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Context-Aware Hypergraph Construction for Robust
Spectral Clustering
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Abstract—Spectral clustering is a powerful tool for unsupervised data analysis. In this paper, we propose a context-
aware hypergraph similarity measure (CAHSM), which leads to robust spectral clustering in the case of noisy data. We
construct three types of hypergraph—the pairwise hypergraph, the k-nearest-neighbor (kNN) hypergraph, and the high-order
over-clustering hypergraph. The pairwise hypergraph captures the pairwise similarity of data points; the kNN hypergraph
captures the neighborhood of each point; and the clustering hypergraph encodes high-order contexts within the dataset.
By combining the affinity information from these three hypergraphs, the CAHSM algorithm is able to explore the intrinsic
topological information of the dataset. Therefore, data clustering using CAHSM tends to be more robust. Considering the intra-
cluster compactness and the inter-cluster separability of vertices, we further design a discriminative hypergraph partitioning
criterion (DHPC). Using both CAHSM and DHPC, a robust spectral clustering algorithm is developed. Theoretical analysis
and experimental evaluation demonstrate the effectiveness and robustness of the proposed algorithm.

Index Terms—Hypergraph construction, spectral clustering, graph partitioning, similarity measure.
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1 INTRODUCTION

Spectral clustering is an effective means of clustering data with
complex topological structure [8]–[13], [15], [16], [31], [34]–[36].
It plays an important role in unsupervised learning from data,
and therefore has a wide range of applications, including circuit
layout [1], [2], load balancing [3], image segmentation [4]–[7], [14],
motion segmentation [25], video retrieval [26], etc. Typically, the
affinity relationships between data samples are modeled by a graph,
and therefore spectral clustering aims to optimize a graph partitioning
criterion for data clustering based on local vertex similarities. How-
ever, there are still several unsolved issues for traditional spectral
clustering methods: i) how to automatically discover the number of
clusters; ii) how to correctly choose the scaling parameter for graph
construction; iii) how to counteract the adverse effect of noise or
outliers; and iv) how to incorporate different types of information to
enhance the clustering performance.

In the literature, Zelnik-Manor and Perona [11] attempt to address
issues i) and ii) by designing a local scaling mechanism, which
adaptively calculates the affinity matrix and explores the intrinsic
structural information on the energy eigenvalue spectrum of the
normalized graph Laplacian to discover the number of clusters.
However, this local scaling mechanism is susceptible to noise or
outliers. Following [11], Li et al. [15] propose a noise robust
spectral clustering (NRSC) algorithm to resolve issues i) and iii). The
proposed NRSC algorithm can automatically estimate the number of
clusters via computing the largest eigenvalue gap of the normalized
graph Laplacian. In addition, the proposed NRSC algorithm maps the
original data samples (vertices) into a new space, in which the clusters
have a higher intra-cluster compactness and inter-cluster separability.
If the noisy data samples are weakly interconnected with each other,
this mapping relocates the noisy data samples around the origin
of the new space. This usually results in a compact noise cluster.
However, the real-world data samples (e.g., images and videos) within
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a cluster are often not densely interconnected due to problems with
the visual feature description. Therefore, the mapping may lead to
topological information loss for the clusters. As a result, the weakly
interconnected samples in the ordinary clusters are also relocated
around the origin of the new space. This may result in low separability
between clusters.

More recently, hypergraph analysis [17], [18] has emerged as a
popular tool for addressing issues iii) and iv). The fundamental
idea of hypergraph analysis is to explore the underlying affinity
relationships among vertices by constructing a hypergraph with a
variety of hyperedges that capture affinity. This has been applied to
many domains such as image matching [19], multi-label classifica-
tion [20], video object segmentation [21], and image retrieval [22].
For example, Sun et al. [20] carry out hypergraph construction by
sequentially introducing new vertices into existing hyperedges using
clique expansion or star expansion. Huang et al. [22] propose a
probabilistic hypergraph model that softly assigns a vertex to a
hyperedge according to the similarity between the vertex and the
centroid of the hyperedge.

Motivation and contribution In general, most existing spectral
clustering algorithms only focus on the pairwise interactions be-
tween vertices. In other words, the pairwise similarity between two
vertices is only based on the individual vertices themselves. If a
vertex is corrupted, this pairwise similarity can change significantly.
Consequently, their true affinity may not be stably represented. Thus,
designing a robust similarity measure is one of the key problems in
data clustering.

Here, we show that the high-order contextual information on
vertices can help alleviate this problem. Contexts are groups of
vertices that share some common properties. Once contexts have
been computed, the vertex similarity measure depends on not only
two individual vertices but also their corresponding contexts. The
similarity measure that includes contextual information is much more
stable because it takes into account local grouping and neighborhood
information of each vertex. When a single vertex is corrupted,
the high-order contextual similarity can still provide complementary
information to counteract the impact of the corruption.

Motivated by this observation, we propose a robust spectral clus-
tering algorithm based on a context-aware hypergraph similarity
measure. We use three different types of hypergraphs: pairwise
hypergraph, k-nearest-neighbor (kNN) hypergraph, and high-order
over-clustering hypergraph. The pairwise hypergraph is capable of
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Fig. 1: Illustration of the kNN hypergraph construction. The top-left subfigure
shows the pairwise edge between any vertex and its two nearest neighbors;
the top-right subfigure displays the associated hypergraph structure whose
hyperedges (highlighted by ellipses of different colors) consist of each vertex
and its two nearest neighbors; the bottom-left subfigure shows the kNN
hypergraph incidence matrix Hn; and the bottom-right subfigure exhibits the
kNN hypergraph similarity matrix B.

encoding pairwise affinity information on vertices. In contrast, the
kNN hypergraph and the over-clustering hypergraph capture the
underlying manifold structure on vertices by modeling their high-
order neighborhood and contextual grouping properties, respectively.
By combining these hypergraphs, we obtain the context-aware hyper-
graph similarity measure that characterizes the intrinsic connectivity
relationships among vertices, resulting in the clustering robustness in
the case of noise or outlier corruption.

The main contributions of this work are therefore three-fold.
• We introduce a high-order context into the spectral clustering

process. The high-order context of a vertex is defined as a set
of vertices with similar properties to the vertex. Each vertex in
a context is influenced by other vertices in the same context.

• The problem of building the high-order context is converted to
that of hypergraph construction, which encodes the local affinity
information using different types of hypergraphs. To this end,
we design three types of hypergraphs to encode the pairwise,
neighboring, and local grouping information on vertices. Based
on these hypergraphs, we further propose a context-aware hy-
pergraph similarity measure (CAHSM) to capture the intrinsic
topological information on vertices. In essence, CAHSM is a
generalization of traditional similarity measures, and aims to
utilize the hypergraph context to explore the underlying affinity
relationships between vertices.

