
GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 1

Large-Scale Pattern Search Using
Reduced-Space On-Disk Suffix Arrays

Simon Gog, Alistair Moffat, J. Shane Culpepper, Andrew Turpin, and Anthony Wirth

Abstract—The suffix array is an efficient data structure for
in-memory pattern search. Suffix arrays can also be used for
external-memory pattern search, via two-level structures that use
an internal index to identify the correct block of suffix pointers.
In this paper we describe a new two-level suffix array-based index
structure that requires significantly less disk space than previous
approaches. Key to the saving is the use of disk blocks that are
based on prefixes rather than the more usual uniform-sampling
approach, allowing reductions between blocks and subparts of
other blocks. We also describe a new in-memory structure based
on a condensed BWT string, and show that it allows common
patterns to be resolved without access to the text. Experiments
using 64 GB of English web text and a laptop computer with
just 4 GB of main memory demonstrate the speed and versatility
of the new approach. For this data the index is around one-
third the size of previous two-level mechanisms; and the memory
footprint of as little as 1% of the text size means that queries
can be processed more quickly than is possible with a compact
FM-INDEX.

Index Terms—String search, pattern matching, suffix array,
Burrows-Wheeler transform, succinct data structure, disk-based
algorithm, experimental evaluation.

I. INTRODUCTION

STRING search is a well known problem: given a text
T[0 . . . n − 1] over some alphabet Σ of size σ = |Σ|,

and a pattern P[0 . . .m − 1], locate the occurrences of P in
T. Several different query modes are possible: asking whether
or not P occurs (existence queries); asking how many times
P occurs (count queries); asking for the byte locations in T
at which P occurs (locate queries); and asking for a set of
extracted contexts of T that includes each occurrence of P
(context queries).

When T and P are provided on a one-off basis, sequential
pattern search methods take O(n + m) time. When T is
fixed, and many patterns are to be processed, it is likely to
be more efficient to pre-process T and construct an index.
The suffix array [1] is one such index, allowing locate queries
to be answered in O(m + log n + k) time when there are
k occurrences of P in T, using O(n log n) bits of space in
addition to T. Further alternatives are discussed in Section II.

Suffix arrays only provide efficient querying if T plus the
index require less main memory than is available on the host
computer, because random accesses are required to the index
and the text. For large texts, two-tier structures are needed,

S. Gog, A. Moffat, A. Turpin, and A. Wirth are with the Department of
Computing and Information Systems, The University of Melbourne, Australia
3010, e-mail: (see http://www.csse.unimelb.edu.au/˜alistair/).

J. S. Culpepper is with the School of Computer Science and Information
Technology, RMIT University, Australia 3001.

Manuscript received March 2013.

with an in-memory component consulted first in order to
identify the data that must be retrieved from an on-disk index.

A. Our Contributions

We show that if the usual fixed-interval sampling approach
to creating the in-memory index for a two-level suffix array is
replaced by a sampling method that respects common prefixes,
the space required by the suffix array blocks on disk can
be reduced by as much as 50%. This gain is achieved by
identifying reducible blocks that can be replaced by references
to subintervals within other on-disk blocks.

We also describe a new in-memory structure for indexing
variable-length common-prefix blocks that is comparable in
size to the bit-blind tree. In terms of operational functionality,
the new structure has the benefit of being comprehensive,
meaning that existence and count searches for frequently-
occurring patterns can be resolved without disk accesses. The
new approach employs backward searching and the Burrows-
Wheeler Transform.

The methodology developed in order to carry out the
experimentation allows independent and stratified exploration
of patterns according to their length and their frequency, and
is a third key contribution of this paper. Experiments using
64 GB of English web text and a laptop computer with just
4 GB of main memory demonstrate the speed and versatility of
the new ROSA structure. For this data the ROSA’s disk index
is around one third of the size of the previous LOF-SA two-
level suffix-array mechanism [2], [3], and the small footprint
of the in-memory part of the index – as little as 1% of the
size of the input text – means that queries are processed more
quickly than is possible using an FM-INDEX. That is, while
the FM-INDEX [4], [5] is a much more compact structure,
all of it must be memory-resident during query processing,
hindering its ability to search very large texts.

B. Definitions

Text T[0 . . . n−1] is assumed to consist of n symbols each
a member of an alphabet Σ = {a0, a1, a2, . . . , aσ−1} of size
σ = |Σ|, augmented by a sentinel in T[n] that is smaller
than every element in Σ. The i th suffix of T is the sequence
T[i . . . n], including the sentinel, and is denoted by Ti. The
longest common prefix LCP(Ti,Tj) of two suffixes of T is
the maximal value k such that T[i + `] = T[j + `] for all
0 ≤ ` < k. If Ti and Tj are suffixes of T, then Ti < Tj if
and only if T[i + k] < T[j + k], where k = LCP(Ti,Tj).
A pattern P[0 . . .m − 1] matches T at i if P[0 . . .m − 1] is

ar
X

iv
:1

30
3.

64
81

v1
 [

cs
.D

S]
 2

6
M

ar
 2

01
3

http://www.csse.unimelb.edu.au/\char 126alistair/

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

16
3
9
2

12
5
1

11
13
6

14
7

15
8
4
0

10

0
0
2
0
1
4
0
2
0
3
1
2
0
1
1
1
3

s
e
s
h
h
s
s
s
e
e
l
l
l
l
#
$
#

1
1
0
1
0
0
1
0
1
0
1
0
1
1
1
1
0
1

$
#sells#shells$
#shells$
e#sells#shells$
ells$
ells#shells$
he#sells#shells$
hells$
lls$
lls#shells$
ls$
ls#shells$
s$
s#shells$
sells#shells$
she#sells#shells$
shells$

0
0

1
2

2
4

∆x = 0
∆d = 1

3
6

∆x = 1
∆d = 1

4
8

∆x = 1
∆d = 2

5
9

6
1

7
3

8
5

9
7

(2, 0, 0)

(4, 0, 0)
(8, 1, 1)
(9, 1, 2)

(6, 0, 1)
(7, 0, 0)

i SA[i] LCP[i] L[i] T[SA[i]..n]

Legend

reducible block

irreducible block

singleton block

x
y label of block x with

bwd id(x) = y

ω-interval

Fig. 1. External common-prefix suffix blocks formed for T = “she#sells#shells$” with blocksize b = 3.

identical to T[i . . . i + m − 1], that is, if P is a prefix of the
i th suffix of T.

Array SA[0 . . . n] is a suffix array for text T if TSA[i] <
TSA[j] whenever i < j. In the context of a suffix array
it is then useful to define LCP[i] = LCP(TSA[i−1],TSA[i]),
with LCP[0] = −1. The Burrows-Wheeler transform (BWT),
denoted L, is also required in our development: L[i] contains
the preceding character of the i th sorted suffix, L[i] =
T[(SA[i] − 1) mod n]. Figure 1 shows an example string of
n = 16 characters that is used throughout the discussion, plus
its sorted suffixes. The column headed SA[i] is the value stored
in the i th entry in the suffix array for the string; and the
column headed L[i] is the corresponding BWT symbol, being
the character immediately prior to the i th sorted suffix. The
other parts of Figure 1 are described shortly.

We also employ rank and select operations: for sequence X
operation rank(X, i, c) returns the number of occurrences of
symbol or sequence c in X[0..i−1]; and select(X, i, c) returns
the position of the i th occurrence of c, counting from zero.
For example, if X[0..15] = “she#sells#shells”, then
rank(X, 8, “s”) is 2, and select(X, 2, “e”) is 12. Although
sophisticated mechanisms exist for implementing rank and
select that have good asymptotic properties, one of the most
useful practical approaches simply adds regular cumulative
sums to a standard bitvector representation, expanding it by
25% or by 6.25%, depending on the sampling interval [6], [7].

II. BACKGROUND: SUFFIX TRIES, TREES, AND ARRAYS

A number of index structures can be used for string search
over a static text T if it is assumed that T and its index can
both be held in fast random-access memory.

A. Suffix Trie

A trie is a tree in which each node is implicitly labeled
with the concatenation of the edge labels on the path from the

root, and each of the as many as σ edges out of each node
is explicitly labeled with a single symbol from the alphabet
Σ. A suffix trie for a text T contains a leaf for each of the
n + 1 suffixes Ti, each of which stores the corresponding
index i. The storage required by a suffix trie is proportional to
the total number of edges in the trie, and might be as large as
Θ(n2). The minimum space required by a suffix trie is at least
n log n bits1, since every location in T is indexed in the tree,
and involves an address in the range 0 . . . n. If the set of child
pointers at each node is stored as a table indexed by edge label,
existence and count queries for a pattern P of length m can
be processed in O(m) time, and locate queries in O(m+ k)
time, where k is the number of matching positions.

B. Suffix Tree

A suffix tree for text T is a modified suffix trie in which
the parent-child edges represent sequences of symbols from Σ
rather than single symbols; and in which internal nodes that
only have a single child are eliminated. The edge labels are
stored as references to T rather than as explicit sequences of
symbols, and the per-edge space requirement increases from
O(log σ) bits to O(log n) bits. But the number of edges is
bounded, and a suffix tree for T has n leaves and at most n
internal nodes, and occupies at most O(n log n) bits in total,
with typical implementations requiring 3n or more log n-bit
pointers. Searching follows the same process as in a suffix
trie, but involves an access to T as each edge is traversed, in
order to match symbols in the pattern.

