin ← 1;

Option 2: linear algorithm

z← 0;
sort components in ‖F (s, ∅)− x‖
in descending order;
p← sorted component indices;
foreach k in p do

zk ← 1;
ε
′ ← F (s,x[z])− x;
if ε

′ � ε then return z;

Computation Cost Conventional wisdom is that com-
putation costs on sensor nodes are dwarfed by communi-
cation costs. Much of the previous work on suppression
provides no quantified comparison: PAQ [8] has only
coarse estimation of the complexity of updating individ-
ual nodes’ suppression models, while Ken [3] completely
ignores the computation cost of spatial suppression. To
better understand the computation cost of suppression,
we take a closer look at CS2. Computation costs of
child-to-head suppression edges are negligible because
value-based temporal suppression can be implemented
by a handful of simple instructions. The base station
is not resource constrained so computation there can
also be ignored. Most of the computational burden is
placed on cluster heads in the form of matrix operations.
For a cluster of m nodes, at each timestep, it takes
Θ(m2(d+m)) basic operations (e.g., scalar multiplication
or addition) to update the suppression model according
to (2), where d is the dimension of the model at the
previous timestep. The initial prediction, F (s(t−1), ∅),
requires Θ(m3) operations. To select a subset to trans-
mit, the quadratic algorithm needs Θ(km4) operations,
where k is the number of readings selected. The linear

1 2 3 4
←nodes→

↓time
t− 3

t

t+ 1

1 2 3 4

(a) state at time t (b) state at time t+ 1

Fig. 2. Suppression state (shared by a cluster head and
the base station) as time progresses. Shaded circles: cur-
rent readings. Filled circles: previously transmitted values.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 7

algorithm needs Θ(km3) operations. With large clusters,
computation can translate into significant fractions of the
total energy cost. Therefore, computation costs must be
carefully weighed against communication savings when
designing a suppression scheme. Section 8 presents some
results of this comparison and discusses its implication
in choosing cluster sizes and subset selection algorithms.

Coping with Topology Changes We distinguish two
types of topology changes—in the underlying network
topology and in the suppression topology. Details about
coping with these changes can be found in the online
supplemental materials accompanying this paper.

5 REDUNDANCY SCHEME

As discussed in Section 1, transient message failure
spells trouble for suppression schemes. Ignoring the
possibility of failures in interpreting data leads to wrong
answers, because lost messages cause the sender and
the receiver’s suppression states to diverge, leading to
meaningless predictions. Acknowledging the possibility
of failures, on the other hand, makes it impossible to
obtain any bounds whenever the receiver receives no
message. In this section, we discuss how senders can
piggyback additional information (redundancy) on their
messages, such that receivers can construct relevant
transmission history.

A straightforward way of coping with failures is ARQ
(Automatic Repeat reQuest), where the receiver explicitly
acknowledges a message with an ACK, and the sender
retransmits up to some number of times or until it
receives an ACK. This solution is inadequate in our
setting for two reasons. First, ACKs and retransmissions
consume more energy. The problem is aggravated by the
high message failure rates in wireless sensor networks
(which increase the number of retransmissions) and pos-
sibly long distances spanned by suppression edges (e.g.,
those between cluster heads and the base station, which
increase the unit cost of retransmissions and ACKs).
Second, although ARQ increases the probability of a
message reaching its destination, there is no guarantee
that it will. Therefore, we are still unable to infer any
bounds on missing readings, thereby losing a key advan-
tage of suppression. In wireless sensor networks, failures
in consecutive retransmissions may be correlated, so
it is impossible to tell how many retransmissions are
required such that we can safely ignore the possibility
of failed messages. As we will see in the experiments of
Section 8, even with strong assumptions (independent
failures) and careful optimization (broadcast of ACKs
within clusters), ARQ is not competitive with the tech-
niques we are about to propose.

Towards a Better Solution For simple temporal sup-
pression between a node and the base station, BaySail [4]
proposes that the sender attaches to every outgoing
message the timestamps of its last r transmissions. Upon
successfully receiving a message from this sender, the
base station can (retroactively) construct the sender’s

transmission history, as illustrated by the following ex-
ample.

Example 3. Suppose that the base station heard from a node
at time 0 and time 3. Before hearing from this node again,
the base station has no way of knowing whether the node has
transmitted or suppressed for any timestep after 3. Suppose
it is now at time 12 and the base station receives another
message from the node, together with two transmission times-
tamps 6 and 8 (in this case the redundancy level r = 2).
With this information, the base station can reconstruct the
transmission history as follows, where

√
, ×, and ⊥ indicate

successful transmission, failed transmission, and suppression,
respectively. Note, however, that the activities at timesteps 4
and 5 remain unknown (indicated by ?).

√ ⊥ ⊥ √
? ? × ⊥ × ⊥ ⊥ ⊥ √t = 0 3 6 8 12

It has been demonstrated in [4] that, for the purpose
of statistically reconstructing missing data and learning
process parameters from received data, it suffices to
know the transmission history; insisting that every non-
suppressed reading be received by the base station is
often an overkill. The intuition is that the transmission
history allows us to establish constraints among missing
and received data, which improve the effectiveness of
statistical inference. In the example above, the base
station can infer, for example, that all values between
timesteps 8 and 12 (non-inclusive) are within ±ε of the
value at time 8, but the value at time 12 is not.

