
ar
X

iv
:1

30
2.

30
33

v1
 [

cs
.S

I]
 1

3
F

eb
 2

01
3

1

Structural Diversity for Resisting Community

Identification in Published Social Networks
Chih-Hua Tai, Philip S. Yu,Fellow, IEEE,

De-Nian Yang,Senior Member, IEEE and Ming-Syan Chen,Fellow, IEEE

Abstract

As an increasing number of social networking data is published and shared for commercial and research purposes,

privacy issues about the individuals in social networks have become serious concerns. Vertex identification, which

identifies a particular user from a network based on background knowledge such as vertex degree, is one of the most

important problems that has been addressed. In reality, however, each individual in a social network is inclined to be

associated with not only a vertex identity but also a community identity, which can represent the personal privacy

information sensitive to the public, such as political party affiliation. This paper first addresses the new privacy issue,

referred to as community identification, by showing that thecommunity identity of a victim can still be inferred

even though the social network is protected by existing anonymity schemes. For this problem, we then propose

the concept ofstructural diversity to provide the anonymity of the community identities. Thek-Structural Diversity

Anonymization (k-SDA) is to ensure sufficient vertices with the same vertex degree in at leastk communities in a

social network. We propose an Integer Programming formulation to find optimal solutions tok-SDA and also devise

scalable heuristics to solve large-scale instances ofk-SDA from different perspectives. The performance studieson

real data sets from various perspectives demonstrate the practical utility of the proposed privacy scheme and our

anonymization approaches.

Index Terms

social network, privacy, anonymization.

I. I NTRODUCTION

In a social network, individuals are represented by vertices, and the social activities between individuals are

summarized by edges. In light of the recognition of the usefulness of information in social networking data for

C.-H. Tai is with the Department of Computer Science and Information Engineering, National Taipei University, New Taipei 23741, Taiwan.

E-mail: hanatai@mail.ntpu.edu.tw.

P. S. Yu is with the Department of Computer Science, University of Illinois at Chicago, IL 60607, USA. E-mail: psyu@cs.uic.edu.

D.-N. Yang is with the Institute of Information Science and the Research Center of Information Technology Innovation, Academia Sinica,

Taipei 11529, Taiwan. E-mail: dnyang@iis.sinica.edu.tw.

M.-S. Chen is with the Research Center of Information Technology Innovation, Academia Sinica, Taipei 11529, Taiwan, and the Department

of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan. E-mail: mschen@citi.sinica.edu.tw.

http://arxiv.org/abs/1302.3033v1

2

Fig. 1. Privacy violation by degree attacks.

commercial and research purposes, more and more social networking data have been published and shared in recent

years. This, however, raises serious privacy concerns for the individuals whose personal information is contained

in social networking data.

Each individual in a social network is associated with a vertex identity, which can represent the user name or

Social Security number (SSN)1. Vertex identification, where malicious attackers utilizetheir background knowledge

to associate an individual with a specific vertex in published social networking data, is one of the most important

privacy issues that has emerged in recent year [24], [29]. Due to the complexity of social networks, the resistance

of vertex identification has been studied against differentbackground knowledge from various perspectives [1],

[12], [17], [28], [30]. Backstrom et al. in [1] first showed that as long as an attacker knows a piece of information

about an individual, it is insufficient to protect privacy byonly removing the vertex identities. Liu and Terzi in

[17] later proposedk-degree anonymity that guarantees the privacy protection against degree information. Given

the degree information,k-degree anonymity ensures that there are at leastk vertices with the same degree in

a social network, such that the probability of an individualbeing associated with a specific vertex is limited

to 1/k. Similar concepts have also been applied to provide protection against attackers with stronger background

knowledge. The work in [28] considered the case where an attacker’s knowledge is the 1-neighborhood connectivity

around an individual and proposedk-neighborhood anonymity as a solution. The studies in [5], [30] introduced

k-automorphism anonymity andk-isomorphism anonymity against attacks of arbitrary subgraphs related to an

individual. Alternatively, a generalization technique isanother approach. Hay et al. [12] were able to hide privacy

details about each individual by grouping a set of vertices into a super-vertex and inferring the relationships between

super-vertices from super-edges.

Note that, however, each individual in a social network is inclined to be associated with a community identity

[7], [14]. The community identity of a vertex can represent the personal privacy information sensitive to the public,

such as on-line political activity group, on-line disease support group information, or friend group association in

a social network. Different from the other vertex features such as gender or salary, community identity is a kind

of structural information that can be derived by the community detection techniques from a social network. The

existing vertex anonymity schemes thus cannot ensure the privacy protection for the community identities since it is

possible that the vertices with the same information known to an attacker gather closely in a subgraph (community)

of the whole social network.

Specifically, this paper addresses a new privacy issue, referred to as community identification, and shows that

k-degree anonymity is not sufficient. Consider the2-degree anonymity in Figure 1 as an example. Suppose that

an attacker knows that John has 5 friends in this network. In the case of explicit communities, the attacker is able

to infer that John has AIDS since all vertices with degree 5 are associated with the AIDS community. Moreover,

even in another case of implicit communities (i.e., withoutexplicit community label), the attacker can infer the

1SSN is a nine-digit number issued to U.S. citizens, permanent and temporary residents in the United States.

3

neighborhood of John with only a distance one inaccuracy by identifying the dense subgraph in which John resides.

This example demonstrates that even though an attacker cannot precisely identify the vertex corresponding to an

individual, private and sensitive community information and neighborhood information can still be revealed.

To prevent community identification in published social networks by degree attacks, therefore, we proposek-

structural diversity, which ensures that for each vertex, there are other vertices with the same degree located in at

leastk − 1 different communities. The rationale is that the probability for an attacker to associate a victim with

the correct community identity is limited to at most1/k. We then formulate a new problem,k-Structural Diversity

Anonymization (k-SDA), which ensures thek-structural diversity with minimal semantic distortion. For k-SDA,

we propose an Integer Programming formulation to find optimal solutions for small instances. In addition, we

also devise scalable heuristics to solve large-scale instances ofk-SDA with different perspectives. To demonstrate

the practical utility of the proposed privacy scheme and ouranonymization approaches, various evaluations are

performed on real data sets. The experimental results show that the social networks anonymized by our approaches

can preserve much of the characteristics of the original networks.

II. RELATED WORK

Privacy is always a crucial factor in releasing or exchanging data. In the past decade, issues on privacy-preserving

data publishing (PPDP) on transaction data, such as record linkage, sensitive attribute linkage, and table linkage,

have attracted extensive research interest [9]. Record linkage refers to the identification of a record’s owner, and its

corresponding privacy model,k-anonymity [21], prevents record linkage by ensuring that at leastk records share the

same quasi-identifier. That is, there are at leastk records in aqid group. Following this initial research, a group of

studies, such as MultiRelationalk-anonymity [20], extendedk-anonymity to improve and support privacy protection

under various scenarios and attacks. In contrast to the record, the attribute value associated with each individual

is more important in sensitive attribute linkage, andl-diversity [18] ensures that at leastl sensitive values appear

in everyqid group. However, as Li et al. [15] observed,l-diversity is not sufficient to provide privacy protection,

especially when the overall distribution of the sensitive attribute is skewed. In other words, an attacker is able to

issue askewness attack when a sensitive attribute is associated to aqid group with higher confidence than otherqid

groups. This problem is remedied byt-Closeness [15] by demanding that the distribution of a sensitive attribute

in every qid group is similar to each other among the whole dataset. It is worth noting that bothl-diversity and

t-closeness mainly focus on categorical sensitive attributes. For numerical sensitive attributes, aproximity attack

[16] identifies the interval in which the sensitive values of an individual is located, while(ε,m)-anonymity is

proposed to ensure that the probability to infer an interval[s− ε, s+ ε] is limited to at most1/m. Moreover, table

linkage is concerned about whether the record associated with an individual is presented in a released table, and

δ-presence [19] limits the probability of the above inference within a specified range.

With the explosive growth of information from social networking applications, privacy concerns in releasing social

networking data become increasingly important. Various issues, such as vertex identification and link identification,

have drawn extensive research interests [24], [29]. Vertexidentification [1], [5], [12], [17], [28], [30] finds the one-

to-one correspondence of each individual and each vertex ina social network in order to extract sensitive personal

information, and many anonymization and generalization approaches for resisting vertex identification have been

introduced in Section I. This contrasts with link identification [5], [25], [26], [27], which discloses the sensitive

relationship between two individuals. To resolve this issue, perturbation [25] with edge addition, edge deletion,

and edge swap is proposed. To further address different privacy requirements, edges are classified into multiple

4

types of sensitivities and removed with different priorities [27]. Zhang et al. [26] explored a new situation where

attackers possess the knowledge of vertex descriptions, such as degrees, and proposed to decrease the certainty on

the existence of an edge according to the attacker’s available knowledge. In addition,α-proximity [6] brings the

notion of attribute privacy in transaction data to social networks by extending the concept oft-closeness. That is,

α-proximity ensures that the distribution of labels in a neighborhood is similar to that in the whole social graph.