• We propose a discriminative hypergraph partitioning criterion
(DHPC) to characterize the intra-cluster compactness and the
inter-cluster separability of vertices. By maximizing the DHPC,
we effectively capture the discriminative information on vertices.
The optimization of DHPC can be relaxed into a trace-ratio max-
imization problem. Using both CAHSM and DHPC, we develop
a pairwise+kNN+over-clustering hypergraph spectral clustering
algorithm (referred to as PKO+HSC) for data clustering.

2 CONTEXT-AWARE HYPERGRAPH CONSTRUCTION

In what follows, we first discuss how to construct a robust hypergraph
similarity measure using three different types of hypergraphs, and
then describe a discriminative hypergraph partitioning criterion for
data clustering.

2.1 Context-aware hypergraph similarity measure
In order to effectively explore the high-order affinity relationships
among vertices, we propose a hypergraph construction mechanism

3 nearest neighbors

Vertex community

Pairwise+kNN

Pairwise+kNN+Overclustering

(a)

(b)

Fig. 2: Illustration of different hypergraph concepts and hypergraph clustering
results based on different hypergraph similarity measures. Specifically, the
upper part of (a) shows the 3 nearest neighbors of the face image highlighted
by the dot-dashed bounding box; the lower part of (a) displays a vertex
community that is a high-order context of the face image highlighted by
the dot-dashed bounding box; the upper and lower parts of (b) respectively
exhibit the clustering results containing the face image (highlighted by the
dot-dashed bounding box) using pairwise+kNN and pairwise+kNN+over-
clustering hypergraph similarities (respectively corresponding to PK+HSC
and the proposed PKO+HSC). Clearly, the proposed pairwise+kNN+over-
clustering similarity measures performs best.

based on three types of hypergraphs, which are the pairwise hy-
pergraph, the k-nearest-neighbor (kNN) hypergraph, and the over-
clustering hypergraph. The pairwise hypergraph reflects the pairwise
relationships between vertices; the kNN hypergraph characterizes the
neighboring information on vertices, and the over-clustering hyper-
graph captures the local grouping relationships among vertices. By
combining these three types of hypergraphs, the proposed hypergraph
construction mechanism is capable of exploring the underlying high-
order affinity relationships among vertices.

1) Pairwise hypergraph. For easy exposition, let Z = {zi}Ni=1

denote a sample set. Based on Z = {zi}Ni=1, we create a pairwise
graph Gp with N vertices. Mathematically, the graph Gp can be
denoted as Gp = (V, Ep,Wp), where V = {vi}Ni=1 is the vertex set
corresponding to {zi}Ni=1, Ep ⊆ V×V is the edge set containing all
possible pairwise edges, and Wp is the edge-weight function returning
the affinity value between two vertices. In practice, the graph Gp is
formulated as a weighted similarity matrix A = (aij)N×N :

aij =

{
Wp(vi, vj) if (vi, vj) ∈ Ep,

0 otherwise,
(1)

where Wp(vi, vj) = G(zi, zj) is a kernel function used for measur-
ing the similarity between zi and zj . Note that the above procedure
of graph creation is independent of the choice of kernel functions.
In other words, it is easy to incorporate various kernel functions into
the above graph creation process.

According to the hypergraph theory, the pairwise graph Gp is
merely a special hypergraph whose hyperedge cardinality equals 2.
Therefore, we reformulate Gp using the hypergraph terminologies.
As a generalization of a traditional pairwise graph, a hypergraph is
composed of many hyperedges, and each hyperedge corresponds to
a set of vertices which have some common properties. Mathemati-
cally, these hyperedges are generally associated with a hypergraph
incidence matrix Hp = (hp(vi, e

p
` ))|V|×|Ep|:

hp(vi, e
p
` ) =

{
1, if vi ∈ ep` ,
0, otherwise,

(2)
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where ep` = (vm, vn) is the `-th hyperedge of Ep. In order to measure
the degree of the within-hyperedge vertices belonging to the same
cluster, we introduce the notion of the pairwise hyperedge weight,
which is defined as the pairwise similarity of the vertices in each
hyperedge. So we can define the pairwise hypergraph similarity as:

uij =
∑
e
p
`
∈Ep

ηp(e
p
` )hp(vi, e

p
` )hp(vj , e

p
` ) = aij , (3)

where ηp(e
p
` ) is the corresponding hyperedge weight of ep` =

(vm, vn) such that ηp(ep` ) = amn. As a result, we have a weighted
hypergraph similarity matrix U = (uij)N×N that characterizes the
pairwise affinity relationships between vertices. For simplicity, the
resulting pairwise hypergraph similarity matrix is represented as its
corresponding matrix form:

U = HpΣpH
T
p = A, (4)

where Σp is a diagonal matrix whose diagonal elements are denoted
as (ηp(e

p
` ))ep`∈Ep

.
2) k-nearest-neighbor (kNN) hypergraph. Based on the neighbor-

ing information on vertices, we further define a kNN hypergraph Gn,
as shown in Fig. 1. For each vertex v`, we search its corresponding
k nearest neighbors {vq|vq ∈ N k

v`} (as shown in Fig. 2(a)), and
then use these nearest neighbors to form a kNN hyperedge en` .
By concatenating all the kNN hyperedges, a kNN hyperedge set is
generated as En = {en` }N`=1, as illustrated in Fig. 3. To characterize
the vertex-to-hyperedge membership, we define an indicator function
as:

I(vi, en` ) =

{
1, if vi ∈ en` ,
0, otherwise,

(5)

Based on this indicator function, we design a hypergraph model for
softly assigning a vertex to each hyperedge:

hn(vi, e
n
` ) =

a`i
√

I(vi, en` )√∑N
t=1 δtI(vi, ent )a2ti

, (6)

where δt is the hyperedge weight associated with the t-th hyperedge
ent such that δt = 1

|ent |
∑
j∈{r|vr∈ent }

atj , and a`i represents the
vertex-to-hyperedge similarity between vi and the `-th kNN hyper-
edge en` . Specifically, en` is composed of a centroid vertex v` and
its corresponding k nearest vertices. Based on Eq. (1), the vertex-
to-hyperedge similarity a`i is computed as the pairwise similarity
between vi and v`. As a result, we obtain a kNN hypergraph inci-
dence matrix Hn = (hn(vi, e

n
` ))|V|×|En| for capturing the vertex-to-

hyperedge relationships. Based on Hn, a kNN hypergraph similarity
bij between vi and vj is derived as:

bij =
∑

en
`
∈En

δ` hn(vi, e
n
` )hn(vj , e

n
` )