The general ideas of adding redundancy to help re-
construct transmission history and converting this his-
tory into constraints for inference are still applicable.
However, the multivariate and cascaded nature of our
suppression scheme poses new challenges.

First, for spatiotemporal suppression involving a vec-
tor of readings, simply sending the timestamps of a past
transmissions is not enough. Recall that a prediction
function takes as input the subset of readings transmit-
ted. Without knowing the membership of this subset, we
cannot write a constraint that relates the prediction result
to the variables used in the prediction.

Second, because of cascaded suppression, the base
station needs to establish a chain of constraints relating
the value of a reading known at the base station to
the actual value at its source. Each constraint stems
from a suppression edge. Thus, the base station needs
to reconstruct transmission history not only for nodes
that directly report to it, but also nodes that are further
upstream. However, the redundancy injected by nodes
that directly report to it does not carry any information
about upstream nodes’ transmissions.

Finally, as illustrated by Example 2, a node may
retroactively discover that it has made incorrect assump-
tion about an upstream node. However, at this point,
it has already acted on this assumption when deciding
whether and what to report to its downstream node.

To address these issues, we first give a solution that
extends the timestamp repetition scheme of BaySail.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 8

Then, we discuss how to adapt forward error correction
to improve the solution.

5.1 Baseline Solution

The solution we propose is based on transmission his-
tory maps, which generalize the transmission history
illustrated in Example 3. The transmission history map
of a given suppression edge tracks, for each timestep,
whether there has been a successful transmission, failed
transmission, or suppression, or it is unknown from the
receiver’s perspective. Also, for each (known) attempted
transmission (successful or not) at time t, this map
keeps track of the transmission bit vector z

(t) (defined
in Section 4).

The goal of the redundancy scheme is to enable the
base station to reconstruct the transmission history map
for every suppression edge. To this end, we operate as
follows for every suppression edge i → j. There are three
types of redundancy reporting.

Type-S(ender) To every transmission from i to j, i at-
taches the last rS transmission timestamps, together with
the transmission bit vector at each of these timesteps.
The type-S redundancy level, rS , is a user-specified param-
eter. This redundancy allows j to build the transmission
history map for i → j.

Type-R(eceiver) If j is not the base station, then j is
responsible for keeping the base station updated with
the transmission history map for i → j.2 There are
many ways to accomplish this goal with interesting
tradeoffs. We describe one technique below, which we
have implemented for the experiments in Section 8.

A transmission history map can be partitioned into
segments. Each segment begins with a known attempted
transmission, and ends right before the next such trans-
mission. It is not difficult to see that the map entries
between them must all be either suppression or un-
known. A segment g can be represented by a tuple
〈tbegin, tend, z, b√|×, b⊥|?〉, where [tbegin, tend) is the time
interval associated with g, z is the transmission bit
map at time tbegin, b√|× is a bit indicating whether the
transmission at tbegin was successful, and b⊥|? is a bit in-
dicating whether entries in (tbegin, tend) are suppression
or unknown. Whenever j sends out a message in the di-
rection of the base station, j attaches to that message the
last rR segments of the transmission history map. The

2. One might wonder why j cannot simply notify the base station of
just the failures, i.e., the timestamps of failed transmissions from i and
the transmission bit vectors at those timestamps. Unfortunately this
information is insufficient. Consider again Example 3, but assume that
instead of the base station, it is some other node j that is deciphering
the transmission history from i and trying to keep the base station up
to date with this history. At time 12, j detects the failures at 6 and
8. If j tells the base station only about these failures, the base station
would not know the history during [0, 3]. Therefore, for this interval,
the base station cannot bound the difference between the true values
of the readings at i and the values believed in by j (which were used
in its reporting to the base station). In other words, even though j itself
knows that this difference is bounded, it has to somehow inform the
base station of this fact.

type-R redundancy level, rR, is a user-specified parameter.
Also, whenever j discovers a new transmission failure
from i (using type-S redundancy), j will send type-R
redundancy, without piggybacking on another message
if necessary.

If j is the target of multiple suppression edges, j is
responsible for maintaining one map for each such edge
and reporting suppression segments for all such maps.

Type-F(orwarder) Finally, if a node n receives a mes-
sage with type-R redundancy for suppression edge i → j
and n is not the base station, n is responsible for forward-
ing this information to the base station. An alternative
to simple forwarding is for n to use this information to
incrementally reconstruct the transmission history map
for i → j; then, a method similar to type-R redundancy
keeps the base station updated with this map.

5.2 Forward Error Correction

The baseline solution above essentially repeats the same
data in different messages, where parameters such as rS
control the number of repetitions. Simple repetition is
not the smartest way to get recoverability, however. We
turn to coding theory for a better solution. In particu-
lar, we apply a type of forward error correction called
convolutional coding [5]. Our new application setting re-
quires retooling of the standard convolutional coding
techniques; we discuss the differences at the end of this
subsection.

To simplify presentation, consider the problem of
sending a sequence of messages of L bits each from
one node to another. We assume the receiver either
receives each message correctly without any bit error or
eventually finds out that it was lost (or corrupted be-
yond repair). In practice, we can ensure this assumption
holds by including checksums and sequence numbers
in messages. After first describing our solution to this
problem, we will show how to apply it to the more
specific scenario of encoding redundancies for cascaded
suppression.