Different from all the above privacy models concentrating on varied datasets that are directly made public,

differential privacy [8] explores the condition on the release mechanism, i.e., arandomized algorithmA answering

queries to release information. Specifically, a randomizedalgorithmA follows ǫ-differential privacy if for all datasets

x andx′ that differ on at most one element, and any subset of outputsS ⊂ Range(A),

Pr[A(x) ∈ S] ≤ exp(ǫ)Pr[A(x′) ∈ S],

where ǫ is a privacy parameter. Intuitively, the privacy protection increases with a smallerǫ. Thus, differential

privacy aims to introduce noises into query results and provide robust privacy guarantee without any assumption on

the data and background knowledge possessed by an attacker.In the past few years, the great promise of differential

privacy has mainly been demonstrated on statistical database [9]. Very recently, a few studies [10], [11], [13] have

also proposed its application to social networks. To meet the privacy guarantee, those approaches focus on specific

data utility of social networks. Specifically, Hay et al. [11] proposed constrained inferences to provide provable

privacy for the degree distribution of a social network; Karwa et al. [13] studied the privacy-preserving problem for

subgraph counting queries, e.g., a triangle, k-star and k-triangle, while Gupta et al. [10] addressed the cut function

of a graph that answers the number of correspondences between any two sets of individuals.

III. PROBLEM FORMULATION

In this paper, we formulate a new anonymous problem,k-Structural Diversity Anonymization (k-SDA), to protect

the community identities of individuals in a network. The network is represented as an undirected simple graph

G(V,E,C), whereV is the set of vertices corresponding to the individuals,E is the set of edges representing the

relationship between individuals, andC is the set of communities. These communities can be either explicitly given

as input or derived through clustering on the social networkgraph. Each vertexv has a community ID2, cv, in C,

and each edge inE can span two vertices in either the same or different communities. Letdv denote the degree of

vertexv, andk-SDA is also given a positive integer parameterk, 1 ≤ k ≤ |C|, to represent the structural diversity,

which is formally defined as follows.

Definition 1. A graphG(V,E,C) is k-structurally diverse, i.e., satisfyingk-SDA, if for every vertexv ∈ V ,

there exist at leastk communities such that each of the communities contains at least one vertex with the degree

identical todv3.

2For simplicity, we focus on the one-community case in this paper while the multi-community scenario is studied in our ICDM paper [23].

3From the viewpoint of privacy protection, the concept of structural diversity proposed in this paper can be extended to support the multi-

community scenario [23]. For protecting asingle community, the structural diversity anonymization (k-SDA) specifies that the vertices of the

same degree need to appear in at leastk different communities. In contrast, to support the scenario that each individual belongs to a community

set with one or more than one community, the key factor for extendingk-SDA is to ensure that the vertices of the same degree in the anonymized

graph appear in at leastk different mutually exclusivecommunity sets. For example, if two vertices A and B of the same degree in the anonymized

graph belong to community sets{C1} and{C2,C3}, respectively, those two vertices follow 2-SDA since the two community sets are mutually

exclusive. On the other hand, if A and B reside in community sets {C1} and {C1,C3}, respectively, it is easy for an attacker to infer that A

and B must participate in community C1.

5

(a) (b)

Fig. 2. Examples of two 2-structurally diverse graphs.

Fig. 3. Examples of limit of operation Adding Edge.

(a) (b) (c) (d) (e)

Fig. 4. Examples of operation Splitting Vertex

In other words, for each vertexv, there must exist at leastk − 1 other vertices located in at leastk − 1 other

communities. Figure 2 shows an example with the graphs that are 2-structurally diverse, where the community ID

is indicated beside each vertex. In Figure 2(a), both communities contain a vertex with the degree as 1 and a vertex

with the degree as 2. Therefore, the graph is 2-structurallydiverse. In Figure 2(b), two communities contain vertices

with the degree as 1, and three communities contain verticeswith the degree as 2. For each degree, we can find at

least two communities containing vertices with the same degree. The graph is thus 2-structurally diverse.

Proposition 1. If G(V,E,C) is k-structurally diverse, then it also satisfiesk-degree anonymity, which implies

that for every vertex, there exist at leastk − 1 other vertices with the same degree.

Proposition 2. If G(V,E,C) is k1-structurally diverse, then it is alsok2-structurally diverse for everyk2, k2 ≤ k1.

The problem is to anonymize a graphG(V,E,C) such that the graph isk-structurally diverse. To limit the

semantic distortion in the corresponding applications, wedefine two operations,Adding Edge andSplitting Vertex.

Operation Adding Edge connects two vertices belonging to the same community. Adding an edge for two vertices

in different communities is prohibited because it may lead to improper distortion. For example, it is inappropriate to

artificially connect an individual in the liberal politicalaction community to another individual in the anti-abortion

community to achievek-structural diversity. Although operation Adding Edge alone can fulfillk-structural diversity

in some cases,k-structural diversity cannot often be solely achieved withthis operation. Consider the example in

Figure 3. There is one vertex with the degree as 3 in community2. However, by operation Adding Edge alone, it is

impossible to make any vertex in community 1 have a degree as 3since there are only three vertices in community

1.

Therefore, operation Splitting Vertex is proposed to ensure that any arbitrary input instance can be anonymized

to achievek-structural diversity. Each vertexv involved in this operation is split into multiplesubstitute vertices,

where each substitute vertex is a clone for the corresponding individual. Each clone represents the relationship of

at least one neighbor ofv, such that all substitute vertices ofv as a whole share the same relationships with the

neighbors ofv before the splitting. Specifically, letEv denote the set of incident edges ofv, wherev is replaced

6

with a setSv of substitute vertices such that (1) each substitute vertexis connected with at least one edge inEv,

and (2) every edge inEv is incident to a substitute vertex inSv. Thus,Sv includes at most|Ev| vertices. Figures

4(b)-4(e) present several possible results for Splitting Vertex on vertexv of Figure 4(a). For the connectivity between

substitute vertices, a simple approach is to enforce that all substitute vertices ofv must be mutually connected.

However, Splitting Vertex does not restrict thatSv must form a clique because an attacker can regard the clique

as a hint to identify the corresponding individual. Therefore, Splitting Vertex allows a substitute vertex to freely

connect to any other substitute vertex inSv, and the flexibility inherited in Splitting Vertex enables our algorithm

to achievek-structural diversity for any arbitrary input instance.

Note that in the previous study on the privacy preservation of databases [9], it was pointed out that maintaining

the original information stored in the database is important for some applications that are required to extract the

attribute values associated with the data tuples. For this reason, several database anonymization schemes [9], [15],

[18], [22] avoid removing a tuple or even any of its attributevalues in order to preserve all corresponding information.

Similarly, for preserving the attribute values of a tuple tosome extent, many existing anonymization schemes [15],

[18], [22] adopt generalization or suppression to hide a specific attribute value into its specific attribute range or

generalize the concepts of the attribute values, while the hiding ranges and generalization concepts are optimized

to reduce the distortion.

In this paper, the proposed algorithms with operations Adding Edge and Splitting Vertex can be regarded as

the above type of anonymization schemes that aims to preserve the attribute values to some extent. As such, the

information in the social networks is not removed by deleting or swapping the existing edges, even though the above

two strategies allow the proposed algorithms to be more flexible in anonymizing a graph. Nevertheless, the concept

of swapping an edge has been incorporated in our algorithm design. The proposed heuristics redirect an edge added

at the previous iteration, instead of always adding a new edge, in order to reduce the number of created edges.

However, redirecting added edges does not affect the original edges in the network, and hence does not violate our

objective of preserving the original edges in the network. Specifically, the objective ofk-SDA is to minimize the

semantic distortion during the anonymization via Adding Edge and Splitting Vertex. We formally definek-SDA as

follows.

Problem k-SDA. Given a graphG(V,E,C) and an integerk, 1 ≤ k ≤ |C|, the problem is to anonymizeG to

satisfy k-structural diversity with operations Adding Edge and Splitting Vertex such thatna + ωns is minimized,

wherena denotes the number of edges created in operation Adding Edge, ns denotes the number of vertices added

in operation Splitting Vertex, andω is a positive weight for operation Splitting Vertex.

In this paper, we setω as |V |2 (the maximum number of edges in a graph) to consider the case that operation

Splitting Vertex is performed only if the graph cannot be anonymized with operation Adding Edge alone.

IV. I NTEGERPROGRAMMING

In the following, we propose the Integer Programming formulation for k-SDA. Our formulation together with

any commercial software for mathematical programming can find the optimal solutions, which can be used as the

benchmarks for the solutions obtained by any heuristic algorithm. We first derive the formulation fork-SDA with

only operation Adding Edge in Section IV-A to capture the intrinsic characteristics of this optimization problem and

to avoid initially including complicated details. Thereafter, we extend the formulation to incorporate both operations

in IV-B.

7

TABLE I

THE INPUT OFk-SDA.

Notation Description

V the set of vertices

C the set of communities

E the set of the original edges

Ev the set of the original edges incident onv

v ∈ V , Ev ⊆ E

E the set of candidate edges that are allowed to

be added in operation Adding Edge

Ev the set of adding edge candidates incident onv,

v ∈ V , Ev ⊆ E

Sv the set of substitute vertices ofv, v ∈ V

D the set of degrees, i.e.,D = {d ∈ N |1 ≤ d ≤ |V |}

k the size of structural diversity

cu the community of vertexu, u ∈ V , cu ∈ C

TABLE II

THE DECISION VARIABLES OFk-SDA WITH OPERATIONADDING EDGE.