C. Blind Tree

The suffix tree’s accesses to the text T are not localized, and
are relatively costly. In a blind tree [8], [9], [10] the outgoing

1We assume throughout that logarithms are binary, and that log x should
be taken to mean dlog2 xe when appropriate.

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 3

irreducible

1

+2

116

2

+1

15 8

+1

+1 +1

+63

4 5

+6
$

h s# se
94

+3

ll ls

s$ sh

e

#

SAdata = 16 b1 b2 b9 b2 b2 15 8 4 b9

 size = 1 2 3 2 2 2 1 1 1 2

bv = 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0

$ = 0000 0000
= 0010 0000

h = 0110 1000
l = 0110 1100
s = 0111 0011

e = 0110 0101

LCPdata = 1 +1 +2 +1 +6 +1 +1 +3 +6

 0123 4567

internal

singleton

reducible

Fig. 2. Bit-blind tree for the ASCII strings “$”, “#”, “e”, “h”, “ll”, “ls”, “s$”, “s#”, “se”, and “sh”, being the identifying block prefixes of the ten
suffix array blocks identified in Figure 1 when the example string is processed with b = 3. The three different types of leaf nodes, and the meaning of the
dotted lines, are discussed in Section IV. The ASCII codes for the characters in question are shown at the top-right.

edges at each node are represented by just the first symbol
of the corresponding sequence, rather than by pointers to T.
The remaining (if any) symbols that label that edge in the
corresponding suffix tree are not stored. Instead, internal nodes
store the LCP of the set of strings represented at that node,
and during querying, when a node is reached, the search steps
forward to the indicated symbol, bypassing any omitted labels.

Search in a blind tree follows a similar path as in an
equivalent suffix tree. At any given node, at most one edge
can match the next unexamined symbol in the pattern P, and
if such an edge exists, the search proceeds to the indicated
child. The risk in following edges that are labeled by just a
single symbol is that the other symbols that are bypassed may
not match between P and T. To address that risk, once either
the pattern has been exhausted, or a leaf has been reached, the
full pattern is rechecked against the location in T indicated by
any leaf in the subtree rooted at that node, to examine the
bypassed symbols. By proceeding with the search based on
only partial matches, not only is there a saving in space, but
also the majority of the accesses to T are eliminated. Instead,
a sequential examination of symbols at a single candidate
location of T is undertaken, to either verify that a match has
been correctly identified, or to confirm that there cannot be
any occurrences of P in T.

D. Bit-Blind Tree

A concise form of blind tree has been developed [8] which,
for clarity, we refer to here as a bit-blind tree. Rather than
character LCP values and character edge labels, bit-based
LCP values and binary edge labels are employed. Moreover,
because internal nodes have exactly two children, the edge
labels do not need to be stored. The tree becomes deeper by

a factor of as much as log σ; on the other hand, it takes less
space. In total, the cost of a bit-blind tree storing the n suffixes
of a text T is n− 1 internal nodes, each containing a bit-LCP
value and two pointers (or equivalent); and n leaves, each
containing a log n-bit suffix pointer.

Figure 2 shows the bit-blind tree for the set of blocks
identified in the right-hand side of Figure 1. The reason that
these particular strings are of interest, and only a partial
tree is stored, is discussed shortly. The ten strings are each
represented by one of the leaves of the tree; the categorization
of those leaves into three types is also described below.

The bitvector bv at the bottom of Figure 2 describes the
structure of the bit-blind tree, and eliminates the need for
explicit pointers at the internal nodes. To create bv the nodes
of the tree are labeled in row-level order, and a “1” bit is stored
for nodes with (a pair of) children, and a “0” bit is stored if
not. The “1” bits exactly correspond to the locations at which
relative LCP values are required; conversely, the “0” bits
exactly correspond to the locations at which block pointers are
required. The required tree navigation operations on internal
nodes (that is, node identifiers x such that bv[x] = 1) are then
provided via rank and select operations, as follows:

• lchild(x)← 2× rank(bv, x, 1) + 1
• rchild(x)← 2× rank(bv, x, 1) + 2
• LCP[x]← LCP[parent(x)] + LCPdata[rank(bv, x, 1)]

where LCPdata is a dense array of bit-LCP differentials, as
shown at the bottom of the diagram, and LCP[parent(x)] will
have been computed during the previous iteration of the tree
traversal loop. Details of the three types of leaf node, and
of the meaning of the SAdata and size fields, are given in
Section IV.

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 4

E. Suffix Array

As has already been noted, occurrences in T of a pattern
P can be identified using a binary search in suffix array SA
using O(log n+m) character comparisons [1]. In addition, if
an LCP array is provided, the set of all matching locations of
P in T can be identified in O(1) time each once the first one
has been identified. The suffix array is more compact than any
of the suffix trie or suffix tree-based alternatives, including the
bit-blind tree, and is typically represented as a single log n-bit
value for each suffix of T.

Mäkinen and Navarro [11] note that runs in the BWT
string L can be used to identify suffix pointer indirections
that allow space to be saved. González and Navarro [12]
extended this work, recognizing repeated patterns of suffix
pointer differences using the RE-PAIR compression technique.
But note that when T is small enough that it fits into available
memory, the FM-INDEX, described next, is the most attractive
option. That is, reducing the size of an in-memory suffix
array does not necessarily lead to performance improvements.
In Section IV we apply similar techniques to disk-based
suffix arrays, where the space reduction achieved does make
a difference.

F. FM-Index

The last decade has seen considerable development in the
area of compressed self indexing. Hon et al. [13] survey much
of this work; perhaps the best exemplar of the category is
the FM-INDEX of Ferragina and Manzini [4], [5]. Based
around the Burrows-Wheeler transform, the FM-INDEX has
a highly desirable blend of properties – it allows pattern
search in O(m log σ) time; it requires space proportional to
nHk(T) + σk, the information content of the original text2;
and it allows reconstruction of the text in entirety from the
beginning, and from (with additional storage cost) sampled
re-entry points.

For texts for which the FM-INDEX fits into random access
memory, existence and count queries are fast; while the speed
of locate queries depends on the sampling rate for decoding,
and allows a tradeoff between space and speed. We include
experimental results for the FM-INDEX in Section VI, based
on a new implementation developed as part of a recent
investigation into compressed bitvector representations [6].

The FM-INDEX is less efficient when the compressed
representation of T is too large for main memory – the
non-sequential access pattern dictated by the BWT sequence
makes the FM-INDEX a poor choice for disk-based search.
A particular disadvantage of the backward search used in the
FM-INDEX is that the range of the search interval is non-
increasing, but the upper and lower bounds on that interval
are not convergent. This arrangement means that even the best
external variants of compressed searching potentially make m
disk accesses [14], which is impractical for long patterns.

2That is, the number of bits required to store the text using an order-
k statistical context-based compression model, including an allowance for
storing the model parameters.

III. ON-DISK SUFFIX ARRAYS

Two approaches have emerged for storing suffix array struc-
tures on secondary storage: methods that make use of uniform-
size blocks, so that every block except the last contains
exactly b pointers; and methods that make use of variable-
sized blocks, in which b is an upper bound on the blocksize,
and characteristics of the data are used to determine the block
boundaries, subject to that bound.

A. Uniform Blocks and the String B-Tree

Baeza-Yates et al. [15] describe the SPAT, a structure in
which the suffix array is formed into uniform blocks each
containing b pointers, and the in-memory index is an array
of n/b fixed-length strings, being the first `s symbols of the
last suffix in each block. The AUGMENTED-SA proposal of
Colussi and De Col [16] also partitions the on-disk suffix array
into uniform blocks (each of b = log n suffix pointers) but
with the in-memory index constructed as a suffix tree to the
(full) first suffix string of the block. González and Navarro [14]
provide a summary of these early techniques.

Ferragina and Grossi [8] describe a dynamic string search
structure they call the String B-tree, or SB-TREE. For static
data of the type considered here, the SB-TREE is implemented
as a uniform partitioning of a suffix array, with an in-memory
suffix tree index implemented as a blind tree or bit-blind tree,
with each leaf containing a block of b suffix pointers to T.
More than one level of indexing can be used if necessary,
with all blocks having the same structure. Each node of the
SB-TREE indexes b strings via 2b bits describing the shape of
a binary tree of b leaves and b− 1 internal nodes; plus b− 1
internal node depths, expressed in bit offsets from the start
of the pattern P, each taking at most log(n̂ log σ) bits, where
n̂ ≤ n is the longest character LCP value across the entire set
of strings; plus b suffix pointers each of log n bits. If all non-
leaf blocks are held in memory, the in-memory component of
a static SB-TREE contains s = dn/be suffix pointers, s − 1
LCP values, and 2s bits describing the tree shape.

An advantage of the uniform-sized disk blocks used in the
SB-TREE is that they allow node addresses to be calculated
rather than stored, and no pointers are needed to navigate the
index. The only pointers stored in the SB-TREE – in internal
nodes as well as in leaf blocks – are to the text T rather than
to disk blocks. Note also that suffix pointers are required in
the internal nodes for a static SB-TREE only if blind search-
induced pattern ambiguity is to be resolved on a per-block
basis. If the pattern ambiguity is tolerated until the whole
of P has been handled, then a single holistic check can be
undertaken against T via a suffix pointer from a leaf node.
Regardless, as a minimum, a static SB-TREE stores n suffix
pointers in its leaf blocks, occupying n log n bits.