Example 4. Consider a rate 1/2 convolutional encoder in
Figure 3(a). It has two memory registers (�), and two adders
(⊕) that perform bit-wise modulo-2 additions. Inputs, outputs,
and memory registers all have L bits each. When a new input
w enters the encoder, the adders generate two outputs v1 and
v2 (hence the 1/2 rate), and then the input is shifted into the
memory registers, as directed by the arrows. The content in
the rightmost register is evicted after each shift. Figure 3(b)
is a different rate 1/2 encoder with a feedback structure.

w

⊕ ⊕ v2

v1

(a) without feedback

w

⊕ v2

v1

⊕
(b) with feedback

Fig. 3. Two convolutional encoders of rate 1/2.

To transmit a message m, the sender feeds it to a rate
1/rC convolutional encoder (rC = 2 in the above exam-
ple), and then transmits the rC outputs as one message

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 9

instead of m. Upon receiving the coded message, the
receiver uses a decoder to obtain the original input to the
encoder. An ancillary data structure the decoder uses is
the trellis diagram. The state of an encoder at a particular
time is just the concatenation of its memory register
contents. The trellis diagram for an encoder consists of a
grid of nodes, arranged in 2n rows and infinite number
of columns, where n is the number of bits in an encoder
state. Columns from left to right correspond to time,
which advances by 1 on each new input. All nodes in
row i represent the i-th possible state of the encoder. An
edge with label in/out from a node x in column t to
another node y in column (t+1) means the following: if
the state of the encoder at time t is as specified by node
x, and the input to the encoder is in , then the encoder
outputs out and the state transitions to y. For example,
Figure 4 shows the trellis diagram for the encoder in
Figure 3. Inputs and registers are assumed to be 1 bit
each in this example. Only some edge labels are shown.
Dashed edges are those labeled with input 0, while solid
edges are those labeled with input 1.

t = 0 1 2 3 4 5

00 00 00 00 00 00

01 01 01 01 01 01

10 10 10 10 10 10

11 11 11 11 11 11

0/00

1/
11

Fig. 4. Trellis diagram for the encoder in Figure 3.

With the trellis diagram, the decoder performs de-
coding by finding, roughly, the path through the trellis
diagram that matches the received sequence of coded
messages. More precisely, however, we are looking not
for a path per se, but instead the correct input at each
timestep. This subtle difference is illustrated by an exam-
ple. Suppose the encoder in Figure 3 is employed by a
sender. The encoder’s memory registers are initialized to
00 at time 0. At the receiver’s side, suppose the decoder
sees a coded sequence ?? ?? ?? 01 01, where ?? denotes a
lost message. There are two paths matching this output
sequence, marked bold in Figure 4. The top path takes
input sequence 0 0 1 0 0 and produces output sequence
00 00 11 01 01, while the bottom path takes 1 0 1 0
0 and produces 11 01 10 01 01. Although the decoder
is unable to determine which is the “true” path given
only the received sequence, it is able to determine all the
input messages except the first one, simply by picking
common parts of the two possible input sequences. The
actual algorithm can be found in the online supplemental
materials accompanying this paper.

Discussion Why does convolutional coding beat re-
peating messages? Intuitively, a rate 1/rC convolutional
encoder can capture in a coded message of size rC
information derived from more than rC input messages;
In contrast, message repetition includes only rC input
messages in the same amount of space. For example,

recall the earlier problem of decoding ?? ?? ?? 01 01.
Receiving only 2 out of 5 coded messages, we were able
to recover the last 4 of the 5 input messages. However,
using message repetition, where a message of the same
size (2 bits) includes the last input in addition to the
current one, receiving the last 2 of the 5 such messages
will only allow us to recover the last 3 input messages.

It is worth noting that our application of convolutional
coding departs from its standard usage (e.g., Viterbi [14]
and Fano [15] decoding). Standard usage typically as-
sumes a channel model and performs probabilistic de-
coding. Unfortunately, transient message failures in sen-
sor networks remain poorly understood and difficult to
model because of the complex interplay of hardware and
software issues and (often unpredictable) environmental
factors. Therefore, we have taken a different and more
conservative approach, making no assumption about the
channel model and recovering only inputs that we are
absolutely certain of. The result is robust and particularly
suitable for the suppression scenario. A more detailed
discussion can be found in the online supplemental
materials accompanying this paper.

Improving the Baseline Solution There is flexibility
in applying our coding-based technique to improve the
baseline redundancy scheme in Section 5.1. We can use
different types of convolutional coders (see Section 8
for more examples). We can apply coding to entire
messages, or just to selected types of information. As an
example of the latter, we can change the implementation
of type-S redundancy as follows. Instead of including the
timestamps and transmission bit vectors of the last rR
transmissions in the current message, we can first feed
the very last transmission timestamp and bit vector as
input to a rate 1/rC encoder, and then attach the output
to the current message. The size of the resulting message
remains the same if rR = rC . Section 8 explores this and
other ways of improving the baseline scheme.

5.3 Redundancy Scheme in CS2

Redundancy scheme in CS2 operates exactly as the base-
line scheme in Section 5.1, and can be readily improved
by the above coding-based technique. The simpler struc-
ture of CS2 implies two simplifications, however. First,
assuming single sensor per node, for a child-to-leader
suppression edge, we do not need to include any trans-
mission bit vector, because it has only one bit that will
be always be 1 for every transmission. Second, with
two tiers only, there is no type-F redundancy. A child is
responsible only for type-S redundancy. A cluster head is
responsible for 1) type-S redundancy for its suppression
edge to the base station, and 2) type-R redundancy for
suppression edges from the children in its cluster.

