arxXiv:1207.4567v1 [cs.DS] 19 Jul 2012

Efficient Core Maintenance in Large Dynamic
Graphs

Rong-Hua Li and Jeffrey Xu Yu

The Chinese University of Hong Kong
{rhli, yu }@se.cuhk.edu.hk

Abstract— The k-core decomposition in a graph is a fundamen-
tal problem for social network analysis. The problem of k-core
decomposition is to calculate the core number for every node
a graph. Previous studies mainly focus ork-core decomposition
in a static graph. There exists a linear time algorithm for k-core
decomposition in a static graph. However, in many real-word
applications such as online social networks and the Interrtethe
graph typically evolves over time. Under such applicationsa key
issue is to maintain the core number of nodes given the graph
changes over time. A simple implementation is to perform the
linear time algorithm to recompute the core number for ever . . .
node after thg graph is updatgd. Such simple implementatiz)/n B_esldes the analysis Of_COheS'Ve subgratxoore decom-
is expensive when the graph is very large. In this paper, we POsition has been recognized as a powerful tool to analyze
propose a new efficient algorithm to maintain the core number the structure and function of a network, and it has many

for every node in a dynamic graph. Our main result is that gpplications. For example, thecore decomposition has been
only certain nodes need to update their core number given the applied to visualize the large networks [7], [4], to map, relbd

graph is changed by inserting/deleting an edge. We devise an -
efficient algorithm to identify and recompute the core numbe of and analyze the topological structure of the Internet [13]},

such nodes. The complexity of our algorithm is independentfo t0 predict the function of protein in protein-protein irdetion
the graph size. In addition, to further accelerate the algoithm, — network [17], [1], [23], to identify influential spreader in
we de\éempdtwof przunlng strategesppy I¢|3XP|0'U”9 t(;le lower ad complex networks [18], as well as to study percolation on
upper bounds of the core number. Finally, we conduct extenge

experiments over both real-world and synthetic datasets, rad the complex networks [15].

Vo Vi
Fig. 1. An example graph.

results demonstrate the efficiency of the proposed algoritin. From the algorithmic perspective, efficient and scalable
algorithms fork-core decomposition in a static graph already
. INTRODUCTION exist [8], [12], [21]. However, in many real-world appligans,

In the last decade, online social network analysis hasch as online social network and the Internet, the network
become an important topic in both research and industyolves over time. In such a dynamic network, a crucial
communities due to a larger number of applications. A clucissue is to maintain the core number for every node in a
issue in social network analysis is to identify the cohesiveetwork provided the network changes over time. In a dynamic
subgroups of users in a network. The cohesive subgrongtwork, it is difficult to update the core number of nodese Th
denotes a subset of users who are well-connected to orason is as follows. An edge insertion/deletion resulthe
another in a network [16]. In the literature, there are adargdegree of two end-nodes of the edge increase/decrease by 1.
number of metrics for measuring the cohesiveness of a grolipis may lead to the updates of the core number of the end-
of users in a social network. Examples include cligues, nodes. Such updates of the core number of the end-nodes may
cligues,n-clans, k-plexes,k-core, f-groups,k-trusses and so affect the core number of the neighbors of the end-nodeshwhic
on [13]. may need to be updated. In other words, the update of the core

For most of these metrics exceptcore, the computational number of the end-nodes magread across the network. For
complexity is typically NP-hard or at least quadratiecore, example, in Fig[ll, assume that we insert an efigevig)
as an exception, is a well-studied notion in graph theory aimo the graph, resulting in the degree@f and v,y increase
social network analysis [22]. Through-out the paper, wd wiby 1. Suppose the core number@f and v, increase by 1,
interchangeably use graph and network. Given a gf@pthe then we can see that such core number update leads to the
k-core is the largest subgraph @f such that all the nodes in core number ofv1o’s neighbors ¢y, v1s,v11) that may need
the k-core have at least degrée For each node in GG, the to be updated. And then the update of core number,p5
core number ofv denotes the largegt-core that containg. neighbors will result in the update of core numberwf’s
The k-core decomposition in a gragghis to calculate the core neighbors’ neighbors. This update process rspiead over
number for every node itk. There is a linear time algorithm, the network. Therefore, it is hard to determine which node in
devised by Batagelj and Zaversnik [8], to compute theore a network should update its core number given the network
decomposition in a grapty. changes.

http://arxiv.org/abs/1207.4567v1

To update the core number for every node in a dynamic [1. PRELIMINARIES

graph, in [20], Miorandi and Pellegrini propose to use the consider an undirected and unweighted gréph: (V, E),
linear algorithm given in [8] to recompute the core number fQyhere V' denotes a set of nodes arfd denotes a set of
every node in a graph. Obviously, such_an algorithm is expefdirected edges between the nodesLet |V| andm = |E]|
sive when the graph is very large. In this paper, we proposg@a the number of nodes and the number of edges?jn

efficient algorithm to maintain the core number for each nogdgspectively. A grapiG’ = (V’, E') is a subgraph of3 if
in a dynamic network. Our algorithm is based on the following « v and £/ ¢ E. We give the definition of thes-core
key observation. We find that only a certain number of nodesy] a5 follows.

need to update their core number when a graph is updated
inserting/deleting an edge. Reconsider the example in[Eig.
After inserting an edgévs, v1o), we can observe that only the
core number of the nod€sss, v19, v1s, v9, v2} Updates, while) .
the core number of the imaining nodes d}ZJes not change. 'Fﬁ%t CO”‘a”?S this node_. We denote the core number of node
key challenge is how to identify the nodes whose core numbérés Cy. Itis worth noting that the nodes with a large core

need to be updated. To tackle this problem, we proposen'émber are also in the low order core. That is to say, the cores

three-stage algorithm to update the core number of the noa%r,%nes.ted.l For e2xample?‘l, assumlr:j% a noidein a3-core, then
First, we prove that only the core number of the nodes th%?G(.aU IS also '?G'(iﬁre’ —(E)cl)re ank —cor(;. ition is
are reachable from the end-nodes of the inserted/deletpsl e IVen a grapits, the problem ok-core decomposition 1S 1o

and their core numbers equal to the minimal core number gtermine the core number for every nodéinThe following

the end-nodes may need to be updated. Based on this, %gmple illustrates the conceptlefcore composition in graph.
propose a coloring algorithm to find such nodes whose cdrgample 2.1: Fig. [1 shows a graphG that contains 18

numbers may need to be updated. Second, from the nodesles, i.e.v1,---,vis. By Definition[Z1, we can find that
found by the coloring algorithm, we propose a recolorinthe nodesvs,--- ,v7 form a 4-core. The reason is because
algorithm to identify the nodes whose core numbers definitethe induced subgraph by the nodes- - - ,v7 is the largest
need to be updated. Third, we update the core numberssfograph in which the degrees of nodes are lager than or
such nodes by a linear algorithm. The major advantage @dfual to 4. Similarly, the subgraph induced by the nodes

b
Dgfinition 2.1: A k-core is the largest subgragh of G such
that each node i’ has at least a degrée

The core number of node is defined as the largestcore

our algorithm is that its time complexity is independentld t vs,--- ,v7,v14,- -+ ,v17 IS @3-core, and the whole graph is
graph size, and it depends on the size of the nodes found#y-core. Here we can find that the nodgs- - - ,v; are also
the coloring algorithm. To further accelerate our algarith in the 3-core and2-core. O

we develop two pruning techniques to reduce the size of they; i well known that thek-core decomposition in a static
node; fqund by the coloring algorithm. In addition, it is wor graph can be calculated by(n+m) algorithm [8]. In many
mentioning that our proposed algorithm can also be used dgpjications such as online social networks, the graphvegol
handle a batch of edge insertions and deletions by pro@ssier time. In this paper, we consider the problem of updating
the edges one by one. Also, the proposed technique canyghe core number for every node in the graph given the graph
applied to process node insertions and deletions, becau# rohanges over time. In this problem, we assume that the core
insertions and node deletions can be simulated by a sequepgRibers of all the nodes have been known before the graph
of edge insertions and edge deletions respectively. Kina# 5 yndated. The potential change in our problem is that eithe
extensively evaluate our algorithm over 15 real-world det8 gqge insertion or edge deletion may result in the core number
and 5 large synthetic datasets, and the results demonst@te, number of nodes that needs to be updated. Previous
the efficiency of our alg_orithm. More specifically, in rea'ﬁsolution for this problem [20] is to perform th@(n + m)
world datasets, our algorithm reduces the average updiaée ti;ore decomposition algorithm to re-compute the core number
over the _baselln_e algorithm from 3.2 times t(_) 101.8 timgg, every node in the updated graph. Clearly, such algorithm
for handling a single edge update. For handling a batch @fhensive when the graph is very large. In the following, we
edge updates, our algorithm needs to process the edge spd@iginly focus on devising more efficient algorithm fbicore

one by one, while the baseline algorithm only ngeds 10 r'Yrcomposition in a graph given the graph is updated by an
once for all edge updates. In the largest synthetic dat&selgige insertion or deletion. Our proposed algorithm can also
million nodes and 25 million edges), the results show that oy "\ ;sed for processing a batch of edge updates. Moreover,
algorithm is still more efficient than the baseline algarith gince node insertions and deletions can be easily simutated
when the number of edge updates is smaller than 4700. 5 sequence of edge insertions and edge deletions respgctive

) _) ~our algorithm can also be applied to handle node insertions
The rest of this paper is organized as follows. We givg,q node deletions.

the problem statement in Secti@d II. We propose our basic

algorithm as well as the pruning strategies in Secfioh III. IIl. THE PROPOSED ALGORITHM

Extensive experimental studies are reported in SeEfibaiid, Let N(v) be the set of neighbor nodes of node D,
the related work is discussed in Sectioh V. We conclude thig the degree of node, i.e., D, = |N(v)|. Then, we give
work in Sectior V. two important quantities associated with a nadas follows.