Taking these various considerations into account, the mini-
mum size for a static SB-TREE covering a text of n symbols
using a blocksize of b pointers is

n (2 + log(n̂ log σ) + log n) (1)

bits where n̂ < n is the length in characters of the largest
LCP value. That is, the SB-TREE index might add a space

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 5

overhead of as much as 100% to the n log n bits required by
a plain suffix array.

B. Variable Blocks and the LOF-SA

Sinha et al. [2] describe the LOF-SA, a two-level index
structure in which the block control parameter b is an upper
bound, and suffix array blocks correspond to subtrees in the
suffix tree. If v is a node in the suffix tree for text T, and
if size(parent(v)) > b and size(v) ≤ b, then a suffix array
block is formed corresponding to node v. All elements in the
block share the prefix associated with v. The divisions shown
in Figure 1 denote the ten blocks that result when the example
string is processed allowing at most b = 3 suffix pointers in
each suffix block; and Figure 2 shows how those ten block
prefixes are stored in a bit-blind tree.

Sinha et al. use a trie for the in-memory component of the
LOF-SA, but this has the disadvantage of a quadratic worst-
case space requirement. A bit-blind trie, and the structure we
present in the Section V, both require less space in both the
average case and the worst case.

Pattern search using the LOF-SA steps through the symbols
in P, navigating the in-memory search structure, either until
the pattern is exhausted, in which case all children of the node
that was reached are answers to the query; or until a leaf in
the trie is reached, in which case the answers, if any exist, are
confined to a single block of the on-disk suffix array. In the
latter case that block is fetched and searched.

Regardless of how the internal structure is organized, the
variable sized disk blocks mean that a disk address of log n
bits must be stored at each in-memory leaf. In the on-disk
blocks, Sinha et al. also store an LCP value for each suffix;
plus, as was previously sketched by Colussi and De Col [16],
a small number f of extension symbols (the fringe) to help
minimize search ambiguities. Search within a LOF-SA suffix
block is sequential, capitalizing on the LCP and fringe values.
Accesses are made to T only if there are gaps in the fringe
that result in pattern uncertainty. Inclusion of the fringe for
each suffix increases the size of disk blocks, and each entry
in each on-disk suffix block contains an LCP value, a pointer
into T, and a set of fringe symbols.

Sinha et al. undertook a range of experiments with 2 GB
of DNA and 471 MB of English text, and patterns of length
6 to 1,000. With a blocksize bound of b = 4,096 and a fringe
length of f = 4 characters, the in-memory component and
on-disk component for the 471 MB English text file required
21 MB and 5.5 GB respectively, and yielded searching times
around half or less of the SPAT, and around 8 times faster than
a pure suffix array. Moffat et al. [3] considered compression of
the on-disk components, and showed that the space required
by the on-disk data can be reduced by approximately 40%,
from 12n bytes down to around 7.1n bytes.

The next two sections describe our enhancements to the
LOF-SA. First, in Section IV, we show that as many as half
of the suffix pointers can be elided, via a process we call
block reduction. Then, in Section V we introduce a condensed
BWT in-memory index structure that provides a unique mix
of attributes and allows fast searching over a set of strings.

IV. REDUCIBLE BLOCKS

This section considers the suffix array reduction process of
Mäkinen and Navarro [11] and shows that it can be applied
to variable-size on-disk suffix blocks.

A. Identifying Reductions

A whole-block reduction is possible exactly when all of
the BWT symbols corresponding to the suffixes contained in
a block are the same. For example, in Figure 1, the suffixes
corresponding to the prefix “h”, with pointers SA[6] = 1 and
SA[7] = 11, form a block when b = 3; and both have an “s” in
the column headed L[i]. Hence, a reduction to the suffix “sh”
is possible. Examination of the set of b = 3 blocks shown in
Figure 1 reveals that the suffixes at offsets 8–9 for “ll” can
be reduced to a (subset of) the block at suffixes at offset 3–5
for “e”; and that, via two such steps, the suffixes at offsets
10–11 for “ls” can be reduced to the same underlying block.
The three arrows at the left of Figure 1 show the full set of
block relationships that exist in the example string, with the
three reducible blocks lightly shaded; the same reductions are
also noted with the dotted arrows in Figure 2.

B. Singleton Blocks

The variable block approach also sometime generates blocks
with just one pointer in them; we call these singleton blocks.
They are unshaded in Figures 1 and 2, and represent another
opportunity for space savings, since the corresponding suffix
pointers can be stored directly in the in-memory index, rather
than placed in a suffix block on disk. In the example string
there are four singleton blocks. Only non-singleton irreducible
blocks need to be placed onto disk; as can be seen in the
example, there are three such blocks, and they contain a total
of only seven suffix pointers.

C. Storing Information About Reductions

The details of each block reduction are held as a (∆x,∆d)
pair relative to an irreducible block, where ∆x is the offset
from the start of the irreducible block at which the reduced
block commences, and ∆d is the offset to be applied to each
suffix pointer. The three reducible blocks in Figure 1 are
annotated with their offset pairs.

To save memory space, each leaf of the in-memory index
stores only a block number, and all other information is stored
as part of the disk blocks. Each suffix block contains a small
header table of ∆x and ∆d values, one pair per suffix block
(reducible or irreducible) that is hosted within that set of suffix
pointers. This table maps information accumulated during
the in-memory search (position reached in the pattern, and
current suffix interval width) to (∆x,∆d) pairs that are used
to continue the search within the block. The in-memory part
does not differentiate between reducible and irreducible blocks
at all – the latter correspond to ∆x = 0 and ∆d = 0.

The in-memory structure identifies singletons by virtue of
the fact that the search interval is one. Singletons are also
reducible, by definition, but a search-time disk access can be
saved if they point directly to T rather than via a suffix block.

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 6

In Figure 2 non-singleton pointers are marked with a “b”, but
no such differentiation is required in practice, since singleton-
block suffix pointers exactly correspond to situations where
the size field (shown at the bottom of Figure 2) is 1.

D. Storing the On-Disk Suffix Array

Each suffix block contains a table of (∆x,∆d) offsets, plus
a set of suffix pointers, plus a set of differential (relative to
the parent) LCP values, plus two bits per leaf to indicate the
tree structure, plus a small fixed overhead on the latter to allow
rank operations. One key advantage of the LOF-SA variable-
block arrangement is that each block can store the LCP values
(shown as LCPdata in Figure 2) in compressed form, since
there is no requirement that all disk blocks be the same size.
This difference is significant in terms of space utilization.

In our implementation the LCPs are stored as differences
relative to their parent in the suffix tree, and coded using the
Elias δ code [17] with cumulative-sum samples inserted every
64 values to allow pseudo-random access to be carried out. The
node sizes are similarly stored cumulatively, so that the size
of any node can be extracted by subtracting the cumulative
count of its leftmost child from the cumulative count of its
rightmost child. Suffix pointers are stored as minimal-width
binary values, but are not otherwise compressed. We also
experimented with an alternative approach, in which LCP
values were stored without being differenced relative to their
parents, and the tree structure was created from the LCP values
rather than via the bitvector bv. This option turned out to
be both larger in size and slower in operation, and was not
pursued beyond preliminary experimentation.

V. INDEXING USING A CONDENSED BWT

Having devised a mechanism for efficiently determining
and storing block reductions, we now return to the issue of
how to provide an efficient representation of the in-memory
index, and introduce a condensed BWT index that provides the
ability to resolve existence and count queries for frequently
appearing patterns (patterns that occur more than b times
in T) without any disk blocks needing to be retrieved. The
critical observation that makes our approach possible is that
reversing each of the strings stored in the in-memory index
allows backward search within them to match a prefix of the
pattern. Compared to the bit-blind tree, the new approach has
the advantage of being comprehensive, in that the symbols in
the pattern are checked exhaustively.

A. Indexing the Blocks

The LOF-SA employs a suffix trie (Section II-A) to store
the set of block prefix strings, but requires quadratic space
in the worst-case. A second option is to use a bit-blind tree
(Section II-C). Figure 2 shows a tree storing the block prefix
strings for the example text. Each of the ten leaves corresponds
to one of the blocks shown in Figure 1; only the irreducible
blocks, shown with dark shading, need to be stored on disk.

When bv[x] = 0 and x is the identifier of a leaf, the quantity
SAdata[x − rank(bv, x, 1)] indicates where corresponding

suffix pointer(s) are located, with SAdata another dense array,
containing either suffix array pointers, or suffix block disk
addresses (indicated in the example by a “b” prefix). The size
array also allows count queries to be handled efficiently.

In total, if there are K suffix array blocks, the structure
shown in Figure 2 requires storage of: 2K bits for the tree
structure; K − 1 bit-LCP differentials, each of which is less
than n log σ; K suffix or disk pointers, each of which is less
than n; and K block sizes, each of which is less than b. In
the worst case, processing of a pattern P of length m requires
navigation of the tree from the root to a leaf, and involves
m log σ bit-extraction operations and the same number of rank
operations, and takes O(m log σ) time.