Notation Description

αu,v binary variable;αu,v = 1 if edgeeu,v is added in

operation Adding Edge; otherwise,αu,v = 0,

eu,v ∈ Eu

δu,d binary variable;δu,d = 1 if the degree ofu is d;

otherwise,δu,d = 0, u ∈ V , d ∈ D

θc,d binary variable;θc,d = 1 if there exists at least

one vertex inc with its degree asd; otherwise

θc,d = 0, c ∈ C, d ∈ D

A. Formulation with Adding Edge

As an initial basis, consider the formulation fork-SDA with only operation Adding Edge. Tables I and II

summarize the input and decision variables ofk-SDA. In our formulation,eu,v and ev,u correspond to the same

edge. The objective function ofk-SDA with only operation Adding Edge is formulated as

min
∑

eu,v∈E

αu,v.

The objective function minimizes the number of added edges.The problem has the following constraints,

∀u ∈ V, (1)
∑

d∈D

δu,d = 1,

8

∀u ∈ V, ∀d ∈ D, (2)

whered < |Eu| or d > |Eu|+
∣∣Eu

∣∣ ,

δu,d = 0,

∀u ∈ V, (3)

|Eu|+
∑

eu,v∈Eu

αu,v =
∑

d∈D

dδu,d,

∀u ∈ V, ∀d ∈ D, (4)

δu,d ≤ θcu,d,

∀c ∈ C, ∀d ∈ D, (5)

θc,d ≤
∑

u∈V :cu=c

δu,d,

∀c ∈ C, ∀d ∈ D, (6)

(k − 1) θc,d ≤
∑

c∈C:c6=c

θc,d.

Constraint (1) ensures that the degree of each vertex is unique, and constraint (2) prunes unnecessary candidate

degrees for each vertex. The degree for each vertexu must be no smaller than the number of originally incident

edges. In addition, it cannot exceed the sum of the number of originally incident edges and the number of adding

edge candidates. The left-hand-side of constraint (3) represents the degree of vertexu, and constraint (1) guarantees

that δu,d is 1 for only a singled. In this way, constraint (3) together with constraint (1) ensure that binary variable

δu,d can find the correct degree of each vertex.

Constraints (4) and (5) collect the degrees of the vertices in each community. If the degree value of vertexu is

p, i.e., δu,p = 1, then constraint (4) states that the corresponding community must have at least one vertex with

the degree asp, i.e., θcu,p = 1. In contrast, for any other degree valueq, q 6= p, constraints (1)-(3) ensure that

δu,q = 0 must hold. In this case,0 ≤ θcu,q must be true whenθcu,q is either0 or 1. Note that this constraint does

not limit the value ofθcu,d in this case. However, if the degree value of every vertexu in communityc is not q,

i.e., δu,q = 0, then the right-hand-side of constraint (5) is0 and thereby ensures thatθc,d in the left-hand-side must

be 0. Therefore, constraints (4) and (5) ensure that binary variableθc,d can find and represent the degrees of the

vertices in each community.

Constraint (6) implements thek-structural diversity. Specifically, if communityc has at least one vertex with the

degreed, i.e.,θc,d = 1, then this constraint guarantees that there must exist at leastk−1 other communities, where

each of them also has a vertex with the degree asd. In this case, for each communityc with θc,d as1, constraint

(5) will assign the degree of at least one vertexu in communityc to bed, and constraint (3) will then add several

edges tou to fulfill the degree requirement. Therefore, constraint (6) is able to achieve thek-structural diversity in

k-SDA.

9

TABLE III

THE DECISION VARIABLES OFk-SDA.

Notation Description

αu,v,i,j binary variable;αu,v,i,j = 1 if an edge is added

to connect substitute vertexi of u and j of v;

otherwise,αu,v,i,j = 0, u ∈ V , eu,v ∈ Eu,

i ∈ Su, j ∈ Sv

βu,i,j binary variable;βu,i,j = 1 if an edge is added

to connect the substitute verticesi and j of u;

otherwise,βu,i,j = 0, u ∈ V , i, j ∈ Su, i 6= j

ηu,v,i,j binary variable;ηu,v,i,j = 1 if the original edge

eu,v connects the substitute vertexi of u and j

of v; otherwise,ηu,v,i,j = 0, u ∈ V , eu,v ∈ Eu,

i ∈ Su, j ∈ Sv

πu,i binary variable;πu,i = 1 if the substitute

vertex i of u is active; otherwise,πu,i = 0,

u ∈ V , i ∈ Su

δu,i,d binary variable;δu,i,d = 1 if the degree of

substitute vertexi of u is d; otherwise,

δu,i,d = 0, u ∈ V , i ∈ Su, d ∈ D

θc,d binary variable;θc,d = 1 if there exists at

least one vertex inc with its degree asd,

c ∈ C, d ∈ D

B. Formulation with Splitting Vertex as well

We now extend the Integer Programming formulation in Section IV-A to consider both operations ink-SDA.

Table III shows the modified decision variables, where subscripts for substitute vertices are included in variables

αu,v,i,j andδu,i,d. To ensure that each substitute vertex inSv has at least one incident edge inEv, we incorporate

variableηu,v,i,j to assign the edges inEv to the substitute vertices, andβu,i,j represents the edges between substitute

vertices ofv. Please note that we do not enforce that every substitute vertex in Sv must have an incident edge.

Instead, our formulation allows some vertices inSv to have no incident edge. In this case, these vertices are not

actually split fromv, and we regard these verticesinactive in Sv. In the extreme case, if only one vertex inSv is

active and has incident edges, the vertex representsv in our formulation, andv is actually not split ink-SDA. In

our formulation, to avoid missing the globally optimal solutions,Sv has a sufficient number of candidate substitute

vertices, and only active substitute vertices are includedor added toG in the solutions for users.

The objective function ofk-SDA with both operations is as follows.

minω

(
− |V |+

∑

u∈V

∑

i∈Su

πu,i

)
+

∑

eu,v∈E

∑

i∈Su

∑

j∈Sv

αu,v,i,j +
∑

eu,v∈E

−1 +

∑

i∈Su

∑

j∈Sv

ηu,v,i,j

 .

The first part represents the cost from operation Splitting Vertex, and note that no cost is incurred if no such

operation is performed, i.e., there is only one active substitute vertex inSu for eachu in V . The second and third

terms correspond to the cost from operation Adding Edge. Moreover, the edges between the substitute vertices of

10

the same vertex,βu,i,j , induce no cost. The problem has the following constraints,

∀u ∈ V, ∀i ∈ Su, (7)
∑

d∈D

δu,i,d = 1,

∀u ∈ V, ∀i ∈ Su, (8)
∑

eu,v∈Eu

∑

j∈Sv

ηu,v,i,j +
∑

j∈Su:i6=j

βu,i,j +
∑

eu,v∈Eu

∑

j∈Sv

αu,v,i,j

=
∑

d∈D

dδu,i,d,

∀u ∈ V, ∀i ∈ Su, ∀d ∈ D, (9)

δu,i,d ≤ θcu,d,

∀c ∈ C, ∀d ∈ D, (10)

θc,d ≤
∑

u∈V :cu=c

∑

i∈Su

δu,i,d,

∀c ∈ C, ∀d ∈ D, (11)

(k − 1) θc,d ≤
∑

c∈C:c6=c

θc,d,

∀eu,v ∈ E, (12)
∑

i∈Su

∑

j∈Sv

ηu,v,i,j ≥ 1,

∀u ∈ V, ∀eu,v ∈ Eu, ∀i ∈ Su, ∀j ∈ Sv, (13)

ηu,v,i,j ≤ πu,i,

∀u ∈ V, ∀eu,v ∈ Eu, ∀i ∈ Su, ∀j ∈ Sv, (14)

αu,v,i,j ≤ πu,i,

∀u ∈ V, i ∈ Su, ∀j ∈ Su, i 6= j, (15)

βu,i,j ≤ πu,i.

Constraints (7), (8), (9), (10), and (11) are similar to constraints (1), (3), (4), (5), and (6). The first term in constraint

(8) is different from the one in (3), in which every original edge inE is connected to vertexu. In contrast, here

we allow the edges inEu to be distributed to the substitute vertices ofu, while more edges are also allowed to be

added. The left-hand-side of (8) thereby finds the degree of each substitute vertexi of u.

Constraints (12)-(14) allocate the original edges inE to substitute vertices, add more edges, and identify the

corresponding active substitute vertices. Constraint (12) ensures that each original edge connecting verticesu andv

in k-SDA must connect a substitute vertex ofu and a substitute vertex ofv here, while new edges are also allowed

to be added. Constraints (13), (14), and (15) guarantee thata substitute vertex is active when the vertex has at least

one incident edge.

11

V. SCALABLE APPROACHES

In this section, we solve thek-SDA problem on large scale social networks. Anonymizationof large scale social

networks with minimal information distortion is always challenging because directly enumerating possible solutions

is computationally infeasible. Heuristically, anonymization problems can be solved by a one-step framework which

directly adjusts a graph to satisfy the privacy requirements [5], [28], [30], or by a two-step framework consisting

of degree sequence anonymization and graph re-construction subjected to anonymized degree sequence [17]. For

k-SDA, note that the degree sequence in the first step presentslimited structural information due to the dimension

incurred from the community information, while deriving additional information in the first step is so computationally

intensive that an algorithm becomes less scalable. Therefore, in this paper, we design the algorithms to solve the

k-SDA problem based on the one-step framework.