Specifically, we defineX, as the number of’s neighbors FE,, = (). The induced core subgraph of nagdg is a subgraph
whose core numbers are greater than or equal’tp and thatincludes nodesvy, va, vy, v19, v11, V12, V13, V15 }. In other
defineY, as the number oi’s neighbors whose core numberswvords, V,,,, = {v1, v2, v9, V10, V11, V12, V13, U158} and E,,, =
are strictly greater thaf’,. Formally, for a nodey, we have {(v1,v2), (v2,v9), (vg, v10), (v10,v11), (V10, V18), (V11, V12),

Xy, = Hu:u e Nw),C, > Cp} andY, = [{u : v € (vi1,v13)}. The union of these two induced core sub-
Nv),C, > C,}|. In effect, by definition,X, denotes the graphs iSGi,uv,y, = (Vesuvies Pusursg), Where Voo, =
degree of node in the C,-core. The following lemma shows {vy, v2, vs, vg, V10, V11, V12, V13, 18} @Nd Eyeuv, = Eup-
that C, is bounded by, and X,,. Fig. [@ illustrates the union of two induced core subgraphs

Lemma 3.1: For every node v of a graph G, we have Y,, < Guguvio- =

CU S X’U S DU'
Proof: We denote the subgrapfi’ = (V', E’) as theC,-
core. Obviously, node is in G’. By Definition[2.1, inG’,
nodev has at least’,, neighbors, and the core number of all
the nodes inG’ is at leastC,. In other words, the number
of v's neighbors whose core numbers are larger than or equal
to C, is at leastC,,. By definition, X,, denotes such number. 4 A
Therefore, we haV@v S X»U. In addition, by definition, we Fig_ 2. The union of two induced core Subgrapmgullm).
clearly know thatX,, < D,,. ForY, < C,, we can prove it by o]
contradiction. SupposE, > C,, then nodev has more than Based on Definitio 3]1 arld 3.2, we givekacore update
C, neighbors whose core numbers are strictly greater th{lgorem.
CU. By Deﬁnitionm, the core number of nodeshould be Theorem 3.1: (k-core update theoren']) Given a graph G =
at leastC,, + 1, which is a contradiction. This completes thE{V, E) and two nodes u and v.
proof.

In the following, we give an example to illustrate the
concepts ofX, andY,,.

o« If C, > C,, then either insertion or deletion of an
edge (u,v) in G, only the core number of nodes in the

) o o induced core subgraph of node v, i.e, G,, may need to
Example 3.1:Consider the node, in Fig.[. By definition, the be updated.

core number of node is 2, i.e.,C', = 2, and the degree af . IF C, < C,, then either insertion or deletion of an edge
equals to 3, i.e.D,,=3. Nodewy has three neighborsq, v7, (u,v) in a graph G, only the core number of nodes in
andv;o) whose core number is greater than or equal to 2, and the induced core subgraph of node «, i.e., G, may need
has one neighborvf) whose core number is strictly greater g pe updated.

than 2. Therefore, we hav,, = 3 andY,, = 1, which « IF C, = C,, then either insertion or deletion of an edge

consists with Lemm@3.1. Similar results can be observed fro (u,v) in a graph G, only the core number of nodes in

other nodes in Fid.11. O the union of two induced core subgraphs G, and G,
Below, we define the notion of induced core subgraph. i.e., Guuy, may need to be updated.

Definition 3.1: Given a graph@ = (V, E) and a nodey, the To prove Theoreni 311, we first give some useful lemmas
induced core subgraph of node denoted as7, = (V,, E,), as follows.
is a connected subgraph which consists of nod®loreover,
the core number of all the nodes @, is equivalent taC,.
By Definition [3:1, the induced core subgraph of nade
includes the nodes such that they are reachable froamd
their core numbers equal 6,. Based on Definitioh 3]1, we
define the union of two induced core subgraphs.

Lemma 3.2: Given a graph G = (V, E) and a node . If the
core number of node u’s neighbors increases (decreases) by

at most 1, then C,, increases (decreases) by at most 1.

Proof: First, we prove the increase case by contradiction.
Suppose that’, increases by at least 2. This implies that there
are at least’,, + 2 neighbors of node: whose core numbers
Deﬁnition 32 FOF two node& andU and their CorreSponding are |arger than or equa| ©u+2 Since the core number Qfs
induced core subgrapt¥, = (Vi, E.) and G, = (Vu, Ev), neighbors increases by at most 1, the numbereheighbors
the union ofG.,, andG, is defined as+uuu = (Vuuv, Euuw): whose core numbers are larger than or equal’ot 2 is at
where Vyu, = Vo UVe and Euue = {(vi,v)(vi,v;) € mostY,. By Lemmal3.L, we know tha, < C,. That is
E,v; € Vuuw,vj € Vuuo}- to say, the number of’s neighbors whose core numbers are

It is worth mentioning that the union of two induced corgyrger than or equal t6, + 2 is bounded byC,,, which is a
subgraphs may not be connected. The following examplgntradiction.

illustrates the definitions of induced core subgraph andmni

_ Second, we prove the decrease case. If the core number of
of two induced core subgraphs.

the neighbors of node decreases by at most 1, thenhas
Example 3.2: Consider the nodess and vy in Fig.[d. By at leastX,, neighbors whose core numbers are greater than or
definition, the induced core subgraph of is a subgraph equal toC, — 1. SinceX, > C, > C,, — 1, the core number
that only contains nodes. That is to sayV,, = {vs} and of nodew is at leastC,, — 1. Therefore,C,, decreases by at

most 1. This completes the proof. O Second, we consider a nodethat is reachable fronw and
h C. > C,. The minimal degree of the nodes @ -core isC.
andC, > C,,. Similarly, the increase of’,, does not increase
such minimal degree, thereldy, will not be updated. Put it all

Proof: We focus on proving the edge insertion case, arf@9€ther, the increase df,, only affects the core number of
similar arguments can be used to prove the edge deletion c488S€ nodes that are reachable frenand their core numbers
After inserting an edgéu, v), both D,, and D, increase by equal toC,,, which are t.he podes i6',,. By definition, if C,,

1. Recall thatX, (X.) denotes the degree of (v) in the does not change, then it will not affect the core number of all

C,-core (C,-core), which is a subgraph @f. Therefore,X, the nodes irG. This completes the proof. O

and X, increase by at most 1. By definitio, (C,) equals Armed with the above lemmas, we prove theore update

to the minimal degree of the nodes in thg-core (C,-core). theorem as follows.

Since X, (X,) increases by at most 1, the minimal degree ®roof of Theorem[3.1: For the insertion of an edde, v), we

the nodes in the’,-core (C,-core) increases by at most 1. Asconsider three different cases: (@) > C,, (2) C,, < C,, and

a result, the core number of node(v) increases by at most(3) ¢, = C,,. ForC, > C,, we know that node is in a higher

1. Such increase of', (C,) may lead to increasing the coreorder core than node. By Definition[2:1, adding a neighbor
number of the neighbors of node(v). Consider the one-hop v with a small core number to a nodedoes not affecC,,.
neighbors of node: (v). According to Lemma_3]2, the coreBy Lemmal3.b, since”, does not change, node will not
number of all the neighbors of node(v) increases by at most affect the core number of the nodesGh Consequently, we

1. By recursively applying Lemnmia_3.2, we can conclude thahly need to update the core number of the nodes that are
the core number of all the nodes that are reachable frqm) affected by node. By Lemmal 3.5, ifC, changes, then only
increases by at most 1. On the other hand, the core numbgs core number of nodes iff, may need to be updated. If

of the nodes that cannot be reachable franfv) does not (, does not change, then no node’s core number needs to be
change. Put it all together, for any nodeGh its core number updated. This proves the case (1). Symmetrically, we can use
increases by at most 1. This completes the proof. O the similar arguments to prove the case (2). For case (&), aft

Lemma 3.4: Given a graph G and two nodes « and v such inserting an edgéu, v), by Lemmal3.}, eitheC, and C,

that C,, = C,. If we insert an edge (u,v) in G, then either increase by 1 or’,, andC, do not change. It”, andC, do

C, and C, increase by 1 or C,, and C, do not change. not change, by Lemma 3.5, we conclud(_e that no node’s core
Proof: We prove it by contradiction. Without loss of generalPumber needs to be updated(f, and C, increase by 1, by

ity, after inserting an edge:, v), we assume that,, increases Lemmal3.b, the core numbe_zr of the nodegiin and G, may

by 1 while C,, does not change. Sin@, increases by 1, node need tq be updated. That is to say, the core number of the
u has at least’, + 1 neighbors whose core numbers are largéedes inG.u, may need to be updated.

than or equal ta”, + 1. By Definition[2.1, before inserting an ~ Similarly, for the deletion of an edggu,v), we also
edge(u,v), u has at most’, neighbors whose core numbergonsider three different cases: (@), > C,, (2) Cu < C.,

are larger than or equal 16, + 1. Therefore, node’s core and (3)Cy, = C,. The proof for the first two cases is very
number must be&, + 1, which is a contradiction. similar to the proof for the first two cases under edge inserti

case, thereby we omit for brevity. Fat, = C,, after deleting
an edge(u,v), if C, and C, do not change, we conclude
that no node’s core number needs to be updated according to

hanaed h oh v affects th ber of nod Lemmd3.b. IfC, changes, by Lemnia3.5, the core number of
changed, such change only altects the core nNumber of NOAES 4 inG,, may need to be updated. Likewise(if, changes,

in Gy, If C,, does noF change, then it does not affect the core the core number of nodes i¥, may need to be updated.
numbf(.ar of ”f]e nodes th' doe i . d simil T? summarize, after removing an edge v), only the core
Proof: We focus on the edge msertl_on case, and simifar progl, \ner of the nodes iGr,u, Mmay need to be updated. This
can be used to prove the edge deletion case. Assumé'hist completes the proof -
changed after inserting an ed@e v) into G. By Lemma 3.8, '

C,, increases by 1. We denote the updated as Cw, 1.8, A The basic algorithm

C, = Cy + 1. Obviously, the increase df', does not affect)) . .

the core number of the nodes that cannot be reachable fron" this subsection, we present a basic algorithm for core

w. Also, we claim that the increase 6f, does not affect the maintenance in a graph given the graph is updated by an edge

core numbers of the nodes that can be reachable froand insertion or an edge deletion. Below, we describe the aetail
their core numbers are less than or greater tHanFirst, we algorithms for edge insertion and deletion, respectively.
consider a node that are reachable fromv andC, < C,,. Algorithm for edge insertion: Our main algorithm for edge
Recall thatC, equals to the minimal degree of the nodes imsertion consists of three steps. After inserting an ddge),

the C,-core. By definitiongw is also in theC,-core (cores are by the k-core update theorem, only the core number of nodes
nested). The increase @f,, clearly does not increase suchin the induced core subgrapt¥{ or G, or G,,) may need
minimal degree. Hence, the core number of nedestill C.. to be updated. Therefore, the first step of our main algorithm

Lemma 3.3: If we insert (delete) an edge (u,v) in a grap
G, the core number of any node in G increases (decreases)
by at most 1.