B. Backward Search in a Forward BWT

Ferragina and Manzini [4] show that pattern matching can
be realized via the BWT string L. Suppose that a suffix
ω = P[m− i..m− 1] of length i has been matched, and
that the corresponding SA-interval is [lbi..rbi]. We denote
this configuration with the notation (ω, i)[lbi..rbi]. At the
beginning of the search, (ε, 0)[0..n−1] is established. The new
SA-interval [lbi+1..rbi+1] for ω′ = cω with c = P [m− i− 1]
is contained within the section of SA corresponding to strings
that commence with c. The offset from the start of that range is
computed by counting the number of length-i substrings which
are both lexicographically smaller than ω and preceded by c.
Hence, (cω, i+ 1)[C[c] + rank(L, lbi, c)..C[c] + rank(L, rbi +
1, c) − 1] is the next configuration of the backward search,
where C is a σ-element array that stores in C[c] the location
in SA of the first suffix commencing with symbol c, and can
be computed when L is constructed.

The best approach for rank on general sequences over a
non-binary alphabet is to use a wavelet tree [18] or vari-
ant thereof, which reduces each operation to at most log σ
operations over binary sequences. Here we use a Huffman-
shaped tree using compressed bitvectors [19], which represents
a sequence of symbols in its H0 self-entropy. As already noted,
on a binary alphabet, rank and select can be carried out in
constant time by adding a fixed overhead (25% or 6.25%) on
top of the original bitvector [6], [7].

C. Backward Search in a Condensed Backward BWT

A backward search in a reversed text is equivalent to a
forward search in a forward text. Figure 3 shows the reversed
example text in sorted suffix order, with a number of divisions
marked on the right-hand side. The column headed LT

r

[i]
shows the full BWT of the reversed text; but for our purposes
only a subset of the BWT is required, shown in the example as
CL = “s#lelshe$#”. To allow positions in the condensed
BWT to be mapped to their positions in LT

r

, the bitvector bf
is used, with bf[i] = 1 when the predecessor symbol of the i th
suffix is in CL. Similarly, bitvector bl[i] = 1 if the i th entry of
LT

r

appears in CL. The run-length compressed FM-INDEX of
Mäkinen and Navarro [20] makes use of auxiliary bitvectors
in a similar manner to what we are about to describe.

Consider the suffix strings on the right-hand side of Fig-
ure 1. The block-prefixes (shown by the shading) that need to

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

s
s
s
#
l
l
e
e
l
l
s
s
h
e
h
$
#

1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
1

1
1
1
1
0
1
1
0
1
0
1
0
1
0
0
1
0
1

$
#ehs$
#slles#ehs$
ehs$
ehs#slles#ehs$
es#ehs$
hs$
hs#slles#ehs$
lehs#slles#ehs$
les#ehs$
llehs#slles#ehs$
lles#ehs$
s$
s#ehs$
s#slles#ehs$
sllehs#slles#ehs$
slles#ehs$

i LT
r

[i] bl[i] bf[i] Tr[SA[i]..n]

0
0
0

6
6
1

1
1
2 7

7
3

2

2
4

8

8
5

3

3
6

9

9
7

4

4
8

5

5
9

bl =

CL =

1
s
001
#
1
l
01
e
01
l
01
s
01
h
1
e
01
$
1
#

bm =

min depth =

001
1
01
1
01
2
01
1
01
2
001
1
101
2
101
2
1

Fig. 3. Full BWT text LT
r

, condensed BWT text CL, and indexing bitvectors bf and bl for the reversed text Tr = “sllehs#slles#ehs$”.

be reversed and indexed are “$”, “#”, “e”, “h”, “ll”, “ls”,
“s$”, “s#”, “se”, and “sh”. When reversed, they become
“$”, “#”, “e”, “h”, “ll”, “sl”, “$s”, “#s”, “es”, and “hs”;
if those reversed strings were then formed into a suffix trie,
nodes would be created for all of “$”, “$s”, “#”, “#s”, “e”,
“es”, “h”, “hs”, “l”, “ll”, “s”, and “sl”. To create the
bitvector bf that indicates which of the BWT characters are
needed in the condensed BWT, the interval [lb, rb] associated
with each of these nominal suffix trie nodes is located in the
reversed BWT, and the bits bf[lb] and bf[rb+1] are set to 1, to
mark the beginning and end of each reversed search interval.
Any locations in bf with 1-bits at the end of this stage have
their corresponding first suffix character located in LT

r

and
copied in to CL; and an inverse mapping bl is computed that
stores the locations extracted. For example, in Figure 3 the
first and fourth suffixes commencing with “s” are tagged in
bf; those “s” symbols occur in positions LT

r

[0] and LT
r

[10],
and so both bl[0] and bl[10] are set to 1, and two “s” symbols
appear in CL. Finally, set of condensed symbol counts CC is
formed from the condensed BWT string CL.

Figure 4 details the backward search for a pattern P using
the condensed BWT CL and corresponding counts CC. As for
regular backward search, an interval is maintained, initially
(ε, 0)[0..n − 1]. That interval is then narrowed using the
condensed arrays, adding one more character into the matched
string at each iteration of the loop. The search commences with
the rightmost symbol in the reverse of P, which is the leftmost
symbol in P; and (in the frame of reference established in
Figure 3) prepends subsequent matched characters to the left.
In particular, the search process maintains

lb = min {k | T[SA[k]..SA[k] + d− 1] = P[0..d− 1]}

as the first suffix in SA that matches P to depth d, and

rb = max {k | T[SA[k]..SA[k] + d− 1] = P[0..d− 1]}

as the last such suffix.

00 get interval(P,m)
01 d← 0; lb ← 0; rb ← n− 1
02 while d < m and rb − lb + 1 > b do
03 c← P[d]
04 (lb′, rb′)← (rank(bl, lb, “1”), rank(bl, rb + 1, “1”))
05 (lb′′, rb′′)← (rank(CL, lb′, c), rank(CL, rb′, c))
06 if lb′′ = rb′′ then
07 return not found
08 lb ← select(bf,CC[c] + lb′′, “1”)
09 rb ← select(bf,CC[c] + rb′′, “1”)− 1
10 d← d+ 1
11 return (P[0..d− 1], d)[lb..rb]

Fig. 4. Backward search using a condensed BWT text CL and a condensed
count array CC.

To step from one configuration to the next, symbol P[d]
must be processed, with lb and rb updated so that the
assignment d ← d + 1 then restores the invariant. To narrow
the (lb, rb) interval the process described by Ferragina and
Manzini [5] is used, but with an added level of complexity: lb
and rb are first translated into the condensed domain, then
processed against the condensed BWT CL in that domain,
and finally translated back to the full domain, ready for
the next iteration. Those transformations are guided by two
bitvectors bl and bf (see the example in Figure 3), which
record, respectively, which of the suffixes are needed during
the search in the condensed BWT, and where the lead symbols
of those suffixes appear in the full BWT string. Rank and
select operations on those two bitvectors yield the operation
sequence shown in Figure 4.

For example, to match P = “she”, the first iteration pro-
cesses the “s”, and the configuration becomes (“s”, 1)[12..16].
Then a second iteration in which the “h” is processed results in
the configuration (“hs”, 2)[6..7]. Now the interval is smaller

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 8

00 get bwd id(lb, d)
01 run nr ← rank(bf, lb, “1”)
02 if run nr = 0 then
03 return 0
04 run pos← select(bm, run nr − 1, “1”) + 1
05 x← min depth[rank(bm, run pos, “10”)]
06 return run pos− run nr + (d− x)

Fig. 5. Determining the block identifier matching a reverse search configu-
ration (ω, d)[lb..rb].

than b = 3, so the in-memory search is ended, and the
indicated suffix block (backward identifier 7, forward identifier
9) is fetched. A search for “shy” would also require that block
9 be accessed before the search could be declared a failure.
On the other hand, the pattern “say” generates the (condensed
domain equivalent of the) empty configuration (“as”, 2)[3..2]
at step 05 after two iterations, and reports failure at step 07
without a suffix block being required.

D. Computing Block Numbers

Once a configuration (ω, d)[lb..rb] has been established by
get interval(), the next step is to map it to a block number;
that is, identify the correct gray superscript value associated
with the black block identification circles in Figures 1 and 3.
Because multiple blocks might map to the same lb value but
with different depths d, a further bitvector bm is required,
containing a 0-bit for each block in the forward suffix array,
plus a 1-bit for each 1-bit in bf, corresponding to blocks in
the reversed suffix array. The bits are interleaved so that each
entry point in bm is preceded by a string of 0-bits that indicates
the number of disk blocks converging at that entry point. The
process of mapping via that structure, plus another array of
integers that records the minimum configuration depths at each
valid entry point, is described in Figure 5.

Once a block number in the reverse suffix has been iden-
tified, it is converted to an on-disk byte address via an array
storing a mapping that is many-to-one because of the reducible
blocks. The configuration (ω, d)[lb..rb] is then compared with
the (lb, d) values stored in the block’s header, to identify the
matching (∆x,∆d) region or subregion of the block at which
the search should be resumed.