To ensure good scalability and achieve the anonymization with minimal information distortion, we propose four

algorithms based on the following concepts. First, our algorithms anonymize the vertices one-by-one such that the

graph anonymization can be efficiently achieved with only one scan of the vertices. Second, to efficiently minimize

the total anonymization cost, we anonymize the vertices in orders of degrees and handle a set of vertices with similar

degrees to avoid searching for a large amount of combinations. Third, to consider the community information, we

propose two procedures,CREATION andMERGENCE, to anonymize each vertexv efficiently. Specifically,CREATION

forms a new anonymous group for protectingv, such that other similar vertices that have not been considered can

be anonymized via this new group and share the same degree with v. In addition to creating new anonymous groups

for anonymization,MERGENCE lets v join an existing anonymous group if joining the group only incurs a small

anonymization cost. Consequently, the above two procedures enable each vertex to be anonymized efficiently, and

the graph anonymization can thereby be achieved with minimal information distortion.

In this paper, we propose four algorithms to solvek-SDA. The first algorithm, namedEdgeConnect, specially

aims at minimizing information distortion. That is, EdgeConnect applies operation Adding Edge alone since adding

edges within a community does not destroy existing semanticinformation, such as friendships, and makes limited

changes over the whole graph. It should be noted that, with sole use of Adding Edge, the degrees of vertices can

only increase. EdgeConnect thus considers the vertices indecreasing order of the degrees to first anonymize the

vertices with large degrees, so that we have more chances to achieve the anonymization of subsequent vertices

without affecting existing anonymous groups. Second, to provide more variety for anonymization, we then extend

EdgeConnect with operation Splitting Vertex and propose the CreateBySplit algorithm. CreateBySplit utilizes the

same anonymization flow as EdgeConnect, but leverages Splitting Vertex if the anonymization cannot be achieved by

Adding Edge alone. Incorporating Splitting Vertex can not only provide more chances to achieve the anonymization

but also incur less information distortion. Differing fromthe previous two algorithms, which focus on minimizing

the information distortion, the third algorithm, namedMergeBySplit, is designed to guarantee the anonymization

for the social networks that are difficult to be anonymized with respect to a high privacy levelk. For this purpose,

MergeBySplit anonymizes the vertices inincreasing order of the degrees, and the creation of new anonymous groups

with small degrees thereby allows us to protect a vertex withany larger degree by operation Splitting Vertex. Finally,

we propose the fourth algorithm, namedFlexSplit, to improve Algorithm MergeBySplit and reduce the number of

generated substitute vertices in the objective function ofk-SDA. Specifically, in addition to anonymizing a vertex

by splitting it into members of the existing anonymous groups as in Algorithm MergeBySplit, FlexSplit is endowed

with a new splitting strategy, which splits a group of vertices to generate a new anonymous group of a target degree

for anonymization. With the capability of looking forwardk subsequence vertices for anonymization, FlexSplit is

12

able to reduce the substitute vertices with the two splitting strategies. FlexSplit is thus more flexible and preserves

more data utilities than MergeBySplit under the same guarantee of anonymization.

Before we introduce these algorithms in detail, we first define the anonymous group, which considers not only

the number of vertices of the same degree but also the distribution of the vertices over the communities.

Definition 2. An anonymous group of degreed, denoted asgd, consists of the vertices with degreed, i.e.,

gd = {v|dv = d}. A gd is a k-SDA group, denoted aŝgd, if Cgd = {cv|v ∈ gd} and the cardinality ofCgd is no

smaller thank, i.e., |Cgd | ≥ k.

Lemma 1. If every vertexv in G(V,E,C) belongs to ak-SDA group,G(V,E,C) must satisfyk-SDA.

Given a graphG(V,E,C), the objective is to assign every vertexv to a groupĝd with minimal information

distortion. In the next sections, we present the details of our algorithms.

A. Algorithm EdgeConnect

The EdgeConnect algorithm is designed for minimizing information distortion on large-scale graphs. For this

purpose, the EdgeConnect algorithm incorporates operation Adding Edge to anonymize the vertices one-by-one in

decreasing order of their degrees to avoid enumerating all possible combinations, which is computationally infeasible.

One merit of EdgeConnect is that the existing information isnever removed, and the added local new edges within

each community incur few changes to the whole graph. Moreover, proceduresCREATION and MERGENCE are

utilized in this algorithm, and any existingk-SDA group is never removed in order to avoid re-anonymizingthe

vertices and increasing the computation cost. As a result, EdgeConnect has very good scalability, which is shown

in our experiments.

The rationale of Algorithm EdgeConnect is to adjust the vertex degrees one-by-one with operation Adding Edge

in order to let every vertex share the same degree with other vertices in at leastk different communities. To avoid

examining all possibilities, the anonymization begins from a not-yet-anonymized vertexv of thelargest degree, since

the power-law degree distribution demonstrated in the previous social network analysis indicates that each large

degree has fewer vertices required to be anonymized. For a chosenv, EdgeConnect utilizes procedureMERGENCE

andCREATION to explore the way to anonymizev with minimal number of new edges. ProcedureMERGENCEaims

at adjusting the degree for a vertexv to join an existingk-SDA group, whileCREATION is designed to collaborate

with other not-yet-anonymized vertices to generate a newk-SDA group with a new degree. In the example of Figure

5(a), the first vertex to be anonymized is vertexc because its degree is the largest one. At the beginning, procedure

MERGENCE is unable to anonymizec since nok-SDA group has been generated, and procedureCREATION thus

generates a new anonymous group of degree 5 by adding an edge connectingf and another vertex in the same

community, such asg. At this point, the newk-SDA group is{c, f} as shown in Figure 5(b). EdgeConnect repeats

the above process until all the vertices are successfully anonymized.

The details of each step are presented as follows. First, procedureMERGENCEprotects a vertexv with an existing

k-SDA groupgd. As all vertices ink-SDA groupgd share the same degreed for structural diversity, the cost for

v to be anonymized (by the operation Adding Edge) ingd is

CostMRG(v, d) =

d− dv, if d ≥ dv

∞, otherwise.
(16)

The minimal MERGENCE cost for v is evaluated asmin
d̂
CostMRG(v, d̂) to find a suitablek-SDA group forv

from all existingk-SDA groups, wherêd is the degree of ak-SDA groupĝd. For example, if there are three existing

13

(a) (b)

(c) (d)

Fig. 5. Example of anonymization by EdgeConnect.

k-SDA groups with degrees 2, 5 and 6, the minimalMERGENCE cost for a vertexv of degree 4 is 1 by increasing

its degree tôd = 5. Next, for procedureCREATION, which introduces a newk-SDA group, our algorithm finds the

vertices distributed in otherk − 1 communities to join this new group. Specifically, the diversity of a groupgd is

first defined as

Div(gdv
) =

1, if |Cgdv
| ≥ k

∞, if |Cgdv
| < k,

(17)

whereCgdv
= {cu|u ∈ gdv

}. Accordingly, the minimal cost forv in CREATION is

CostCRT(v) = minU{Div(U)×
∑

u∈U CostMRG(u, dv)}, (18)

whereU is any subset ofk vertices that have not been anonymized, includingv. For example, ifk is 2 and not-yet-

anonymized verticesv andu in different communities are of degrees 4 and 2, respectively, wheng4 has not been

previously generated, a simple way for anonymizingv is to create a newk-SDA groupg4 = {v, u} by increasing

the degree ofu to 4. However, to avoid exploring every possibleU , we sort all not-yet-anonymized vertices of

each community in the decreasing order of their degrees, andthe vertex with the largest degree in each community

is chosen forU since the degree difference between those vertices andv is the smallest. If|C| > k, only k of

the above vertices with the largest degrees are selected to constructU such that|U | = k. Therefore, finding the

anonymization costs for each vertexv is computationally efficient.

In our algorithm design, the not-yet-anonymized vertices in each community are sorted in the decreasing order

of their degrees. Letsc denote the order set of the vertices for communityc, andsc(i) be the vertex with thei-th

largest degree inc. We anonymize the vertices one-by-one withMERGENCE and CREATION as follows. We first

choose the largest degree vertexv amongs1(1), . . . , s|C|(1). If min
d̂
CostMRG(v, d̂) is smaller thanCostCRT(v),

procedureMERGENCE increases the degree ofv by adding (̂d−dv) edges connectingv and the (̂d−dv) subsequent

vertices, which are not yet connected tov, in scv . We then updatescv , and note that the update ofscv is efficient

given that only (̂d − dv) vertices increase their degrees by 1. Otherwise, procedure CREATION finds U , increases

the degree of each vertexu in U to dv in the same way, and updates the correspondingscu as well. We present

the proceeding illustrative example.

Example 1. Consider the graph in Figure 5(a) withk as 2. In the decreasing order of the degrees, the vertex

orders ares1 = cdabe and s2 = fgkhji. Accordingly, the first considered vertex (the largest degree vertex) isc.

From Formula (16), theMERGENCE cost forc is infinity as there is no 2-SDA group. According to Formula (18),

14

the CREATION cost forc is 1, and the setU corresponding to the minimal cost consists ofc andf (the first vertex

in sc). Therefore, vertexc is anonymized byCREATION and an edge is added betweenf andg. Consequently, a

new 2-SDA group of degree 5 is generated, and the vertex orders are updated tos1 = dabe ands2 = gkhji. Figure

5(b) shows the result after this iteration, where the anonymized vertices are shaded.�

The above two procedures can anonymize every vertex with a minimal cost at each iteration. However, Since

adding an edge increases the degrees of two vertices, the newly added edge (f ,g) in Figure 5 not only increases the

degree of vertexf for creating a 2-SDA group of degree 5 but also increases the degree of vertexg simultaneously.

Nevertheless, this increment of the degree ong incurs additional cost to anonymize the not-yet-anonymized vertex

g. To avoid the above case, we define redirectable edges and propose edge-redirection operation, so that edge (f ,g)

can be properly replaced by another edge, such as (f ,h), without revoking the anonymization of verticesc andf

examined previously.