Lemma 3.5: Given a graph G and an edge (u, v). Suppose G
is updated by inserting or deleting an edge (u, v). Then, for
any node w in G, if the core number of w (C,,) needs to be

Algorithm 1 Insertion (G, u, v) Algorithm 2 void Color(G, u, c)

Input: GraphG = (V, E) and an edgéu, v) 1 yisited(u) «— 1;
Output: the updated core number of the nodes 2: if color(u) = 0 then
e 3 Ve« Veu{u}

1: Initialize visited@) < 0 for all nodew € V; 4 color(u) = 1;

2: Initialize color() « 0 for all nodew € V; 5: for each node,u € N(u) do

3 Ve 0 6 if visitedw) — 0 and C,, — c then

4: if Cy > C, then 7: COlOf(G, w, C);

5: c+ Oy

6 Color(G, v, ¢);

71 Recolorinser(G, c); Algorithm 3 void Recolorlnsert(G, c)

8 Updatelnsert(G, c); ~ -

9: else 1: flag « 0;

100 e C.- 2: for each node: € V. do

I — . 3: if color(u) = 1 then
11: Color(G, u, ¢); 2 X o 0
ig Sggglt%ﬁlr?::r?(g’;))-; 5: for each nodev € N(u) do
i 7 6: if (color(w) = 1) or (Cw > ¢) then

7: Xy +— Xy +1;
8: if Xy <cthen

. 9: color(u) < 0;

is to identify the nodes in the induced core subgraph.iet 1o flag + 1;

be the set of nodes found in the first step. Then, the second if flag = 1then

step of our algorithm is to determine those node¥jirwhose 12: Recolorinsert(G, c);
core numbers definitely need to be updated. Finally, the thir

step of our algorithm is to update the core number of such

nodes. description, we mainly focus on describing our sub-aldonis
Our main algorithm for edge insertion, callédsertion, under the case’, = C,, and similar description can be
is outlined in Algorithm[. AlgorithniIl includes three sub-used for other cases. Suppose that nadand v have core
algorithms, namelyolor, Recolorinsert, andUpdatelnsert, numberC, = C, = c. In this case, we hav&,. = V..
which corresponds the first, the second, and the third stepByf Definition [3.2, finding the nodes ii¥,, can be done
our main algorithm, respectively. In particul@olor is used to by a Depth-First-Search (DFS) algorithi@olor depicted in
color the nodes i/, with a color 1,Recolorinsertis applied Algorithm [2 is indeed such a DFS algorithm. In particular,
to recolor the nodes i, whose core numbers are definitelyColor will assign a color 1 to every node .. At the
unchanged with a color 0, andpdatelnsert is used to update beginning,V.. is initialized by an empty set and all the nodes
the core number of the nodeslify with a color 1. The detailed are associated with a color 0. The algorithm recursivelysfind
description of Algorithn{L is as follows. First, Algorithid 1the nodes that are reachable framand have core number
assigns a color 0 for every node @ (line 2 in Algorithm[1) (line 6-7 in Algorithm[2). When the algorithm visits such a
and initializesV.. by an empty set (line 3 in Algorithrill 1). node, if its color is 0, then the algorithm colors it by 1 and
Second, the algorithm updates the core number of the nodefsls it into the set. (line 3-4 in Algorithm[2). To find all
under three different cases, i.€,, > C,, C, < C,, and the nodes iV, ,, we can invokeColor(G, u, ¢). Recall that
C, = C,. Specifically, under the first cas€’{ > C,), the after inserting edgéu,v), the nodes that are reachable from
algorithm first invokesColor(G, v, ¢) to find the nodes in v can also be found bgolor (G, u, c).
G, (line 6 in Algorithm[1), because only the core number of Recolorinsert described in Algorithnfil3 is used to identify
the nodes inG:, may need to be updated. After this processhe nodes iri/, whose core numbers are definitely unchanged.
all the nodes inG, are recorded in/. and all of them are Specifically, Algorithni8 recursively recolors the nodesost
colored by 1. Then, the algorithm invok&ecolorinsert(G, core numbers do not change by a color 0. The recursion
¢) to identify the nodes whose core numbers are definitely terminated until no node needs to be recolored. In each
unchanged (line 7 in Algorithiinl 1). After this step, all of &uc recursion, the algorithm re-computég, for each nodeu in
nodes inV, are recolored by 0. Finally, the algorithm invokes/,. Here the recomputed,, equals to the sum of the number
Updatelnsert(G, c) to update the core number of the nodes iof neighbors of node: whose core numbers are larger than
V. with color 1 (line 8 in Algorithn{1). Similar process can beand the number of neighbors of nodewith color 1 (line 4-7
used for other two cases (line 9-13 in Algoritfiin 1). Note thah Algorithm[3). For a node, if the currentX, is smaller than
for the case”, = C,, we can invokeColor(G, u, c) to find the or equal toc, then the algorithm recolors it by 0 (line 8-10 in
nodes inG,u,, because: can reachv after inserting an edge Algorithm[3).

(u,v). Below, we describe the details of our sub-algorithms, The rationale of Algorithn{]3 is as follows. First, Algo-
Color, Recolorinsert, andUpdatelnsert, respectively. rithm[3 assumes that the core numbers of all the nodds in
Recall that after inserting an edge, v), by thek-core up- need to be updated. Then, for each nadia V., the algorithm
date theorem, we have three cases that need to be considesmbmputesX,,. Initially, since all the neighbors af whose
e, Cy < C,, Cy > C,, andC,, = C,. To simplify our core numbers equal to are colored by 1.X,, is indeed the

Algorithm 4 void Updatelnsert(G, c)

1: for each nodew € V. do
2: if color(w) =1 then

3: Cuw+—c+1,
same value as our previous definition. Xf,, < ¢, thenw at v .
mostc neighbors whose core numbers are larger thaifter Fig. 3. A graph after inserting an edges, vio).

inserting an edgéu,v). As a result,C,, cannot be updated

and the algorithm recolors it by 0. This recoloring procegdgorithm for edge insertion can be guaranteed by Thebrém 3.
may affect the color ofv’s neighbors. The reason is becaus@nd Theoreni_3]2. The following example explains how the
before recolorings, w may contribute to calculat&¥,, where Insertion algorithm works.

z is a neighbor ofw. Consequently, the algorithm needs tqyample 3.3: Let us consider the same graph given in Fig. 1.
recursively recolor the nodes ili.. Note that AlgorithmB aqqume that we insert an edges, v10), which results in a

is recursively invoked at mosf.| + 1 times, because the 4raph given in Fig[I3. In Fig]3, the dashed line denotes the
algorithm at least recolors one node at a recursion in theevo{,serted edge. Since,, = C,.. = ¢ = 2, the Insertion
. K])

v10

case. The following theorem shows that after Algorithin 3iqorithm first invokesColor(G, vs, 2). After this process,
terminates, a node with a color 1 is a sufficient and necessgf¥ can get thal, = {vs, v10, Vg, U2, U1, V1, V11, V12, V13 }.

condition for updating its core number. And all the nodes inV, are colored by 1 and the other
Theorem 3.2:Under the case of insertion of an edge (u,v), nodes are colored by 0. Then, the algorithm invokes the
the core number of a node needs to be updated if and only if Recolorinsert(G, 2) algorithm. To simplify our description,

its color is 1 after Algorithm[3 terminates. we assume that the node visiting-order Wi is their DFS
Proof: First, we prove that if the core number of a nodeisiting-order. At the first recursion, we can find th&f, = 2,

w needs to be updated, then its color is 1 after Algorifim tBereby it is recolored by 0. Also, the nod&, is recolored
terminates. We focus on the case @f = C, = ¢, similar by 0, becauseX,,, = 2. At the second recursion, we can find
proof can be used to prove the other two cases. By ollnat the nodes;; andw;3 are recolored by 0. At the third re-
assumption and Lemnia_B.5, we hawec V., whereV, = cursion, no node needs to be recolored, the algorithm thieref
Vuue- Then, by Lemmd3]3, after inserting an edgewv), terminates. After invoking th&ecolorinsert(G, 2) algorithm,

the core number of the nodes In increases by at most 1.the nodeg{uvs, vig,vg, v2, v15} are colored by 1, thereby their
Therefore, ifC,, needs to be updated, then the updated cotere numbers must increase to 3 by Theorem 3.2. Finally, the
number ofw must bec+ 1. That is to say, nodes must have Insertion algorithm invokes th&pdatelnsert(G, 2) algorithm

c+1 neighbors whose core numbers are larger than or equateoupdate the core number of such nodes. As a consequence,
¢+ 1. Now assume that the color of nodeis 0. This means the core number of the nodéss, v10, vg, v2, v15} IS increased
that X, < ¢ when Algorithm[3 terminates. Recall that,, to 3. O

denotes to the sum of the number of neighbors whose corg,,
. e analyze the time complexity of tHasertion algorithm
numbers are larger thanand the number of neighbors whose

color is 1. This implies that node has at most neighbors as follows. First, theColor algorithm takesO().,,cy, Du)

. . time complexity. Second, thRecolorinsert algorithm takes
whose core numbers are larger thamhich is a contradiction. RIGADS D,.) time complexity in the worse case, as the
Second, we prove that if a node has a color 1 aft C eV U piexity '

Algorithm [3 terminates, then the core number of this no éigonthm is recursively invoked a_t mos2(|V|) -tlmeg and
D,,) time complexity. Finally,

. : ach recursion take9(>
must be updated. We consider the induced subgraph by —ucVe . .
nodes with color 1 after Algorithi 3 terminates and the nod : Updatelnsert algorithm takesO(|V.|) time complexity.

