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Abstract— The k-core decomposition in a graph is a fundamen-
tal problem for social network analysis. The problem ofk-core
decomposition is to calculate the core number for every nodein
a graph. Previous studies mainly focus onk-core decomposition
in a static graph. There exists a linear time algorithm for k-core
decomposition in a static graph. However, in many real-world
applications such as online social networks and the Internet, the
graph typically evolves over time. Under such applications, a key
issue is to maintain the core number of nodes given the graph
changes over time. A simple implementation is to perform the
linear time algorithm to recompute the core number for every
node after the graph is updated. Such simple implementation
is expensive when the graph is very large. In this paper, we
propose a new efficient algorithm to maintain the core number
for every node in a dynamic graph. Our main result is that
only certain nodes need to update their core number given the
graph is changed by inserting/deleting an edge. We devise an
efficient algorithm to identify and recompute the core number of
such nodes. The complexity of our algorithm is independent of
the graph size. In addition, to further accelerate the algorithm,
we develop two pruning strategies by exploiting the lower and
upper bounds of the core number. Finally, we conduct extensive
experiments over both real-world and synthetic datasets, and the
results demonstrate the efficiency of the proposed algorithm.

I. I NTRODUCTION

In the last decade, online social network analysis has
become an important topic in both research and industry
communities due to a larger number of applications. A crucial
issue in social network analysis is to identify the cohesive
subgroups of users in a network. The cohesive subgroup
denotes a subset of users who are well-connected to one
another in a network [16]. In the literature, there are a larger
number of metrics for measuring the cohesiveness of a group
of users in a social network. Examples include cliques,n-
cliques,n-clans,k-plexes,k-core,f -groups,k-trusses and so
on [13].

For most of these metrics exceptk-core, the computational
complexity is typically NP-hard or at least quadratic.k-core,
as an exception, is a well-studied notion in graph theory and
social network analysis [22]. Through-out the paper, we will
interchangeably use graph and network. Given a graphG, the
k-core is the largest subgraph ofG such that all the nodes in
the k-core have at least degreek. For each nodev in G, the
core number ofv denotes the largestk-core that containsv.
Thek-core decomposition in a graphG is to calculate the core
number for every node inG. There is a linear time algorithm,
devised by Batagelj and Zaversnik [8], to compute thek-core
decomposition in a graphG.
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Fig. 1. An example graph.

Besides the analysis of cohesive subgroup,k-core decom-
position has been recognized as a powerful tool to analyze
the structure and function of a network, and it has many
applications. For example, thek-core decomposition has been
applied to visualize the large networks [7], [4], to map, model
and analyze the topological structure of the Internet [10],[5],
to predict the function of protein in protein-protein interaction
network [17], [1], [23], to identify influential spreader in
complex networks [18], as well as to study percolation on
complex networks [15].

From the algorithmic perspective, efficient and scalable
algorithms fork-core decomposition in a static graph already
exist [8], [12], [21]. However, in many real-world applications,
such as online social network and the Internet, the network
evolves over time. In such a dynamic network, a crucial
issue is to maintain the core number for every node in a
network provided the network changes over time. In a dynamic
network, it is difficult to update the core number of nodes. The
reason is as follows. An edge insertion/deletion results inthe
degree of two end-nodes of the edge increase/decrease by 1.
This may lead to the updates of the core number of the end-
nodes. Such updates of the core number of the end-nodes may
affect the core number of the neighbors of the end-nodes which
may need to be updated. In other words, the update of the core
number of the end-nodes mayspread across the network. For
example, in Fig. 1, assume that we insert an edge(v8, v10)
into the graph, resulting in the degree ofv8 andv10 increase
by 1. Suppose the core number ofv8 andv10 increase by 1,
then we can see that such core number update leads to the
core number ofv10’s neighbors (v9, v18, v11) that may need
to be updated. And then the update of core number ofv10’s
neighbors will result in the update of core number ofv10’s
neighbors’ neighbors. This update process mayspread over
the network. Therefore, it is hard to determine which node in
a network should update its core number given the network
changes.
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To update the core number for every node in a dynamic
graph, in [20], Miorandi and Pellegrini propose to use the
linear algorithm given in [8] to recompute the core number for
every node in a graph. Obviously, such an algorithm is expen-
sive when the graph is very large. In this paper, we propose a
efficient algorithm to maintain the core number for each node
in a dynamic network. Our algorithm is based on the following
key observation. We find that only a certain number of nodes
need to update their core number when a graph is updated by
inserting/deleting an edge. Reconsider the example in Fig.1.
After inserting an edge(v8, v10), we can observe that only the
core number of the nodes{v8, v10, v18, v9, v2} updates, while
the core number of the remaining nodes does not change. The
key challenge is how to identify the nodes whose core numbers
need to be updated. To tackle this problem, we propose a
three-stage algorithm to update the core number of the nodes.
First, we prove that only the core number of the nodes that
are reachable from the end-nodes of the inserted/deleted edge
and their core numbers equal to the minimal core number of
the end-nodes may need to be updated. Based on this, we
propose a coloring algorithm to find such nodes whose core
numbers may need to be updated. Second, from the nodes
found by the coloring algorithm, we propose a recoloring
algorithm to identify the nodes whose core numbers definitely
need to be updated. Third, we update the core number of
such nodes by a linear algorithm. The major advantage of
our algorithm is that its time complexity is independent of the
graph size, and it depends on the size of the nodes found by
the coloring algorithm. To further accelerate our algorithm,
we develop two pruning techniques to reduce the size of the
nodes found by the coloring algorithm. In addition, it is worth
mentioning that our proposed algorithm can also be used to
handle a batch of edge insertions and deletions by processing
the edges one by one. Also, the proposed technique can be
applied to process node insertions and deletions, because node
insertions and node deletions can be simulated by a sequence
of edge insertions and edge deletions respectively. Finally, we
extensively evaluate our algorithm over 15 real-world datasets
and 5 large synthetic datasets, and the results demonstrate
the efficiency of our algorithm. More specifically, in real-
world datasets, our algorithm reduces the average update time
over the baseline algorithm from 3.2 times to 101.8 times
for handling a single edge update. For handling a batch of
edge updates, our algorithm needs to process the edge updates
one by one, while the baseline algorithm only needs to run
once for all edge updates. In the largest synthetic dataset (5
million nodes and 25 million edges), the results show that our
algorithm is still more efficient than the baseline algorithm
when the number of edge updates is smaller than 4700.

The rest of this paper is organized as follows. We give
the problem statement in Section II. We propose our basic
algorithm as well as the pruning strategies in Section III.
Extensive experimental studies are reported in Section IV,and
the related work is discussed in Section V. We conclude this
work in Section VI.

II. PRELIMINARIES

Consider an undirected and unweighted graphG = (V,E),
where V denotes a set of nodes andE denotes a set of
undirected edges between the nodes. Letn = |V | andm = |E|
be the number of nodes and the number of edges inG,
respectively. A graphG′ = (V ′, E′) is a subgraph ofG if
V ′ ⊆ V andE′ ⊆ E. We give the definition of thek-core
[22] as follows.

Definition 2.1: A k-core is the largest subgraphG′ of G such
that each node inG′ has at least a degreek.

The core number of nodev is defined as the largestk-core
that contains this node. We denote the core number of node
v asCv. It is worth noting that the nodes with a large core
number are also in the low order core. That is to say, the cores
are nested. For example, assuming a nodev is in a3-core, then
nodev is also in2-core,1-core and0-core.

Given a graphG, the problem ofk-core decomposition is to
determine the core number for every node inG. The following
example illustrates the concept ofk-core composition in graph.

Example 2.1: Fig. 1 shows a graphG that contains 18
nodes, i.e.,v1, · · · , v18. By Definition 2.1, we can find that
the nodesv3, · · · , v7 form a 4-core. The reason is because
the induced subgraph by the nodesv3, · · · , v7 is the largest
subgraph in which the degrees of nodes are lager than or
equal to 4. Similarly, the subgraph induced by the nodes
v3, · · · , v7, v14, · · · , v17 is a3-core, and the whole graphG is
a 2-core. Here we can find that the nodesv3, · · · , v7 are also
in the 3-core and2-core. 2

It is well known that thek-core decomposition in a static
graph can be calculated by aO(n+m) algorithm [8]. In many
applications such as online social networks, the graph evolves
over time. In this paper, we consider the problem of updating
the core number for every node in the graph given the graph
changes over time. In this problem, we assume that the core
numbers of all the nodes have been known before the graph
is updated. The potential change in our problem is that either
edge insertion or edge deletion may result in the core number
of a number of nodes that needs to be updated. Previous
solution for this problem [20] is to perform theO(n + m)
core decomposition algorithm to re-compute the core number
for every node in the updated graph. Clearly, such algorithmis
expensive when the graph is very large. In the following, we
mainly focus on devising more efficient algorithm fork-core
decomposition in a graph given the graph is updated by an
edge insertion or deletion. Our proposed algorithm can also
be used for processing a batch of edge updates. Moreover,
since node insertions and deletions can be easily simulatedas
a sequence of edge insertions and edge deletions respectively,
our algorithm can also be applied to handle node insertions
and node deletions.

III. T HE PROPOSED ALGORITHM

Let N(v) be the set of neighbor nodes of nodev, Dv

be the degree of nodev, i.e., Dv = |N(v)|. Then, we give
two important quantities associated with a nodev as follows.
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Specifically, we defineXv as the number ofv’s neighbors
whose core numbers are greater than or equal toCv, and
defineYv as the number ofv’s neighbors whose core numbers
are strictly greater thanCv. Formally, for a nodev, we have
Xv = |{u : u ∈ N(v), Cu ≥ Cv}| and Yv = |{u : u ∈
N(v), Cu > Cv}|. In effect, by definition,Xv denotes the
degree of nodev in theCv-core. The following lemma shows
thatCv is bounded byYv andXv.