Definition 3. An added edge(w, v), wherew is an anonymized vertex andv is a not-yet-anonymized vertex in

the same community, is said redirectable away fromv if there is another not-yet-anonymized vertexx in the same

community not yet connecting tow. Defined on such an edge, the edge-redirection operation performs

Ê ← Ê/(w, v) ∪ (w, x),

whereÊ is the set of existing added edges.

Let Rv denote the set of edges that are redirectable away fromv. The edge-redirection operation allows us to

reduce the degree ofv without changing the degree of any vertexw that has been anonymized in ak-SDA group.

Therefore, we can modify procedureMERGENCE in the following way to allowv to join the group with a smaller

degree, by redirecting some added edges incident tov.

CostMRG(v, d) =

0, if dv ≥ d ≥ dv − |Rv|

d− dv, if d > dv

∞, otherwise.

(19)

Thus, to find a suitablek-SDA group, we derive the minimalMERGENCE cost for v as min
d̂
CostMRG(v, d̂),

where d̂ is the degree of ak-SDA group ĝd. Similarly, we modify procedureCREATION and derive the minimal

cost of creating a newk-SDA group forv as

CostCRT(v) = minU{Div(U)×
∑

u∈U CostMRG(u, dv − |Rv|)}, (20)

whereU is any subset ofk vertices that have not been anonymized, includingv. As a result, with the edge-

redirection operation and the two modified procedures, we are able to reuse the edges added previously to further

reduce the anonymization cost.

In the following, we propose Algorithm EdgeConnect (Algorithm 1 in Figure 6) based on the modifiedMERGENCE

and CREATION. For each vertexv, EdgeConnect first finds the setRv of added edges that can be redirected away

from v. More specifically,Rv is a subset of new edges incident tov added during operation Adding Edge. For

every edge(w, v) in Rv, there must exist a vertexx in the same community ofv such thatx shares no edge with

the anonymizedw. To calculateRv efficiently, Algorithm EdgeConnect examines every new edge(w, v) incident

to v to findVCv
−Nw, whereVCv

is the set of not-yet-anonymized vertices in the same community of v, andNw is

the set of neighboring vertices ofw. We add(w, v) to Rv if VCv
−Nw is not an empty set. For vertexg in Figure

5(b) following Example 1,(f, g) is in Rg since{g, h, i, j, k} − {g, i, j, k} 6= ∅. In Community 2, there is a vertex

15

Fig. 6. The pseudo code of EdgeConnect.

h that does not connect to the anonymized vertexf . After identifyingRv, the costs induced fromMERGENCE and

CREATION for v are evaluated by (19) and (20). If theMERGENCE cost is smaller than theCREATION cost, the

degree ofv is increased by Adding Edge or decreased by the edge-redirection operation. Otherwise, EdgeConnect

anonymizesv by creating a newk-SDA group with the vertices inU that minimizes the cost in (20). EdgeConnect

returns the anonymized grapĥG(V,E ∪ Ê, C) and obtains the anonymization cost.

Example 2.We continue the example in Figure 5. However, proceduresMERGENCE and CREATION utilize (19)

and (20) here, instead of (16) and (18) as in Example 1. In thiscase,c is still the first vertex to be anonymized.

However, at the next iteration as shown in Figure 5(b), without the edge-redirection operation,g can only be

anonymized by adding another edge to increase its degree to 5(by MERGENCE), or by adding an edge between

d ande to create a new 2-SDA group of degree 4 (by CREATION). In both ways, we need to add an edge to the

graph. In contrast, the edge-redirection operation is ableto avoid this additional edge. Specifically, for vertexg,

EdgeConnect first findsRg = {(f, g)}. The CREATION cost forg is thus 0, and the setU that minimizes this cost

is {d, g}. The MERGENCE cost forg is 1 because the only 2-SDA group is of degree 5. Therefore, EdgeConnect

anonymizesg by creating a new 2-SDA group consisting ofd and g, and redirecting the edge(f, g) to (f, h).

Consequently, the edge-redirection operation enables us to anonymizeg with zero cost. Figure 5(c) shows the result

after the second iteration of anonymization, where the anonymized vertices belonging to the same 2-SDA groups

are shaded in the same color. When EdgeConnect terminates, the final anonymous result is shown in Figure 5(d).

�

B. Algorithm CreateBySplit

In this subsection, we extend Algorithm EdgeConnect with operation Splitting Vertex and propose Algorithm

CreateBySplit. Compared to EdgeConnect, CreateBySplit isa more realizable solution because Splitting Vertex

will increase the number of vertices in a community and provide a greater number of chances to achieve the

anonymization.

Specifically, Splitting Vertex replaces a vertexv with a setSv of substitute vertices, and redistributes incident

edges ofv to substitute vertices so that each substitute vertex presents partial truths ofv. Splitting Vertex will

thus increase the number of vertices and incur higher information distortion than Adding Edge. To minimize the

information distortion, Splitting Vertex is always regarded as the second choice and will be applied only if Adding

Edge is not able to anonymize the social network.

In addition, to avoid creating too many vertices and increasing information distortion, we always use two substitute

16

Fig. 7. The pseudo code of CreateBySplit.

Fig. 8. Example of splitting strategy of CreateBySplit.

verticesv1 andv2 to replacev, and connectv1 andv2 with an edge. This approach can limit the incrementation

of the length for the shortest path between any pair of vertices due to the split of a vertex.

In other words, when Adding Edge is not able to anonymize the social network (Algorithm 2 in Figure 7),

CreateBySplit anonymizes a given vertexv with Splitting Vertex in the following way. LetU denote the vertex

set consisting ofk not-yet-anonymized vertices with the largest degrees ink different communities. CreateBySplit

generates a newk-SDA of degreed in the following steps, whered is the maximal degree satisfyingd ≤ du for

everyu ∈ U . Whendu > d > 2, CreateBySplit (1) replacesu with two substitute verticesu1 of degreedu1
= d−1

and u2 of degreedu2
= du − d + 1, and then (2) connectsu1 and u2 with an additional edge(u1, u2), so that

du1
= d anddu2

= du − d+ 2 eventually. In the 2nd step, the edge(u1, u2) is added not only to ensuredu1
= d

but also reduce the information distortion such as the splitof connected components and the impact in the shortest

paths (and their lengths). On the other hand, whendu > d = 2, connectingu1 and u2 with an additional edge

(u1, u2) in the 2nd step will enforcedu2
= du − 2 + 2 = du2

and thus makeu2 just anotheru of the same degree

to be anonymized. Similar situation occurs ford = 1. To tackle those special cases withd ≤ 2, CreateBySplit

assignsdu1
= d anddu2

= du − d and no longer connectsu1 andu2 with an additional edge. Consequently, in

both general and special cases,u1 will be anonymized in the newly generatedk-SDA group of degreed, while u2

is a not-yet-anonymized vertex to be subsequently anonymized as with other vertices.

C. Algorithm MergeBySplit

Here, we propose Algorithm MergeBySplit for the social networks that are difficult to be anonymized with

respect to a high privacy levelk. In CreateBySplit, even though Splitting Vertex can generate vertices to increase

the possibility of anonymization for the social networks, the algorithm still cannot guarantee finding the solution

of every instance ofk-SDA. In contrast, MergeBySplit can anonymize every socialnetwork, even for the most

difficult one.

In more detail, MergeBySplit anonymizes the vertices one-by-one in the increasing order of the degrees, and

performs Splitting Vertex by allowing each vertexv to be split into more than two substitute vertices protectedby

17

Fig. 9. The pseudo code of MergeBySplit.

Fig. 10. Example of splitting strategy of MergeBySplit.

the existingk-SDA groups. The rationale of this algorithm is that, the creation ofk-SDA groups with small degrees

allows us to protect any vertexv by splitting v into many cohorts of the generatedk-SDA groups. In the worst

case, we can split a vertexv of degreedv into dv substitute vertices of degree 1 to achieve the anonymization for

an arbitraryk, 1 ≤ k ≤ |C|.

However, to reduce the information distortion, when we split a vertexv to cohorts of the existingk-SDA groups,

we create the least number of substitute vertices based on the following dynamic programming.

|Sv| = DP (dv)

= min{D(dv),min 1≤d<dv
DP (dv − d) +D(d)},

(21)

whereD(d) = 1, if there is ak-SDA groupĝd of degreed; otherwise,D(d) =∞.

We now describe the details of Algorithm MergeBySplit (Algorithm 3 in Figure 9). MergeBySplit sorts the not-yet-

anonymized vertices in each community in theincreasing order of the degrees. Letsc denote the order set of vertices

in community c, andsc(i) be the vertex with the i-th smallest degree. At each iteration, we anonymize a vertexv

with the smallest degree dv with proceduresMERGENCE or CREATION as specified in Algorithm CreateBySplit. If

it is too restrictive to anonymizev by Adding Edge and edge-redirection operations, we performSplitting Vertex

operation to anonymizev. That is, we replacev with a setSv of substitute vertices as shown in Figure V-C, i.e.,

V ← V/{v} ∪ Sv,

where the size ofSv is determined by Formula (21). Afterward, the edges incident to v are randomly redistributed

to the substitute verticesv1, v2, . . . , v|sv | such that each substitute vertexvj , j = 1, . . . , |sv|, is a cohort of some

existingk-SDA groupĝd, i.e.,dvj = d. As shown above, anonymizingv by Splitting Vertex in this way can always

succeed. When all the vertices belong tok-SDA groups, Algorithm MergeBySplit returns the anonymized graph

Ĝ.