6 CONSTRAINT DERIVATION

The redundancy scheme in Section 5 allows the base
station to construct the transmission history map for
every suppression edge. Because of failures, there is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 10

×

1 2 3 4
h → b1 → htime↓

t

t− 3

(a)

1 2 3 4
h → b

×

1 → htime↓

t

t− 3

(b)

Fig. 5. An example of transmission history in CS2.

no guarantee that the base station will obtain complete
maps, but with appropriate amount of redundancy, the
hope is that these maps will be mostly complete. Also,
note that failures can only affect the completeness of the
maps, not the correctness of them.

The transmission history maps, in turn, enable the
base station to reconstruct the sequences of actions taken
at each node and the rationale behind them. Using the
knowledge of the suppression scheme, the base station
can derive hard constraints among values of readings
known at different nodes and across time. These con-
straints can then be incorporated in inference. We illus-
trate how to derive constraints from transmission history
maps with a concrete example in the context of CS2.

6.1 Constraint Derivation in CS2

Consider Figure 5(a), which illustrates the transmissions
from node 1 to its cluster head h, and from h to the
base station b over time. Filled circles denote success-
fully received values. Suppose all suppression edges are
labeled with bound ε/2. Let us walk through an exercise
of deriving constraints on x

(t,1)
1 , the reading of node

1 at time t. As shown in the figure, b notices that h
received a message from node 1 at time t− 1, followed
by suppressions at t and t+ 1. Hence, we can relate the
values known at h to the true values at node 1:∣∣∣x(t,1)

1 − x
(t−1,1)
1

∣∣∣ ≤ ε

2
,

∣∣∣x(t+1,1)
1 − x

(t−1,1)
1

∣∣∣ ≤ ε

2
, (3a)

x
(t,h)
1 = x

(t+1,h)
1 = x

(t−1,1)
1 . (3b)

Also, b discovers (by checking redundancy in a later
message) a lost message from h at time t, which should
have contained the value x

(t,h)
1 (marked by × in the

figure). Then, at time t + 1, h suppressed transmission.
Therefore, |x(t+1,h)

1 − E| ≤ ε/2, where E, the predicted
value, is a conditional expectation that turns out to
be a linear combination of x

(t,h)
1 , x(t−1,h)

2 , x(t−1,h)
3 , and

x
(t−3,h)
4 . The latter three were successfully transmitted to

the base station, while the lost x(t,h)
1 remains a mystery.

However, if we combine this inequality with (3), we
get linear inequalities involving only unknowns x

(t−1,1)
1 ,

x
(t,1)
1 and x

(t+1,1)
1 , the actual readings we care about.

Recall from Section 1 the possibility of nodes acting
on incorrect information in cascaded suppression. We
now illustrate how we cope with this issue. Consider
again the previous example, but suppose instead that the
transmission from node 1 to head h at time t− 1 failed,
as shown in Figure 5(b). We need to derive constraints
differently. When h transmitted x

(t,h)
1 at time t, it had not

yet discovered the failure of the message from node 1 at
t − 1 (which can be discovered only after a successful
transmission from node 1 later). Thus, h’s view of x1

became incorrect starting from t − 1; therefore, x
(t,h)
1

and x
(t+1,h)
1 do not satisfy (3b). Unfortunately, unaware

of this discrepancy, h made a decision about what to
transmit to b at t based on incorrect information. Al-
though we could let h take corrective actions as soon as
it discovers an earlier mistake, doing so incurs additional
communication but cannot recuperate the cost of the
earlier mistake that has already been paid. Moreover,
what if communication also fails during these corrective
actions? Instead, we take a simpler approach that avoids
expensive (and unreliable) runtime corrections. The key
is that we derive constraints based on the knowledge a node
had at the time when it made its decision. Continuing with
the example, b can deduce that x

(t,h)
1 and x

(t+1,h)
1 are

actually based on node 1’s last successful transmission
before time t − 1, which is at time t − 3. Therefore, we
have x

(t,h)
1 = x

(t+1,h)
1 = x

(t−3,1)
1 instead of (3b). Critical

to this approach is that the transmission history maps
allow us to “repeat history” at the receivers.

Constraints can be similarly obtained for other scenar-
ios. Note that for some cases the obtained constraints are
not linear. For example, the fact that the failed message at
time t contains x(t,h)

1 means if x(t,h)
1 is not transmitted, its

prediction would have been out of the prescribed bound.
Thus a constraint of the form | · | > · is obtained, which
is not linear, but an OR of two linear constraints. We
currently do not make use of these non-linear constraints
due to inference difficulties (although other techniques
like the direction bits [4] can be used to linearize these
constraints at the cost of more communication).

Picking a suppression scheme based on VAR(1) allows
us to avoid complex constraints and stay mostly linear;
this choice greatly simplifies the next step—inference.