E. Space Requirement

The bitvectors and arrays required in memory during query-
ing are summarized in Table I. The symbols extracted into the
condensed BWT are exactly those required during searching
for any of the block prefix strings. No BWT symbols that
would only be accessed if rb − lb was permitted to become
smaller than b are needed. At most two bits are required for
each node in the corresponding frequency-pruned suffix tree,
and that tree contains at most 2B nodes if the ROSA contains
B disk blocks. The maximum number of bits that can be set
is n, meaning that the actual number of bits set, z, is bounded
by z ≤ min{4B,n}. When b is large, B can be expected (but

not guaranteed) to be small, making the bitvectors bf and bl
sparse and highly compressible; and making the CL and CC
arrays that represent the condensed BWT small too.

F. Execution Time

Function get interval() in Figure 4 iterates at most once
for each character in the pattern. A total of two bitvector rank
operations and two bitvector select operations are required per
iteration; each of these take O(1) time. Step 05 involves rank
operations on an array, CL. That array is implemented as a
Huffman-shaped wavelet tree, based on underlying bitvectors,
meaning that symbol-based rank queries can be carried out
via not more than log σ bitvector-based rank queries, or in
O(log σ) time . The process of finding the matching block
identifier (function get bwd id() in Figure 5) involves only
rank and select operations on bitvectors, and takes O(1) time
per pattern.

We now bring together these various observations, and state
the main result of this section.

THEOREM 1: Given a set of B strings corresponding to the
leaves of a pruned suffix tree for a text of n symbols, the
condensed BWT structure requires O((B + σ) log n) bits of
storage and identifies the leaf corresponding to an m-symbol
pattern in O(m log σ) time.

VI. EXPERIMENTS

We have implemented and tested our Reduced On-disk
Suffix Array, or ROSA, and compared it against a range of
alternatives.

A. Experimental Hardware

Experiments were run on two different hardware platforms:
a MacBook Pro with a 2.4 GHz Intel Core i5 processor,
4 GB RAM, and 500 GB hard disk; and a MacBook Air
with 1.8 GHz Intel Core i7 processor, 4 GB RAM, and a
250 GB solid-state disk. The suffix array itself was prepared
on a separate server with a large amount of main memory.

B. Test Data

Data was obtained from a range of sources, with an
emphasis on large files. The first suite of test files were
drawn from the 2009 CLUEWEB collection, a large-scale
web crawl3. Three files were extracted as prefixes of the
concatenation of the first 64 files in the directory ClueWeb09/
disk1/ClueWeb09 English 1/enwp00/, with null bytes in the
text replaced by 0xFF-bytes. (Null byte is the “$” symbol
reserved in all our implementations to mark the end of the
input string.) In Table II these three files are denoted as WEB-
256, WEB-4000, and WEB-64000. Two other types of data
were also used: file DNA-3000 is a text file representing
the human genome stored as a sequence of ASCII letters
(primarily “A”, “C”, “G”, and “T”); and file DBLP-1000 is an

3http://lemurproject.org/clueweb09.php/

ClueWeb09/disk1/ClueWeb09_English_1/enwp00/
ClueWeb09/disk1/ClueWeb09_English_1/enwp00/
http://lemurproject.org/clueweb09.php/

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 9

TABLE I
STRUCTURES REQUIRED IN MEMORY DURING ROSA PATTERN MATCHING. THE VALUE z IS THE NUMBER OF ENTRIES IN EACH OF bf AND bl. IF THERE

ARE B SUFFIX BLOCKS, THEN z ≤ min{4B,n}. THE FINAL TWO COLUMNS SHOW THE ACTUAL COST FOR TEST FILE WEB-64000, DESCRIBED IN
TABLE II, AND THAT NUMBER EXPRESSED AS A MULTIPLE OF B logn BITS, WITH b = 4,096, AND B = 219,319,568 BLOCKS GENERATED.

Structure Type Operations Parameters Space (upperbound, bits) Space (actual, MB) ×B logn
bf bitvector select z elements, each 0 ≤ x ≤ n z(2 + log(n/z)) + o(z) 135.3 0.144
bl bitvector rank z elements, each 0 ≤ x ≤ n z(2 + log(n/z)) + o(z) 135.3 0.144
bm bitvector rank /select 2B elements, each 0 ≤ x ≤ n 2B(1 + log(n/B)) + o(B) 37.4 0.040
min depth array access B elements, each 0 ≤ x ≤ n−B B logn 72.3 0.077
CC array access σ integers, each 0 ≤ x < z σ logn <0.1 <0.001
CL array rank z symbols, each 0 ≤ x < σ O(zH0(CL)) = O(z log σ) 74.1 0.079
pointers array access B elements, each 0 ≤ x ≤ n B logn 967.4 1.023

TABLE II
DETAILS OF DATA FILES. THE VALUE OF Hk IS EMPIRICAL, GENERATED BY EXECUTING xz --best.

Name Type Size
σ

Hk LCP
(MB) (bits/char) Median Average Maximum, n̂

WEB-256 HTML/Web 256 129 0.45 141 5,937 556,673
WEB-4000 HTML/Web 4,000 129 0.57 281 11,506 692,160
WEB-64000 HTML/Web 64,002 129 0.61 1,896 20,500 1,204,953
DNA-3000 Text/Genomic 2,985 9 1.65 16 554,171 29,999,999
DBLP-1000 XML/Bibliographic 1,032 99 0.90 36 45 1,353

XML repository containing 844,702 bibliographic references
to computing research papers4.

The three different types of data differ markedly in the
extent to which they contain sequence repetitions. In the web
data the LCP values are particularly high, caused by reuse of
formatting text, and by duplicate documents. The median LCP
is much lower for the XML and DNA data; but note that the
file DNA-3000 contained a repeated subsequence of thirty
million characters. The three data types also differ in the size
of the alphabet used, and in compressibility. To estimate the
latter quantity, the column marked Hk shows the compression
achieved by a high-quality mechanism, expressed in terms of
bits per character relative to the original. The web and XML
data are highly compressible; the DNA file somewhat less so.

C. Test patterns

To generate test queries, a suffix tree representation of each
file was processed sequentially, and a large set of 〈pattern,
frequency〉 pairs identified. These were then quantized by
both pattern length and by pattern frequency, with agreement
assumed in the second dimension if the actual frequency was
within 25% of one of a set of target frequencies. This approach
allowed a total of 25 different query sets to be formed for each
file, representing all combinations of |P| ∈ {4, 10, 20, 40, 100}
and pattern frequency k ∈ {100, 101, 102, 103, 104}. On the
web data, all combinations occurred more than 1,000 times,
and experiments were run on random subsets of size 1,000
drawn from the corresponding category. Selected combinations
of |P| and k were used for the other datafiles, and results are
similarly the average over 1,000 patterns. It was not possible
to identify any patterns with |P| = 4 and k = 10,000 on
DNA-3000, and as a result one entry is omitted in the tables
below.

0.2 1.0 5.0 25.0

Index space (% of text)

0.0

0.5

1.0

1.5

2.0

T
im

e
 p

e
r

s
y
m

b
o
l
(m

ic
ro

s
e
c
)

b=256
b=256

b=256

b=65,536

b=65,536

b=65,536

bit_vector

rrr_vector<63>

sd_vector<>

Fig. 6. Space and processing time of in-memory search using condensed
BWT approach as a function of blocksize, for three different bitvector
representations. Data is for WEB-256, averaged over 1,000 patterns with
|P| = 40 and k = 10,000 matches per pattern, and with the blocksize
varying between b = 28 and b = 216.

TABLE III
PERCENTAGE OF INDEX SPACE REQUIRED BY COMPONENTS OF

CONDENSED BWT INDEX FOR WEB-4000.

Component b = 28 b = 212 b = 216

Bitvectors (bf, bl; SD-array) 14.3 22.4 31.7
Condensed BWT (CL; wavelet tree) 5.2 6.5 7.8
Auxiliary information 7.7 8.9 9.7
Pointers (binary) 72.8 62.2 50.7

D. Compressed Bit Vectors

A key decision is how to represent the two large bitvec-
tors. Conceptually each of them contains n bits, but, by
construction, the number of 1 bits is close to the number of
suffix array disk blocks, and so they are sparse and amenable
to compression. The drawback of compression is that rank
and select operations become slower. Figure 6 compares the

4http://dblp.uni-trier.de/xml/

http://dblp.uni-trier.de/xml/

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 10

TABLE IV
IN-MEMORY SEARCH STRUCTURES FOR VARIABLE SUFFIX ARRAY BLOCKS.

Data b
Memory (MB) Query speed (microseconds/query)

Condensed BWT Bit-blind tree Condensed BWT Bit-blind tree
WEB-4000 210 269.8 329.1 33.7 36.3
WEB-4000 212 98.6 112.2 24.3 31.5
WEB-4000 214 15.8 15.1 19.7 28.6

DBLP-1000 210 58.3 58.4 26.8 29.4
DBLP-1000 212 21.1 18.9 19.2 24.2
DBLP-1000 214 7.6 6.2 15.6 19.9

DNA-3000 210 410.2 382.8 29.7 24.3
DNA-3000 212 342.9 319.3 21.1 21.0
DNA-3000 214 326.6 307.8 17.8 17.3

space and access cost of three different representations for
the two bitvectors, with space plotted on the horizontal axis,
measured as the ratio of the complete condensed BWT data
structure as a fraction of the text size; and processing time
per matched character plotted vertically. The alternatives are
denoted by their sdsl class identifiers5: uncompressed bitvec-
tors (class bit_vector); the well-known RRR structure [19]
(rrr_vector<63>); and the SD-array (sd_vector<>) of
Okanohara and Sadakane [21]. The SD-array offers the best
balance, and while it is not always faster than the uncom-
pressed bitvector alternative, it occupies much less space.