whose core numbers are greater tharConsider a nodev Elsui)rlitthﬂ itsogat‘r;?r,zthe tg]i iﬁo'[rﬁsls\)/((l)tryse()fcatzzsvevﬁ:gﬂ is
in such an induced subgraph. Clearly,«if has a color 1, g Ol ueVe Y '

then it hasX,, > ¢ neighbors. And ifw has a color 0, then |pdep§ndent of thg graph size. However, in prchce, the alg
) . N rithm is more efficient than such worse-case time complexity
its core numbeiC,, is larger thanc. By Definition[2.1, the X
: The reason could be of twofold. On the one hdhg| typically
induced subgraph belongs to the+ 1)-core. Therefore, the

. . not very large w.r.t. the number of nodes of the graph. On the
core number of a node with color 1 is at least + 1. By

LemmaZ3, after inserting an edge, v), the core number of \(:g;)e/rfgztnd, very often, thRecolorinsert algorithm terminates

any nodes in grapliz increases by at most 1. Consequently, '

the core number of the nodes with color 1 increases by 1. Thikyorithm for edge deletion: The main algorithm for edge

completes the proof. O deletion, namelyDeletion, is outlined in Algorithnib. Similar
Updatelnsert outlined in Algorithm[4 increases the coreto the edge insertion casBeletion also includes three sub-

numbers of the nodes Wi, with label 1 toc+ 1, because only algorithms:Color, RecolorDelete and UpdateDelete Here

the core numbers of those nodes need to increase by 1 afetor is used to find the nodes in the induced core subgraph,

the coloring and recoloring processes. The correctnessiof &®ecolorDeleteis utilized to identify the nodes whose core

Algorithm 5 Deletion(G, u, v) Algorithm 6 void RecolorDeletéG, c)

Input: GraphG = (V, E) and an edgé€u, v) 1: flag - 0;
Output: the updated core number of the nodes 2: for each nodeu € V. do
L . 3. if color(u) = 1 then
1: Initialize visited@) < 0 for all nodew € V; 4 X, < 0
2: Initialize color@) < 0 for all nodew € V; 5: for each nodew € N(u) do
3 Ve 0 6 if (color(w) = 1) of (Cw > ¢) then
4. if Cy > C, then 7: X, — Xy + 1
50 e Gy 8: if X, < cthen
6: Color(G, v, ¢); 9: color(u) < 0;
7. RecolorDeletdG, c); 10: flag + 1;
8 UpdateDeletéG, c); 11: if flag = 1then
9: if C, < C, then 12: RecolorDeletdG, c);
10: ¢+ Cy;
11: Color(G, u, ¢);
12: RecolorDeletéG, c); Algorithm 7 void UpdateDeletdG, c)

13: UpdateDeletéG, c);
14: if Cy = C, then

15: ¢« Cy;

16: Color(G, u, ¢);

17: if color(v) = 0 then

1: for each nodav € V. do
2: if color(w) = 0 then
3: Cy+—c—1;

18: Initialize visited(w) «+ 0 for all nodew € V;
19: Color(G, v, ¢);

: . the nodes whose core numbers may need to be updated
20: RecolorDeletdG, c); .
1. UpdateDeletéG, c); are recorded in a sét., and also all of them are colored
22: else by 1. After obtaining the sel/, RecolorDelete described
23: RecolorDeletdG, c); in Algorithm [@ is used to determine the nodes whose core
24: UpdateDeletd(, c); numbers must be updated. In particulRecolorDeletere-

cursively recolors the nodes whose core numbers need to be
updated by 0. In each recursion, the algorithm calculaigs

numbers need to be updated, adddateDeleteis applied for €very nodew in V.. Here X, denotes the sum of the
to update the core numbers of the nodes identifiedRy number ofw’s neighbors whose color is 1 and the number of

colorDelete The detailed description ddeletion is given as 'S neighbors whose core numbers are larger thawhere
follows. ¢ = min{C,, C,}. For a nodew € V., if X,, < ¢, then the

Igorithm colorsw by 0. The algorithm terminates if no node

eeds to be recolored. Clearly, the algorithm is invoked at
most|V.| times. The following theorem shows that a node in
ith a color 0 after Algorithni16 terminates is a sufficient
necessary condition for updating its core number.

Similarly, let V. be a set of nodes whose core numbers m
need to be updated. First, AlgoritHm 5 initializes the calbr
all the nodes to 0 and. to an empty set. Likewise, under
the edge deletion case, we also have to consider three cagég.v
Thatis,C, > C,, C, < C,, andC,, = C,. If C, > C,, only &N
the core number of the nodes @, may need to be updated.Theorem 3.3:Under the case of deletion of an edge (u,v), a
Under this case, the algorithm invok€slor(G, v, ¢) to find node in V, whose core number needs to update if and only if
the nodes inV, (line 6 in Algorithm[B). Then, the algorithm its color is O after Algorithm[6 terminates.
invokesRecolorDeletéG, c) to identify the nodes whose coreProof: First, we prove that if a nodev in V, whose
numbers need to be changed (line 7 in Algorithim 5). Finallgore number needs to be updated, then its color is O after
the algorithm invokedJpdateDeletG, c) to update the core Algorithm[@ terminates. By our assumption and Lenima 3.3,
number of such nodes (line 8 in Algorittrh 5). Similar processfter deleting an edgéu, v), C,, decreases by 1. This means
can be used for the’, < C, case. For th&’, = C, case, the thatC,, decreases te—1. That is to say hasc—1 neighbors
algorithm first invokesColor(G, u, ¢) to find the nodes iz, whose core numbers are larger than or equaktd. Suppose
(line 16 in Algorithm[3). Then, the algorithm has to handl¢hat the color ofw is 1 after the algorithm terminates. This
two different cases. First, if. can reachy, then the coloring implies thatX,, > c. Recall thatX,, denotes the sum of the
algorithm can also find the nodesd@n, (in this casey’s color number ofw's neighbors whose core numbers are lager than
is 1, line 22 in Algorithn{®). Second, if cannot reach (v's and the number ofv’s neighbors whose color is 1. Note that
color is 0), then the algorithm invoke&3olor(G, v, ¢) to find a node with color 1 suggests that its core number equats to
the nodes inG, (line 19 in Algorithm[3). After this process, As a result,w has at least neighbors whose core numbers
all the node inG,,, are recorded if,.. Then, we can invoke are larger than or equal g which is a contradiction.
RecolorDeletdG, ¢) and UpdateDeletdG, ¢) algorithms to Second, we prove that if a node in V, is recolored by 0
update the core number of the nodeslin Below, we give after Algorithm[® terminates, thei,, must be updated. After
the detailed descriptions &tecolorDeleteand UpdateDelete deleting an edgéu, v), we construct an induced subgraph,
respectively. which is denoted a&' = (V, E), by the nodes i/, and the

Similar to the edge insertion case, after invoki@glor, nodes whose core numbers are larger thaxote that the core

number of the nodes il\V is smaller thar. Therefore, they
do not affect the core number of the nodesVin If a node
w € V. with a color 0 after Algorithn{l6 terminates, then
X, < c. This suggests that the node in G has at most
¢ — 1 neighbors. By Definitiof_2]1¢+ at most belongs to the Fig. 4. A toy induced core subgraph.
(c — 1)-core. By Lemmd_3]3, the core number of any nodes

in G decreases by at most 1 after deleting an edge. Therefq{g\,,exv — 2. Clearly,C,, cannot increase to 3, thereby we
the core number of the nodes with color O decreases by 1, pruaeul. !

This completes the proof. _ . _ - In effect, after removingw, for the nodes that cannot be
UpdateDeletewhich is depicted in Algorithn7 is used t0ygachable fromu, and v, in the induced core subgraph can
update the core number of the noded/inwith color 0 toc—1, gj50 pe pruned. Let us consider a toy induced subgraph shown
because only the core numbers of those nodes need to decrﬁ{:\ﬁgg_m_ Suppose that the induced subgraph can be pagition
by 1 z?\fter the coloring and recoloring steps. The correstoés g three partsS;, w, andS». Further, we assume that both
Deletion can be guaranteed by Theorem|3.1 and Theérem 3,3. anq 4, are in S;, and X,, = ¢. Recall that after inserting
By a similar analysis as the edge insertion case, the tirgg edge(uo, vg), if X, = c, then C,, is unchanged. By

complexity of Deletion(G, u, v) is O(|Ve| >, cv. Du)- The | emma3®,w will not affect the core numbers of the nodes

w

following example explains howeletion works. in Sy. As a consequence, the core numbers of the nodss in
Example 3.4: Let's consider the graph depicted in F[g. 3cannot be increased, and we can safely prune all the nodes in
Suppose that we delete the edgg, v1). SinceC,,, = C,,, = S2. More formally, we give a pruning theorem as follows.

¢ = 3, the Deletion algorithm first invokesColor(G, vs, 3), Theorem 3.4: Given a graph G and an edge (uq, vo). After

which results inV. = {vs}. Clearly, the color oby is O after jnserting an edge (uo, vo) in G, for anodew € V, and X,, <
this process ends. Hence, the algorithm invoBer (G, vio, ¢+ 1, we have the following pruning rules.