=
∑N

`=1(a`i
√

I(vi,en` )δ`)(a`j
√

I(vj ,en` )δ`)√∑N
t=1 a

2
ti(
√

I(vi,ent )δt)2
√∑N

t=1 a
2
tj(
√

I(vj ,ent )δt)2

=
〈xi,xj〉
‖xi‖‖xj‖

,

(7)

where xm =
(
a`m

√
I(vm, en` )δ`

)N
`=1

, < ·, ·> is the inner product
operator, and ‖·‖ is the 2-norm. Indeed, xm is a vertex-to-hyperedge
feature vector that characterizes the correlation between vm and the
kNN hyperedges. For example, the `-th element of xm contains two
terms: a`m and

√
I(vm, en` )δ`. The first term a`m is the pairwise

similarity between vm and the vertex v` of the `-th kNN hyperedge,
and the second term

√
I(vm, en` )δ` measures the cohesiveness of the

`-th kNN hyperedge by computing the average connection similarity
between the vertex v` and the other vertices in the `-th kNN hyper-
edge. Thus, the kNN hypergraph similarity bij can be interpreted as
the cosine similarity between two vertex-to-hyperedge feature vectors

kNN hyperedge 1 kNN hyperedge 2 kNN hyperedge 3

Fig. 3: Intuitive illustration of kNN hypergraph construction. The left part
shows a set of samples while the right part displays a collection of kNN
hyperedges containing the two highlighted samples. Clearly, the kNN hyper-
edges encode the local neighboring information among data samples.

xi and xj . As a result, we obtain a weighted similarity matrix
B = (bij)N×N associated with Gn. Essentially, B = (bij)N×N
aims to explore the local neighboring relationships between vertices.
For simplicity, the kNN hypergraph similarity matrix B is denoted
as its corresponding matrix form: B = HnΣnH

T
n where Σn is a

diagonal matrix with the `-th diagonal element being δ`. Fig. 1 gives
an illustration of the process of the kNN hypergraph construction.

3) High-order over-clustering hypergraph. In practice, the vertices
are often distributed in different cohesive vertex communities, and
each community contains a set of mutually correlated vertices with
some common properties. In order to effectively discover such
cohesive vertex communities, we propose a high-order over-clustering
hypergraph Go based on over-clustering (or over-segmentation) using
different clustering methods. Specifically, an over-clustering mecha-
nism is employed to generate a set of vertex groups, each of which
corresponds to a cohesive vertex community (as shown in Fig. 2(a)).
In this case, the vertices belonging to the same vertex community
are mutually influenced, and work as the high-order contexts of
the other vertices in the same vertex community, as illustrated in
Fig. 4. Without loss of generality, we assume that there are L
vertex communities in total. For convenience, let Eo = {eo`}L`=1

denote these vertex communities, each of which corresponds to a
hyperedge eo` . Based on these hyperedges, we define the high-order
over-clustering hypergraph incidence matrix Ho = (ho(vi, e

o
`))|V|×L

as:

ho(vi, e
o
`) =

√
I(vi, eo`)(1 + 1

|N`
i |

∑
m∈N`

i
ami)√ ∑

eo
`
∈Eo

µ`I(vi, eo`)(1 + 1

|N`
i |

∑
m∈N`

i
ami)

, (8)

where I(·, ·) is the indicator function in Eq. (5), N`
i is the correspond-

ing vertex index set of the nearest neighbors of vi in the hyperedge eo`
(s.t. |N`

i | = 3 in the experiments), and µ` is the associated hyperedge
weight of eo` such that:

µ` =
1

2

1 +
1

|eo` |
∑

i∈{q|vq∈eo`}

∑
m∈N`

i

ami
|N`

i |

 . (9)

Here, ami is the vertex-to-hyperedge similarity between vi and the
`-th over-clustering hyperedge eo` . To ensure the robustness of simi-
larity evaluation, we only take into account the affinity relationships
between vi and its corresponding nearest neighbors (indexed by N`

i )
in eo` . Therefore, ami is the similarity between vi and the m-th
vertex of N`

i . With the definition of Ho, the high-order over-clustering
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Fig. 4: Intuitive illustration of high-order over-clustering hypergraph construc-
tion. The left part shows a set of samples while the right part displays a
collection of high-order clustering hyperedges containing the two highlighted
samples. Clearly, the high-order clustering hyperedges encodes the manifold
structure information among data samples at larger scales.

hypergraph similarity cij between vi and vj is formulated as:

cij =
∑

eo
`
∈Eo

µ` ho(vi, e
o
`)ho(vj , e

o
`)

=

∑
eo
`
∈Eo

√√√√√µ`I(vi,eo` )

1+

∑
m∈N`

i
ami

|N`
i
|


√√√√√µ`I(vj ,eo` )

1+

∑
m∈N`

j
amj

|N`
j
|


√√√√√ ∑

eo
`
∈Eo

µ`I(vi,eo` )

1+

∑
m∈N`

i
ami

|N`
i
|


√√√√√ ∑

eo
`
∈Eo

µ`I(vj ,eo` )

1+

∑
m∈N`

j
amj

|N`
j
|


=
〈yi,yj〉
‖yi‖‖yj‖

,

(10)
where yq is an L-dimensional vector with the `-th element being√
µ`I(vq, eo`)(1 + 1

|N`
q|

∑
m∈N`

q
amq). Actually, yq is a vertex-to-

hyperedge feature vector, and its `-th element consists of two
components: µ` and I(vq, eo`)(1 + 1

|N`
q|

∑
m∈N`

q
amq). As defined

in Eq. (9), the left term measures the average cross-link degree of
the within-community-` vertices with respect to the other vertices
in the same community, while the right term reflects the average
affinity relationships between vq and the vertices in the `-th commu-
nity. Therefore, the high-order over-clustering hypergraph similarity
cij can be viewed as the cosine similarity between two vertex-
to-hyperedge feature vectors yi and yj . As a result, a weighted
similarity matrix C = (cij)N×N is obtained to capture the local
grouping information on vertices. For simplicity, the high-order over-
clustering hypergraph similarity matrix C can be expressed as its
corresponding matrix form: C = HoΣoH

T
o , where Σo is a diagonal

matrix with the `-th diagonal element being µ`.
Fig. 5 gives an example of showing the different hypergraph

similarity matrices on the ORL face dataset (referred to in Sec. 3). By
linearly combining the above three types of hypergraphs, a context-
aware hypergraph similarity matrix S = (sij)N×N is obtained as
follows:

S = H

 αΣp 0 0
0 βΣn 0
0 0 (1− α− β)Σo

HT , (11)

where H = (HpHnHo) and (α, β) are the nonnegative weighting
factors such that (α+β) ≤ 1. Encoding the local neighboring infor-
mation, the kNN hypergraph plays a role in locally smoothing the
clustering results (obtained by only using the pairwise hypergraph),
as shown in the bottom-left part of Fig. 5. By constructing the high-
order over-clustering hypergraph, we are capable of capturing the
manifold structure information among data samples at larger scales,
which leads to more accurate clustering results (shown in the bottom-
right part of Fig. 5). Therefore, the final context-aware hypergraph
similarity matrix keeps a balance among the three types of hypergraph
information. In practice, it is easy to emphasize one particular type
of hypergraph information by enlarging its associated weight. Fig. 2
(b) gives an example of illustrating the hypergraph clustering results
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Fig. 5: Illustration of different types of hypergraph similarity matrices.
Specifically, the top-left subfigure shows the ground truth similarity matrix of
the ORL face dataset (referred to in Sec. 3); the top-right subfigure displays the
pairwise hypergraph similarity matrix; the bottom-left subfigure exhibits the
pairwise+kNN hypergraph similarity matrix; the bottom-right subfigure draws
our pairwise+kNN +over-clustering hypergraph similarity matrix. Clearly, our
hypergraph similarity matrix is the closest to the ground truth.

based on the above hypergraph similarities.

2.2 Discriminative hypergraph partitioning for spectral
clustering

Having defined a context aware vertex similarity measure, we now
propose a discriminative hypergraph partitioning criterion based on
this measure, with its corresponding optimization procedure.

1) Preliminaries of hypergraph partitioning. Hypergraph parti-
tioning seeks an optimal hypergraph cut solution for effective data
clustering. K-way normalized cut [12] is a well-known hypergraph
partitioning criterion, which aims to optimally partition the vertex
set V into K disjoint subsets (i.e., V =

⋃K
l=1 Vl s.t. Vm

⋂
Vn = ∅,

∀m 6= n) by solving the following optimization problem:

max f(X) = 1
K
∑K
n=1

XT
n SXn

XT
nDXn

,

s.t. X ∈ {0, 1}N×K, X1K = 1N ,
(12)

where X is an N ×K partition matrix such that XTX is a diagonal
matrix, 1d denotes a d × 1 vector with each element being 1, D is
an N ×N diagonal matrix with the m-th diagonal element being the
sum of the elements belonging to the m-th row of S for 1 ≤ m ≤ N ,
and Xn is the n-th column of X for 1 ≤ n ≤ K. As pointed out
in [12], the optimization problem (12) is typically relaxed to:

max h(Z) = 1
K tr(Z

TSZ),
s.t. ZTDZ = IK,

(13)

where IK is a K × K identity matrix, tr(·) denotes the trace of a
matrix, and Z = X(XTDX)−

1
2 . Eq. (13) is a trace maximization

problem and can be solved by generalized eigenvalue decomposition.
To simultaneously capture both intra-cluster compactness and the
inter-cluster separability among the vertices in a unified clustering
framework, we propose a discriminative hypergraph partitioning cri-
terion which can be formulated as a trace-ratio optimization problem.

2) Discriminative hypergraph partitioning criterion (DHPC). The
proposed DHPC considers both the inter-cluster separability and
the intra-cluster compactness, and thus aims to solve the following
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Input: A dataset Z = {zi}Ni=1 and the number of clusters K
1) Obtain the hypergraph similarity matrix S = (sij)N×N .

• Compute the pairwise hypergraph similarity up
ij in Eq. (3).

• Obtain the kNN hypergraph similarity un
ij in Eq. (7).

• Compute the high-order over-clustering hypergraph
similarity uc

ij in Eq. (10).
• Combine the above three similarities to generate sij by Eq. (11).

2) Perform spectral graph partitioning.
• Compute the graph Laplacian matrix Q = D − S.
• Solve the optimization problem (19) by the Newton-Lanczos algorithm.
• Calculate a candidate graph partitioning solution X̃ by:

X̃ = Diag(diag−
1
2 (PPT ))P .

• Iteratively refine X̃ to find an optimal discrete solution X .
Output: The optimal graph partitioning solution X .

Algorithm 1: The proposed pairwise+kNN+over-clustering hy-
pergraph spectral clustering algorithm (PKO+HSC).

optimization problem:

max g(X) = 1
K
∑K
n=1

XT
n SXn

XT
nQXn

= 1
K
∑K
n=1

[Xn(XT
nXn)

− 1
2 ]T S[Xn(XT

nXn)
− 1

2 ]

[Xn(XT
nXn)

− 1
2 ]TQ[Xn(XT

nXn)
− 1

2 ]
,

s.t. X ∈ {0, 1}N×K, X1K = 1N ,

(14)

where Q = D − S. In the proposed DHPC, the intra-cluster com-
pactness and the inter-cluster separability are respectively captured
by XT

n SXn and XT
nQXn, which are formulated as:

XT
n SXn =

∑
i∈Vn

∑
j∈Vn

sij , XT
nQXn =

∑
i∈Vn

∑
j /∈Vn

sij , (15)

where Vn denotes the vertex set belonging to the n-th cluster. The
larger the value of XT

n SXn, the more compact the intra-cluster
samples. The smaller the value of XT

nQXn, the more separable
the inter-cluster samples. As a result, an optimal hypergraph parti-
tioning solution is obtained by maximizing g(X) in Eq. (14). For
simplicity, let Pn denote the vertex-to-cluster membership vector
associated with the n-th cluster such that Pn = Xn(XT

nXn)−
1
2 ,

and P denote the vertex-to-cluster membership matrix that is a
concatenation of all the vertex-to-cluster membership vectors such
that P = (P1 P2 . . . PK) = X(XTX)−

1
2 . It can be shown that P

is an orthogonal matrix:

PTP = [X(XTX)−
1
2 ]T [X(XTX)−

1
2 ]

= (XTX)−
1
2 (XTX)(XTX)−

1
2 = IK,

(16)

where XTX is a diagonal matrix. According to the conclusion
in [12], we obtain X̃ = Diag(diag−