Once the bitvectors are compressed, the disk block point-
ers are the most costly component of the condensed BWT
index. These are addresses into the index (for irreducible
and reducible blocks) or into the text (for singletons), and
are represented as minimal-width binary numbers. Table III
shows the percentage of the total memory space required by
each of the four main components of the condensed BWT
search structure, for the file WEB-4000 and three different
blocksizes. The dominance of the pointers is clear.

E. Baseline Methods and Total Disk Space

In any experimental comparison it is important to compare
against appropriate reference points. The ROSA structure –
consisting of condensed in-memory BWT array index, and
a reduced set of suffix array blocks stored on disk, can be
compared with the LOF-SA (which in turn is compared by
Sinha et al. [2] against previous data structures); with the
SB-TREE; and with the FM-INDEX. The FM-INDEX is not
a two-level disk-based mechanism, and can only be used if
the complete structure fits main memory. Nevertheless, it is
substantially smaller than the other structures, meaning that
its zone of applicability is larger, and overlapping with the
size range for which two-level structures are appropriate.

Table V compares index sizes for these various approaches,
including both components for the two-level ones. The values
for the ROSA and FM-INDEX are measured based on our
experimental implementations. There is no software for the
SB-TREE or LOF-SA capable of handling the data sizes used
in our experiments, and the values shown in the table marked
with “*” are computed using Equation 1 (in Section III) for
the SB-TREE, and estimated from the results given by Sinha

5https://github.com/simongog/sdsl

TABLE V
TOTAL MEMORY AND DISK SPACE REQUIRED FOR TWO-LEVEL SUFFIX

ARRAY STRUCTURES AND THE FM-INDEX, FOR WEB-4000.

Structure Ref. Size (GB)
Suffix array [1] 15.6
LOF-SA b = 4,096 [2] 46.9*
LOF-SA b = 4,096 [3] 27.3*
SB-TREE b = 4,096 [8] 24.5*
ROSA b = 4,096 this paper 7.8
FM-INDEX [5] 0.6

et al. [2], [3] for the LOF-SA. With the exception of the FM-
INDEX, all of these structures require that the text T also be
stored, adding a further 3.9 GB.

As can be seen, the block reductions achieved in the ROSA
mean that it is by far and away the smallest of the two-level
approaches. Indeed, the ROSA index requires just half the
space of a plain suffix array. On the other hand, the SB-
TREE and the LOF-SA are expensive to store; neither of
these structures support block reductions, and in the case of
the SB-TREE, the LCP values are also a costly component
because the fixed block structure means that they cannot be
stored compressed. Because of their clear space superiority,
the remainder of the experimentation focuses on the ROSA
and the FM-INDEX alone.

F. Choice of In-Memory Structure

The second step of the experimental evaluation was to
compare the condensed BWT method with the bit-blind tree,
in terms of memory space required and search time to identify
suffix blocks (Table IV). Search times are measured over
frequently-occurring long queries (|P| = 40 and k = 10,000)
(so that the search is driven towards the extremities of the
in-memory structure); and include only the cost of processing
the in-memory data structure.

The two methods are comparable in their space require-
ments, with the bit-blind tree sometimes being a little smaller,
and the condensed BWT structure sometimes being a little
smaller. The condensed BWT has a small but consistent ad-
vantage in terms of CPU time. Search in the condensed BWT
structure requires fewer loop iterations than in the bit-blind
tree, but each iteration is more expensive. Note that Table IV
does not include the cost of the disk accesses to T needed
to resolve the uncertainty inherent in the bit-blind search

https://github.com/simongog/sdsl

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 11

8 10 12 14 16

log b

16

64

256

1024

4096
A

v
e
ra

g
e
 i
rr

e
d
u
c
ib

le
 b

lo
c
k

100% full

DNA-3G

DBLP-1G

Web-4G

Fig. 7. Average size of irreducible blocks (in pointers).

8 10 12 14 16

log b

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
p
o
in

te
rs

Reducible

Irreducible

Singleton

Fig. 8. Fraction of pointers in reducible, irreducible, and singleton blocks
for WEB-4000 and different values of b.

process. Details of disk access costs are presented shortly;
the condensed BWT arrangement has a clear advantage when
that cost is included.

G. Blocksizes and Non-Uniform Sampling

Figure 7 depicts the average number of pointers stored in
each irreducible block for three of the test files. The growth in
average block size is linear in the size of the block, but for the
non-genomic data the average is well below the limit b. This
relationship is not unexpected – blocks are formed at nodes of
the suffix tree whenever the parent has a count of more than
b, but the node in question does not. At that boundary node,
the available symbol count is split across all of the children.
When the alphabet size σ is large, those child counts will, on
average, be relatively small. The same observation explains
why the blocks are larger for the file DNA-3000 – when σ
is small, the average frequency count in each child is likely
to be larger.

Figure 8 shows the fraction of the suffix pointers located
in reducible blocks, irreducible blocks, and singleton blocks
for WEB-4000. When b is small, more than two thirds of the
suffix pointers are in reducible blocks. That fraction decreases
as b increases, not because the reductions are no longer
present, but because the similar sections no longer span whole
blocks. But even when b = 65,536, around half of the suffix

TABLE VI
SPACE REQUIRED BY ROSA QUERY-TIME INDEX COMPONENTS WITH
b = 4,096, EXPRESSED AS MULTIPLES OF THE SOURCE TEXT SIZE.

File Memory Disk Total, inc. T
WEB-256 0.033 1.943 2.976
WEB-4000 0.025 1.961 2.986
WEB-64000 0.022 1.900 2.922

DBLP-1000 0.020 2.126 3.146

DNA-3000 0.116 4.704 5.820

TABLE VII
DISK ACCESSES PER COUNT QUERY FOR FILE WEB-4000, WITH

b = 4,096.

|P| Number of answers
1 10 100 1,000 10,000

4 1.79 1.52 1.12 0.35 0.00
10 1.99 1.99 1.94 1.70 0.00
20 2.00 1.99 1.98 1.83 0.00
40 2.00 2.00 1.99 1.90 0.00

100 2.00 2.00 2.00 1.95 0.00

(a) Condensed BWT

|P| Number of answers
1 10 100 1,000 10,000

4 1.86 2.00 2.00 2.00 1.84
10 1.99 2.00 2.00 2.00 1.87
20 2.00 2.00 2.00 2.00 1.90
40 2.00 2.00 2.00 2.00 1.87

100 2.00 2.00 2.00 2.00 1.94

(b) Bit-blind tree

pointers can be eliminated. Similar behavior was observed for
DBLP-1000. On the other hand, the DNA data has markedly
different characteristics, and while it generates many more
singleton blocks, the number of block reductions is very small.

Table VI shows the balance between in-memory space and
on-disk space required by the ROSA for the full set of data
files. For the web and XML data, the total space required
is much less than would be required by a plain suffix array
(which is a factor of 4.75 for DBLP-1000, and of 5.0 for
WEB-4000). On the other hand, the ROSA handles the DNA
data relatively poorly, and both the in-memory index and
the on-disk component are large. Indeed, on the DNA data
the ROSA takes more space than a plain suffix array, a
consequence of the relative absence of repetitions.

H. Disk Accesses and Execution Cost For Count Queries

Table VII shows the number of disk accesses required by
the two options for the in-memory structure. The benefit of the
condensed BWT arrangement is clear – because it admits no
ambiguity, fewer disk accesses are required for count queries
when the pattern is common in the text and can be resolved
entirely within the in-memory index. When the pattern is
frequent, the discrepancy is even greater – the condensed BWT
allows count queries to be processed without recourse to disk,
whereas the bit-blind tree still requires an average of more
than 1.8 disk accesses per query.

Table VIII shows overall elapsed times for a range of query
lengths and frequencies across the set of data files (including
the 64 GB file), and for two hardware platforms. The in-
memory condensed BWT index for WEB-64000 requires
1.39 GB (around two-thirds of which is pointers, as shown

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 12

TABLE VIII
EXECUTION TIMES IN MILLISECONDS PER QUERY, USING TWO DIFFERENT HARDWARE PLATFORMS, WITH b = 4,096.

Text Platform |P| = 4 |P| = 10 |P| = 20 |P| = 40 |P| = 100
k = 10,000 k = 1,000 k = 100 k = 10 k = 1

Using the ROSA
DBLP-1000 MacBook Air, SSD 0.004 1.02 1.10 1.09 1.13
DNA-3000 MacBook Air, SSD — 0.72 1.10 1.15 1.23
WEB-4000 MacBook Air, SSD 0.006 1.00 1.06 1.06 1.05
WEB-64000 MacBook Air, SSD 0.009 0.98 1.04 1.09 1.13

DBLP-1000 MacBook Pro, mechanical disk 0.005 21.1 25.5 24.8 26.5
DNA-3000 MacBook Pro, mechanical disk — 14.9 25.3 25.8 26.7
WEB-64000 MacBook Pro, mechanical disk 0.009 33.9 40.3 40.7 44.6

Using an efficient FM-INDEX
WEB-4000 MacBook Air, SSD 0.011 0.03 0.07 0.14 0.36
WEB-64000 MacBook Air, SSD 44.6 85.6 88.9 118.9 70.0
WEB-64000 MacBook Pro, mechanical disk 630 1450 2040 2500 980

in the final column of Table I), and the on-disk part a total
of 119 GB, with the latter composed of 1.4 GB for block
headers and other auxiliary data; 29.5 GB for compressed LCP
differentials and for tree structure bits; and 82.7 GB for suffix
pointers. Including the text T, the entire search system requires
183 GB, a factor of 2.9 relative to the text, and only a little
over half of the 5.5-factor that would be required by a simple
suffix array, not even including any allowance for LCP values.