Lemma 3.1: For every node v of a graph G, we have Yv ≤
Cv ≤ Xv ≤ Dv .
Proof: We denote the subgraphG′ = (V ′, E′) as theCv-
core. Obviously, nodev is in G′. By Definition 2.1, inG′,
nodev has at leastCv neighbors, and the core number of all
the nodes inG′ is at leastCv. In other words, the number
of v’s neighbors whose core numbers are larger than or equal
to Cv is at leastCv. By definition,Xv denotes such number.
Therefore, we haveCv ≤ Xv. In addition, by definition, we
clearly know thatXv ≤ Dv. ForYv ≤ Cv, we can prove it by
contradiction. SupposeYv > Cv, then nodev has more than
Cv neighbors whose core numbers are strictly greater than
Cv. By Definition 2.1, the core number of nodev should be
at leastCv + 1, which is a contradiction. This completes the
proof. 2

In the following, we give an example to illustrate the
concepts ofXv andYv.

Example 3.1:Consider the nodev9 in Fig. 1. By definition, the
core number of nodev9 is 2, i.e.,Cv9 = 2, and the degree ofv9
equals to 3, i.e.,Dv9=3. Nodev9 has three neighbors (v2, v7,
andv10) whose core number is greater than or equal to 2, and
has one neighbor (v7) whose core number is strictly greater
than 2. Therefore, we haveXv9 = 3 and Yv9 = 1, which
consists with Lemma 3.1. Similar results can be observed from
other nodes in Fig. 1. 2

Below, we define the notion of induced core subgraph.

Definition 3.1: Given a graphG = (V,E) and a nodev, the
induced core subgraph of nodev, denoted asGv = (Vv, Ev),
is a connected subgraph which consists of nodev. Moreover,
the core number of all the nodes inGv is equivalent toCv.

By Definition 3.1, the induced core subgraph of nodev

includes the nodes such that they are reachable fromv and
their core numbers equal toCv. Based on Definition 3.1, we
define the union of two induced core subgraphs.

Definition 3.2: For two nodesu andv and their corresponding
induced core subgraphGu = (Vu, Eu) andGv = (Vv, Ev),
the union ofGu andGv is defined asGu∪v = (Vu∪v, Eu∪v),
where Vu∪v = Vv

⋃
Vu and Eu∪v = {(vi, vj)|(vi, vj) ∈

E, vi ∈ Vu∪v, vj ∈ Vu∪v}.
It is worth mentioning that the union of two induced core

subgraphs may not be connected. The following example
illustrates the definitions of induced core subgraph and union
of two induced core subgraphs.

Example 3.2: Consider the nodesv8 and v10 in Fig. 1. By
definition, the induced core subgraph ofv8 is a subgraph
that only contains nodev8. That is to say,Vv8 = {v8} and

Ev8 = ∅. The induced core subgraph of nodev10 is a subgraph
that includes nodes{v1, v2, v9, v10, v11, v12, v13, v18}. In other
words,Vv10 = {v1, v2, v9, v10, v11, v12, v13, v18} andEv10 =
{(v1, v2), (v2, v9), (v9, v10), (v10, v11), (v10, v18), (v11, v12),
(v11, v13)}. The union of these two induced core sub-
graphs isGv8∪v10 = (Vv8∪v10 , Ev8∪v10), where Vv8∪v10 =
{v1, v2, v8, v9, v10, v11, v12, v13, v18} and Ev8∪v10 = Ev10 .
Fig. 2 illustrates the union of two induced core subgraphs
Gv8∪v10 . 2
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Fig. 2. The union of two induced core subgraphs (Gv8∪v10
).

Based on Definition 3.1 and 3.2, we give ak-core update
theorem.

Theorem 3.1: (k-core update theorem) Given a graph G =
(V,E) and two nodes u and v.

• If Cu > Cv, then either insertion or deletion of an
edge (u, v) in G, only the core number of nodes in the
induced core subgraph of node v, i.e., Gv , may need to
be updated.

• IF Cu < Cv , then either insertion or deletion of an edge
(u, v) in a graph G, only the core number of nodes in
the induced core subgraph of node u, i.e., Gu, may need
to be updated.

• IF Cu = Cv , then either insertion or deletion of an edge
(u, v) in a graph G, only the core number of nodes in
the union of two induced core subgraphs Gu and Gv ,
i.e., Gu∪v, may need to be updated.

To prove Theorem 3.1, we first give some useful lemmas
as follows.

Lemma 3.2: Given a graph G = (V,E) and a node u. If the
core number of node u’s neighbors increases (decreases) by
at most 1, then Cu increases (decreases) by at most 1.
Proof: First, we prove the increase case by contradiction.
Suppose thatCu increases by at least 2. This implies that there
are at leastCu + 2 neighbors of nodeu whose core numbers
are larger than or equal toCu+2. Since the core number ofu’s
neighbors increases by at most 1, the number ofu’s neighbors
whose core numbers are larger than or equal toCu + 2 is at
most Yu. By Lemma 3.1, we know thatYu ≤ Cu. That is
to say, the number ofu’s neighbors whose core numbers are
larger than or equal toCu + 2 is bounded byCu, which is a
contradiction.

Second, we prove the decrease case. If the core number of
the neighbors of nodeu decreases by at most 1, thenu has
at leastXu neighbors whose core numbers are greater than or
equal toCu − 1. SinceXu ≥ Cu > Cu − 1, the core number
of nodeu is at leastCu − 1. Therefore,Cu decreases by at
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most 1. This completes the proof. 2

Lemma 3.3: If we insert (delete) an edge (u, v) in a graph
G, the core number of any node in G increases (decreases)
by at most 1.
Proof: We focus on proving the edge insertion case, and
similar arguments can be used to prove the edge deletion case.
After inserting an edge(u, v), both Du andDv increase by
1. Recall thatXu (Xv) denotes the degree ofu (v) in the
Cu-core (Cv-core), which is a subgraph ofG. Therefore,Xu

andXv increase by at most 1. By definition,Cu (Cv) equals
to the minimal degree of the nodes in theCu-core (Cv-core).
SinceXu (Xv) increases by at most 1, the minimal degree of
the nodes in theCu-core (Cv-core) increases by at most 1. As
a result, the core number of nodeu (v) increases by at most
1. Such increase ofCu (Cv) may lead to increasing the core
number of the neighbors of nodeu (v). Consider the one-hop
neighbors of nodeu (v). According to Lemma 3.2, the core
number of all the neighbors of nodeu (v) increases by at most
1. By recursively applying Lemma 3.2, we can conclude that
the core number of all the nodes that are reachable fromu (v)
increases by at most 1. On the other hand, the core number
of the nodes that cannot be reachable fromu (v) does not
change. Put it all together, for any node inG, its core number
increases by at most 1. This completes the proof. 2

Lemma 3.4: Given a graph G and two nodes u and v such
that Cu = Cv . If we insert an edge (u, v) in G, then either
Cu and Cv increase by 1 or Cu and Cv do not change.
Proof: We prove it by contradiction. Without loss of general-
ity, after inserting an edge(u, v), we assume thatCu increases
by 1 whileCv does not change. SinceCu increases by 1, node
u has at leastCu+1 neighbors whose core numbers are larger
than or equal toCu+1. By Definition 2.1, before inserting an
edge(u, v), u has at mostCu neighbors whose core numbers
are larger than or equal toCu + 1. Therefore, nodev’s core
number must beCu + 1, which is a contradiction.

Lemma 3.5: Given a graph G and an edge (u, v). Suppose G

is updated by inserting or deleting an edge (u, v). Then, for
any node w in G, if the core number of w (Cw) needs to be
changed, such change only affects the core number of nodes
in Gw. If Cw does not change, then it does not affect the core
number of the nodes in G.
Proof: We focus on the edge insertion case, and similar proof
can be used to prove the edge deletion case. Assume thatCw is
changed after inserting an edge(u, v) into G. By Lemma 3.3,
Cw increases by 1. We denote the updatedCw as C̃w, i.e.,
C̃w = Cw + 1. Obviously, the increase ofCw does not affect
the core number of the nodes that cannot be reachable from
w. Also, we claim that the increase ofCw does not affect the
core numbers of the nodes that can be reachable fromw and
their core numbers are less than or greater thanCw. First, we
consider a nodez that are reachable fromw andCz < Cw.
Recall thatCz equals to the minimal degree of the nodes in
theCz-core. By definition,w is also in theCz-core (cores are
nested). The increase ofCw clearly does not increase such
minimal degree. Hence, the core number of nodez is still Cz.

Second, we consider a nodez that is reachable fromw and
Cz > Cw. The minimal degree of the nodes inCz-core isCz

andCz ≥ C̃w. Similarly, the increase ofCw does not increase
such minimal degree, therebyCz will not be updated. Put it all
together, the increase ofCw only affects the core number of
those nodes that are reachable fromw and their core numbers
equal toCw, which are the nodes inGw. By definition, if Cw

does not change, then it will not affect the core number of all
the nodes inG. This completes the proof. 2

Armed with the above lemmas, we prove thek-core update
theorem as follows.

Proof of Theorem 3.1: For the insertion of an edge(u, v), we
consider three different cases: (1)Cu > Cv, (2)Cu < Cv, and
(3)Cu = Cv. ForCu > Cv, we know that nodeu is in a higher
order core than nodev. By Definition 2.1, adding a neighbor
v with a small core number to a nodeu does not affectCu.
By Lemma 3.5, sinceCu does not change, nodeu will not
affect the core number of the nodes inG. Consequently, we
only need to update the core number of the nodes that are
affected by nodev. By Lemma 3.5, ifCv changes, then only
the core number of nodes inGv may need to be updated. If
Cv does not change, then no node’s core number needs to be
updated. This proves the case (1). Symmetrically, we can use
the similar arguments to prove the case (2). For case (3), after
inserting an edge(u, v), by Lemma 3.4, eitherCu and Cv

increase by 1 orCu andCv do not change. IfCu andCv do
not change, by Lemma 3.5, we conclude that no node’s core
number needs to be updated. IfCu andCv increase by 1, by
Lemma 3.5, the core number of the nodes inGu andGv may
need to be updated. That is to say, the core number of the
nodes inGu∪v may need to be updated.