3), which leads toV, = {vs,v10,v9, v2, v15}. After this pro-
cess, all the nodes il are colored by 1 and other nodes are
colored by 0. Then, the algorithm invok&ecolorDeletd,

3). At the first recursion, sinceX,, = 2, vg is recolored
by 0. Similarly, v1g, v9, v, and vig will be recolored by 0 that every path from uo to u in G, must go through w
at the first recursion. At the second recursion, the algarith can be pruned. ’

terminates because no node needs to be recolored. Therefore Cus = Cyy (I8, Vi = Viguu,), then for any node

gll the nodes inl, are recolored by 0. Finally, the algorithm u € V. that every path either from u to or from v, to
invokes UpdateDelet¢G, c) to decrease the core number of Gusw, MUSE GO through w can be pruned
uoJvg .

all the nodes inl. to 2. = Proof: We prove this theorem under the caSg, = C,,,
and similar arguments can be used to prove the other two
B. Pruning strategies cases. After inserting an eddeg,vy), by Lemmal 3B, the

. . . . core number of every node . increases by at most 1. As a
As analysis in the previous subsection, the time complexi g .) . .
. result, after an edgéu, vy) insertion, for a nodev in V,, if

of our Insertion and Deletion algorithms depend on the size < ¢+ 1. thenC, will not increase.C’,. does not change
of V.. In this subsection, to further accelerate our algorithms," ¢ ! w - 9

we devise two pruning technigues, namalypruning andy - implying thatw is still in the c-core after inserting an edge

pruning, to remove the nodes ii. whose core numbers are(uo’vo)' Clearly, it does not affect those nodeslip whose
definiteI’y unchanged given the graph is updated core numbers will increase ©+ 1. Therefore, we can safely

remove the nodev from V.. After removingw, for any node
X-pruning: By Lemma[3.1, for a nodev, X,, is an upper u € V,\{w} that cannot be reached from or v,, we also
bound of C,,. Here we make use of such upper bound tean safely remove it fron¥,. The reason is because only the
develop pruning technique. We refer to it&spruning. Below, core number of the nodes that are reachable fugror v, may
we discuss theX-pruning technique over the edge insertiomeed to be updated. As a consequence, for any modée/,

o If Cyy > C,, (i, V. =1V,,), then for any node u € V..
that every path from vy to u in G,, must go through w
can be pruned.

o If Cy, < Cy, (e, V. =1V,,), then for any node u € V.

and edge deletion cases, respectively. such that every path either fromy to v or from vy to . must
First, we consider the insertion case. Assume that we insgd throughw can be pruned. This completes the proof.0
an edg€gug, vp). Also, we need to consider three caseg, > Based on Theorein 3.4, we can prune certain nodes in the

Cuoy Cuy < Cuy, Cuy = Cy,. Below, we mainly focus on coloring procedure (th€olor algorithm). We present our new
describing theX -pruning rule under the case 6f,, = C,,, coloring algorithm withX -pruning in Algorithm[8. The new
and similar descriptions can be used for other two casesa Faroloring algorithm is still a DFS algorithm. The algorithmsti
nodew in V,, after inserting an edg@u, vo), if X,, equals to calculatesX,, when it visits a node (line 2-5 in Algorithni38).

¢, thenC,, cannot increases to+ 1. As a result, we can safely Based on Theorem 3.4, the DFS algorithm can early terminate
prunew. For example, consider an graph in Hig. 3. Assumiéit visits a nodeu such thatX, < c. The reason is that we
that we insert an edgévs,v1p). Then, for the node;, we can safely remove such a nodefrom V, by Theoren[3}4.

Algorithm 8 void XPruneColor(G, u, c)
1: visited() «+ 1;
2: X, <0
3: for each nodev € N(u) do

Algorithm 9 XPruneDeletion(G, u, v)

Input: GraphG = (V, E) and an edgéu, v)
Output: the updated core number of the nodes

1: Initialize visited@) < 0 for all nodew € V;

4. if Cy > cthen e

5: Xy — Xo + 1 2: Initialize color@) < 0 for all nodew € V;

6: if X, > cthen 3 Ve O

7: if color(w) = 0 then 4: ComputeX,;

s: Ve Ve U{u}; 5: Qomputer;

9: Color(u) = 1’ 6: |f Cu > C/U then

10: for each nodew € N(u) do [Co;

1L if visited@w) = 0 and C,, = ¢ then 8 if X, <cthen

12: XPruneColor(G, w, ¢); o: Color (G, v, ¢);
10: RecolorDeletdG, c);
11 UpdateDeletéG, c);
12: if C, < C, then

Hence, the algorithm does not need to recursively visits iﬁf
neighbors. IfX,, > ¢, the algorithm adds node into V. ;:
and color it by 1 (line 7-9 in Algorithni]8). And then, theis:
algorithm recursively finds:'s neighbors inV, (line 10-12 17
in Algorithm[8). To implement this pruning strategy, we cais:
replace theColor algorithm with theXPruneColor algorithm 19f
in Algorithm . o1-

Second, we consider the edge deletion case. Suppose that

we delete an edg@:, vo) from graphG and the core numbers 23:
of all the nodes irV. arec. We consider three different cases?“f
(1) Cuy > Coy (2) Cuy < Cuy, and (3)Cy, = Cy. For o0
Cuo > Cy,, We only need to find the nodes @,,, because 7.
the deletion of edgéu,, vg) does not affect the core numbenrs:
of the nodes irz,,,. Recall that after deleting an edge, the cor@®:
number of the nodes i, decreases by at most 1. Thereforegéof
after deleting an edgéuo, vy), if X,, > ¢, thenwy's core lj
number will not be changed. This is becausg, > c implies 33
vg has at least neighbors whose core numbers are larger thama:
or equal toc. That is to say, the core humber of nodgis 35:

c <+ Cy:

if X, <cthen
Color(G, wu, c);
RecolorDeletdG, c);
UpdateDeletéG, c);

if ¢, = C, then

c <+ Cyu:
if X, <candX, < cthen
Color(G, wu, c);
if colorw) = 0 then
Initialize visited) «+ 0 for all nodew € V;
Color(G, v, ¢);
RecolorDeletéG, ¢);
UpdateDeletdG, c);
else
RecolorDeletdG, ¢);
UpdateDeletéG, c);
if Xy <candX, > cthen
Color(G, u, c);
RecolorDeletdG, c);
UpdateDeletéG, ¢);
if X, >candX, < cthen
Color(G, v, ¢);
RecolorDeletdG, c);

still c. Sincevy’s core number does not change, we do ng:
need to update the core number of the node&:jp. As a
result, under the case @f, > C, in Algorithm[3 (line 4 in
Algorithm [H), we can first computé&,. If X, > ¢, we do
nothing. Symmetrically, forC,, < C,,, we have a similar Xvs < ¢ andX,,, <c¢, we need to update the core number of
pruning rule as the case @f,, > C,,. Also, for C,, = the npdes inG,, andG,,,. After invoking Algorithm[3, we
C,,, we first computeX,, and X,,. If X,, < c, then we €&n find that the core number of nodgss, v19, vg, V2, V18 }
need to update the core number of the nodesij. Also, decreases to 2. =

if X,, < ¢, we update the core number of the nodegiy) . Y-pruning: For a nodew, Y,, is a lower bound ofC,, by

For the case tha,, > c and X,, = ¢, we do nothing, emmal3.1l. Here we develop pruning technique using such
because no node’s core number needs to be updated. If IS : PP 9 q g

worth mentioning thatX,,, and X,, are computed based on ovl\jﬁirnbound, and we refer to this pruning techniqueyas
the core numbers of the nodes that have not been updated. fhe'ng: . . .

detailed algorithm withX-pruning for the edge deletion case o illustrate our idea, let us reconsider the toy inducec cor
is outlined in Algorithn[®. We can use th&PruneDeletion subgraph shown in Figl 4 which includes three pafis, u,

algorithm to replace théeletion algorithm. The following and 5. Suppose that we insert or delete an e(ﬂg@ U(.J)'
. : . Below, we focus on the case ¢f,, = C,, = ¢, and similar
example illustrates how this algorithm works.

descriptions can be used for other two cases. Further, we
Example 3.5:Let us reconsider the example given in Fi§. 3assume that both, and vy are in Sy, andY,, = c. First,
Assume that we delete the dashed line (edgevio)). In this we consider the insertion case, i.e., an efigg v) insertion.
case, the core number of andwvg is 3. Thatis,c = 3. Then, In this case, we claim that the core number of the nodes in
we can calculate thaX,, = 2 and X,,, = 2. Becausess has S, are unchanged. The reason is as follow. Leéh S; be a

two neighbors+{s; andvg) whose core number is 4 angy, has neighbor node ofv. Then, for any neighbat, we havey, < ¢

two neighbors ¢y andv;s) whose core numbers are 3. Sincéif not, v andw will be in a (¢ + 1)-core). This implies that

UpdateDeletdG, c);

for each neighbor ofu in S5, the core number cannot increasé\lgorithm 10 void YPruneColor(G, u, c)
to ¢+ 1 after inserting(uo, vo). As a result, the core numbers 1: Visited(u) < 1;

of all the nodes inS, will not change after insertingug, vo). ; i C‘;"‘i(“‘)/:uo{g‘f“

Secoqd, for the deletion case, if we d_elete an edgevo), Cglor(u)°: 1

C., still equals toc becausew hasc neighbors whose core 5.y, « o:

numbers are larger than(Y,, = ¢). Clearly, the core numbers 6: for each nodev € N(u) do

of the nodes inS, are also unchanged. Put it all together,7: if Ciw, > cthen

under both edge insertion and edge deletion cases, the ccgr:eif v ?c(_thglfl—l— L

numbers of all the nodes i, will not change, and th(_areby 10: for each nodew € N(u) do

we can safely prune the nodesSn. Formally, forY-pruning, 11 if visited@w) = 0 and C,, = ¢ then

we have the following theorem. 12: YPruneColor(G, w, ¢);

Theorem 3.5: Given a graph G and an edge (ug, vg). After
inserting/deleting an edge (ug, vo) in G, for a node w € V,

if Y., = ¢, then we have the following pruning rules. Since the nodes i, have at least a degree+ 1 w.r.t. graph
o If Cy, > Cy, (i, V. =V,,), then for any node w € V, G, they also have at least a degreel w.r.t. graphG*. Third,
and u # w that every path from vy to « must go through we consider the node. On the one hand, we claim that
w can be pruned. has at least one neighbor 3. Supposev has no neighbor in
o If Cy, < Cy, (ie, V. =V,,), then for any node u € V.. V%, then the nodes i, whose core numbers cannot increase
and u # w that every path from uo to u must go through to ¢ + 1 after inserting an edgéug, vo) by the k-core update
w can be pruned. theorem, which contradict to our assumption. Henedas at
o If Cyy = Cy, (i€, Vo = Viyuw,), then for any node least one neighbor ifv2. On the other hand, sincg, = c,
u € V. and u # w that every path either from ug to © w hasc neighbors whose core numbers are larger thafs
or from vy to w must go through w can be pruned. a result,w has at least a degreet 1 w.r.t. graphG*. Put it