1
2 (PPT ))P that is the corre-

sponding inverse transform of P = X(XTX)−
1
2 . Here, Diag(·)

denotes a diagonal matrix formed from its vector argument, and
diag(·) represents a column vector formed from the diagonal elements
of its matrix argument. Consequently, the optimization problem in
Eq. (14) can be rewritten as:

max g(X) = 1
K
∑K
n=1

PT
n SPn

PT
n QPn

= 1
K
∑K
n=1

tr(PT
n SPn)

tr(PT
n QPn)

,

s.t. PTP = IK.
(17)

This is a trace-ratio-sum optimization problem, which is non-convex
and difficult to solve [28]. Thus, we approximate the original opti-
mization problem (17) using the following sum-trace-ratio optimiza-
tion problem:

max f(P ) = 1
K

∑K
n=1 tr(P

T
n SPn)∑K

n=1 tr(P
T
n QPn)

= 1
K
tr(

∑K
n=1 P

T
n SPn)

tr(
∑K

n=1 P
T
n QPn)

,

s.t. PTP = IK.
(18)

Due to tr(
∑K
n=1 P

T
n SPn) = tr(PTSP ) and tr(

∑K
n=1 P

T
n QPn) =

tr(PTQP ), the above optimization problem (18) can be reformulated

Fig. 6: Representative samples of the trajectory dataset. Each subfigure is
associated with a representative sample from a particular trajectory cluster.

Fig. 7: Representative samples of the Corel dataset. Each subfigure is
associated with a representative sample from a particular image cluster.

as:
max f(P ) = 1

K
tr(PT SP )

tr(PTQP )
,

s.t. PTP = IK.
(19)

The trace-ratio optimization problem (19) has been investigated
in [29], [30], [33], [38]. In order to obtain an effective solution to
Eq. (19), we therefore utilize the Newton-Lanczos algorithm [33]
for trace-ratio maximization. The Newton-Lanczos algorithm includes
the following three iterative steps:

• Compute the trace ratio ρ = tr(PT SP )

tr(PTQP )
;

• Run the Lanczos algorithm [37] to compute the K largest
eigenvalues of S − ρQ as well as their associated eigenvectors
(P1 P2 . . . PK) ≡ P ;

• Repeat the above two steps until convergence.
In practice, the initial solution P is chosen as the K principal
eigenvectors (i.e., corresponding to the K largest eigenvalues) of the
matrix Q−1S. If Q is a singular matrix, Q−1S is replaced with the
matrix (Q + εIN )−1S, where IN is an N ×N identity matrix and
ε is a small positive constant (ε = 10−6 in the experiments).

After solving the trace-ratio optimization problem (19), we obtain
a candidate solution X̃ to Eq. (14) as follows:

X̃ = Diag(diag−
1
2 (PPT ))P. (20)

However, the candidate solution X̃ is a real-valued hypergraph
partitioning solution, and thus does not satisfy the discrete-solution
requirements for data clustering. As a result, an iterative refining
procedure [12] may be used to find the optimal discrete hypergraph
partitioning solution X to Eq. (14) (more details can be found in
Steps four to eight of the algorithm in [12]). After combining the
constructed pairwise+kNN+over-clustering hypergraphs (referred to
in Sec. 2.1), we have a DHPC-based spectral clustering algorithm
called PKO+HSC (pairwise+kNN+over-clustering hypergraph spec-
tral clustering), as listed in Algorithm 1.

3 EXPERIMENTS

3.1 Data description and implementation details

In the experiments, we evaluate the proposed PKO+HSC on seven
datasets, which have the ground truth labels for classification and
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Fig. 8: Clustering performances of the eight clustering algorithms regarding different random noise levels on the first four datasets. The first row corresponds
to their clustering performances in NMI; and the second row is associated with their clustering performances in accuracy. The (α, β) configurations for
weighting different types of hypergraphs on the four datasets are as follows: (ORL, YaleB.)→(0.6, 0.2) and (USPS, MNIST)→(0.4,0.4).

ORL YaleB USPS MNIST Iris Traj. Corel
PKO+HSC 0.8529 0.6336 0.7918 0.5672 0.7981 0.9734 0.5061
PK+HSC 0.8159 0.6306 0.7334 0.4953 0.7648 0.9606 0.4540
PO+HSC 0.8111 0.6186 0.7348 0.5583 0.7793 0.9500 0.4907
PKO+NC 0.8164 0.6084 0.7815 0.5569 0.7878 0.9631 0.4958

CSC 0.8116 0.5849 0.7118 0.4882 0.7855 0.9031 0.4556
NRSC 0.7236 0.4718 0.5807 0.4328 0.7583 0.8587 0.4158

RWDSM 0.7891 0.5558 0.6741 0.4536 0.7869 0.9068 0.4423
STSC 0.7421 0.5295 0.4684 0.4368 0.7486 0.8882 0.4675

PKO+HSC 0.7300 0.5055 0.8409 0.6511 0.9000 0.9500 0.5700
PK+HSC 0.7057 0.4998 0.8043 0.6050 0.8957 0.9457 0.5497
PO+HSC 0.7074 0.4972 0.8093 0.6343 0.8899 0.9259 0.5619
PKO+NC 0.6883 0.4910 0.8241 0.6343 0.8833 0.9333 0.5533

CSC 0.6795 0.4796 0.7920 0.5746 0.8920 0.7720 0.5320
NRSC 0.6015 0.3154 0.6121 0.5348 0.8486 0.7126 0.4850

RWDSM 0.6669 0.4043 0.7686 0.5821 0.8976 0.7984 0.5312
STSC 0.6694 0.4187 0.4976 0.5759 0.8359 0.7173 0.5210

TABLE 1: Clustering performances of the eight clustering algorithms in NMI
and accuracy on the seven datasets without corruption. Specifically, the upper
part corresponds to NMI; and the lower part is associated with accuracy.
The (α, β) configurations for weighting different types of hypergraphs on the
seven datasets are as follows: (ORL, YaleB, Traj.)→(0.6, 0.2) and (USPS,
MNIST, Iris, Corel)→(0.4,0.4).