Similarly, for the deletion of an edge(u, v), we also
consider three different cases: (1)Cu > Cv, (2) Cu < Cv,
and (3)Cu = Cv. The proof for the first two cases is very
similar to the proof for the first two cases under edge insertion
case, thereby we omit for brevity. ForCu = Cv, after deleting
an edge(u, v), if Cu and Cv do not change, we conclude
that no node’s core number needs to be updated according to
Lemma 3.5. IfCu changes, by Lemma 3.5, the core number of
nodes inGu may need to be updated. Likewise, ifCv changes,
the core number of nodes inGv may need to be updated.
To summarize, after removing an edge(u, v), only the core
number of the nodes inGu∪v may need to be updated. This
completes the proof. 2

A. The basic algorithm

In this subsection, we present a basic algorithm for core
maintenance in a graph given the graph is updated by an edge
insertion or an edge deletion. Below, we describe the detailed
algorithms for edge insertion and deletion, respectively.

Algorithm for edge insertion: Our main algorithm for edge
insertion consists of three steps. After inserting an edge(u, v),
by thek-core update theorem, only the core number of nodes
in the induced core subgraph (Gu or Gv or Gu∪v) may need
to be updated. Therefore, the first step of our main algorithm
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Algorithm 1 Insertion (G, u, v)
Input : GraphG = (V,E) and an edge(u, v)
Output : the updated core number of the nodes

1: Initialize visited(w) ← 0 for all nodew ∈ V ;
2: Initialize color(w) ← 0 for all nodew ∈ V ;
3: Vc ← ∅;
4: if Cu > Cv then
5: c← Cv;
6: Color(G, v, c);
7: RecolorInsert(G, c);
8: UpdateInsert(G, c);
9: else

10: c← Cu;
11: Color(G, u, c);
12: RecolorInsert(G, c);
13: UpdateInsert(G, c);

is to identify the nodes in the induced core subgraph. LetVc

be the set of nodes found in the first step. Then, the second
step of our algorithm is to determine those nodes inVc whose
core numbers definitely need to be updated. Finally, the third
step of our algorithm is to update the core number of such
nodes.

Our main algorithm for edge insertion, calledInsertion,
is outlined in Algorithm 1. Algorithm 1 includes three sub-
algorithms, namelyColor, RecolorInsert, andUpdateInsert,
which corresponds the first, the second, and the third step of
our main algorithm, respectively. In particular,Color is used to
color the nodes inVc with a color 1,RecolorInsert is applied
to recolor the nodes inVc whose core numbers are definitely
unchanged with a color 0, andUpdateInsert is used to update
the core number of the nodes inVc with a color 1. The detailed
description of Algorithm 1 is as follows. First, Algorithm 1
assigns a color 0 for every node inG (line 2 in Algorithm 1)
and initializesVc by an empty set (line 3 in Algorithm 1).
Second, the algorithm updates the core number of the nodes
under three different cases, i.e.,Cu > Cv, Cu < Cv, and
Cu = Cv. Specifically, under the first case (Cu > Cv), the
algorithm first invokesColor(G, v, c) to find the nodes in
Gv (line 6 in Algorithm 1), because only the core number of
the nodes inGv may need to be updated. After this process,
all the nodes inGv are recorded inVc and all of them are
colored by 1. Then, the algorithm invokesRecolorInsert(G,
c) to identify the nodes whose core numbers are definitely
unchanged (line 7 in Algorithm 1). After this step, all of such
nodes inVc are recolored by 0. Finally, the algorithm invokes
UpdateInsert(G, c) to update the core number of the nodes in
Vc with color 1 (line 8 in Algorithm 1). Similar process can be
used for other two cases (line 9-13 in Algorithm 1). Note that
for the caseCu = Cv, we can invokeColor(G, u, c) to find the
nodes inGu∪v, becauseu can reachv after inserting an edge
(u, v). Below, we describe the details of our sub-algorithms,
Color, RecolorInsert, andUpdateInsert, respectively.

Recall that after inserting an edge(u, v), by thek-core up-
date theorem, we have three cases that need to be considered,
i.e., Cu < Cv, Cu > Cv, and Cu = Cv. To simplify our

Algorithm 2 void Color(G, u, c)
1: visited(u) ← 1;
2: if color(u) = 0 then
3: Vc ← Vc ∪ {u};
4: color(u) = 1;
5: for each nodew ∈ N(u) do
6: if visited(w) = 0 andCw = c then
7: Color(G, w, c);

Algorithm 3 void RecolorInsert(G, c)
1: flag← 0;
2: for each nodeu ∈ Vc do
3: if color(u) = 1 then
4: Xu ← 0;
5: for each nodew ∈ N(u) do
6: if (color(w) = 1) or (Cw > c) then
7: Xu ← Xu + 1;
8: if Xu ≤ c then
9: color(u) ← 0;

10: flag← 1;
11: if flag = 1 then
12: RecolorInsert(G, c);

description, we mainly focus on describing our sub-algorithms
under the caseCu = Cv, and similar description can be
used for other cases. Suppose that nodeu and v have core
numberCu = Cv = c. In this case, we haveVc = Vu∪v.
By Definition 3.2, finding the nodes inVu∪v can be done
by a Depth-First-Search (DFS) algorithm.Color depicted in
Algorithm 2 is indeed such a DFS algorithm. In particular,
Color will assign a color 1 to every node inVc. At the
beginning,Vc is initialized by an empty set and all the nodes
are associated with a color 0. The algorithm recursively finds
the nodes that are reachable fromu and have core numberc
(line 6-7 in Algorithm 2). When the algorithm visits such a
node, if its color is 0, then the algorithm colors it by 1 and
adds it into the setVc (line 3-4 in Algorithm 2). To find all
the nodes inVu∪v, we can invokeColor(G, u, c). Recall that
after inserting edge(u, v), the nodes that are reachable from
v can also be found byColor(G, u, c).

RecolorInsert described in Algorithm 3 is used to identify
the nodes inVc whose core numbers are definitely unchanged.
Specifically, Algorithm 3 recursively recolors the nodes whose
core numbers do not change by a color 0. The recursion
is terminated until no node needs to be recolored. In each
recursion, the algorithm re-computesXu for each nodeu in
Vc. Here the recomputedXu equals to the sum of the number
of neighbors of nodeu whose core numbers are larger thanc

and the number of neighbors of nodeu with color 1 (line 4-7
in Algorithm 3). For a nodeu, if the currentXu is smaller than
or equal toc, then the algorithm recolors it by 0 (line 8-10 in
Algorithm 3).

The rationale of Algorithm 3 is as follows. First, Algo-
rithm 3 assumes that the core numbers of all the nodes inVc

need to be updated. Then, for each nodew in Vc, the algorithm
recomputesXw. Initially, since all the neighbors ofw whose
core numbers equal toc are colored by 1,Xw is indeed the
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Algorithm 4 void UpdateInsert(G, c)
1: for each nodew ∈ Vc do
2: if color(w) = 1 then
3: Cw ← c+ 1;

same value as our previous definition. IfXw ≤ c, thenw at
most c neighbors whose core numbers are larger thanc after
inserting an edge(u, v). As a result,Cw cannot be updated
and the algorithm recolors it by 0. This recoloring process
may affect the color ofw’s neighbors. The reason is because,
before recoloringw, w may contribute to calculateXz, where
z is a neighbor ofw. Consequently, the algorithm needs to
recursively recolor the nodes inVc. Note that Algorithm 3
is recursively invoked at most|Vc| + 1 times, because the
algorithm at least recolors one node at a recursion in the worse
case. The following theorem shows that after Algorithm 3
terminates, a node with a color 1 is a sufficient and necessary
condition for updating its core number.

Theorem 3.2: Under the case of insertion of an edge (u, v),
the core number of a node needs to be updated if and only if
its color is 1 after Algorithm 3 terminates.
Proof: First, we prove that if the core number of a node
w needs to be updated, then its color is 1 after Algorithm 3
terminates. We focus on the case ofCu = Cv = c, similar
proof can be used to prove the other two cases. By our
assumption and Lemma 3.5, we havew ∈ Vc, whereVc =
Vu∪v. Then, by Lemma 3.3, after inserting an edge(u, v),
the core number of the nodes inVc increases by at most 1.
Therefore, ifCw needs to be updated, then the updated core
number ofw must bec+1. That is to say, nodew must have
c+1 neighbors whose core numbers are larger than or equal to
c+1. Now assume that the color of nodew is 0. This means
that Xw ≤ c when Algorithm 3 terminates. Recall thatXw

denotes to the sum of the number of neighbors whose core
numbers are larger thanc and the number of neighbors whose
color is 1. This implies that nodew has at mostc neighbors
whose core numbers are larger thanc, which is a contradiction.

Second, we prove that if a node has a color 1 after
Algorithm 3 terminates, then the core number of this node
must be updated. We consider the induced subgraph by the
nodes with color 1 after Algorithm 3 terminates and the nodes
whose core numbers are greater thanc. Consider a nodew
in such an induced subgraph. Clearly, ifw has a color 1,
then it hasXw > c neighbors. And ifw has a color 0, then
its core numberCw is larger thanc. By Definition 2.1, the
induced subgraph belongs to the(c + 1)-core. Therefore, the
core number of a nodew with color 1 is at leastc + 1. By
Lemma 3.3, after inserting an edge(u, v), the core number of
any nodes in graphG increases by at most 1. Consequently,
the core number of the nodes with color 1 increases by 1. This
completes the proof. 2

UpdateInsert outlined in Algorithm 4 increases the core
numbers of the nodes inVc with label 1 toc+1, because only
the core numbers of those nodes need to increase by 1 after
the coloring and recoloring processes. The correctness of our
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Fig. 3. A graph after inserting an edge(v8, v10).

algorithm for edge insertion can be guaranteed by Theorem 3.1
and Theorem 3.2. The following example explains how the
Insertion algorithm works.