7 BAYESIAN INFERENCE

Suppose that a model M(X(t),Θ) describes the process
governing the sensor readings. Recall from Section 3
our ultimate goals are to 1) recover missing data as
accurately as possible, and 2) learn about the model
parameters Θ. Besides sensor readings received by the
base station, several other sources of information should
be incorporated into inference: 1) redundancy received
by the base station, 2) knowledge of the suppression
scheme, and 3) any prior knowledge about the model
parameters. Section 6 has discussed how to convert (1)
and (2) into constraints on missing and received data.
With these constraints and any prior knowledge on Θ,
we compute the posterior distribution of the missing data
and the model parameters via a Bayesian approach.

The posterior may be complex, making analytical inte-
gration difficult. Thus, we take a sampling approach. We
draw samples from the joint distribution; samples from
the marginal of a particular parameter or missing data
are obtained by ignoring other components in the joint

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 11

samples. In contrast to point estimates, sampling allows
assessing the uncertainty in the estimates.

Below is a concrete example of how we use Gibbs sam-
pling [16] to recover missing data and learn parameters
of a VAR(1) model in the context of CS2.

7.1 Bayesian Inference in CS2

Suppose we wish to model collected data using the fol-
lowing VAR(1) with an exponential covariance structure:

X
(t) = AX

(t−1) + c+ ε
(t),

ε
(t) ∼ N (0,Σ), (4)

Σij = σ2 exp(−φ‖h(i)− h(j)‖),
where h(i) ∈ R

2 denotes the location of sensor i and
‖ · ‖ is Euclidean norm. In this case, the model we wish
to learn happens to be similar to (1), the model for
suppression. However, these models serve different roles
and in general can have different forms; our framework
does not assume them to be similar. At the lower level,
this model also differs from (1) in two ways. First, X(t)

here represents readings of all sensors in the network
at time t (as opposed to just those inside one cluster as
in (1)), and dimensions of other matrices and vectors are
scaled similarly. Second, we impose on Σ an exponential
structure, one of the most widely-used isotropic covari-
ance functions for modeling spatial correlation [17].

For a total of m sensors and n timesteps, we write all
sensor readings in an n × m matrix X, where the i-th
row X

(i) corresponds to all readings at time i, and the
j-th column corresponds to all readings from sensor j.
Due to suppression and failures, parts of the matrix are
missing; we denote them by W. The remaining entries
are received by the base station. We denote by V the
received entries as well as the derived constraints (cf.
Section 6). V represents our knowledge about X.

Model Priors Prior distributions of the model param-
eters can encode specific domain knowledge about the
sensor data. In the absence of such information, non-
informative priors can be used. For CS2, we use a (con-
jugate) inverse Gamma prior for the σ2 parameter, and
flat priors for A and c. For φ, we apply the commonly
used uniform prior after discretization.

Sampling In order to draw from the posterior joint
distribution, we use the well-known Gibbs sampling
technique [16]. The basic idea is to draw a sequence
of samples from the distribution of each variable, con-
ditioned on all others. After a sufficient number of
iterations, the chain converges to the target distribution.

To seed the iterations, we obtain an initial sample
for each model parameter from its prior, and we pro-
duce initial values for W by linear programming sub-
ject to all constraints in V. In iteration k, we sample
W

[k],A[k], c[k], (σ2)[k], φ[k] in turn. First, we sample W
[k]

one row at a time. Recall that some components in X
(t)

may be missing, hence in W. We partition X
(t) into two

parts: the missing part, W(t), and the known part, V(t).

It can be easily shown that the conditional distribution
of W

(t) given the latest samples of all others is MVN
(details omitted). Standard techniques can be used to
sample W

(t) subject to the linear constraints. Next A

and c can be sampled using the well-known Metropolis-
Hastings algorithm, where the Metropolis step for each
component can be independent random walks. Lastly
we update (σ2)[k] by sampling from an inverse Gamma
distribution and φ[k] from a discrete distribution (math-
ematical derivation is simple and omitted).

8 EXPERIMENTAL EVALUATION

All experiments use a two-tier suppression hierarchy.

Datasets For evaluation, we use both synthetic and
real-world datasets. We generate the synthetic dataset
by a VAR(1) model (whose parameters values are not
known to our suppression and inference algorithms).
The redwood dataset [2] is a collection of microclimate
data collected by sensors deployed on redwood trees in
Sonoma, California. We use the humidity data in this
dataset, and assume VAR(1) in inference. The humidity
dataset is representative of many types of environmental
data, which follow a general trend and have strong
spatial correlation. Of course, suppression will not work
if data is dominated by random noise. However, we have
found many types of data amenable to suppression (e.g.
light under foliage). In this paper, we report results on
the humidity dataset. Note that the synthetic dataset
allows us to compare inference results with the true
model parameters used for data generation; the redwood
dataset is less suitable for this purpose because the true
model is unknown and too complex to be precisely fit.
Thus there is no ground truth to which inference results
can be compared. However, it is still useful for testing
communication reduction and missing data recovery.

Approaches Compared We have implemented the fol-
lowing approaches: Temporal, an implementation of
BaySail [4], where each node reports directly to the base
station using value-based temporal suppression with
timestamp repetition for redundancy; Ken, based on the
disjoint-cliques model in [3]; and CS2. Both Ken and CS2
use a VAR(1) model for suppression between a cluster
head and the base station. However, Ken does not use
any suppression for intra-cluster communication.