18

D. Algorithm FlexSplit

In this subsection, we propose Algorithm FlexSplit that improves MergeBySplit and preserves more utilities of

the social networks under the same guarantee of anonymization. FlexSplit outperforms MergeBySplit by introducing

a new splitting strategy and the capability of looking forward.

To elaborate, in addition to splitting a vertex into substitutes protected by the existing anonymous groups as

MergeBySplit, FlexSplit is endowed with a new splitting strategy, which identifies a group of vertices and splits

these vertices to generate a new anonymous group of a target degree. In this way, the degrees of substitute vertices

are not constrained to be the same as those of the existing anonymous groups. FlexSplit is better able to preserve

the degree distribution by setting a large target degree forthe newly generated anonymous group. Moreover, when

splitting a group of vertices together, FlexSplit introduces new edges to connect the substitute vertices to effectively

prevent the partitioning of connected components in a social network.

With Vertex Splitting operation, FlexSplit is thus more flexible and is able to anonymize a selected vertexv

in the following strategies, for reducing the number of generated substitute vertices. The first strategy isSingle

Splitting, which splitsv into multiple substitute vertices as in MergeBySplit. LetSM
v denote the minimal set of

substitute vertices generated by Single Splitting, andSM
v can be derived by Formula (21). The second strategy is

Group Splitting, which identifies a group of vertices and splits those vertices to generate a new anonymous group

of the target degree for anonymization. To create minimal number of substitute vertices, this strategy splits each

vertex into at most two substitute vertices. The minimal setSC
v of substitute vertices generated by Group Splitting

is thus determined as

SC
v = 2× {u|du > dv, u ∈W}, (22)

whereW is the vertex set consisting ofk not-yet-anonymized vertices with the smallest degrees ink different

communities. Since each node is split into two substitute nodes, we have a multiplier of 2 in Formula (22). One

of the substitute vertex is anonymized with the target degree dv of the newly generated anonymous group and the

other has the remaining degreedu − dv + 2 with an additional edge added to connect the two substitute vertices.

Furthermore, FlexSplit is also endowed with the capabilityof looking forward, to reduce the number of generated

substitute vertices in the objective function ofk-SDA. In other words, it should be noted that Single Splitting usually

generates fewer substitute vertices than Group Splitting,especially whenk is large. If we simply compare|SC
v | and

|SM
v | and choose the strategy that introduces fewer substitute vertices to anonymize each selected vertexv, Single

Splitting will be performed most of the time for anonymizingv at each iteration, which may result in generating

more substitute vertices in total after many iterations.

To sidestep this trap, FlexSplit looks forward by identifying, fromW , the subsetX consisting of the vertices

that cannot be anonymized by Adding Edge alone, and comparesthe numbers of substitute vertices|SC
v | and

∑
u∈X |S

M
u |, instead of|SC

v | and |SM
v |, to choose the splitting strategy. Specifically, recall that the vertex set

involved in procedure CREATION is W , andX is the subset of vertices inW such thatX cannot be anonymized

by Adding Edge alone in both CREATION and the subsequent MERGENCE. FlexSplit first examines every vertex of

W and initializesX as the set of vertices that cannot be anonymized by Adding Edge alone in CREATION. Let u′

denote the vertex of the largest degree among the vertices that cannot be anonymized in CREATION. X includes the

vertices inW whose degrees are smaller than or equal todu′ , since the CREATION process of these vertices will

also involveu′. Afterward, FlexSplit removes some vertices fromX such that every remaining vertex inX cannot

be anonymized by Adding Edge alone in MERGENCE, neither. Letdmax denote the largest degree of the existing

19

Fig. 11. The pseudo code of FlexSplit.

k-SDA groups. According to Formula (19), FlexSplit calculates the MERGENCEcost of every vertexu in X with

respect todmax and removesu from X if CostMRG(u, dmax) > |Cu| − |Nu| − 1, whereCu denotes the set of all

vertices in the same community ofu, andNu represents all the neighbors ofu. After that, FlexSplit compares the

numbers of substitute vertices|SC
v | and

∑
u∈X |S

M
u |, and anonymizesv by Group Splitting if|SC

v | <
∑

u∈X |S
M
u |

and by Single Splitting otherwise.

We now give the complete picture of Algorithm FlexSplit (Algorithm 4 in Figure 11). FlexSplit first sorts the

not-yet-anonymized vertices in each community in increasing order of the degrees. Thereafter, at each iteration, the

algorithm tries to anonymize a vertexv of the smallest degreedv with proceduresMERGENCE and CREATION as

in MergeBySplit. If it is too restrictive to anonymizev by operations Adding Edge and edge-redirection, FlexSplit

discovers the setW of k not-yet-anonymized vertices with the smallest degrees among all communities, and

computes the minimal set of substitute verticesSC
v required for Group Splitting. In addition, FlexSplit also discovers

the subsetX of W and computes
∑

u∈X |S
M
u |, where each vertexu in X cannot be anonymized by Adding Edge.

If |SC | <
∑

u∈X |S
M
u |, FlexSplit anonymizesv by Group Splitting. Otherwise, Single Splitting is performed. When

all vertices belong tok-SDA groups, FlexSplit returns the anonymized graphĜ.

E. Complexity Analysis

We will now show that the complexities of the four heuristic algorithms. Letn, m and l denote the numbers

of vertices, edges and communities of the input graphG, and dmax represents the largest vertex degree inG,

dmax ≤ n.

We derive the space complexity of the four heuristics as follows. First, storing the whole input graph requires

O(n +m) space. For each of the four heuristics, maintaining a sortedlist of not-yet-anonymized vertices in each

community according to their degrees during the anonymization process takesO(n) space due to each vertex being

involved in only one community. In addition, since operations Adding Edge and Splitting Vertex create new edges

and vertices during anonymization, to anonymize a vertexv, Adding Edge introduces at mostdmax new edges to

protectv in a k-SDA group of the largest degree, while Splitting Vertex generates at mostdmax substitute vertices

given |Ev| ≤ dmax. Consequently, the space complexity of the four heuristicsis O(m+ ndmax).

After this, we can determine that the time complexity of eachof the four heuristics isO(kn2 logn) in the

following manner. Firstly, EdgeConnect achieves the graphanonymization by processing the vertices one-by-one.

For each selected vertexv to be anonymized, the number of redirectable edges is bounded by the number of new

20

edges incident tov, which is at mostdmax. Finding the minimalMERGENCEcost forv involves a test of all generated

anonymous groups, which is bounded byO(n/k). Computing the minimalCREATION cost isO(l log l) since the

setU consists ofk not-yet-anonymized vertices with the largest degrees froml communities. The adjustment of

v’s degree and the update of vertices’ order in a community canbe achieved withinO(n log n) time. As such,

MERGENCEandCREATION takeO(n log n) andO(kn log n) time, respectively. The time complexity of anonymizing

v is thenO(dmax + n/k + l log l + n logn + kn logn). Consequently, sincel < n, the graph anonymization is

achieved inO(kn2 logn) time.

Second, with the Vertex Splitting operation, CreateBySplit can also anonymize a selected vertexv by generating

a new anonymous group of a smaller degree. The discovery of the k vertices with the largest degrees in different

communities costsO(l log l) time. The splitting ofv, including the re-distribution of the incident edges to the

two substitute vertices is upper bounded byO(dmax). The update of the vertex order isO(n log n). Therefore,

the anonymization process ofv takesO(kn log n) time. As an extension of EdgeConnect, the complexity of

CreateBySplit is thusO(kn2 logn).

Third, as with EdgeConnect, MergeBySplit achieves the anonymization of each selected vertexv in O(kn log n)

time by operation Adding Edge alone. By Vertex Splitting operation, MergeBySplit anonymizes a selected vertex

v in O(n log n) time because the minimal number of substitute vertices ofv can be determined inO(n), and the

re-distribution of incident edges and the update of vertex order is upper bounded byO(n log n). Consequently, the

whole graph anonymization is achieved inO(kn2 logn) time.

Finally, by the operation Adding Edge alone, FlexSplit alsoanonymizes each selected vertexv in O(kn logn) as

the MergeBySplit algorithm. By operation Splitting Vertex, FlexSplit computesSC
v in O(k) since there arek vertices

in W . To findX ⊆W , it takesO(kn) time to check whether the vertices inW can be anonymized by CREATION

and MERGENCE, because there arek vertices inW and for each vertexu, it scansO(n) subsequence vertices

in the same community ofu to adjust the vertex degree ofu. After finding X , FlexSplit calculates
∑

u∈X |S
M
u |

in O(kn) as the minimal number of substitute vertices of everyu in X can be determined inO(n) according to

Formula (21). Thereafter, FlexSplit chooses between Single Splitting and Group Splitting. Single Splitting takes

O(n log n) time as in MergeBySplit. GivenW , Group Splitting splits the vertices inW in O(kn), and updates

the vertex order in the corresponding communities inO(kn log n). Consequently, the overall anonymization time

is bounded byO(kn2 logn).

VI. EXPERIMENTS

In this paper, we conduct the experiments on both real and synthetic data sets. All the social graphs are

pre-processed into simple graphs, i.e. unweighted undirected graphs without self-loops and multiple edges. The

community identities of the vertices are either known as background knowledge or derived by community detection

techniques4.