Example 3.3:Let us consider the same graph given in Fig. 1.
Assume that we insert an edge(v8, v10), which results in a
graph given in Fig. 3. In Fig. 3, the dashed line denotes the
inserted edge. SinceCv8 = Cv10 = c = 2, the Insertion
algorithm first invokesColor(G, v8, 2). After this process,
we can get thatVc = {v8, v10, v9, v2, v1, v18, v11, v12, v13}.
And all the nodes inVc are colored by 1 and the other
nodes are colored by 0. Then, the algorithm invokes the
RecolorInsert(G, 2) algorithm. To simplify our description,
we assume that the node visiting-order inVc is their DFS
visiting-order. At the first recursion, we can find thatXv1 = 2,
thereby it is recolored by 0. Also, the nodeV12 is recolored
by 0, becauseXv12 = 2. At the second recursion, we can find
that the nodesv11 andv13 are recolored by 0. At the third re-
cursion, no node needs to be recolored, the algorithm therefore
terminates. After invoking theRecolorInsert(G, 2) algorithm,
the nodes{v8, v10, v9, v2, v18} are colored by 1, thereby their
core numbers must increase to 3 by Theorem 3.2. Finally, the
Insertion algorithm invokes theUpdateInsert(G, 2) algorithm
to update the core number of such nodes. As a consequence,
the core number of the nodes{v8, v10, v9, v2, v18} is increased
to 3. 2

We analyze the time complexity of theInsertion algorithm
as follows. First, theColor algorithm takesO(

∑
u∈Vc

Du)
time complexity. Second, theRecolorInsert algorithm takes
O(|Vc|

∑
u∈Vc

Du) time complexity in the worse case, as the
algorithm is recursively invoked at mostO(|Vc|) times and
each recursion takesO(

∑
u∈Vc

Du) time complexity. Finally,
the UpdateInsert algorithm takesO(|Vc|) time complexity.
Put it all together, the time complexity of theInsertion
algorithm isO(|Vc|

∑
u∈Vc

Du) in the worse case, which is
independent of the graph size. However, in practice, the algo-
rithm is more efficient than such worse-case time complexity.
The reason could be of twofold. On the one hand,|Vc| typically
not very large w.r.t. the number of nodes of the graph. On the
other hand, very often, theRecolorInsert algorithm terminates
very fast.

Algorithm for edge deletion: The main algorithm for edge
deletion, namelyDeletion, is outlined in Algorithm 5. Similar
to the edge insertion case,Deletion also includes three sub-
algorithms:Color, RecolorDelete, and UpdateDelete. Here
Color is used to find the nodes in the induced core subgraph,
RecolorDelete is utilized to identify the nodes whose core
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Algorithm 5 Deletion(G, u, v)
Input : GraphG = (V,E) and an edge(u, v)
Output : the updated core number of the nodes

1: Initialize visited(w) ← 0 for all nodew ∈ V ;
2: Initialize color(w) ← 0 for all nodew ∈ V ;
3: Vc ← ∅;
4: if Cu > Cv then
5: c← Cv;
6: Color(G, v, c);
7: RecolorDelete(G, c);
8: UpdateDelete(G, c);
9: if Cu < Cv then

10: c← Cu;
11: Color(G, u, c);
12: RecolorDelete(G, c);
13: UpdateDelete(G, c);
14: if Cu = Cv then
15: c← Cu;
16: Color(G, u, c);
17: if color(v) = 0 then
18: Initialize visited(w) ← 0 for all nodew ∈ V ;
19: Color(G, v, c);
20: RecolorDelete(G, c);
21: UpdateDelete(G, c);
22: else
23: RecolorDelete(G, c);
24: UpdateDelete(G, c);

numbers need to be updated, andUpdateDelete is applied
to update the core numbers of the nodes identified byRe-
colorDelete. The detailed description ofDeletion is given as
follows.

Similarly, letVc be a set of nodes whose core numbers may
need to be updated. First, Algorithm 5 initializes the colorof
all the nodes to 0 andVc to an empty set. Likewise, under
the edge deletion case, we also have to consider three cases.
That is,Cu > Cv, Cu < Cv, andCu = Cv. If Cu > Cv, only
the core number of the nodes inGv may need to be updated.
Under this case, the algorithm invokesColor(G, v, c) to find
the nodes inVc (line 6 in Algorithm 5). Then, the algorithm
invokesRecolorDelete(G, c) to identify the nodes whose core
numbers need to be changed (line 7 in Algorithm 5). Finally,
the algorithm invokesUpdateDelete(G, c) to update the core
number of such nodes (line 8 in Algorithm 5). Similar process
can be used for theCu < Cv case. For theCu = Cv case, the
algorithm first invokesColor(G, u, c) to find the nodes inGu

(line 16 in Algorithm 5). Then, the algorithm has to handle
two different cases. First, ifu can reachv, then the coloring
algorithm can also find the nodes inGv (in this case,v’s color
is 1, line 22 in Algorithm 5). Second, ifu cannot reachv (v’s
color is 0), then the algorithm invokesColor(G, v, c) to find
the nodes inGv (line 19 in Algorithm 5). After this process,
all the node inGu∪v are recorded inVc. Then, we can invoke
RecolorDelete(G, c) and UpdateDelete(G, c) algorithms to
update the core number of the nodes inVc. Below, we give
the detailed descriptions ofRecolorDeleteandUpdateDelete
respectively.

Similar to the edge insertion case, after invokingColor,

Algorithm 6 void RecolorDelete(G, c)
1: flag← 0;
2: for each nodeu ∈ Vc do
3: if color(u) = 1 then
4: Xu ← 0;
5: for each nodew ∈ N(u) do
6: if (color(w) = 1) or (Cw > c) then
7: Xu ← Xu + 1;
8: if Xu < c then
9: color(u) ← 0;

10: flag← 1;
11: if flag = 1 then
12: RecolorDelete(G, c);

Algorithm 7 void UpdateDelete(G, c)
1: for each nodew ∈ Vc do
2: if color(w) = 0 then
3: Cw ← c− 1;

the nodes whose core numbers may need to be updated
are recorded in a setVc, and also all of them are colored
by 1. After obtaining the setVc, RecolorDelete described
in Algorithm 6 is used to determine the nodes whose core
numbers must be updated. In particular,RecolorDelete re-
cursively recolors the nodes whose core numbers need to be
updated by 0. In each recursion, the algorithm calculatesXw

for every nodew in Vc. Here Xw denotes the sum of the
number ofw’s neighbors whose color is 1 and the number of
w’s neighbors whose core numbers are larger thanc, where
c = min{Cu, Cv}. For a nodew ∈ Vc, if Xw < c, then the
algorithm colorsw by 0. The algorithm terminates if no node
needs to be recolored. Clearly, the algorithm is invoked at
most |Vc| times. The following theorem shows that a node in
Vc with a color 0 after Algorithm 6 terminates is a sufficient
and necessary condition for updating its core number.

Theorem 3.3:Under the case of deletion of an edge (u, v), a
node in Vc whose core number needs to update if and only if
its color is 0 after Algorithm 6 terminates.
Proof: First, we prove that if a nodew in Vc whose
core number needs to be updated, then its color is 0 after
Algorithm 6 terminates. By our assumption and Lemma 3.3,
after deleting an edge(u, v), Cw decreases by 1. This means
thatCw decreases toc−1. That is to say,w hasc−1 neighbors
whose core numbers are larger than or equal toc−1. Suppose
that the color ofw is 1 after the algorithm terminates. This
implies thatXw ≥ c. Recall thatXw denotes the sum of the
number ofw’s neighbors whose core numbers are lager thanc

and the number ofw’s neighbors whose color is 1. Note that
a node with color 1 suggests that its core number equals toc.
As a result,w has at leastc neighbors whose core numbers
are larger than or equal toc, which is a contradiction.

Second, we prove that if a nodew in Vc is recolored by 0
after Algorithm 6 terminates, thenCw must be updated. After
deleting an edge(u, v), we construct an induced subgraph,
which is denoted as̃G = (Ṽ , Ẽ), by the nodes inVc and the
nodes whose core numbers are larger thanc. Note that the core

7



number of the nodes inV \Ṽ is smaller thanc. Therefore, they
do not affect the core number of the nodes inṼ . If a node
w ∈ Vc with a color 0 after Algorithm 6 terminates, then
Xw < c. This suggests that the nodew in G̃ has at most
c− 1 neighbors. By Definition 2.1,̃G at most belongs to the
(c − 1)-core. By Lemma 3.3, the core number of any nodes
in G decreases by at most 1 after deleting an edge. Therefore,
the core number of the nodes with color 0 decreases by 1.
This completes the proof. 2

UpdateDeletewhich is depicted in Algorithm 7 is used to
update the core number of the nodes inVc with color 0 toc−1,
because only the core numbers of those nodes need to decrease
by 1 after the coloring and recoloring steps. The correctness of
Deletion can be guaranteed by Theorem 3.1 and Theorem 3.3.
By a similar analysis as the edge insertion case, the time
complexity of Deletion(G, u, v) is O(|Vc|

∑
u∈Vc

Du). The
following example explains howDeletion works.