Depending on the redundancy scheme used, we have
two variants of CS2: CS2-R, with the baseline redun-
dancy scheme of Section 5.1 based on simple repetition,
and CS2-C, with the coding-based improvement of Sec-
tion 5.2. Note that the original Ken framework has no
special handling of failures. To make meaningful com-
parisons, we also consider an enhancement to Ken, Ken-
ACK(r), which uses ARQ for redundancy and allows at
most r retransmissions for each message. To improve
energy efficiency, we let the cluster head broadcast a
single ACK message with a bitmap indicating which
children’s transmissions were received, instead of ac-
knowledging each child separately. The receiver always

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 12

assumes suppression if no message is received.3 We have
also added Bayesian inference to Ken and Ken-ACK(r).

Metrics of Evaluation We evaluate two aspects of
data collection schemes: energy cost (both communica-
tion and computation) and inference quality (recovering
missing data and learning model parameters).

We estimate the total energy cost by Ncomm + δNcomp,
where Ncomp is the number of CPU operations per-
formed by spatiotemporal suppression algorithms (cost
of simple value-based temporal suppression is negligi-
ble). δ is a ratio of the cost of a CPU operation (e.g., scalar
multiplication) to that of transmitting 1 byte over one
hop in the network. We use δ = 1

450 in our experiments,
based on Tmote Sky nodes’ energy profile. The com-
munication cost Ncomm is further modeled as Nc + λNb,
where Nc is the total number of bytes transmitted within
clusters and Nb is the total number of bytes transmitted
between cluster heads and the base station. λ is the per-
byte cost ratio of head-to-base communication to child-
to-head communication. In a multihop network, a cluster
head is typically closer to its child nodes than to the
base station, so the cost of head-to-base communication
is higher (λ > 1). Our calculation of Nc and Nb includes
per-message overheads, as they can be significant for
small messages. Based on the IEEE802.15.4 standard,
implemented by the CC2420 radio stack and TinyOS,
the packet overhead is 10 bytes. Sensor readings and
timestamps take 2 and 0.5 bytes each, respectively.

Inference quality is measured by Mean Squared Error,
defined as the average of the squares of the “errors”
(difference between samples and the true value). It incor-
porates both the bias and the variance of the estimation.

Communication Reduction (Figure 6) We put failures
aside for now and first demonstrate the “bottom-line”
communication efficiency of cascaded suppression com-
pared with Temporal and Ken. For this experiment, we
assume reliable communication (no failures). No redun-
dancy is added for any of the three approaches. The
head-to-base/child-to-head communication cost ratio λ
is set to 2. Given a global suppression threshold ε, CS2
distributes it evenly to the two tiers of suppression
edges. For Ken and CS2, the quadratic subset selection
algorithm is used. We take 1000 timesteps of data from
the redwood dataset and measure the average commu-
nication cost per node per timestep. We vary the global
suppression threshold as well as the cluster size, and
plot the results in Figure 6.

The first observation is that CS2 significantly out-
performs the other two schemes in all cases. Temporal
obviously has the highest communication cost, and it
stays virtually the same as the cluster size increases.
On the other hand, CS2 and Ken are able to exploit

3. As argued in Section 5, however, ARQ still cannot guaran-
tee reliable transmission, so this assumption may be question-
able in practice. Nonetheless, for the purpose for comparison
with our techniques, we shall give Ken-ACK(r) the advantage
of ignoring this problem.

the increasing spatial correlation to save communication.
Ken is outperformed by CS2 because it incurs full intra-
cluster communication costs. Also, the curve for Ken
is relatively flat as ε changes, probably because spatial
suppression is less sensitive to suppression threshold
changes. In contrast, a temporal component in the sup-
pression scheme helps save more communication when
ε increases, as in the cases of Temporal and CS2.

Finally, we note that as clusters get larger in Ken and
CS2, the amount of additional communication savings
diminishes, because distant sensors have weaker corre-
lation. Furthermore, larger clusters increase computation
costs, as we have discussed in Section 4 and will demon-
strate by experiments later in this section. Therefore,
large clusters are practically not attractive.

To recap, cascaded suppression is more
communication-efficient than previously proposed
suppression methods, and performs well across varying
cluster sizes and suppression thresholds.

Inference Quality (Figure 7) Having seen how cas-
caded suppression reduces communication, we next as-
sess the effectiveness of CS2 in recovering missing data
and learning model parameters. We use both the red-
wood dataset and the synthetic dataset, each containing
data collected by 4 nodes over 200 timesteps. This time,
we consider failures. We let each message fail with prob-
ability 30%, a rate we have experienced in real-world
deployments. We test CS2-R, with all redundancy levels
set to 2 and the suppression thresholds for both tiers set
to 0.5. The Gibbs sampling algorithm is run for 10000
iterations; samples generated in the “burn-in” period
are discarded, leaving ≈ 8000 samples for each variable.
Figure 7 shows examples of sample distribution.

The top plots show the sample distribution for two
randomly chosen missing sensor readings in the red-
wood dataset, and the bottom for parameters φ and σ2

in the VAR(1) model generating the synthetic dataset.
All samples are roughly centered around the true val-
ues, which means our Bayesian inference algorithm is
effective. Note that φ’s sample distribution has a long
right tail, which is not visible at the scale shown.

Choice of Subset Selection Algorithms (Figure 8) Re-
call the two greedy algorithms in Section 4 for selecting
a subset of readings to transmit when total suppression
is not possible. We now show their energy profile and
impact on inference quality in the context of CS2-R.
Again, the failure rate is set to 30%. The head-to-base
redundancy level is set to 1 and all others to 2.