As can be seen, access via SSD memory is much faster than
access via mechanical disk. But even with the mechanical disk,
pattern queries on WEB-64000 can be answered by the ROSA
in under 50 milliseconds. Moreover, search times are largely
unaffected by pattern length, except that queries on frequently-
occurring strings are always handled within a small number
of microseconds.

I. Compared to the FM-INDEX

The last three rows of Table VIII show the query cost of
a highly-tuned (for both space and speed) FM-INDEX im-
plementation that has been demonstrated to outperform other
available packages [6, Section 6.6]. For WEB-4000, a run-
length compressed wavelet tree and SD-array implementations
for the two FM-INDEX bitvectors was used, the fastest con-
figuration. During querying, this FM-INDEX version requires
659.4 MB of memory space. For short count queries it is much
faster than the ROSA. With a different bitvector representation
(using the RRR variant), space can be reduced to 404.6 MB,
but querying time increases by a factor of around three.

For WEB-64000 (the last two lines of Table VIII), the more
compact RRR bitvector option was used, requiring 8.3 GB for
the index. As can be seen, when only a subset of a large index
can be maintained permanently in memory, the non-sequential
access pattern means that retrieval times increase dramatically.
When SSD disk is used the times are still somewhat plausible,
but the two-second response times that arise when a mechan-
ical disk is used are anything but plausible. The sequence of
results in Table VIII clearly highlights the situations for which
the ROSA is the fastest search mechanism.

VII. DISCUSSION

We conclude by comparing the ROSA with other large-scale
search mechanisms that have been presented in the literature.

A. Construction and Applicability

Despite recently developed techniques [22], a drawback
of all suffix array-based pattern search methods is the cost
of building the suffix array. The structures used in our
experiments were generated on a server with considerably
more memory than the laptops that were used for the search
experiments, and reflect the situation for which we believe
static two-level structures are best suited – namely, when large
fixed texts are to be pre-processed by a central service to make
“searchable packages” that can be distributed onto low-cost
devices for querying purposes.

The FM-INDEX is a strong competitor for the same type
of applications. It has approximately the same construction
cost, but a much smaller query-time disk storage footprint.
The disadvantage of using an FM-INDEX is that for any given
text T, its memory requirement is likely to be greater than that
of the ROSA, because the entire structure must be present in
memory. That is, there is a size of text for which an FM-
INDEX cannot be supported by the available hardware, but
a ROSA can, albeit with significantly greater disk storage
consumption. Depending on the exact configuration used,
locate and context queries might also be slower in an FM-
INDEX than using the ROSA.

It is also interesting to calculate the break-even point at
which a pre-computed data structure becomes more econom-
ical than sequential search. Construction of the ROSA for
WEB-4000 requires around 100 minutes, and the current
implementation involves a peak memory requirement of 9n
bytes during the two suffix sorting steps (external methods
for suffix sorting are available that reduce the memory cost,
but increase the construction time). Using the MacBook Pro
to search the same 4 GB file for patterns using agrep6

requires about three seconds, once the file containing T has
been brought in to memory. Hence, construction of a ROSA
index is warranted if more than around 2,000 queries are to
be processed against the same text T.

B. Other Recent Work

Phoophakdee and Zaki [23] describe a partition/merge ap-
proach to suffix tree construction that allows them to undertake

6ftp://ftp.cs.arizona.edu/agrep/.

ftp://ftp.cs.arizona.edu/agrep/

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 13

pattern search on a human genome. They compare their
TRELLIS approach to other options on files of up to three
billion DNA base pairs, with a build time of under six hours,
and a final size of 71.6 GB, or 27 times larger than the input
text. Using their suffix tree, they are able to undertake queries
of 100+ base pairs in approximately 60 milliseconds.

Wong et al. [24] describe a partitioned suffix tree they call
a CPS-TREE. They experiment with files of 118 million base
pairs and 4.6 million base pairs, and obtain suffix trees that
require between 7n and 9n bytes. With these small test files,
querying is fast – of the order of 20 microseconds per query
– because it still takes place in main memory.

Orlandi and Venturini [25] have also described a structure
for storing a pruned suffix tree. Their pruning definition differs
from the one used in the ROSA, and they retain a node if its
size is greater than b, whereas in the ROSA a node appears in
the condensed BWT structure if its parent is of size greater
than b. The difference means that care must be taken when
comparing sizes for a given parameter value, since the ROSA
retains as many as σ times more tree nodes than does the
CPST, including, for example, singleton blocks.

For a CPST over n symbols in which there are K suffix tree
nodes retained each of size b or more, the space required by
Orlandi and Venturini’s structure is O(K log(σb) + σ log n)
bits. Direct comparison with the costs shown in Table I is
not possible, because for any given value of b the number of
nodes K in the CPST is much less than the number of leaves
B in the ROSA index structure. The ROSA’s condensed BWT
index provides greater functionality, since it retains frequency
counts for (lb, rb) intervals narrower than b, whereas the
CPST replies to locate and count queries on rare and non-
existent patterns with a uniform answer of “don’t know, if P
does exits, it appears fewer than b times”. The ROSA also
stores disk block pointers, a component that is not required
in the CPST. Orlandi and Venturini [25] also describe a
uniform-sampling index in order to undertake approximate
count queries, where the returned pattern frequency in count
queries is correct to within an additive fidelity constraint
determined at the time the index is constructed. Building a
CPST requires initial construction of a suffix tree, and needs
more resources than creation of the BWT string, the basis of
the ROSA’s construction process.

Other recent work is by Ferguson [26], who describes a
search structure called FEMTO, and provides experiments
on 43 GB of English text (Project Gutenberg files), and
on 182 GB of genomic data. The FEMTO system uses
a partitioned FM-INDEX, with the search for each pattern
proceeding through (at least) one disk block per symbol.
Ferguson gives experimental results showing that the con-
structed index requires as little as half of the space of the
original file, but with query response times of 1–3 seconds
for count queries against selected patterns of 12-28 symbols
(two to three word phrases, with tests carried out on an
individual basis on hand-selected strings, rather than as part
of a regime of extensive measurement) against the English
text when using a conventional disk drive; and of 10 or more
seconds when searching the Genomic data for patterns of
length 128. The high search times arise because of the disk

accesses. When multiple queries are simultaneously active,
and duplicate requests for disk blocks can be batched and
processed all at once, throughput improves dramatically, but
with a corresponding increase in individual response times.
Compared to the FEMTO, the methods presented here require
more disk space for the suffix array data, but operate an order
of magnitude more quickly.

Another approach to large-scale pattern search is to index
overlapping t-grams from T, each containing t consecutive
symbols. In total, n − t + 1 locations in T are indexed via
a vocabulary containing at most O(σt) entries. An inverted
index is built, storing a variable-length postings list for each
unique t-gram, and recording the locations in T at which that
particular combination of t symbols appears [27]. Queries of
length m > t are resolved by intersecting the relevant postings
lists, identifying locations at which fragments overlap in the
desired manner; queries of length m ≤ t are resolved by taking
the union of the postings lists of the vocabulary entries that
contain P within the t-symbol identifier.

Inverted indexes allow queries to be resolved in two disk
accesses per query term, one to retrieve a block of the
vocabulary, and one to retrieve a postings list [17]. If t is
chosen so that the t-gram vocabulary for T can be held in
main memory, the number of disk accesses required to match
a pattern P and resolve locate queries is dm/te. In terms of
space, a t-gram index with t ≈ 5 to 10 can be expected to
consume around 150–200% of the space required by T, and
to grow larger as t increases. Note that in the t-gram approach
to pattern search T is not required in memory.

Tang et al. [28] give details of the construction and use of
n-gram indexes for pattern matching. Puglisi et al. [29] have
also examined this problem.

VIII. SUMMARY

We have carried out a detailed investigation of two-level
suffix-array based pattern search mechanisms, and: (1) de-
scribed an efficient mechanism for exploiting whole block
reductions, to approximately half the space required by the
suffix array pointers; (2) described and analyzed a condensed
BWT mechanism for storing and searching the string labels
of a pruned suffix tree; and (3) described a comprehensive
approach to testing pattern search mechanisms. We have
demonstrated that in combination the new techniques provide
efficient large-scale pattern search, requiring around half the
disk space of previous two-level techniques, and providing
faster search than an FM-INDEX when the data is such that
the FM-INDEX cannot be accommodated in main memory.
While we have focused on the memory-disk interface, we note
that structures with the properties exhibited by the ROSA are
effective across all interface levels in the memory hierarchy.

ACKNOWLEDGMENT

This work was funded by the Australian Research Council.
The ROSA software will be made publicly available.