Example 3.4: Let’s consider the graph depicted in Fig. 3.
Suppose that we delete the edge(v8, v10). SinceCv8 = Cv10 =
c = 3, the Deletion algorithm first invokesColor(G, v8, 3),
which results inVc = {v8}. Clearly, the color ofv10 is 0 after
this process ends. Hence, the algorithm invokesColor(G, v10,
3), which leads toVc = {v8, v10, v9, v2, v18}. After this pro-
cess, all the nodes inVc are colored by 1 and other nodes are
colored by 0. Then, the algorithm invokesRecolorDelete(G,
3). At the first recursion, sinceXv8 = 2, v8 is recolored
by 0. Similarly, v10, v9, v2, and v18 will be recolored by 0
at the first recursion. At the second recursion, the algorithm
terminates because no node needs to be recolored. Therefore,
all the nodes inVc are recolored by 0. Finally, the algorithm
invokesUpdateDelete(G, c) to decrease the core number of
all the nodes inVc to 2. 2

B. Pruning strategies

As analysis in the previous subsection, the time complexity
of our Insertion andDeletion algorithms depend on the size
of Vc. In this subsection, to further accelerate our algorithms,
we devise two pruning techniques, namelyX-pruning andY -
pruning, to remove the nodes inVc whose core numbers are
definitely unchanged given the graph is updated.

X-pruning: By Lemma 3.1, for a nodew, Xw is an upper
bound of Cw. Here we make use of such upper bound to
develop pruning technique. We refer to it asX-pruning. Below,
we discuss theX-pruning technique over the edge insertion
and edge deletion cases, respectively.

First, we consider the insertion case. Assume that we insert
an edge(u0, v0). Also, we need to consider three cases,Cu0

>

Cv0 , Cu0
< Cv0 , Cu0

= Cv0 . Below, we mainly focus on
describing theX-pruning rule under the case ofCu0

= Cv0 ,
and similar descriptions can be used for other two cases. Fora
nodew in Vc, after inserting an edge(u0, v0), if Xw equals to
c, thenCw cannot increases toc+1. As a result, we can safely
prunew. For example, consider an graph in Fig. 3. Assume
that we insert an edge(v8, v10). Then, for the nodev1, we

S1 S2

w

Fig. 4. A toy induced core subgraph.

haveXv1 = 2. Clearly,Cv1 cannot increase to 3, thereby we
can prunev1.

In effect, after removingw, for the nodes that cannot be
reachable fromu0 and v0 in the induced core subgraph can
also be pruned. Let us consider a toy induced subgraph shown
in Fig. 4. Suppose that the induced subgraph can be partitioned
into three parts,S1, w, andS2. Further, we assume that both
u0 andv0 are inS1, andXw = c. Recall that after inserting
an edge(u0, v0), if Xw = c, then Cw is unchanged. By
Lemma 3.5,w will not affect the core numbers of the nodes
in S2. As a consequence, the core numbers of the nodes inS2

cannot be increased, and we can safely prune all the nodes in
S2. More formally, we give a pruning theorem as follows.

Theorem 3.4: Given a graph G and an edge (u0, v0). After
inserting an edge (u0, v0) in G, for a node w ∈ Vc and Xw <

c+ 1, we have the following pruning rules.

• If Cu0
> Cv0 (i.e., Vc = Vv0 ), then for any node u ∈ Vc

that every path from v0 to u in Gv0 must go through w

can be pruned.
• If Cu0

< Cv0 (i.e., Vc = Vu0
), then for any node u ∈ Vc

that every path from u0 to u in Gu0
must go through w

can be pruned.
• If Cu0

= Cv0 (i.e., Vc = Vu0∪v0), then for any node
u ∈ Vc that every path either from u0 to u or from v0 to
u in Gu0∪v0 must go through w can be pruned.

Proof: We prove this theorem under the caseCu0
= Cv0 ,

and similar arguments can be used to prove the other two
cases. After inserting an edge(u0, v0), by Lemma 3.3, the
core number of every node inVc increases by at most 1. As a
result, after an edge(u0, v0) insertion, for a nodew in Vc, if
Xw < c+ 1, thenCw will not increase.Cw does not change
implying thatw is still in the c-core after inserting an edge
(u0, v0). Clearly, it does not affect those nodes inVc whose
core numbers will increase toc+1. Therefore, we can safely
remove the nodew from Vc. After removingw, for any node
u ∈ Vc\{w} that cannot be reached fromu0 or v0, we also
can safely remove it fromVc. The reason is because only the
core number of the nodes that are reachable fromu0 or v0 may
need to be updated. As a consequence, for any nodeu ∈ Vc

such that every path either fromu0 to u or from v0 to u must
go throughw can be pruned. This completes the proof.2

Based on Theorem 3.4, we can prune certain nodes in the
coloring procedure (theColor algorithm). We present our new
coloring algorithm withX-pruning in Algorithm 8. The new
coloring algorithm is still a DFS algorithm. The algorithm first
calculatesXu when it visits a nodeu (line 2-5 in Algorithm 8).
Based on Theorem 3.4, the DFS algorithm can early terminate
if it visits a nodeu such thatXu ≤ c. The reason is that we
can safely remove such a nodeu from Vc by Theorem 3.4.
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Algorithm 8 void XPruneColor(G, u, c)
1: visited(u) ← 1;
2: Xu ← 0;
3: for each nodew ∈ N(u) do
4: if Cw ≥ c then
5: Xu ← Xu + 1;
6: if Xu > c then
7: if color(u) = 0 then
8: Vc ← Vc ∪ {u};
9: color(u) = 1;

10: for each nodew ∈ N(u) do
11: if visited(w) = 0 andCw = c then
12: XPruneColor(G, w, c);

Hence, the algorithm does not need to recursively visits its
neighbors. IfXu > c, the algorithm adds nodeu into Vc

and color it by 1 (line 7-9 in Algorithm 8). And then, the
algorithm recursively findsu’s neighbors inVc (line 10-12
in Algorithm 8). To implement this pruning strategy, we can
replace theColor algorithm with theXPruneColor algorithm
in Algorithm 1.

Second, we consider the edge deletion case. Suppose that
we delete an edge(u0, v0) from graphG and the core numbers
of all the nodes inVc arec. We consider three different cases:
(1) Cu0

> Cv0 , (2) Cu0
< Cv0 , and (3)Cu0

= Cv0 . For
Cu0

> Cv0 , we only need to find the nodes inGv0 , because
the deletion of edge(u0, v0) does not affect the core number
of the nodes inGu0

. Recall that after deleting an edge, the core
number of the nodes inVc decreases by at most 1. Therefore,
after deleting an edge(u0, v0), if Xv0 ≥ c, then v0’s core
number will not be changed. This is becauseXv0 ≥ c implies
v0 has at leastc neighbors whose core numbers are larger than
or equal toc. That is to say, the core number of nodev0 is
still c. Sincev0’s core number does not change, we do not
need to update the core number of the nodes inGv0 . As a
result, under the case ofCu > Cv in Algorithm 5 (line 4 in
Algorithm 5), we can first computeXv. If Xv ≥ c, we do
nothing. Symmetrically, forCu0

< Cv0 , we have a similar
pruning rule as the case ofCu0

> Cv0 . Also, for Cu0
=

Cv0 , we first computeXu0
and Xv0 . If Xu0

< c, then we
need to update the core number of the nodes inGu0

. Also,
if Xv0 < c, we update the core number of the nodes inGv0 .
For the case thatXu0

≥ c and Xv0 ≥ c, we do nothing,
because no node’s core number needs to be updated. It is
worth mentioning thatXu0

andXv0 are computed based on
the core numbers of the nodes that have not been updated. The
detailed algorithm withX-pruning for the edge deletion case
is outlined in Algorithm 9. We can use theXPruneDeletion
algorithm to replace theDeletion algorithm. The following
example illustrates how this algorithm works.

Example 3.5: Let us reconsider the example given in Fig. 3.
Assume that we delete the dashed line (edge(v8, v10)). In this
case, the core number ofv8 andv10 is 3. That is,c = 3. Then,
we can calculate thatXv8 = 2 andXv10 = 2. Becausev8 has
two neighbors (v5 andv6) whose core number is 4 andv10 has
two neighbors (v9 andv18) whose core numbers are 3. Since

Algorithm 9 XPruneDeletion(G, u, v)
Input : GraphG = (V,E) and an edge(u, v)
Output : the updated core number of the nodes

1: Initialize visited(w) ← 0 for all nodew ∈ V ;
2: Initialize color(w) ← 0 for all nodew ∈ V ;
3: Vc ← ∅;
4: ComputeXu;
5: ComputeXv;
6: if Cu > Cv then
7: c← Cv;
8: if Xv < c then
9: Color(G, v, c);

10: RecolorDelete(G, c);
11: UpdateDelete(G, c);
12: if Cu < Cv then
13: c← Cu;
14: if Xu < c then
15: Color(G, u, c);
16: RecolorDelete(G, c);
17: UpdateDelete(G, c);
18: if Cu = Cv then
19: c← Cu;
20: if Xu < c andXv < c then
21: Color(G, u, c);
22: if color(v) = 0 then
23: Initialize visited(w) ← 0 for all nodew ∈ V ;
24: Color(G, v, c);
25: RecolorDelete(G, c);
26: UpdateDelete(G, c);
27: else
28: RecolorDelete(G, c);
29: UpdateDelete(G, c);
30: if Xu < c andXv ≥ c then
31: Color(G, u, c);
32: RecolorDelete(G, c);
33: UpdateDelete(G, c);
34: if Xu ≥ c andXv < c then
35: Color(G, v, c);
36: RecolorDelete(G, c);
37: UpdateDelete(G, c);

Xv8 < c andXv10 < c, we need to update the core number of
the nodes inGv8 andGv10 . After invoking Algorithm 9, we
can find that the core number of nodes{v8, v10, v9, v2, v18}
decreases to 2. 2

Y -pruning: For a nodew, Yw is a lower bound ofCw by
Lemma 3.1. Here we develop pruning technique using such
lower bound, and we refer to this pruning technique asY -
pruning.