We generate 200 timesteps of synthetic sensor data
for a network with 18 nodes, placed on a 3 × 6 grid
and grouped into 3 equally-sized clusters. The moderate
cluster size is motivated by the discussion earlier in the
context of Figure 6. The overall suppression threshold is
equally distributed to the two tiers. This setup, which
we call Syn18, is used in all remaining experiments.

We have already hinted on the tradeoff between en-
ergy cost and inference quality from the perspective of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 13

0.8 1.2 1.6

10
15

20
25

ε

Temporal
A

ve
ra

ge
 C

om
m

un
ic

at
io

n
C

os
t

0.8 1.2 1.6
ε

Ken

0.8 1.2 1.6
ε

CS2
2 nodes
6 nodes
10 nodes
14 nodes

Fig. 6. Communication cost.

missing data point 1

61.2 61.4 61.6 61.8 62.0

missing data point 2

57.8 58.0 58.2 58.4 58.6

φ

0.2 0.4 0.6 0.8 1.0

σ
2

1.5 2.0 2.5 3.0

Fig. 7. Distribution of samples for missing data and
model parameters (bold vertical line: true value).

20 22 24 26

0.
5

0.
6

0.
7

0.
8

Average Energy Cost

M
ea

n
S

qu
ar

ed
 E

rr
or

 o
f S

am
pl

es

ε=0.8
ε=1.0
ε=1.2
ε=1.4

CS2−R/Linear,Comm
CS2−R/Linear,Comm+Comp
CS2−R/Quadratic,Comm
CS2−R/Quadratic,Comm+Comp

Fig. 8. Subset selection algorithms.

15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Average Energy Cost

M
ea

n
S

qu
ar

ed
 E

rr
or

 o
f S

am
pl

es

ε=0.8
ε=1.0
ε=1.2
ε=1.4

Temporal
Ken
Ken−ACK(3)
CS2−R

Fig. 9. Data collection approaches.

20 25 30 35
Average Energy Cost

M
ea

n
S

qu
ar

ed
 E

rr
or

 o
f S

am
pl

es
0.

35
0.

4
0.

5
0.

55
0.

6 ε=0.8
ε=1.0
ε=1.2
ε=1.4

CS2−R
CS2−C
CS2−Cf
CS2−Cv

Fig. 10. Coding schemes.

suppression algorithms. To improve inference quality for
a given suppression scheme, one typically has to use
more energy. Figure 8 shows this tradeoff by varying the
suppression threshold and plotting the inference quality
against energy cost for each setting. To further illustrate
the overhead of computation, we plot not only the cost
of communication but also the total cost.

Comparing the quadratic and linear algorithms in
Figure 8, we see that the quadratic algorithm has a much
higher cost because of its computational complexity,
which is expected from the analysis in Section 4. We
also see that computation can account for a significant
fraction of the total cost, confirming the importance of
bounding algorithmic complexity and cluster sizes.

Another interesting observation is that the linear al-
gorithm has better inference quality. As evidenced by
its higher communication costs, the linear algorithm
transmits slightly more readings than the quadratic al-
gorithm, and these additional readings help improve
inference quality. Furthermore, the extra communication
costs are more than enough compensated for by the
lower computation costs. In the experiments that follow,
we only use the linear algorithm for subset selection.

Holistic Comparison of Data Collection Approaches
(Figure 9) We now compare how various suppression-
based data collection approaches trade off between en-
ergy cost and inference quality. We consider CS2-R with
rR = 2, and rS = 2 (for child-to-head suppression edges)
or 1 (for head-to-base suppression edges), and three
other approaches: Temporal (with redundancy level set
to 2), vanilla Ken, and Ken-ACK(3). The message failure
rate is 30% and the head-to-base/child-to-head commu-

nication cost ratio λ = 2. We test all approaches on the
Syn18 setup with different suppression thresholds.

Figure 9 shows that vanilla Ken has the highest in-
ference error, although its energy cost is also low be-
cause it employs no redundancy for coping with fail-
ures. Once we allow retransmissions, as in Ken-ACK(3),
energy cost drastically increases despite our broadcast
optimization. Although Ken-ACK(3)’s inference quality
seems to improve steadily, this improvement is subject
to the caveat discussed in Footnote 3. Our cascaded
suppression approach, CS2-R, is able to hit some “sweet
spots” in the space of tradeoffs. With comparable energy
costs, CS2-R is able to achieve better inference quality
than Temporal. With less energy, CS2-R is able to achieve
similar inference quality as Ken-ACK(3) without being
subject to the same caveat.

Impact of Coding Schemes (Figure 10) As discussed
in Section 5.2, we have flexibility in applying our coding-
based technique to improve the redundancy scheme.
We now evaluate the effect of different coding schemes
by considering variants of CS2. We take CS2-R from
the previous experiment (Figure 9) as the baseline for
comparison. The first coding-based scheme we consider
is CS2-C, which uses the encoder in Figure 3(a) for
type-S redundancy for head-to-base suppression edges
(child-to-head suppression edges are handled as in CS2-
R). Another scheme we consider, CS2-Cf, is obtained
by replacing the encoder of CS2-C with the one with
feedback in Figure 3(b). These two schemes encode only
transmission bit vectors, timestamps, and indicators (

√
,

× ⊥, or ?). We evaluate one more scheme, CS2-Cv,
which uses the same encoder as CS2-C but encodes the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 2011 14

actual values transmitted instead of just transmission
bit vectors. Using the same settings as in the previous
experiment, we plot the results in Figure 10.