(0.2, 0.2) (0.2, 0.4) (0.2, 0.6) (0.4, 0.2) (0.4, 0.4) (0.6, 0.2) (0.6, 0.4) (0.2, 0.0) (0.0, 0.2)
ORL 0.8182 0.8185 0.8229 0.8287 0.8350 0.8529 0.8251 0.8463 0.8359
YaleB 0.4730 0.5153 0.5690 0.5733 0.6189 0.6336 0.6227 0.4792 0.4668
USPS 0.7523 0.7648 0.7806 0.7779 0.7918 0.7631 0.7331 0.7059 0.7114

MNIST 0.5500 0.5595 0.5578 0.5561 0.5672 0.5543 0.5228 0.5600 0.5574
Iris 0.7961 0.7968 0.7971 0.7978 0.7981 0.7980 0.7777 0.7926 0.7958

Traj. 0.9548 0.9634 0.9638 0.9641 0.9638 0.9734 0.9631 0.9548 0.9668
Corel 0.4561 0.4772 0.4785 0.5033 0.5061 0.4626 0.4489 0.4561 0.4435
ORL 0.6775 0.6875 0.7000 0.7175 0.7075 0.7300 0.6950 0.7225 0.7050
YaleB 0.3271 0.3727 0.4209 0.4209 0.4450 0.5055 0.5044 0.3298 0.3271
USPS 0.8065 0.8323 0.8409 0.8301 0.8409 0.8194 0.8108 0.7677 0.7892

MNIST 0.6477 0.6479 0.6411 0.6344 0.6511 0.6500 0.6227 0.6244 0.6477
Iris 0.8903 0.8911 0.8942 0.8953 0.9000 0.8923 0.8900 0.8933 0.8967

Traj. 0.9401 0.9412 0.9422 0.9431 0.9437 0.9500 0.9400 0.9020 0.9220
Corel 0.5640 0.5600 0.5400 0.5660 0.5700 0.5580 0.5400 0.5340 0.5440

TABLE 2: Clustering performances of the proposed PKO+HSC with different
configurations of (α, β) in NMI and accuracy on the seven datasets without
corruption. Specifically, the upper part corresponds to NMI; and the lower
part is associated with accuracy.

clustering tasks. The detailed configurations of these datasets are
given as follows.

The first dataset is the ORL face dataset1. It comprises 400 face
images of 40 persons, and each person has 10 images. The second
dataset is a subset of the YaleB face dataset2, and contains 2432 near
frontal face images from 38 individuals under different illuminations.
For computational convenience, all the face images from the two
datasets are resized to 32×32 pixels. The third dataset is a subset of
the US Postal Service (USPS) handwritten digit dataset3, and consists
of 9298 16 × 16 handwritten digit images from ten clusters. The
fourth dataset is a subset of the MNIST handwritten digit dataset4,
and constitutes 2000 28 × 28 digit images from ten clusters. As
shown in Fig. 6, the fifth dataset [27] is a trajectory dataset containing
2500 trajectories from 50 clusters, and each cluster comprises 50
trajectories with complex shapes. The sixth dataset is the Iris dataset
from the UCI repository5, and contains 150 samples from 3 clusters.
The seventh dataset is the Corel image dataset6 that is composed of
1000 images from ten clusters, as shown in Fig. 7.

For graph construction, the features used in the two face datasets
and the two digit datasets are directly flattened into grayscale intensity
column vectors. As a result, the feature dimensions for these four
datasets are 1024 (ORL), 1024 (YaleB), 256 (USPS), and 784
(MNIST), respectively. In addition, the corresponding image features
for the Corel dataset are the 960-dimensional GIST descriptors
(as in [23]) that are widely used in computer vision and pattern
recognition. The corresponding features for the trajectory dataset are
18-dimensional discrete Fourier transform (DFT) coefficient features
(as in [24]). The feature dimension for the Iris dataset is 4, as shown
in the UCI repository. Moreover, the kernel function G(zi, zj) (as in
Eq. (3)) is selected as follows: G(zi, zj) = exp

(
−‖zi − zj‖2/2σ2

)
where σ is a scaling factor. In practice, σ is tuned from the set
{y|y = 0.2ρ + (λ − 1)0.2ρ} where λ is a positive integer such
that λ ∈ {1, 2, . . . , 15} and ρ is the average of the distances

1. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2. http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
3. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#usps
4. http://yann.lecun.com/exdb/mnist/
5. http://archive.ics.uci.edu/ml/datasets/Iris
6. Corel Gallery Magic 65000 (1999), www.corel.com
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Fig. 9: Clustering performances of the eight clustering algorithms regarding different random noise levels on the last three datasets. The first row corresponds
to their clustering performances in NMI; and the second row is associated with their clustering performances in accuracy. The (α, β) configurations for
weighting different types of hypergraphs on the three datasets are as follows: (Traj.)→(0.6, 0.2) and (Iris, Corel)→(0.4,0.4).

from each sample zi to the other samples. The parameter k in
the kNN hypergraph is set to 3. The weighting factors (α, β) in
Eq. (11) are chosen from the set {(0.2, 0.2), (0.2, 0.4), (0.2, 0.6),
(0.4, 0.2), (0.4, 0.4), (0.6, 0.2), (0.6, 0.4), (0.2, 0.0), (0.0, 0.2)}.
The task of constructing the high-order over-clustering hypergraph
can be accomplished by using a set of existing clustering methods.
In our case, we take advantage of classic spectral clustering [10]
and multi-class spectral clustering [12] to generate a set of vertex
communities. For each over-clustering method, the number of the
vertex communities is chosen as 2K with K being the desired number
of clusters (referred to in Algorithm 1). Since we focus on the issues
of iii) and iv) referred to in Sec. 1, K is directly set as the ground
truth number of clusters for each dataset. The above experimental
configurations remain the same for all the experiments below.

Computational complexity analysis Given N data samples, our
pairwise hypergraph construction requires N2 kernel computation
operations (referred to in Eq. (1)). Accordingly, the kNN hypergraph
construction needs to calculate N2 cosine similarities (defined in
Eq. (7)) with respect to the N data samples. Similarly, the over-
clustering hypergraph construction involves N2 cosine similarity
computation operations (mentioned in Eq. (10)). The main computa-
tional cost of graph partitioning lies in the eigenvalue decomposition
of S − ρQ while solving the optimization problem (19) using the
Newton-Lanczos algorithm. According to [37], the time complexity
of the Lanczos iterations in our graph partitioning is O(N2). There-
fore, the overall time complexity of our method is O(N2), which
is the same as standard spectral clustering methods. For example,
the average running time of our method on the USPS dataset (s.t.
N = 9298) is 15.21 seconds. The spatial complexity of our method
lies in the four aspects: 1) the N ×N pairwise hypergraph incidence
matrix Hp; 2) the N ×N kNN hypergraph incidence matrix Hn; 3)
the N ×N over-clustering hypergraph incidence matrix Ho; and 4)

the final N ×N similarity matrix S. It therefore has O(N2) overall
spatial complexity.

3.2 Competing algorithms
We compare the proposed PKO+HSC with several representative
spectral clustering algorithms. These spectral clustering algorithms
are recently proposed, and have significant impacts on the data clus-
tering community. For descriptive convenience, they are respectively
referred to as CSC (classic spectral clustering [10]), STSC (self-
tuning spectral clustering [11]), and NRSC (noise-robust spectral
clustering [15]).