To illustrate our idea, let us reconsider the toy induced core
subgraph shown in Fig. 4 which includes three parts,S1, w,
and S2. Suppose that we insert or delete an edge(u0, v0).
Below, we focus on the case ofCu0

= Cv0 = c, and similar
descriptions can be used for other two cases. Further, we
assume that bothu0 and v0 are in S1, and Yw = c. First,
we consider the insertion case, i.e., an edge(u0, v0) insertion.
In this case, we claim that the core number of the nodes in
S2 are unchanged. The reason is as follow. Letu in S2 be a
neighbor node ofw. Then, for any neighboru, we haveYu < c

(if not, u andw will be in a (c + 1)-core). This implies that
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for each neighbor ofw in S2, the core number cannot increase
to c+1 after inserting(u0, v0). As a result, the core numbers
of all the nodes inS2 will not change after inserting(u0, v0).
Second, for the deletion case, if we delete an edge(u0, v0),
Cw still equals toc becausew has c neighbors whose core
numbers are larger thanc (Yw = c). Clearly, the core numbers
of the nodes inS2 are also unchanged. Put it all together,
under both edge insertion and edge deletion cases, the core
numbers of all the nodes inS2 will not change, and thereby
we can safely prune the nodes inS2. Formally, forY -pruning,
we have the following theorem.

Theorem 3.5: Given a graph G and an edge (u0, v0). After
inserting/deleting an edge (u0, v0) in G, for a node w ∈ Vc,
if Yw = c, then we have the following pruning rules.

• If Cu0
> Cv0 (i.e., Vc = Vv0 ), then for any node u ∈ Vc

and u 6= w that every path from v0 to u must go through
w can be pruned.

• If Cu0
< Cv0 (i.e., Vc = Vu0

), then for any node u ∈ Vc

and u 6= w that every path from u0 to u must go through
w can be pruned.

• If Cu0
= Cv0 (i.e., Vc = Vu0∪v0 ), then for any node

u ∈ Vc and u 6= w that every path either from u0 to u

or from v0 to u must go through w can be pruned.

Proof: We prove this theorem under the caseCu0
= Cv0 , and

for other cases, we have similar proofs. Below, we discuss
the proofs for the edge insertion and edge deletion cases,
respectively.

First, we prove the edge insertion case. LetV>c be a set
of nodes whose core numbers are larger thanc. Assume that
we removew from Vc. Then, after removingw, we denote
a set of nodes inVc that cannot be reachable either fromu0

or from v0 asV1. Then, after inserting an edge(u0, v0), we
consider two cases: (1)w’s core number will not change, and
(2) w’s core number increases by 1. The first case suggests
thatw is still in the c-core, and we can safely removew from
Vc. Therefore, for the nodes inV1, we can also remove them
from Vc, because only the core number of those nodes that are
reachable fromu0 or v0 may need to be updated. Second, we
consider the case thatw’s core number increases by 1 after
inserting an edge(u0, v0). We denote a subset of nodes in
Vc whose core numbers increase by 1 asṼc after inserting
an edge(u0, v0). Further, we denote a subset of nodes inV1

whose core numbers need to increase by 1 asV2. In other
words,V2 = V1

⋂
Ṽc. Clearly, the theorem holds ifV2 = ∅.

Now we prove this by contradiction. Specifically, we assume
thatV2 6= ∅. By definition, after inserting an edge(u0, v0), the
induced subgraph by the nodes iñVc

⋃
V>c forms a(k + 1)-

core. We denote such subgraph asG′ = (V ′, E′), whereV ′ =
Ṽc

⋃
V>c. Clearly, all the nodes inG′ has at least a degree

c + 1. Now consider a subgraphG⋆ induced by the nodes
in V2

⋃
{w}

⋃
V>c. We claim that all the nodes inG⋆ has at

least a degreec+ 1. First, for the nodes inV>c, their degree
is obviously greater thanc+1 w.r.t. G⋆. Second, we consider
the nodes inV2. By definition, in graphG′, there is no edge
between the nodes inV2 and the nodes iñVc\{V2

⋃
{w}}.

Algorithm 10 void YPruneColor(G, u, c)
1: visited(u) ← 1;
2: if color(u) = 0 then
3: Vc ← Vc ∪ {u};
4: color(u) = 1;
5: Yu ← 0;
6: for each nodew ∈ N(u) do
7: if Cw > c then
8: Yu ← Yu + 1;
9: if Yu < c then

10: for each nodew ∈ N(u) do
11: if visited(w) = 0 andCw = c then
12: YPruneColor(G, w, c);

Since the nodes inV2 have at least a degreec+1 w.r.t. graph
G′, they also have at least a degreec+1 w.r.t. graphG⋆. Third,
we consider the nodew. On the one hand, we claim thatw
has at least one neighbor inV2. Supposew has no neighbor in
V2, then the nodes inV2 whose core numbers cannot increase
to c+ 1 after inserting an edge(u0, v0) by thek-core update
theorem, which contradict to our assumption. Hence,w has at
least one neighbor inV2. On the other hand, sinceYw = c,
w hasc neighbors whose core numbers are larger thanc. As
a result,w has at least a degreec+ 1 w.r.t. graphG⋆. Put it
all together, all the nodes inG⋆ have at least a degreec+ 1.
Note that by our definition the induced subgraphG⋆ does not
contain nodeu0 and v0. Consequently, before inserting the
edge(u0, v0), the core number of the nodes inG⋆ at least
c+ 1. That is to say, the nodes inV2 has core numberc+ 1
before inserting the edge(u0, v0), which is a contradiction.
This completes the proof for the edge insertion case.

For the edge deletion case, after deleing an edge(u0, v0),
the core number of all the nodes inVc decreases by at most
1 according to Lemma 3.3. Hence, if a nodew ∈ Vc has
Yw = c, thenw’s core number will not decrease. Similarly, let
V>c be a set of nodes whose core numbers are larger thanc.
And assume that we removew from Vc. Then, after removing
w, we denote a set of nodes inVc that cannot be reachable
either fromu0 or from v0 as V1. Now consider a subgraph
G⋆ induced by the nodesV1

⋃
{w}

⋃
V>c. We claim that all

the nodes in such subgraph have at least a degreec. First, for
the nodes inV>c, their degree is clearly larger thanc w.r.t.
G⋆ because their core numbers are larger thanc. Second,w’s
degree is at leastc w.r.t.G⋆, becausew hasc neighbors whose
core numbers are larger thanc. Third, for the nodes inV1,
their degree is also at leastc w.r.t. G⋆. The rationale is as
follows. By definition, no edge inG goes through the nodes
in Vc\{V1∪{w}} and the nodes inV1. Since the core number
of the nodes inV1 is c, the nodes inV1 has at leastc neighbors
w.r.t. G⋆. Consequently, the core number of the nodes inG⋆

is still c after removing the edge(u0, v0). This implies that
the nodes inV1 can be pruned, which completes the proof for
the edge deletion case. 2

Based on Theorem 3.5, we can implement theY -pruning
strategy in the coloring procedure. We present our new color-
ing algorithm withY -pruning in Algorithm 10, which is also
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a DFS algorithm. In particular, Algorithm 10 first colors a
nodeu by 1 and adds it intoVc when it visitsu (line 2-4
in Algorithm 10). Then, the algorithm calculatesYu (line 5-8
in Algorithm 10). If Yu = c, then the algorithm can early
terminate. The reason is because the nodes that cannot be
reachable fromu0 or v0 after removingu can be pruned
by Theorem 3.5. IfYu < c, the algorithm recursively finds
u’s neighbors inVc (line 9-12 in Algorithm 10). Below, we
discuss how to integrate theYPruneColor algorithm into the
Insertion andDeletion algorithm.

First, to integrate theYPruneColor algorithm into the
Insertion algorithm, we need to replace theColor algorithm
with the YPruneColor algorithm as well as handle the fol-
lowing special case. That is, ifCu0

= Cv0 = c, Yu0
= c

andYv0 < c, we need to invokeYPruneColor(G, v0, c). If
Cu0

= Cv0 = c, Yu0
< c and Yv0 = c, we need to invoke

YPruneColor(G, u0, c). The reason is because we need to
allow the DFS algorithm to go through the edge(u0, v0) in
order to add bothu0 and v0 into Vc. If Cu0

= Cv0 = c and
Yu0

= Yv0 = c, then we have to invoke bothYPruneColor(G,
u0, c) andYPruneColor(G, v0, c) so as to add bothu0 andv0
into Vc. Second, to integrate theYPruneColor algorithm into
the Deletion algorithm, we only need to replace theColor
algorithm with theYPruneColor algorithm. The following
example illustrates how theYPruneColor algorithm works.

Example 3.6: Consider an example in Fig. 3. For the edge
insertion case, we assume that the edge(v8, v10) is the inserted
edge. Sincev8 = v10 = c = 2 and Yv8 = 2, we invoke
YPruneColor(G, v10, 2). The algorithm first colorsv10 by 1
and adds it intoVc. Then, the algorithm colors nodev8 by 1
and adds it intoVc. SinceYv8 = 2, the recursion terminates at
v8 and returns tov10. Similarly, when the algorithm visits
node v2, the recursion also terminates asYv2 = 2. As a
result, the nodev1 is pruned. Finally, we can obtainVc =
{v10, v8, v9, v3, v18, v11, v12, v13} after the algorithm ends.