From the figure, we see that CS2-Cv achieves much
smaller errors than others, but incurs higher communi-
cation costs at the same time. This tradeoff is expected
because CS2-Cv encodes more information using more
bytes. The other approaches have identical communi-
cation costs (because of the redundancy settings) but
different inference qualities. As expected, CS2-C and
CS2-Cf results in smaller inference error than CS2-R,
due to the advantage of coding-based redundancy over
simple repetition-based based redundancy. CS2-Cf per-
forms even better than CS2-C, perhaps because the feed-
back structure of the encoder provides more protection
against failures. This experiment shows that a careful
choice of the encoder can lead to additional benefit; also,
selecting different types of information to code (e.g., CS2-
Cv) can further extend the range of quality-cost tradeoff.

9 CONCLUSION

Continuous data collection is a basic task in many appli-
cations of wireless sensor networks. To reduce the energy
cost of communication, we have proposed cascaded sup-
pression. We have shown that cascaded spatiotemporal
suppression is more flexible and effective than previ-
ously proposed suppression schemes. More importantly,
our comprehensive solution tackles the problems of
handling transient message failures, interpreting missing
data, and learning from data.

Failure handling is particularly challenging for cas-
caded suppression, because nodes can act on inaccurate
information and in turn affect other nodes. We resolved
this problem by logging and forwarding essential infor-
mation to the base station to allow reconstruction of his-
tory and interpretation of data. We have further applied
convolutional coding techniques to the transmission of
such information, using a novel decoding algorithm
that does not make traditional assumptions such as the
existence of good failure models. This feature, together
with the fact that the correctness of suppression does
not depend on the correctness of its model, make our
solution especially suited for data collection tasks in
unfamiliar and unpredictable environments.

REFERENCES

[1] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Ander-
son, “Wireless sensor networks for habitat monitoring,” in WSNA,
2002.

[2] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay et al., “A macro-
scope in the redwoods,” in SenSys, 2005.

[3] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong, “Approxi-
mate data collection in sensor networks using probabilistic mod-
els,” in ICDE, 2006.

[4] A. Silberstein, A. Gelfand, K. Munagala, G. Puggioni, and J. Yang,
“Making sense of suppressions and failures in sensor data: a
Bayesian approach,” in VLDB, 2007.

[5] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding. Wiley-IEEE Press, 1999.

[6] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks,” in OSDI,
2002.

[7] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,”
in VLDB, 2004.

[8] D. Tulone and S. Madden, “PAQ: Time series forecasting for
approximate query answering in sensor networks,” in EWSN,
2006.

[9] D. Slepian and J. Wolf, “Noiseless coding of correlated infor-
mation sources,” IEEE Transactions on Information Theory, vol. 19,
no. 4, pp. 471–480, 1973.

[10] S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed com-
pression in a dense microsensor network,” Signal Processing Mag-
azine, IEEE, vol. 19, no. 2, pp. 51–60, 2002.

[11] Z. Xiong, A. Liveris, and S. Cheng, “Distributed source coding for
sensor networks,” Signal Processing Magazine, IEEE, vol. 21, no. 5,
pp. 80–94, 2004.

[12] A. Guitton, N. Trigoni, and S. Helmer, “Fault-tolerant compres-
sion algorithms for delay-sensitive sensor networks with unreli-
able links,” in DCOSS, 2008.

[13] H. Yang and C.-W. Chung, “An effective and efficient method for
handling transmission failures in sensor networks,” in DASFAA,
2009.

[14] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Transactions on In-
formation Theory, vol. 13, no. 2, pp. 260–269, 1967.

[15] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE
Transactions on Information Theory, vol. 9, no. 2, pp. 64–74, 1963.

[16] A. Gelfand and A. Smith, “Sampling-based approaches to calcu-
lating marginal densities,” JASA, vol. 85, no. 410, pp. 398–409,
1990.

[17] S. Banerjee, B. Carlin, and A. Gelfand, Hierarchical modeling and
analysis for spatial data. Chapman & Hall, 2004.

Yi Zhang received his B.E. from Tsinghua Uni-
versity in 2006 and is currently a Ph.D. stu-
dent of Computer Science at Duke University.
His research interests include uncertain data
processing in sensor networks, statistical data
management and data-intensive computing.

Kristian Lum received her Ph.D. from the De-
partment of Statistical Science at Duke Univer-
sity in Durham, North Carolina in 2010. Prior to
that, she completed her B.A. in Mathematics and
Statistics from Rice University in Houston, Texas
in 2006. She has worked on projects in var-
ied applications areas, including wireless sensor
networks and population size estimation. Her
main research focus is Bayesian spatial statis-
tics, particularly relating to quantile regression.

Jun Yang received his B.A. from University of
California at Berkeley in 1995, and his Ph.D.
from Stanford University in 2001, both in Com-
puter Science. He is currently an Associate Pro-
fessor of Computer Science at Duke University.
He is broadly interested in research on data
management and data-intensive computing. He
is a recipient of the National Science Foundation
CAREER Award and the IBM Faculty Award.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