Proof: We prove this theorem under the casg, = C.,, and all together, all the r_10.d_es (0 _have at least a degreet 1.
for other cases, we have similar proofs. Below, we discub9te that by our definition the induced subgragh does not
the proofs for the edge insertion and edge deletion casé@ntain nodeu, and vy. Consequently, before inserting the
respectively. edge(uo,vo_), the core number of the nodes &* at least
First, we prove the edge insertion case. Lét. be a set ¢+ 1- Thatis to say, the nodes i, has core number + 1
of nodes whose core numbers are larger thaAssume that before inserting the edgeuo, vo), which is a contradiction.
we removew from V.. Then, after removings, we denote This completes the proof for the edge insertion case.
a set of nodes if, that cannot be reachable either fram For the edge deletion case, after deleing an gdgevy),
or from v, as V. Then, after inserting an edde, vo), we the core number of all the nodes) decreases by at most
consider two cases: (1)’s core number will not change, andl according to Lemm&_3.3. Hence, if a nodec V. has
(2) w's core number increases by 1. The first case Suggegtsz c, thenw’s core number will not decrease. Slmllarly, let
thatw is still in the c-core, and we can safely remowefrom V> be a set of nodes whose core numbers are largerdhan
V.. Therefore, for the nodes il;, we can also remove themAnd assume that we removefrom V... Then, after removing
from V., because only the core number of those nodes that areWe denote a set of nodes In. that cannot be reachable
reachable fromu, or vy may need to be updated. Second, weither fromu, or from vy as V4. Now consider a subgraph
consider the case that's core number increases by 1 aftef+* induced by the node®; | J{w} [JVs.. We claim that all
inserting an edgéduo, vy). We denote a subset of nodes irthe nodes in such subgraph have at least a degréest, for
V. whose core numbers increase by 1 Tasafter inserting the nodes inV~. ., their degree is clearly larger thanw.r.t.
an edge(ug, vo). Further, we denote a subset of noded/in G* because their core numbers are larger thaBeconduw’s
whose core numbers need to increase by Wasln other degree is at leastw.r.t. G*, becausev hasc neighbors whose
words, Vs = V; ﬂf/c. Clearly, the theorem holds if; = (. core numbers are larger than Third, for the nodes in/,
Now we prove this by contradiction. Specifically, we assuri@€ir degree is also at leastw.r.t. G*. The rationale is as
that Vs # (). By definition, after inserting an eddeo, vo), the follows. By definition, no edge iz goes through the nodes
induced subgraph by the nodeslinlJ V. forms a(k +1)- in Ve\{V1U{w}} and the nodes ift;. Since the core number
core. We denote such subgraph(ds= (V', E'), wherey’ = of the nodes irV; is ¢, the nodes ity has at least neighbors
‘7CUV>c- Clearly, all the nodes i’ has at least a degreeW..t. G*. Consequently, the core number of the nodes/in
¢ + 1. Now consider a subgrapt* induced by the nodes is still ¢ after removing the edgéuo, vo). This implies that
in Vo J{w} | V-.. We claim that all the nodes i6* has at the nodes iy, can be pruned, which completes the proof for
least a degree + 1. First, for the nodes % ., their degree the edge deletion case. O
is obviously greater than+ 1 w.r.t. G*. Second, we consider Based on Theorefn 3.5, we can implement ¥igruning
the nodes inV,. By definition, in graphG’, there is no edge strategy in the coloring procedure. We present our new €olor
between the nodes if; and the nodes i\ {V>J{w}}. ing algorithm withY -pruning in Algorithm[I0, which is also

10

a DFS algorithm. In particular, Algorithfi L0 first colors aflgorithm 11 void XYPruneColor (G, u, uq, c)
nodew by 1 and adds it intd/, when it visitsu (line 2-4 1: visited) « 1;

in Algorithm[I0). Then, the algorithm calculat&s (line 5-8 % Xu ¢ 0

. . . 3 Y, 0

in AI_gorlthm [10). If Y, = then the algorithm can early ;. (- coch nodaw € N(u) do

terminate. The reason is because the nodes that cannot e it ¢, > ¢ then

reachable fromu, or vy after removingu can be pruned e: Xy Xu+1;

by Theoren(3. IfY, < ¢, the algorithm recursively finds 7: if u# uo andCy > c then

w's neighbors inV, (line 9-12 in Algorithm[I0). Below, we & Yo <= Yu+ 1

. . ; . 9: if X, > cthen
discuss how to integrate théPruneColor algorithm into the 5"~ Y. < core=0then

Insertion and Deletion algorithm. 11: for each nodev € N(u) do
First, to integrate theYPruneColor algorithm into the 12: if visited@w) = 0 andC\, = ¢ then
Insertion algorithm, we need to replace ti@olor algorithm 13: XYPruneColor (G, w, uo, c);

with the YPruneColor algorithm as well as handle the fol-14: if color() = 0 then

lowing special case. That is, if,, = C,, = ¢, Y4, = ¢ 16; (‘:/(C)I;(uv)cfl{_u},

andY,, < ¢, we need to invokeYPruneColor(G, v, c). If ’

Cuy = Cyy = ¢, Yy, < candY,, = ¢, we need to invoke

YPruneColor(G, ug, ¢). The reason is because we need to _ _ . .
allow the DFS algorithm to go through the edge, vo) in _X—prum_ng andY -pruning, calledXYPruneColor, is outlined
order to add both,y andwv, into V.. If C,, = C,, = ¢ and in Algorithm [8. . o

Y,, = Y, = ¢, then we have to invoke botfPruneColor (G, For the edge delet!on case, we can easily mtegrat_e both
uo, ¢) andYPruneColor(G, v, ¢) so as to add both, anduv, X-pruning andY—prumng_wa t_he follo_wmg_ two steps. First,
into V.. Second, to integrate théPruneColor algorithm into W€ replace th€olor algorithm inDeletion with the YPrune-
the Deletion algorithm, we only need to replace ti@olor Color algorithm. Second, we integrate thepruning rule into

algorithm with theYPruneColor algorithm. The following Fhe Deletion allgorith.m. First, we replace théo!or algorithm
example illustrates how théPruneColor algorithm works. in XPrunDeletion with the YPruneColor algorithm. Second,

) o we use thisKXPrunDeletion algorithm to replace th®eletion
Example 3.6: Consider an example in Figl 3. For the edgﬁlgorithm.

insertion case, we assume that the efgeuvy) is the inserted
edge. Sincevs = vigp = ¢ = 2 andY,, = 2, we invoke
YPruneColor(G, vy, 2). The algorithm first colors,, by 1 In this section, we conduct comprehensive experiments to
and adds it intdl/.. Then, the algorithm colors nodg by 1 evaluate our approach. In the following, we first describe ou
and adds it intd/,. SinceY,, = 2, the recursion terminates atexperimental setup and then report our results.

vg and returns tovig. Similarly, when the algorithm visits
node v9, the recursion also terminates &5, = 2. As a

result, the nodev; is pruned. Finally, we can obtai. = piferent algorithms: We compare 5 algorithms. The first
{010, Vs, v9, U3, v1s, V11, V12, v13} after the algorithm ends. — 4igorithm is the baseline algorithm, which invokes thén +

For the edge deletion case, we also assume that we delet?n%nalgorithm to update the core number of nodes given the
edge(vg_, vio) from G. _Under this case, we ha\“? = V10 = graph is updated [20]. We denote this algorithm as algorithm
¢ = 3. Since no node irv;. hasy,, = c, theY'-pruning cannot g The second algorithm is our basic algorithm without
prune any node. Suppose that the edgg vio) is deleted. o ning strategies, which is denoted as algorithm N. Thelthi
Then, we havey = v;o = ¢ = 2. Under this case, assume thagqqithm is our basic algorithm withX -pruning, which is
we further delete an eddey, v10). Then, we can find that the genoted as algorithm X. The fourth algorithm is our basic
setV.. contains nodeguy, vz, v1, V10, Vs, V11, V12, v13}. SINC@ gigorithm with Y-pruning, which is denoted as algorithm Y.
Y, = ¢ =2, the nodev; can be pruned by thePruneColor tpe |ast algorithm is our basic algorithm with bakfpruning
algorithm. U andY-pruning, which is denoted as algorithm XY.

IV. EXPERIMENTS

A. Experimental setup

Combination of X-pruning and Y-pruning: Here we dis- Datasets: We collect 15 real-world datasets to con-
cuss how to combine botlX -pruning andY-pruning for duct our experiments. Our datasets are described as fol-
edge insertion case and edge deletion case, respectialy. IBws. (1) Co-authorship networks: we download four
edge insertion case, we can integrate bathpruning and physics co-authorship networks from Stanford network
Y -pruning into the coloring procedure. Specifically, in thelata collections [19] which are HepTh, HepPh, As-
coloring procedure, when the DFS algorithm visits a nage troph, and CondMat datasets. In addition, we also ex-
we calculate bothX,, andY,. Then, we use theé(-pruning tract a co-authorship network from a subset of the DBLP
rule to determine the color of node, and make use of dataset \Www.informatik.uni-trier.de/ ~ley/db)
both X-pruning andY -pruning rules to determine whethemwith 78,649 authors. (2) Online social networks: we col-
the algorithm needs to recursively visit$ neighbors or not. lect the Douban Www.douban.com) dataset from ASU
For edge insertion, the detailed coloring algorithm withtbo social computing data repository [24], and collect the