For the edge deletion case, we also assume that we delete an
edge(v8, v10) from G. Under this case, we havev8 = v10 =
c = 3. Since no node inVc hasYu = c, theY -pruning cannot
prune any node. Suppose that the edge(v8, v10) is deleted.
Then, we havev9 = v10 = c = 2. Under this case, assume that
we further delete an edge(v9, v10). Then, we can find that the
setVc contains nodes{v9, v2, v1, v10, v18, v11, v12, v13}. Since
Yv2 = c = 2, the nodev1 can be pruned by theYPruneColor
algorithm. 2

Combination of X-pruning and Y -pruning: Here we dis-
cuss how to combine bothX-pruning andY -pruning for
edge insertion case and edge deletion case, respectively. For
edge insertion case, we can integrate bothX-pruning and
Y -pruning into the coloring procedure. Specifically, in the
coloring procedure, when the DFS algorithm visits a nodeu,
we calculate bothXu and Yu. Then, we use theX-pruning
rule to determine the color of nodeu, and make use of
both X-pruning andY -pruning rules to determine whether
the algorithm needs to recursively visitsu’s neighbors or not.
For edge insertion, the detailed coloring algorithm with both

Algorithm 11 void XYPruneColor (G, u, u0, c)
1: visited(u) ← 1;
2: Xu ← 0;
3: Yu ← 0;
4: for each nodew ∈ N(u) do
5: if Cw ≥ c then
6: Xu ← Xu + 1;
7: if u 6= u0 andCw > c then
8: Yu ← Yu + 1;
9: if Xu > c then

10: if Yu < c or c = 0 then
11: for each nodew ∈ N(u) do
12: if visited(w) = 0 andCw = c then
13: XYPruneColor (G, w, u0, c);
14: if color(u) = 0 then
15: Vc ← Vc ∪ {u};
16: color(u) = 1;

X-pruning andY -pruning, calledXYPruneColor , is outlined
in Algorithm 8.

For the edge deletion case, we can easily integrate both
X-pruning andY -pruning via the following two steps. First,
we replace theColor algorithm inDeletion with theYPrune-
Color algorithm. Second, we integrate theX-pruning rule into
the Deletion algorithm. First, we replace theColor algorithm
in XPrunDeletion with theYPruneColor algorithm. Second,
we use thisXPrunDeletion algorithm to replace theDeletion
algorithm.

IV. EXPERIMENTS

In this section, we conduct comprehensive experiments to
evaluate our approach. In the following, we first describe our
experimental setup and then report our results.

A. Experimental setup

Different algorithms: We compare 5 algorithms. The first
algorithm is the baseline algorithm, which invokes theO(n+
m) algorithm to update the core number of nodes given the
graph is updated [20]. We denote this algorithm as algorithm
B. The second algorithm is our basic algorithm without
pruning strategies, which is denoted as algorithm N. The third
algorithm is our basic algorithm withX-pruning, which is
denoted as algorithm X. The fourth algorithm is our basic
algorithm with Y -pruning, which is denoted as algorithm Y.
The last algorithm is our basic algorithm with bothX-pruning
andY -pruning, which is denoted as algorithm XY.

Datasets: We collect 15 real-world datasets to con-
duct our experiments. Our datasets are described as fol-
lows. (1) Co-authorship networks: we download four
physics co-authorship networks from Stanford network
data collections [19] which are HepTh, HepPh, As-
troph, and CondMat datasets. In addition, we also ex-
tract a co-authorship network from a subset of the DBLP
dataset (www.informatik.uni-trier.de/ ˜ ley/db )
with 78,649 authors. (2) Online social networks: we col-
lect the Douban (www.douban.com ) dataset from ASU
social computing data repository [24], and collect the
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TABLE I

SUMMARY OF THE DATASETS

Name #nodes #edges Ref. Description
HepTh 9,877 51,946 [19]
HepPh 12,008 236,978 [19] Co-authorship
Astroph 18,772 396,100 [19] networks
CondMat 23,133 186,878 [19]
DBLP 78,649 382,294 website
Douban 154,908 654,324 [24]
Epinions 75,872 396,026 [19] Online
Slashdot1 77,360 826,544 [19] social
Slashdot2 82,168 867,372 [19] networks
Wikivote 5,311 142,066 [19]
EmailEnron 36,692 367,662 [19] Communication
EmailEuAll 265,182 224,372 [19] networks
Gnutella 62,586 153,900 [19] P2P networks
Brightkite 58,228 428,156 [19] Location based
Gowalla 196,591 1,900,654 [19] social networks

Epinions (www.epinions.com ), two Slashdot datasets
(www.slashdot.org ), and the Wikivote dataset from
Stanford network data collections [19]. (3) Communication
networks: we employ two Email communication networks,
namely EmailEnron and EmailEuAll, from Stanford network
data collections [19]. (4) P2P networks: we download a P2P
network (Gnutella) dataset from Stanford network data collec-
tions [19], which are originally collected from Gnutella [19].
(5) Location-based social networks (LBSNs): We download
two notable LBSNs datasets from Stanford network data
collections [19]. For all the datasets, if the graph is a directed
graph, we ignore the direction of the edges in the graph. The
detailed statistical information of our datasets are described in
Table I.

Experimental environment: We conduct our experiments
on a Windows Server 2007 with 4xDual-Core Intel Xeon
2.66 GHz CPU, and 128G memory. All the algorithms are
implemented by Visual C++ 6.0.

B. Results for single edge updates

For all the experiments, we randomly delete and insert 500
edges in the original datasets. After inserting/deleting an edge,
we invoke 5 different algorithms to update the core number of
the nodes, respectively. For all the algorithms, we record the
average time to update the core number of nodes over 500 edge
insertions and 500 edge deletions. Specifically, we record three
quantities, namely average insertion time, average deletion
time, and average update time. We calculate the average inser-
tion (deletion) time by the average core number update time of
different algorithms over 500 edge insertions (deletions). The
average update time is the mean of average insertion time
and average deletion time. To evaluate the efficiency of our
algorithms (algorithm N, algorithm X, algorithm Y, algorithm
XY), we compare them with the baseline algorithm (algorithm
B) according to the average insertion/deletion/update time. Our
results are depicted in Table II.

From Table II, we can clearly see that all of our algorithms
(algorithm N, algorithm X, algorithm Y, algorithm XY) per-
form much better than the baseline algorithm (algorithm B)
over all the datasets used. The best algorithm is the algorithm

XY, which is our basic algorithm with bothX-pruning and
Y -pruning, followed by algorithm X, algorithm Y, algorithm
N, and algorithm B. Over all the datasets used, the maximal
speedup of our algorithms is achieved in Gowalla dataset
(the last row in Table II). Specifically, in Gowalla dataset,
algorithm XY, algorithm X, algorithm Y and algorithm N
reduce the average update time of algorithm B by 101.8,
81.7, 62.3, and 56.2 times, respectively. The minimal speedup
of our algorithms is achieved in HepTh dataset (the first
row in Table II). In particular, in HepTh dataset, algorithm
XY, algorithm X, algorithm Y and algorithm N reduce the
average update time of algorithm B by 3.2, 3.0, 2.3, and 2.2
times respectively. In general, we find that the speedup of our
algorithms increases as the graph size increases. The reason is
because the time complexity of the baseline algorithm is linear
w.r.t. the graph size for handling each edge insertion/deletion.
Instead, the time complexity of our algorithms is independent
of the graph size, and it is only depends on the size of the
induced core subgraph. Additionally, over all the datasets, we
can observe that our basic algorithm with pruning techniques
is significantly more efficient than the basic algorithm without
pruning techniques. Below, we discuss the effect of theX-
pruning andY -pruning techniques.

The effect of pruning: Here we investigate the effective of
our pruning techniques. From Table II, over all the datasets,
we can see that theX-pruning strategy (algorithm X) is more
effective than theY -pruning strategy (algorithm Y) according
to average deletion/insertion/update time. For example, in
HepTh dataset (row 1 in Table II), algorithm X reduces the
average deletion time, the average insertion time, and the
average update time, over algorithm N by 96.3%, 10%, and
36.8%, respectively. However, in HepTh dataset, algorithmY
reduces the average deletion time, the average insertion time,
and the average update time, over algorithm N by 6%, 3.1%,
and 4.3%, respectively. This result indicates that the condition
of the Y -pruning is stronger than the condition of theX-
pruning in many real graphs. Recall that by Theorem 3.5, if
there is at least one nodeu with core numberCu andYu = Cu

in the induced core subgraph, then theY -pruning strategy
may prune some nodes. The condition ofY -pruning strategy
(Yu = Cu) is strong, because if a node hasCu neighbors
whose core number is larger thanCu, then this node may have
another additional neighbor whose core number is larger than
Cu, thus resulting in that the nodeu is in a (Cu + 1)-core.
Instead, indicating by our experimental result, the condition
of the X-pruning strategy (Xu ≤ Cu + 1) may be easily
satisfied in real graphs. This result also implies that the lower
bound of the core number in Lemma 3.1 (Yv) is typically
very loose for many nodes in real graphs. In addition, we
can observe that the algorithm with bothX-pruning andY -
pruning strategies is more efficient than the algorithm with
only one pruning strategy over all the datasets. Generally,we
find that theX-pruning strategy under the edge deletion case
is more effective than itself under the edge insertion case.
Similarly, theY -pruning strategy under the edge deletion case
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TABLE II

AVERAGE UPDATE TIME OF DIFFERENT ALGORITHMS(IN LAST COLUMN, SRDENOTES THE SPEEDUP RATIO OFXY). A LL TIME IS MILLISECOND .