In order to verify the effect of different hypergraph components, we
compare the proposed PKO+HSC with PK+HSC (pairwise+kNN hy-
pergraph spectral clustering) and PO+HSC (pairwise+over-clustering
hypergraph spectral clustering). Actually, PK+HSC and PO+HSC are
special cases of the proposed PKO+HSC with different configurations
of (α, β). In order to evaluate the performance of different graph
partitioning criteria, we perform a comparison experiment against
PKO+NC (our context-aware hypergraph similarity measure together
with the normalized cut criterion [12]). Furthermore, in order to
demonstrate the effectiveness of our context-aware hypergraph sim-
ilarity measure (defined in Eq. (11)), we make a quantitative com-
parison with another similarity measure called RWDSM (Random
Walk Diffusion Similarity Measure [32]). We put both RWDSM
and our similarity measure into the same discriminative hypergraph
partitioning criterion (DHPC) for data clustering.

3.3 Evaluation criteria
For a quantitative comparison, we introduce two evaluation criteria—
NMI (normalized mutual information) and clustering accuracy.
Specifically, the NMI criterion is defined as: NMI(X,Y) =
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ORL YaleB USPS MNIST Iris Traj. Corel
PKO+HSC 0.7626 0.5328 0.4966 0.5148 0.6003 0.7183 0.4496
PK+HSC 0.7266 0.4903 0.4834 0.4916 0.5212 0.7000 0.4302
PO+HSC 0.7370 0.5191 0.4052 0.5019 0.5844 0.6962 0.4300
PKO+NC 0.7453 0.5144 0.4819 0.4988 0.5856 0.7031 0.4349

CSC 0.6935 0.4634 0.1502 0.4589 0.4914 0.6596 0.3817
NRSC 0.6379 0.3853 0.1723 0.3798 0.5478 0.5544 0.3514

RWDSM 0.6493 0.4441 0.1308 0.4508 0.5373 0.6027 0.3955
STSC 0.6494 0.4315 0.3260 0.3944 0.5734 0.6099 0.3992

PKO+HSC 0.6107 0.3981 0.5527 0.6045 0.7485 0.5558 0.5391
PK+HSC 0.5614 0.3364 0.5321 0.5851 0.6849 0.5366 0.5102
PO+HSC 0.5725 0.3872 0.4624 0.5895 0.7333 0.4946 0.5177
PKO+NC 0.5884 0.3860 0.5348 0.5865 0.7306 0.5399 0.5212

CSC 0.4988 0.3229 0.2966 0.5592 0.6707 0.4067 0.4582
NRSC 0.4650 0.2471 0.3089 0.4866 0.6868 0.3237 0.4486

RWDSM 0.4558 0.2913 0.2545 0.5677 0.7049 0.3486 0.4897
STSC 0.5429 0.2845 0.3250 0.5107 0.6917 0.4089 0.4616

TABLE 3: Clustering performances of the eight clustering algorithms in NMI
and accuracy on the seven datasets by averaging different random noise
levels. Specifically, the upper part corresponds to NMI; and the lower part
is associated with accuracy. The (α, β) configurations for weighting different
types of hypergraphs on the seven datasets are as follows: (ORL, YaleB,
Traj.)→(0.6, 0.2) and (USPS, MNIST, Iris, Corel)→(0.4,0.4).

I(X,Y)/
√
H(X)H(Y) where X and Y are two random variables,

H(X) and H(Y) are the corresponding entropies of X and Y,
and I(X,Y) is the mutual information on X and Y. In principle,
NMI(X,Y) has the range of [0, 1], and is equal to 1 when X = Y.
As far as data clustering is concerned, the NMI criterion is explicitly
formulated as:

NMI(S′,S) =

∑C
i=1

∑K
j=1

qij
m

log

(
qij
m

mi
m

m′
j

m

)
√

(
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i=1

mi
m

log mi
m

)(
∑K
j=1

m′j
m

log
m′j
m

)

(21)

where S = {Si}Ci=1 is the ground truth clustering configuration of a
dataset, S′ = {S′j}Kj=1 is the clustering configuration obtained by a
clustering algorithm, C is the ground truth cluster number, K is the
obtained cluster number, qij is the cardinality of the intersection of
Si and S′j , mi is the cardinality of Si, m′j is the cardinality of S′j ,
and m is the cardinality of the whole dataset. The larger the NMI,
the better the clustering performance.

On the other hand, the clustering accuracy is defined as:
Accuracy = 1

m

∑K
j=1 nj where nj is the number of the samples

whose ground truth cluster labels have the highest proportion in the
j-th cluster S′j . The larger the clustering accuracy, the better the
clustering results.

3.4 Clustering results

In the experiments, we aim to evaluate the clustering performances
of different clustering algorithms in the following three aspects:
i) evaluating the clustering performances (i.e., NMI and clustering
accuracy) on the original datasets; ii) quantitative comparisons on the
datasets after noise-based feature perturbations; and iii) performance
evaluations on the datasets with outlier corruptions. The purposes
of the above-mentioned three aspects are to verify the clustering
effectiveness and the clustering robustness.

For i), Tab. 1 reports the corresponding NMIs and accuracies
of the eight clustering algorithms. It is seen from Tab. 1 that
the proposed PKO+HSC obtains higher NMIs and accuracies than
the other clustering algorithms. More specifically, the average NMI
gains of PKO+HSC regarding the seven datasets are (5.53%, 3.65%,
2.26%, 8.07%, 20.78%, 11.16%, 19.67%) over those of (PK+HSC,
PO+HSC, PKO+NC, CSC, NRSC, RWDSM, STSC), respectively;
and the average accuracy gains are (2.83%, 2.42%, 2.80%, 9.02%,
25.55%, 10.72%, 21.58%), respectively. Furthermore, Tab. 2 reports
the NMIs and accuracies of the proposed PKO+HSC with different
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Fig. 11: Clustering performances of the proposed PKO+HSC with differ-
ent configurations of the nearest-neighbor number k for kNN hypergraph
construction in NMI and accuracy on the four datasets without corruption.
The (α, β) configurations for weighting different types of hypergraphs on
the four datasets are as follows: (ORL, YaleB.)→(0.6, 0.2) and (USPS,
MNIST)→(0.4,0.4).

configurations of the weighting factors (α, β). From Tab. 2, we see
that the clustering performances of the proposed PKO+HSC are not
very sensitive to the configurations of the weighting factors.