11

www.informatik.uni-trier.de/~ley/db
www.douban.com

TABLE |

SUMMARY OF THE DATASETS XY, which is our basic algorithm with bott -pruning and
Name | #nodes | #edges | Ref. | Description Y-pruning, followed by algorithm X, algorithm Y, algorithm
HepTh 9,877 | 51,946 | [19] ~ N, and algorithm B. Over all the datasets used, the maximal
:stlfr’shh %392 ggg'%g Hg} Cor;z:*v%?lgh'p speedup of our algorithms is achieved in Gowalla dataset
Condﬁ/lat 23:133 186:878 [19] (the last row in Tabld]Il). Specifically, in Gowalla dataset,
DBLP 78,649 | 382,294 | website algorithm XY, algorithm X, algorithm Y and algorithm N
Douban 154,908 | 654,324 [24] reduce the average update time of algorithm B by 101.8,
Epinions 75,872 | 396,026 [19] Online 81.7, 62.3, and 56.2 times, respectively. The minimal spped
Slashdotl | 77,360 | 826,544 | [19] social of our algorithms is achieved in HepTh dataset (the first
Slashdotz | 82,168 | 867,372 | [19] networks row in Table[). In particular, in HepTh dataset, algorithm
Wikivote 5,311 142,066 [19] . . .
EmailEnron| 36,602 | 367,662 [19] Communication XY, algorithm X,_algorlthm Y_ and algorithm N reduce the
EmailEuAll | 265,182 | 224,372 [19] networks average update time of algorithm B by 3.2, 3.0, 2.3, and 2.2
Gnutella 62,586 | 153,900 [19] P2P networks times respectively. In general, we find that the speedup of ou
Brightkite 58,228 | 428,156 | [19] Location based algorithms increases as the graph size increases. Therisaso
Gowalla 196,501| 1,900,654] [19] | social networks pecause the time complexity of the baseline algorithm isalin

w.r.t. the graph size for handling each edge insertiontideie
Epinions {(vww.epinions.com), two Slashdot datasetsinstead, the time complexity of our algorithms is indeperide
(www.slashdot.org), and the Wikivote dataset fromof the graph size, and it is only depends on the size of the
Stanford network data collections [19]. (3) Communicatioinduced core subgraph. Additionally, over all the datgsets
networks: we employ two Email communication networks;an observe that our basic algorithm with pruning techréque
namely EmailEnron and EmailEuAll, from Stanford networls significantly more efficient than the basic algorithm it
data collections [19]. (4) P2P networks: we download a P3ifuning techniques. Below, we discuss the effect of #e
network (Gnutella) dataset from Stanford network dataesll pruning andY -pruning techniques.
tions [19], which are originally collected from Gnutella9L
(5) Location-based social networks (LBSNs): We downloathe effect of pruning: Here we investigate the effective of
two notable LBSNs datasets from Stanford network datur pruning techniques. From Talilé I, over all the datasets
collections [19]. For all the datasets, if the graph is ad#d we can see that th& -pruning strategy (algorithm X) is more
graph, we ignore the direction of the edges in the graph. Thffective than thé& -pruning strategy (algorithm Y) according
detailed statistical information of our datasets are desdrin to average deletion/insertion/update time. For exampie, i
Table[l. HepTh dataset (row 1 in Tablel Il), algorithm X reduces the

Experimental environment: We conduct our experiments@verage deletion time, the average insertion time, and the
on a Windows Server 2007 with 4xDual-Core Intel XeoRVerage update time, over algorithm N by 96.3%, 10%, and
2.66 GHz CPU, and 128G memory. All the algorithms ard®-8%, respectively. However, in HepTh dataset, algorithm

implemented by Visual C++ 6.0. reduces the average deletion time, the average insertios i
. and the average update time, over algorithm N by 6%, 3.1%,
B. Resillts for single edge updates and 4.3%, respectively. This result indicates that the tmmd

For all the experiments, we randomly delete and insert 500 the Y'-pruning is stronger than the condition of thé-
edges in the original datasets. After inserting/deletingdge, pruning in many real graphs. Recall that by Theotem 3.5, if
we invoke 5 different algorithms to update the core number tifere is at least one nodewith core number’, andY, = C,
the nodes, respectively. For all the algorithms, we reched tin the induced core subgraph, then thepruning strategy
average time to update the core number of nodes over 500 edg®/ prune some nodes. The conditionYofpruning strategy
insertions and 500 edge deletions. Specifically, we redoekt (Y, = C,) is strong, because if a node hé&% neighbors
guantities, namely average insertion time, average deletiwhose core number is larger théfy, then this node may have
time, and average update time. We calculate the average ins@mother additional neighbor whose core number is larger tha
tion (deletion) time by the average core number update time@,, thus resulting in that the node is in a (C,, + 1)-core.
different algorithms over 500 edge insertions (deletiofifle Instead, indicating by our experimental result, the caodit
average update time is the mean of average insertion timlethe X-pruning strategy X,, < C, + 1) may be easily
and average deletion time. To evaluate the efficiency of osatisfied in real graphs. This result also implies that theeto
algorithms (algorithm N, algorithm X, algorithm Y, algdiin bound of the core number in Lemna3.Y,) is typically
XY), we compare them with the baseline algorithm (algorithmery loose for many nodes in real graphs. In addition, we
B) according to the average insertion/deletion/update ti@ur can observe that the algorithm with bo#-pruning andY -
results are depicted in Tadlg Il. pruning strategies is more efficient than the algorithm with

From Tabldl, we can clearly see that all of our algorithmsnly one pruning strategy over all the datasets. Genenady,
(algorithm N, algorithm X, algorithm Y, algorithm XY) per- find that theX-pruning strategy under the edge deletion case
form much better than the baseline algorithm (algorithm B3 more effective than itself under the edge insertion case.
over all the datasets used. The best algorithm is the dhgorit Similarly, theY -pruning strategy under the edge deletion case

12

www.epinions.com
www.slashdot.org

TABLE Il
AVERAGE UPDATE TIME OF DIFFERENT ALGORITHMYIN LAST COLUMN, SRDENOTES THE SPEEDUP RATIO OKY). ALL TIME IS MILLISECOND.

Time (ms) Average deletion time Average insertion time Average update time

B [N[X [Y [XY B | N [X [Y [XY B | N[X] Y [XY] SR
HepTh 238 [106] 054]1.00] 048] 280 [1.32] 1.20] 128] 114 259 [119]087]1.14]081] 3.2
HepPh 4,12 | 258 | 1.30| 158| 1.20| 530 | 146| 1.32| 140|120 471 | 202|1.31|149| 1.20| 3.9
Astroph 9.14 | 1.30| 0.36| 1.12| 0.32| 9.92 | 156| 1.40| 142 | 1.40| 953 | 143|0.88| 1.27| 0.86| 11.1
CondMat 5.94 152|064 | 1.30| 060| 624 | 150| 140| 1.36| 1.32| 6.09 151 1.02| 1.33| 0.96| 6.3
DBLP 12.08 | 1.68 | 1.26 | 1.48| 1.22 | 1222 | 1.52| 142 | 144 | 1.38| 12.15 | 1.60| 1.34| 146 | 1.30| 9.3
Douban 2138 | 458 2.14| 328 1.32| 21.16 | 262 | 2.02| 240 | 2.00| 21.27 | 3.60| 2.08| 2.84| 1.66 | 12.8

Epinions 13.00 | 2.06 | 0.68 | 1.62 | 0.64 | 1394 | 2.04| 1.56 | 1.80 | 1.50 | 13.47 | 2.05| 1.12 | 1.71 | 1.07 | 12.6
Slashdotl 2253 | 412 | 143| 2.06| 1.38| 20.37 | 280 | 1.73 | 1.88 | 1.32 | 20.45 | 3.46| 1.58 | 1.87 | 1.35| 15.1
Slashdot2 2436 | 485| 1.56| 213 | 154 | 2232 | 293| 1.82| 205| 1.64| 23.34 | 3.73 | 1.69| 2.09| 1.59 | 147
Wikivote 364 | 132|050| 050| 048| 406 | 1.78| 1.70| 1.76 | 1.42| 385 | 1.55| 1.10| 1.13| 0.95| 4.1
EmailEnron| 10.80 | 2.40| 090 | 1.82| 0.86 | 10.60 | 292 | 2.70| 2.82 | 2.68 | 10.70 | 266 | 1.80 | 2.32 | 1.77| 6.0
EmailEuAll | 13.06 | 2.14 | 1.24 | 1.64| 1.22 | 1252 | 1.74| 152 | 1.70 | 1.24 | 12,79 | 1.94| 1.38 | 1.67 | 1.23| 10.4
Gnutella 1032 | 2.64 | 158 | 1.66| 1.38 | 12.08 | 2.18| 2.06 | 2.12| 1.82| 11.20 | 241 | 1.82| 1.89| 1.60| 7.0
Brightkite 13.60 | 1.56 | 0.64| 1.32| 0.54 | 1364 | 1.64| 1.32| 1.34 | 1.32| 1362 | 1.60| 0.98 | 1.33 | 0.93 | 14.6
Gowalla 108.20| 2.10| 1.12| 1.82| 0.91| 107.52| 1.74| 1.52 | 1.64| 1.21 | 107.86| 1.92 | 1.32 | 1.73| 1.06 | 101.8

is more effective than itself under the edge insertion case.
Taking the Gnutella dataset as an example (row 13 in Tahle II)
for the edge deletion case, algorithm X reduces the average
deletion time over algorithm N by 143.75%, while for the edge
insertion case, algorithm X cuts the average insertion time
over algorithm N only by 5.8%. For the edge deletion case,
algorithm Y reduces the average deletion time over algarith

N by 59%, while for the edge insertion case, algorithm Y
reduces the average insertion time over algorithm by 2.8%.

0.5 1 15 2 25

Number of edges x 10"
C. Resaults for a batch of edge updates Fig. 5. Speedup ratio vs. graph size.

In previous experiments, we have shown the performance of
our algorithms for core maintenance in a graph given thelgrap
is updated by an edge insertion or deletion. These algosithm
are extremely useful tontinuously monitor the dynamlcs increases. This result implies that, for a batch of edge tgsda
of the core number of the nodes in time-evolving grap

Besides th h with ale ed date. h H ur algorithm is very efficient in large graphs with smallin
esides the graph with a singie edge update, nere we shge words, if the graph is very large and evolves slowlgnth
the performance of our algorithms in a dynamic graph giv

Bl algorithmi | i
r algorithm is more preferable. However, if the graph ig/ve
a batch of edges u_pdates. Assume. thqt the graphr € small and frequently varying, then the baseline algoritlsm i
updates at a time intervaht. To maintain the core number

) , . more efficient than our algorithm. Below, we show the speedu
of the nodes, we need to sequentially invoke our algorith 9 P P

(algorithm XY) r times. For the baseline algorithm (algorithmrrgtlo of our algorithm in large synthetic graphs.