DBLP: From the DBLP data set, we select authors who have ever published their papers in the 20 top conferences,

such as AAAI, SIGIR, and ICDM. The selected data set consistsof 30,749 authors, and there are 157,058 edges

representing the co-author relationships. As people usually publish their papers in the conferences related to their

interests, we regard the conference where an author published most of his papers as the community of the author.

ca-CondMat: This data set shows the scientific collaborations between authors of papers in the Condense Matter

category from January 1993 to April 2003. The graph is available at the SNAP (Stanford Network Analysis Package)

4METIS graph partition tool, http://glaros.dtc.umn.edu/gkhome/views/metis.

http://glaros.dtc.umn.edu/gkhome/views/metis

21

web page, and consists of 23,133 vertices and 186,936 edges.An edge is built between two authors if they had co-

authored a paper in that period. Note that the community (conference) information for this data set is not provided

on the website. We then derive the community identificationsby the METIS graph partition tool, as people in the

same social network group or cluster tend to interact more intensely, i.e., each group or cluster often forms a dense

subgraph.

AirPort: This graph is built by considering the 500 busiest US airports5. In the graph, there are 500 vertices

representing the airports and 2,980 edges between airportsthat have air travel connections. We also derive the

community identities by the METIS graph partition tool.

LesMis [2]: LesMis is a small pseudo social network that simulates the relationships between 77 characters in

Victor Hugo’s novel ”Les Miserables.” Two characters are linked by an edge if they appear in the same chapter.

There are 254 edges in total. The community information is derived by the METIS graph partition tool.

In addition, we also use R-MAT graph model [3] to generate synthetic data sets. R-MAT graph model takes four

parametersa, b, c andd, wherea + b + c + d = 1, to generate graphs that match power-law degree distributions

and small-world properties, observed from many real socialnetworks. In this paper, we use the default values of

0.45, 0.15, 0.15 and 0.25 for the four corresponding parameters, and generate graphs with the number of vertices

ranging from 20,000 to 100,000 for testing the scalability of our algorithms.

A. Privacy Violation in Real Social Networks

In this paper, we show that the structural diversity is a realprivacy protection issue against degree attacks in

publishing social networks. The experiments are conductedon two real data sets, DBLP and ca-CondMat.

First, we study the problem of “whether many vertices of the same degree tend to gather in the same dense

subgraph (community)”. Note that if an attacker finds all thevertices of a particular degree appearing in a certain

subgraph (community), he can obtain the privacy information such as the neighborhood and connectivity properties

of a target. Privacy will thus be violated. Figures 12(a) and12(b) show the percentages of vertices violatingk-

structural diversity (k-SD), i.e., the anonymized group that does not spread overk communities, on the DBLP and

ca-CondMat data sets, respectively. Consider the DBLP dataset withk set as 10. In both the original graph and the

20-degree anonymized graph, there are at least 2552 (8.3%) vertices violating 20-SD. As the value ofk increases,

the number of vertices violatingk-SD grows significantly. Figure 12 also shows thatk-degree anonymity sometimes

makes this problem more serious, becausek-degree anonymity is designed to minimize the additional edges and

does not aim to widely distribute the anonymous vertices of the same degree. This problem is even more serious

for the ca-Condmat data set.

Next, we study the problem of “what the degrees are of the vertices violatingk-SD”. In this experiment, we

test the DBLP data set without anonymization and with 10-degree anonymization. Figure 13 shows the number

of communities containing vertices of a particular degree.Consider the case of 10-SD. The data points with the

community numbers smaller than 10 (below the horizontal dashed line) violate 10-SD. It is worth mentioning that

the vertices violating 10-SD have large degrees. This meansthat active people are more likely to have higher risks

of privacy violation.

In summary, the experimental results show that the structural diversity is a real privacy protection issue against

degree attacks, especially for the vertices of large degrees. Moreover, graphs protected byk-degree anonymity may

still violate k-SD ask-degree anonymity is not designed for thek-SDA problem.

5http://www.db.cs.cmu.edu/db-site/Datasets/graphData/

http://www.db.cs.cmu.edu/db-site/Datasets/graphData/

22

0%
2%
4%
6%
8%

10%
12%
14%

2 4 6 8 10 12 14 16 18 20

V
er

tic
es

 V
io

la
tin

g
k-

S
D

 (
%

)

k

orig.
kdeg

0%
5%

10%
15%
20%
25%
30%

5 15 25 35 45 55 65 75 85 95

V
er

tic
es

 V
io

la
tin

g
k-

S
D

 (
%

)

k

orig.
kdeg

(a) (b)

Fig. 12. Vertices violatingk structural diversity on (a) DBLP and (b) ca-CondMat data sets.

0
2
4
6
8

10
12
14
16
18
20

 0 20 40 60 80 100 120 140 160 180 200N
um

. o
f C

om
m

un
iti

es

Vertex Degree

orig.

0
2
4
6
8

10
12
14
16
18
20

 0 20 40 60 80 100 120 140 160 180 200N
um

. o
f C

om
m

un
iti

es

Vertex Degree

k=10

(a) (b)

Fig. 13. Vertices with the same degree over the number of communities in (a) original DBLP and (b) DBLP protected by 10-degree anonymity.

B. Anonymization Performance

In this subsection, we evaluate the performance of the EdgeConnect (EC), CreateBySplit (CBS), MergeBySplit

(MBS) and FlexSplit (FS) algorithms compared with the optimal solution,k-degree anonymity6, Algorithm Inverse

EdgeConnect (IEC)7 and SplittingOnly (Sonly)8.

1) Utility Studies: We now study the utility of anonymized graphs from the clustering coefficients (CC), av-

erage shortest path lengths between vertex pairs (ASPL), betweenness centralities (BC), degree centralities (DC),

eigenvector centrality correlations with respect to original graphs (EC-correlation), degree frequencies, the accuracy

of community detection and connected query results on the DBLP and ca-CondMat data sets. In all of the above

evaluations, we also compare our four heuristic algorithmswith k-degree anonymity.

Clustering Coefficient (CC): Figures 14(a) and 15(a) show the clustering coefficients of the anonymized DBLP

and ca-CondMat as a function ofk, respectively. The CC values of the original DBLP and ca-CondMat are about

0.781 and 0.706. It should be first pointed out that EC can almost perfectly preserve the clustering coefficient of the

original graphs on both data sets. This is because EC only adds new edges within communities for anonymization and

thus preserves many of the community structures. The trade-off, however, is that on ca-CondMat, EC anonymizes

the graph successfully only whenk is (relatively) small. As an extension, CBS has a greater chance to achieve the

anonymization whenk becomes larger, as is evident from Figure 15(a), while the cost is a small decrease in the CC

values due to the splitting of some vertices. To guarantee the anonymization, MBS does not connect the substitute

vertices of each split vertex and, therefore, weakens the cohesiveness of the communities especially whenk grows

closer to the total number of communities in the graphs. Compared to MBS, FS has the CC values closer to the

original value as FS reduces the numbers of substitute vertices in the objective function ofk-SDA. Finally, note

6We implement the Priority algorithm in [17].

7EC increases the degree of a vertexv from dv to d̂ by connectingv with not-yet-anonymized vertices of the largest degrees, while IEC

connectsv and the last (̂d− dv) vertices in the sequence with the smallest degrees.

8Sonly extracts only the capabilities of the flexible splitting strategy in FlexSplit and does not apply operation AddingEdge.

23

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16 18 20

C
C

k

orig.
kdeg

EC
CBS

MBS
FS

IEC
Sonly

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5

2 4 6 8 10 12 14 16 18 20

A
S

P
L

k

orig.
kdeg

EC
CBS

MBS
FS

IEC
Sonly

90k

110k

130k

150k

170k

190k

2 4 6 8 10 12 14 16 18 20

B
C

k

orig.
kdeg

EC
CBS

MBS
FS

IEC
Sonly

0

0.002

0.004

0.006

0.008

0.01

2 4 6 8 10 12 14 16 18 20

D
C

k

orig.
kdeg

EC
CBS

MBS
FS

IEC
Sonly

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

E
C

 C
or

re
la

tio
n

(w
.r

.t.
 o

rig
.)

k

kdeg
EC

CBS
MBS

FS
IEC

Sonly

(a) (b) (c) (d) (e)

0

50

100

150

200

10 20 30 40 50 60 70 80 90

F
re

qu
en

cy

Distribution of degree

orig.
CBS (k=8)
MBS (k=8)

FS (k=8)
Sonly (k=8)

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8

A
cc

ur
ac

y
(%

)

k

EC
CBS
MBS

FS

IEC
Sonly
kdeg

0%

2%

4%

6%

8%

10%

12%

14%

2 4 6 8 10 12 14 16 18 20

E
dg

e
C

ha
ng

es
 (

%
)

k

EC
CBS
MBS

FS
IEC

Sonly

0%

2%

4%

6%

8%

10%

2 4 6 8 10 12 14 16 18 20

V
er

te
x

S
pl

it
(%

)

k

EC
CBS
MBS

FS
IEC

Sonly

0

0.5

1

1.5

2

2.5

3

3.5

2 4 6 8 10 12 14 16 18 20

A
vg

. S
ub

st
itu

te
 V

er
te

x

k

EC
CBS
MBS

FS
IEC

Sonly

(f) (g) (h) (i) (j)

Fig. 14. Performance evaluations on DBLP.