Time (ms)
Average deletion time Average insertion time Average update time

B N X Y XY B N X Y XY B N X Y XY SR
HepTh 2.38 1.06 0.54 1.00 0.48 2.80 1.32 1.20 1.28 1.14 2.59 1.19 0.87 1.14 0.81 3.2
HepPh 4.12 2.58 1.30 1.58 1.20 5.30 1.46 1.32 1.40 1.20 4.71 2.02 1.31 1.49 1.20 3.9
Astroph 9.14 1.30 0.36 1.12 0.32 9.92 1.56 1.40 1.42 1.40 9.53 1.43 0.88 1.27 0.86 11.1
CondMat 5.94 1.52 0.64 1.30 0.60 6.24 1.50 1.40 1.36 1.32 6.09 1.51 1.02 1.33 0.96 6.3
DBLP 12.08 1.68 1.26 1.48 1.22 12.22 1.52 1.42 1.44 1.38 12.15 1.60 1.34 1.46 1.30 9.3
Douban 21.38 4.58 2.14 3.28 1.32 21.16 2.62 2.02 2.40 2.00 21.27 3.60 2.08 2.84 1.66 12.8
Epinions 13.00 2.06 0.68 1.62 0.64 13.94 2.04 1.56 1.80 1.50 13.47 2.05 1.12 1.71 1.07 12.6
Slashdot1 22.53 4.12 1.43 2.06 1.38 20.37 2.80 1.73 1.88 1.32 20.45 3.46 1.58 1.87 1.35 15.1
Slashdot2 24.36 4.85 1.56 2.13 1.54 22.32 2.93 1.82 2.05 1.64 23.34 3.73 1.69 2.09 1.59 14.7
Wikivote 3.64 1.32 0.50 0.50 0.48 4.06 1.78 1.70 1.76 1.42 3.85 1.55 1.10 1.13 0.95 4.1
EmailEnron 10.80 2.40 0.90 1.82 0.86 10.60 2.92 2.70 2.82 2.68 10.70 2.66 1.80 2.32 1.77 6.0
EmailEuAll 13.06 2.14 1.24 1.64 1.22 12.52 1.74 1.52 1.70 1.24 12.79 1.94 1.38 1.67 1.23 10.4
Gnutella 10.32 2.64 1.58 1.66 1.38 12.08 2.18 2.06 2.12 1.82 11.20 2.41 1.82 1.89 1.60 7.0
Brightkite 13.60 1.56 0.64 1.32 0.54 13.64 1.64 1.32 1.34 1.32 13.62 1.60 0.98 1.33 0.93 14.6
Gowalla 108.20 2.10 1.12 1.82 0.91 107.52 1.74 1.52 1.64 1.21 107.86 1.92 1.32 1.73 1.06 101.8

is more effective than itself under the edge insertion case.
Taking the Gnutella dataset as an example (row 13 in Table II),
for the edge deletion case, algorithm X reduces the average
deletion time over algorithm N by 143.75%, while for the edge
insertion case, algorithm X cuts the average insertion time
over algorithm N only by 5.8%. For the edge deletion case,
algorithm Y reduces the average deletion time over algorithm
N by 59%, while for the edge insertion case, algorithm Y
reduces the average insertion time over algorithm by 2.8%.

C. Results for a batch of edge updates

In previous experiments, we have shown the performance of
our algorithms for core maintenance in a graph given the graph
is updated by an edge insertion or deletion. These algorithms
are extremely useful tocontinuously monitor the dynamics
of the core number of the nodes in time-evolving graph.
Besides the graph with a single edge update, here we show
the performance of our algorithms in a dynamic graph given
a batch of edges updates. Assume that the graph hasr edge
updates at a time interval∆t. To maintain the core number
of the nodes, we need to sequentially invoke our algorithm
(algorithm XY) r times. For the baseline algorithm (algorithm
B), however, we can invoke it one time to recompute the
core number of all nodes. Since our XY algorithm is the best
algorithm for single edge updates, we only compare our XY
algorithm with algorithm B.

Now, let us focus on the last column in Table II which shows
the speedup ratio (SR) of algorithm XY over algorithm B for
a single edge update. In general, ifr is less than the speedup
ratio, then our algorithm is more efficient than the baseline
algorithm for processing a batch of edge updates at a time
interval∆t. For example, in Gowalla dataset, the speedup ratio
of our algorithm is 101.8. As a result, if the graph has less than
101 edge updates, i.e.,r ≤ 101, then our algorithm is more
efficient than the baseline algorithm. However, ifr is larger
than the speedup ratio of our algorithm, the baseline algorithm
is more preferable than our algorithm. As shown in Table II,
the speedup ratio of our algorithm increases as the graph size
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Fig. 5. Speedup ratio vs. graph size.

increases. This result implies that, for a batch of edge updates,
our algorithm is very efficient in large graphs with smallr. In
other words, if the graph is very large and evolves slowly, then
our algorithm is more preferable. However, if the graph is very
small and frequently varying, then the baseline algorithm is
more efficient than our algorithm. Below, we show the speedup
ratio of our algorithm in large synthetic graphs.

To evaluate the speedup ratio of our algorithm in large
graphs, we generate five large synthetic graphs based on a
power-law random graph model [6]. Specifically, we produce
five synthetic graphsG1, · · · , G5 with Gi hasi million nodes
and5× i million edges fori = 1, · · · , 5. Then, we adopt the
same method used in our previous experiments to compute the
speedup ratio of our algorithm. Fig. 5 shows that the result of
speedup ratio of our algorithm with different graph size. From
Fig. 5, we can see that the speedup ratio is greater than 4700
when the graph size is 5 million nodes and 25 million edges.
That is to say, in such a graph, ifr is smaller than 4700, then
our algorithm is more efficient than the baseline algorithm.
Generally, for a fixed graph size (from 1 million to 5 million
nodes), ifr is below the red curve in Fig. 5, then our algorithm
is more preferable than the baseline algorithm, otherwise the
baseline algorithm is more efficient.

13



V. RELATED WORK

Thek-core decomposition in networks has been extensively
studied in the literature. In [22], Seidman introduces the con-
cept ofk-core for measuring the group cohesion in a network.
The cohesion of thek-core increases ask increases. Recently,
thek-core decomposition in graph has been successfully used
in many application domains, such as visualization of large
complex networks [7], [9], [4], [3], [25], uncovering the
topological structure of the Internet [10], [5], [2], analysis of
the structure and function of the biological networks [17],[1],
[23], studying percolation in random graph [14], [15], as well
as identifying the influential spreader in complex network [18].
Below, we list some notable work on these applications.

In [7], Batagelj et al. propose to usek-core decomposition
to visualize the large graph. Specifically, they first partition
a large graph into smaller parts using thek-core decomposi-
tion and then visualize each smaller part by standard graph
visualization tools. In [9], based on thek-core decomposition,
Baur et al. present a method for drawing autonomous systems
graph using 2.5D graph drawing. Their algorithm makes use of
a spectral layout technique to place the nodes in the highest
order core. Then, the algorithm uses an improved directed-
forces method to place the nodes in eachk core according to
the decreasing order. Alvarez-Hamelin et al. [4], [3] propose
a visualization algorithm to uncover the hierarchical structure
of the network usingk-core decomposition. Their algorithm
is based on the hierarchical property ofk-core decomposition.
More recently, Zhang and Parthasarathy [25] introduce a
different notion, namely trianglek-core, to extract the clique-
like structure and visualize the graph. Unlike the traditional
k-core, the trianglek-core is the maximal subgraph that each
edge of the subgraph is contained within at leastk triangles.
They also propose a maintenance technique for trianglek-core.
Since the trianglek-core is totally different fromk-core, their
maintenance technique cannot be applied in our problem. The
k-core decomposition is also successfully used for analyzing
and modeling the structure of the Internet [10], [5], [2]. For
example, in [10], Carmi et al. study the problem of mapping
the Internet using the method ofk-core decomposition. In [5],
Alvarez-Hamelin et al. investigate the hierarchies and self-
similarity of the Internet usingk-core decomposition. Besides
the Internet, thek-core decomposition has also been applied to
analyze the structure and function of the biological networks.
In [17], Kitsak et al. propose a method based on the notion of
k-core to find the molecular complexes in protein interaction
networks. Altaf-Ul-Amin et al. [1] propose a technique for
predicting the protein function based onk-core decomposition.
In [23], Wuchty and Almaas apply thek-core decomposition to
identify the layer structure of the protein interaction network.
In addition, thek-core decomposition is recently used to
identify the influential spreaders in complex network [18].
In [18], Kitsak et al. find that the nodes located in the high
order core are more likely to be a influential spreader. Another
line of research is to investigate thek-core percolation in a
random graph [14], [15], [11]. These studies mainly focus on

investigating the threshold phenomenon of the existence ofa
k-core based on some specific random graph models.

From an algorithmic point of view, Batagelj and Zaversnik
propose anO(n + m) algorithm for k-core decomposition
in general graphs [8]. Their algorithm recursively deletesthe
node with the lowest degree and uses the bin-sort algorithm
to maintain the order of the nodes. However, this algorithm
needs to randomly access the graph, thus it could be inefficient
for the disk-resident graphs. To overcome this problem, in
[12], Cheng et al. propose an efficientk-core decomposition
algorithm for the disk-resident graphs. Their algorithm works
in a top-to-down manner that calculates thek-cores from
higher order to lower order. To make thek-core decomposition
more scalable, in [21], Montresor et al. propose a distributed
algorithm fork-core decomposition by exploiting the locality
property of k-core. All the above mentioned algorithms are
focus onk-core decomposition in static graph except for [20].
For the dynamic graph, in [20], Miorandi and Pellegrini apply
the O(n + m) algorithm given in [8] to recompute the core
number of the nodes when the graph is updated, which is
clearly inefficient. In the present paper, we propose a more
efficient core maintenance algorithm in dynamic graphs. Our
algorithm are quite efficient, which is more than 100 times
faster than the re-computation based algorithm.

VI. CONCLUSIONS

In this paper, we propose an efficient algorithm for main-
taining the core number of nodes in dynamic graphs. For a
node u, we define a notion of induced core subgraphGu,
which contains the nodes that are reachable fromu and have
the same core number asu. Given a graphG and an edge
(u, v), we find that only the core number of nodes inGu or
Gv or Gu∪v may need to be updated after inserting/deleing
the edge(u, v). Based on this, first, we introduce a coloring
algorithm to identify all of these nodes. Second, we devise
a recoloring algorithm to determine the nodes whose core
numbers definitely need to be updated. Finally, we update the
core number of such nodes by a linear algorithm. In addition,
we develop two pruning strategies, namelyX-pruning andY -
pruning, to further accelerate the algorithm. We evaluate our
algorithm over 15 real-world and 5 large synthetic datasets.
The results demonstrate the efficiency of our algorithm.
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