GOG et al.: REDUCED-SPACE ON-DISK SUFFIX ARRAYS 14

REFERENCES

[1] U. Manber and G. W. Myers, “Suffix arrays: a new method for on-line
string searches,” SIAM J. of Computing, vol. 22, no. 5, pp. 935–948,
1993. [Online]. Available: http://dx.doi.org/10.1137/0222058

[2] R. Sinha, S. J. Puglisi, A. Moffat, and A. Turpin, “Improving suffix
array locality for fast pattern matching on disk,” in Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2008, pp. 661–672.
[Online]. Available: http://doi.acm.org/10.1145/1376616.1376683

[3] A. Moffat, S. J. Puglisi, and R. Sinha, “Reducing space requirements
for disk resident suffix arrays,” in Proc. Conf. Database Systems
for Advanced Applications, 2009, pp. 730–744. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00887-0 63

[4] P. Ferragina and G. Manzini, “Opportunistic data structures with appli-
cations,” in Proc. IEEE Symp. Foundations of Computer Science, 2000,
pp. 390–398.

[5] ——, “Indexing compressed text,” J. ACM, vol. 52, no. 4, pp. 552–581,
2005. [Online]. Available: http://doi.acm.org/10.1145/1082036.1082039

[6] S. Gog and M. Petri, “Optimized succinct data structures for
massive data,” 2012, submitted for publication. [Online]. Available:
http://people.eng.unimelb.edu.au/sgog/optimized.pdf

[7] S. Vigna, “Broadword implementation of rank/select queries,” in Proc.
Int. Wkshp. Experimental Algorithmics, 2008, pp. 154–168. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-68552-4 12

[8] P. Ferragina and R. Grossi, “The string B-tree: A new data
structure for search in external memory and its applications,” J.
ACM, vol. 46, no. 2, pp. 236–280, 1999. [Online]. Available:
http://doi.acm.org/10.1145/301970.301973

[9] J. Kärkkäinen and S. S. Rao, “Full-text indexes in external memory,”
in Algorithms for Memory Hierarchies, 2002, pp. 149–170. [Online].
Available: http://dx.doi.org/10.1007/3-540-36574-5 7

[10] G. Manzini and P. Ferragina, “Engineering a lightweight suffix array
construction algorithm,” Algorithmica, vol. 40, no. 1, pp. 33–50, 2004.
[Online]. Available: http://dx.doi.org/10.1007/s00453-004-1094-1

[11] V. Mäkinen and G. Navarro, “Compressed compact suffix arrays,” in
Proc. Symp. Combinatorial Pattern Matching, 2004, pp. 420–433.

[12] R. González and G. Navarro, “Compressed text indexes with fast locate,”
in Proc. Symp. Combinatorial Pattern Matching, 2007, pp. 216–227.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-73437-6 23

[13] W.-K. Hon, R. Shah, and J. S. Vitter, “Compression, indexing, and
retrieval for massive string data,” in Proc. Symp. Combinatorial
Pattern Matching, 2010, pp. 260–274. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-13509-5 24

[14] R. González and G. Navarro, “A compressed text index on secondary
memory,” J. Combinatorial Mathematics and Combinatorial Computing,
vol. 71, pp. 127–154, 2009.

[15] R. A. Baeza-Yates, E. F. Barbosa, and N. Ziviani, “Hierarchies
of indices for text searching,” Information Systems, vol. 21, no. 6,
pp. 497–514, 1996. [Online]. Available: http://dx.doi.org/10.1016/
0306-4379(96)00025-7

[16] L. Colussi and A. De Col, “A time and space efficient data
structure for string searching on large texts,” Information Processing
Letters, vol. 58, no. 5, pp. 217–222, 1996. [Online]. Available:
http://dx.doi.org/10.1016/0020-0190(96)00061-0

[17] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Com-
pressing and Indexing Documents and Images, 2nd ed. San Francisco:
Morgan Kaufmann, 1999.

[18] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed
text indexes,” in Proc. ACM-SIAM Symp. Discrete Algorithms, 2003, pp.
841–850.

[19] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets,” in Proc. ACM-
SIAM Symp. Discrete Algorithms, 2002, pp. 233–242.

[20] V. Mäkinen and G. Navarro, “Succinct suffix arrays based on run-length
encoding,” in Proc. Symp. Combinatorial Pattern Matching, 2005, pp.
45–56.

[21] D. Okanohara and K. Sadakane, “Practical entropy-compressed
rank/select dictionary,” in Proc. Wkshp. Algorithm Engineering and
Experiments, 2007. [Online]. Available: http://www.siam.org/meetings/
proceedings/2007/alenex/papers/007okanoharad2.pdf

[22] T. Bingmann, J. Fischer, and V. Osipov, “Inducing suffix and lcp
arrays in external memory,” in Proc. Wkshp. Algorithm Engineering and
Experiments, 2013.

[23] B. Phoophakdee and M. J. Zaki, “Genome-scale disk-based suffix
tree indexing,” in Proc. ACM SIGMOD Int. Conf. on Management of
Data, 2007, pp. 833–844. [Online]. Available: http://doi.acm.org/10.
1145/1247480.1247572

[24] S.-S. Wong, W.-K. Sung, and L. Wong, “CPS-tree: A compact
partitioned suffix tree for disk-based indexing on large genome
sequences,” in Proc. Int. Conf. Data Engineering, 2007, pp. 1350–1354.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/ICDE.
2007.369009

[25] A. Orlandi and R. Venturini, “Space-efficient substring occurrence
estimation,” in Proc. ACM SIGMOD-SIGACT-SIGART Symp. on
Principles of Database Systems, 2011, pp. 95–106. [Online]. Available:
http://doi.acm.org/10.1145/1989284.1989300

[26] M. P. Ferguson, “FEMTO: Fast search of large sequence collections,”
in Proc. Symp. Combinatorial Pattern Matching, 2012, pp. 208–219.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-31265-6 17

[27] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM
Computing Surveys, vol. 38, no. 2, Jul. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1132956.1132959

[28] N. Tang, L. Sidirourgos, and P. A. Boncz, “Space-economical partial
gram indices for exact substring matching,” in Proc. Conf. Information
and Knowledge Management, 2009, pp. 285–294.

[29] S. J. Puglisi, W. F. Smyth, and A. Turpin, “Inverted files versus suffix
arrays for locating patterns in primary memory,” in Proc. Symp. String
Processing and Information Retrieval, 2006, pp. 122–133.

http://dx.doi.org/10.1137/0222058
http://doi.acm.org/10.1145/1376616.1376683
http://dx.doi.org/10.1007/978-3-642-00887-0_63
http://doi.acm.org/10.1145/1082036.1082039
http://people.eng.unimelb.edu.au/sgog/optimized.pdf
http://dx.doi.org/10.1007/978-3-540-68552-4_12
http://doi.acm.org/10.1145/301970.301973
http://dx.doi.org/10.1007/3-540-36574-5_7
http://dx.doi.org/10.1007/s00453-004-1094-1
http://dx.doi.org/10.1007/978-3-540-73437-6_23
http://dx.doi.org/10.1007/978-3-642-13509-5_24
http://dx.doi.org/10.1007/978-3-642-13509-5_24
http://dx.doi.org/10.1016/0306-4379(96)00025-7
http://dx.doi.org/10.1016/0306-4379(96)00025-7
http://dx.doi.org/10.1016/0020-0190(96)00061-0
http://www.siam.org/meetings/proceedings/2007/alenex/papers/007okanoharad2.pdf
http://www.siam.org/meetings/proceedings/2007/alenex/papers/007okanoharad2.pdf
http://doi.acm.org/10.1145/1247480.1247572
http://doi.acm.org/10.1145/1247480.1247572
http://doi.ieeecomputersociety.org/10.1109/ICDE.2007.369009
http://doi.ieeecomputersociety.org/10.1109/ICDE.2007.369009
http://doi.acm.org/10.1145/1989284.1989300
http://dx.doi.org/10.1007/978-3-642-31265-6_17
http://doi.acm.org/10.1145/1132956.1132959

	I Introduction
	I-A Our Contributions
	I-B Definitions

	II Background: Suffix Tries, Trees, and Arrays
	II-A Suffix Trie
	II-B Suffix Tree
	II-C Blind Tree
	II-D Bit-Blind Tree
	II-E Suffix Array
	II-F FM-Index

	III On-Disk Suffix Arrays
	III-A Uniform Blocks and the String B-Tree
	III-B Variable Blocks and the LOF-SA

	IV Reducible Blocks
	IV-A Identifying Reductions
	IV-B Singleton Blocks
	IV-C Storing Information About Reductions
	IV-D Storing the On-Disk Suffix Array

	V Indexing Using a Condensed BWT
	V-A Indexing the Blocks
	V-B Backward Search in a Forward BWT
	V-C Backward Search in a Condensed Backward BWT
	V-D Computing Block Numbers
	V-E Space Requirement
	V-F Execution Time

	VI Experiments
	VI-A Experimental Hardware
	VI-B Test Data
	VI-C Test patterns
	VI-D Compressed Bit Vectors
	VI-E Baseline Methods and Total Disk Space
	VI-F Choice of In-Memory Structure
	VI-G Blocksizes and Non-Uniform Sampling
	VI-H Disk Accesses and Execution Cost For Count Queries
	VI-I Compared to the FM-Index

	VII Discussion
	VII-A Construction and Applicability
	VII-B Other Recent Work

	VIII Summary
	References