For ii), noise-based feature perturbations are performed by us-
ing additive random noises. Figs. 8 and 9 show the NMI and
accuracy curves with error bars in eleven different noise levels
(i.e., L0 corresponds to i), and L1 → L10 are associated with
ten ascending noise levels whose magnitudes are chosen from
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}). Clearly, the proposed
PKO+HSC achieves the highest NMIs and accuracies in most noise
levels. Furthermore, Tab. 3 reports the average NMIs and accuracies
of the eight clustering algorithms regarding different noise levels.
The average NMI and accuracy gains of the proposed PKO+HSC
are (6.03%, 5.19%, 2.80%, 23.54%, 34.54%, 26.92%, 20.43%) and
(7.01%, 6.71%, 3.14%, 24.78%, 35.19%, 28.81%, 24.32%) over those
of (PK+HSC, PO+HSC, PKO+NC, CSC, NRSC, RWDSM, STSC),
respectively.

For iii), outlier corruptions are performed by randomly setting
the feature elements to zeros. Fig. 10 displays the clustering per-
formances of the eight clustering algorithms regarding four outlier
corruption levels (i.e., L0 corresponds to i), and L1 → L3 are
associated with three ascending corruption levels whose corruption
ratios are chosen from {0.2, 0.4, 0.6}). From Fig. 10, we see that
the proposed PKO+HSC consistently achieves higher NMIs and
accuracies than the other clustering algorithms. Moreover, Tab. 4
shows the average NMIs and accuracies of the eight clustering
algorithms regarding different outlier corruption levels. The average
NMI and accuracy gains of the proposed PKO+HSC are (7.87%,
2.96%, 2.99%, 11.02%, 30.55%, 14.83%, 30.58%) and (7.39%,
3.80%, 2.91%, 10.11%, 34.62%, 14.04%, 33.66%) over those of
(PK+HSC, PO+HSC, PKO+NC, CSC, NRSC, RWDSM, STSC),
respectively.

Besides, we report the clustering results of the proposed PKO+HSC
with different configurations of the nearest-neighbor number k for
kNN hypergraph construction in Fig. 11. From Fig. 11, we see that
the proposed PKO+HSC is not very sensitive to the settings of k.
Moreover, Fig. 12 shows the clustering performances of the proposed
PKO+HSC using different numbers of vertex communities for high-
order over-clustering hypergraph construction in NMI and clustering
accuracy on the two datasets. It is clearly seen from Fig. 12 that the
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Fig. 10: Clustering performances of the eight clustering algorithms regarding different outlier corruption levels on the first four datasets. The first row
corresponds to their clustering performances in NMI; and the second row is associated with their clustering performances in accuracy. The (α, β) configurations
for weighting different types of hypergraphs on the four datasets are as follows: (ORL, YaleB.)→(0.6, 0.2) and (USPS, MNIST)→(0.4,0.4).
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Fig. 12: Clustering performances of the proposed PKO+HSC with different
numbers of vertex communities (i.e., {2K, 3K, 4K, 5K, 6K} with K being
the desired number of clusters) for high-order over-clustering hypergraph
construction in NMI and accuracy on the two datasets without corruption.
The (α, β) configurations for weighting different types of hypergraphs on the
two datasets are as follows: ORL→(0.6, 0.2) and USPS→(0.4,0.4).

proposed PKO+HSC is not very sensitive to the choice of the vertex
community number.

Overall, the proposed PKO+HSC outperforms the other clustering
algorithms. Considering three types of hypergraph information (i.e.,
pairwise, kNN, and over-clustering), the proposed PKO+HSC is
capable of effectively exploring the intrinsic topological information
among vertices. By optimizing the discriminative hypergraph parti-
tioning criterion (DHPC), the proposed PKO+HSC considers both
intra-cluster compactness and inter-cluster separability, resulting in
the overall clustering robustness.

4 CONCLUSION AND FUTURE WORK

In this work, we have proposed a context-aware hypergraph similarity
measure (CAHSM), which is based on three types of hypergraphs—
pairwise hypergraph, k-nearest-neighbor (kNN) hypergraph, and
high-order over-clustering hypergraph. These hypergraphs capture the
pairwise, neighborhood, and local grouping information on vertices.
By effectively combining these types of affinity information, CAHSM
is capable of effectively exploring the intrinsic structural information
on vertices, resulting in the robust clustering performance. In order
to fully capture the intra-cluster compactness and the inter-cluster
separability of vertices, we have also designed a discriminative

PKO+HSC PK+HSC PO+HSC PKO+NC CSC NRSC RWDSM STSC
ORL 0.7670 0.7376 0.7472 0.7341 0.7329 0.6612 0.7143 0.6731
YaleB 0.4959 0.4762 0.4852 0.4793 0.4642 0.3960 0.4496 0.4178
USPS 0.6814 0.6135 0.6548 0.6703 0.6093 0.4459 0.5726 0.4232

MNIST 0.5220 0.4591 0.5081 0.5110 0.4152 0.3862 0.4113 0.3747
ORL 0.6300 0.6019 0.6030 0.5933 0.5805 0.5093 0.5632 0.5418
YaleB 0.3701 0.3311 0.3597 0.3612 0.3346 0.2575 0.2946 0.3010
USPS 0.7420 0.6969 0.7183 0.7317 0.6861 0.5133 0.6549 0.4554

MNIST 0.5985 0.5497 0.5740 0.5883 0.5244 0.4585 0.5398 0.4529

TABLE 4: Clustering performances of the eight clustering algorithms by
averaging different outlier corruption levels. Specifically, the upper part corre-
sponds to NMI; and the lower part is associated with accuracy. The (α, β) con-
figurations for weighting different types of hypergraphs on the four datasets
are as follows: (ORL, YaleB.)→(0.6, 0.2) and (USPS, MNIST)→(0.4,0.4).

hypergraph partitioning criterion (DHPC) that is solved by trace-
ratio maximization. Based on both CAHSM and DHPC, a robust
spectral clustering algorithm (referred to as PKO+HSC) is developed
for data clustering. Experimental results on various datasets, with
and without noisy perturbation and outlier corruption, demonstrate
that the proposed PKO+HSC has higher clustering robustness and
effectiveness than competing algorithms in most cases.

On the other hand, this work is likely to have two limitations: 1) it
is incapable of adaptively combining the aforementioned three types
of hypergraphs; and 2) the number of clusters in spectral clustering
is required to be provided in advance. Therefore, our future work
is to figure out an adaptive weighting mechanism for hypergraph
combination and an effective scheme for automatically estimating
the cluster number prior to spectral clustering.
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