B), however, we can invoke it one time to recompute the 4 eyajuate the speedup ratio of our algorithm in large
core pumber of all nodes. Since our XY algorithm is the be Paphs, we generate five large synthetic graphs based on a
algorithm for single edge updates, we only compare our X%ower-law random graph model [6]. Specifically, we produce
algorithm with algorithm B. _ _ five synthetic graphéq,, - - - , G5 with G; hasi million nodes
Now, let us focus on the last column in Table Il which ShoW§nd 5 x i million edges fori = 1,--- ,5. Then, we adopt the
the speedup ratio (SR) of algorithm XY over algorithm B fogame method used in our previous experiments to compute the
a single edge update. In generalyifs less than the speedupspeedup ratio of our algorithm. Fig. 5 shows that the redult o
ratio,.then our algorithm is more efficient than the baseli.rge-peedup ratio of our algorithm with different graph sizeorfir
algorithm for processing a batch of edge updates at a iy [we can see that the speedup ratio is greater than 4700
interval At. For example, in Gowalla dataset, the speedup ratjghen the graph size is 5 million nodes and 25 million edges.
of our algorithm is 101.8. As a result, if the graph has lea®ithtpat is to say, in such a graph,iifis smaller than 4700, then

101 edge updates, i.e:,< 101, then our algorithm is more o, aigorithm is more efficient than the baseline algorithm.
efficient than the baseline algorithm. Howeveryifs larger Generally, for a fixed graph size (from 1 million to 5 million

than the speedup ratio of our algorithm, the baseline alyori \,qes), if- is below the red curve in Figl 5, then our algorithm

is more preferable than our algorithm. As shown in Tdble lis more preferable than the baseline algorithm, otherwise t
the speedup ratio of our algorithm increases as the graph sizsejine algorithm is more efficient.

13

V. RELATED WORK investigating the threshold phenomenon of the existence of
k-core based on some specific random graph models.

The k-core decomposition in networks has been extensivelyFrom an algorithmic point of view, Batagelj and Zaversnik
studied in the literature. In [22], Seidman introduces the-c propose anO(n + m) algorithm for k-core decomposition
cept ofk-core for measuring the group cohesion in a networly general graphs [8]. Their algorithm recursively deletes
The cohesion of thé-core increases dsincreases. Recently, node with the lowest degree and uses the bin-sort algorithm
the k-core decomposition in graph has been successfully usedmaintain the order of the nodes. However, this algorithm
in many application domains, such as visualization of larggeeds to randomly access the graph, thus it could be ineificie
complex networks [7], [9], [4], [3], [25], uncovering thefor the disk-resident graphs. To overcome this problem, in
topological structure of the Internet [10], [5], [2], ansly of [12], Cheng et al. propose an efficiekicore decomposition
the structure and function of the biological networks [1T], algorithm for the disk-resident graphs. Their algorithmrkeo
[23], studying percolation in random graph [14], [15], aslwein a top-to-down manner that calculates thecores from
as identifying the influential spreader in complex netwd®][higher order to lower order. To make thecore decomposition
Below, we list some notable work on these applications. more scalable, in [21], Montresor et al. propose a distetut

In [7], Batagelj et al. propose to ugecore decomposition algorithm for k-core decomposition by exploiting the locality
to visualize the large graph. Specifically, they first pantit property of k-core. All the above mentioned algorithms are
a large graph into smaller parts using theore decomposi- focus onk-core decomposition in static graph except for [20].
tion and then visualize each smaller part by standard grapbr the dynamic graph, in [20], Miorandi and Pellegrini appl
visualization tools. In [9], based on tliecore decomposition, the O(n 4+ m) algorithm given in [8] to recompute the core
Baur et al. present a method for drawing autonomous systemsnber of the nodes when the graph is updated, which is
graph using 2.5D graph drawing. Their algorithm makes use dgarly inefficient. In the present paper, we propose a more
a spectral layout technique to place the nodes in the highefficient core maintenance algorithm in dynamic graphs. Our
order core. Then, the algorithm uses an improved directelgorithm are quite efficient, which is more than 100 times
forces method to place the nodes in e&cbore according to faster than the re-computation based algorithm.
the decreasing order. Alvarez-Hamelin et al. [4], [3] prepo VI. CONCLUSIONS
a visualization algorithm to uncover the hierarchical stue
of the network usingi-core decomposition. Their algorithm
is based on the hierarchical propertyietore decomposition.
More recently, Zhang and Parthasarathy [25] introduce
different notion, namely triangl&-core, to extract the clique-
like structure and visualize the graph. Unlike the tradiib
k-core, the trianglé:-core is the maximal subgraph that eac
edge of the subgraph is contained within at Igastiangles.
They also propose a maintenance technique for trialiglere.

In this paper, we propose an efficient algorithm for main-
taining the core number of nodes in dynamic graphs. For a
node u, we define a notion of induced core subgra@h,
which contains the nodes that are reachable froand have
the same core number as Given a graphG and an edge
@“})’ we find that only the core number of nodesaGh, or

» or G,u, may need to be updated after inserting/deleing
the edge(u, v). Based on this, first, we introduce a coloring
Since the trianglé-core is totally different fronk-core, their algonthm_to |dent|fy all of these nodes. Second, we devise

_rzil]erecolormg algorithm to determine the nodes whose core

maintenance tech.n_|qutle cannot be applied in our problem. .numbers definitely need to be updated. Finally, we update the
k-core decomposition is also successfully used for anadyzin

and modeling the structure of the Internet [10], [5], [2].rFoCore number of such_nodes by a linear algonthm. In add_|t|on,
example, in [10], Carmi et al. study the problem of ma ing- develop two pruning strategies, namélypruning andy’

p'e, o : Y P o bp Hruning, to further accelerate the algorithm. We evaluate o
the Intemet using the method bfcore decomposition. In [5], Igorithm over 15 real-world and 5 large synthetic datasets
Alvarez-Hamelin et al. investigate the hierarchies and- se he results demonstrate the efficiency of our alaorithm
similarity of the Internet using-core decomposition. Besides y 9 ‘
the Internet, thé:--core decomposition has also been applied to REFERENCES
analyze the structure and function of the biological neksor [1] M. Altaf-Ul-Amin, K. Nishikata, T. Koma, T. Miyasato, Y.Shinbo,

In [17], Kitsak et al. propose a method based on the notion of M. Arifuzzaman, C. Wada, M. Maeda, T. Oshima, H. Mori, and
S. Kanaya. Prediction of protein functions based on k-cofgotein-

k-core to find the molecular complexes in protein interaction protein interaction networks and amino acid sequenceSenome

networks. Altaf-Ul-Amin et al. [1] propose a technique for Informatics, 14, 2003.

predicting the protein function based brcore decomposition. [21 J. I Alvarez-Hamelin, M. G. Beiro, and J. R. Busch. Urstanding
L. edge connectivity in the internet through core decompmsitinternet

In [23], Wuchty and Almaas apply thecore decomposition to Mathematics, 7(1):45-66, 2011.

identify the layer structure of the protein interactionwetk. [3] J. I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, and A. §pignani. k-

In addition, the k-core decomposition is recently used to core decomposition: a tool for the visualization of largalsmetworks.

. CoRR, abs/cs/0504107, 2005.

identify the influential spreaders in complex network [18].[4] J. 1. Alvarez-Hamelin, L. DallAsta, A. Barrat, and A. Wpignani.

In [18], Kitsak et al. find that the nodes located in the high Large scale networks fingerprinting and visualization gsiine k-core

order core are more likely to be a influential spreader. Aeoth _decomposition. INIPS, 2005. -

. [5] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. ¥pignani. K-

line of research is to investigate titecore perCO|at|0n na core decomposition of internet graphs: hierarchies, sgiflarity and

random graph [14], [15], [11]. These studies mainly focus on measurement biaseslHM, 3(2):371-393, 2008.

14

(6]
(7]
(8]
El
[10]

[11]
[12]
(23]
[14]

[15]

[16]

[17]

(18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

A.-L. Barabasi and R. Albert. Emergence of scaling ind@am networks.
science, 1999.

V. Batagelj, A. Mrvar, and M. Zaversnik. Partitioning pach to
visualization of large graphs. I8raph Drawing, pages 90-97, 1999.
V. Batagelj and M. Zaversnik. An o(m) algorithm for cordecompo-
sition of networks.CoRR, ¢s.DS/0310049, 2003.

M. Baur, U. Brandes, M. Gaertler, and D. Wagner. Drawihg &s graph
in 2.5 dimensions. IrGraph Drawing, pages 43-48, 2004.

S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and Ehi6 A model of
internet topology using k-shell decompositioRNAS, 104(27):11150—
11154, 2007.

D. Cellai, A. Lawlor, K. A. Dawson, and J. P. Gleeson.cfitical point
in heterogeneous k-core percolatidPhysical review letters, 107.

J. Cheng, Y. Ke, S. Chu, and M. Dzsu. Efficient core decomposition
in massive networks. IhCDE, 2011.

J. Cohen. Trusses: Cohesive subgraphs for social mletanalysis.
Technique report, 2005.

S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. okec
organization of complex network$2hys. Rev. Lett., 96(4), 2006.

A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendesokedbootstrap)
percolation on complex networks: Critical phenomena andlowal
effects. CoRR, abs/cond-mat/0602611, 2006.

R. A. Hanneman and M. Riddléntroduction to social network methods.
Online book, 2005.

M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchk, H. E.
Stanley, and H. A. Makse. An automated method for finding md&
complexes in large protein interaction networl8MC Bioinformatics,
4, 2003.

M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchk, H. E.
Stanley, and H. A. Makse. Identification of influential sptess in
complex networksNature Physics, 6:888—-893, 2010.

J. Leskovec. Standford network analysis project. 2010

D. Miorandi and F. D. Pellegrini. K-shell decompositidor dynamic
complex networks. InNMOpt, 2010.

A. Montresor, F. D. Pellegrini, and D. Miorandi. Diditited k-core
decomposition. IlPODC, pages 207-208, 2011.

S. B. Seidman. Network structure and minimum deg8eeial networks,
5(3):269-287, 1983.

S. Wuchty and E. Almaas. Peeling the yeast protein netwdro-
teomics, 5, 2005.

R. Zafarani and H. Liu. Social computing data repositat ASU, 2009.
Y. Zhang and S. Parthasarathy. Extracting analyzing waisualizing
triangle k-core motifs within networks. IHCDE, 2012.

15

	I Introduction
	II Preliminaries
	III The proposed algorithm
	III-A The basic algorithm
	III-B Pruning strategies

	IV Experiments
	IV-A Experimental setup
	IV-B Results for single edge updates
	IV-C Results for a batch of edge updates

	V Related work
	VI Conclusions
	References