0.2

0.3

0.4

0.5

0.6

0.7

5 15 25 35 45 55 65 75 85 95

C
C

k

orig.
kdeg

EC
CBS

MBS
FS

IEC
Sonly

4.5

5

5.5

6

6.5

7

7.5

8

5 15 25 35 45 55 65 75 85 95

A
S

P
L

k

orig.
kdeg

EC
CBS

MBS
FS

IEC
Sonly

80k

90k

100k

110k

120k

130k

140k

5 15 25 35 45 55 65 75 85 95

B
C

k

orig.
kdeg

EC
CBS

MBS
FS

IEC
Sonly

0

0.003

0.006

0.009

0.012

5 15 25 35 45 55 65 75 85 95

D
C

k

orig.
kdeg

EC
CBS

MBS
FS

IEC
Sonly

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 15 25 35 45 55 65 75 85 95

E
C

 C
or

re
la

tio
n

(w
.r

.t.
 o

rig
.)

k

kdeg
EC

CBS
MBS

FS
IEC

Sonly

(a) (b) (c) (d) (e)

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90

F
re

qu
en

cy

Distribution of degree

orig.
CBS (k=45)
MBS (k=45)

FS (k=45)
Sonly (k=45)

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14

A
cc

ur
ac

y
(%

)

k

EC
CBS
MBS

FS

IEC
Sonly
kdeg

0%

10%

20%

30%

40%

5 15 25 35 45 55 65 75 85 95

E
dg

e
C

ha
ng

es
 (

%
)

k

EC
CBS
MBS

FS
IEC

Sonly

0%

1%

2%

3%

4%

5%

6%

7%

5 15 25 35 45 55 65 75 85 95

V
er

te
x

S
pl

it
(%

)

k

EC
CBS
MBS

FS
IEC

Sonly

0

2

4

6

8

10

12

5 15 25 35 45 55 65 75 85 95

A
vg

. S
ub

st
itu

te
 V

er
te

x

k

EC
CBS
MBS

FS
IEC

Sonly

(f) (g) (h) (i) (j)

Fig. 15. Performance evaluations on ca-CondMat.

that our four algorithms all outperformk-degree anonymity in preserving the community structures.

Average Shortest Path Lengths (ASPL):Figures 14(b) and 15(b) show the average shortest path lengths

between vertex pairs of the anonymized DBLP and ca-CondMat as a function ofk, respectively. The ASPLs of the

original DBLP and ca-CondMat are about 6.4 and 5.36. EC monotonically decreases the ASPL values ask grows

because edges within communities are added for anonymization. CBS has better EC while the ASPL values neither

monotonically decrease nor increase. This is because CBS not only introduces new edges within communities but

also splits vertices and connects the substitute vertices of each split vertex. The cost of MBS for the guarantee of

anonymization is the increase of the ASPL values, as the substitute vertices do not directly connect to each other.

By reducing the numbers of substitute vertices, FS has the ASPL values closer to those of the original graph than

those of MBS. Finally,k-degree anonymity performs quite well on the DBLP data set, as depicted in Figure 14(b),

becausek-degree anonymity provides less protection and requires only a few additional edges for anonymization.

On ca-CondMat, however, the proposed methods all perform better thank-degree anonymity. The reason for this

is that we consider the community structures and connect only the vertices in the neighborhoods.

24

Betweenness Centrality (BC):Figures 14(c) and 15(c) show the betweenness centralities,i.e., the frequency of

a vertex on the shortest paths between pairs of vertices, of the anonymized DBLP and ca-CondMat as a function

of k, respectively. For similar reasons mentioned in the ASPL measurement, here we observe that the BC values

of the four proposed algorithms have similar trends (with respect to the original value) as the ASPL values, and

the proposed methods preserve BC better than thek-degree method.

Degree Centrality (DC): For a graph, a large degree centrality, which is usually usedto measure the influential

vertices in social network analysis, indicates the existence of vertices with relatively large degrees. The DC

comparisons of the anonymized DBLP and ca-CondMat obtainedby the proposed four methods andk-degree

anonymization are presented in Figures 14(d) and 15(d). Theoriginal DC values of DBLP and ca-CondMat are

0.00594 and 0.011713, respectively. On both data sets, EC, CBS andk-degree anonymization perform perfectly.

This indicates that the three methods can effectively preserve the strong leaders and influential vertices in the social

networks. In contrast, MBS and FS sacrifice the precision of DC in order to guarantee the anonymization. In other

words, anonymizing the vertices in increasing order of the degrees tends to make the vertices have similar small

degrees by the Splitting Vertex operation. Nonetheless, FSstill outperforms MBS for many cases.

Eigenvector Centrality Correlation (EC-Correlation): Eigenvector centrality, another common measurement of

influential vertices in the social networks, estimates the influence of a vertex based on the influence of the vertices to

which the directed neighbors connect. Figures 14(e) and 15(e) show the EC-correlations of the anonymized DBLP

and ca-CondMat (with respect to the original graph). It can be seen that EC has the EC-correlations above 0.9 and

achieves the best preservation of influential vertices. Theother three methods have the EC-correlations above 0.7

for most cases. Differing from the results in the DC measurement, here the four proposed methods all outperform

the k-degree anonymity, as a result of the structural information being taken into account in the anonymization.

Degree Frequency (DF):Figures 14(f) and 15(f) compare the degree distributions ofanonymized DBLP and

ca-CondMat with the original graph, respectively. Although the distributions in small degrees are similar to the

original distributions, due to the different splitting strategies, CBS performs better than FS, and FS outperforms

MBS in preserving the distributions in large degrees.

Community Detection: Figures 14(g), 15(g), 16(g) and 17(g) present the accuracy of community detection on

the anonymized graphs with respect to the original DBLP, ca-CondMat, AirPort, and LesMis graphs, respectively.

The results indicate that all heuristics achieve comparable performance to the optimal solution (in Figures 16(g) and

17(g)) andk-degree anonymity (in Figures 14(g) and 15(g)), while the heuristics are able to provide stronger privacy

protection thank-degree anonymity. EC always outperformsk-degree anonymity on maintaining the community

structures, demonstrating that adding edges within a community can preserve semantic meanings. More interestingly,

EC slightly outperforms the optimal solution on AirPort in Figure 16(g). This may indicate that, in addition to the

number of new edges involved, the selection of the vertices to be connected and the vertices to be split is also

crucial for preserving communities in anonymized graphs. In Figure 15(g), the heuristics still outperformk-degree

anonymity in most cases when Splitting Vertex is incorporated. When a vertex can be split, the accuracy of all

heuristics is not lowered ask increases.

Connected Query: In addition to the measurements above, it is worth specifically mentioning that FS also

outperforms MBS in the capability of answering queries for pairs of vertices. For the ca-CondMat data set, about

0.01% to 0.03% (among two hundred million) pairs of connected vertices will be disconnected in the anonymization

process of MBS whenk varies from 5 to 95, while none is disconnected by FS. This is because MBS does not

directly link the substitute vertices, and FS is able to reduce the numbers of substitute vertices with Group Splitting,

25

which connects substitute vertices.

In light of the above evaluations, CreateBySplit outperforms EdgeConnect in guaranteeing the anonymization,

while FlexSplit can preserve the utility of a social networkbetter than MergeBySplit. Therefore, we recommend

CreateBySplit for the cases of (relatively) smallk and FlexSplit for more challenging cases.

2) Vertex Change and Edge Change: We now report on the three findings of (a) the percentage of thenumber of

new edges to the original number of edges, (b) the percentageof the number of vertices being split to the original

number of vertices, and (c) the average number of substitutevertices for a vertex split, of the anonymized graphs

as functions ofk.

For DBLP, first, Figure 14(g) shows that when the value ofk is smaller than 50% of the number of communities,

EC and CBS achieve thek-structural diversity by adding less than 5% new edges in theanonymized graph. Second,

the results in Figures 14(g) and 14(h) show that whenk becomes larger, CBS tends to add new edges rather than to

split the vertices, while MBS and FS are prone to splitting vertices rather than to adding new edges. This difference

in tendency is caused by the reverse order of creating the anonymous groups of particular degrees, as we have more

chances to add new edges for the anonymization when the vertices are anonymized in the decreasing order of the

degrees. Third, Figures 14(h) and 14(i) show that MBS and FS use a similar number of substitute vertices for a

similar percentage of vertices that have been split. On DBLP, MBS and FS thus achieve comparable performances

for mostk.

For ca-CondMat, the four algorithms have similar trends of adding edges and splitting vertices as those for

DBLP. However, Figure 15(h) shows that FS splits 1% to 2% fewer vertices than MBS under the same guarantee

of anonymization. Moreover, in Figure 15(i), FS uses more substitute vertices on average for a vertex that has been

split. This indicates that a vertex being split is likely to be a vertex with a large degree. The results also conform

to those described in Figure 15(f).

3) Comparison with Optimal Solution: Here we compare the heuristics with the Integer Programmingmethod,

while the optimal solution is obtained with the proposed formulation using CPLEX9. Note that finding the optimal

solutions is very computationally intensive (e.g., for theAirPort dataset consisting of 500 vertices and 2,980 edges,

it takes at least one hour for the simplest instance and at least one day for more challenging instances). The optimal

solutions are not able to be returned within a reasonable time frame for large social networks, such as DBLP and

ca-CondMat. Therefore, the solutions from the proposed algorithms are compared with the optimal solutions of

AirPort and LesMis, withk from 2 to 4.

Figures 16(a)-16(g) and 17(a)-17(g) respectively presentthe data utility of the anonymized graphs of AirPort and

LesMis in terms of the clustering coefficients (CC), averageshortest path lengths between vertex pairs (ASPL),

betweenness centralities (BC), degree centralities (DC),eigenvector centrality correlations with respect to the original

graphs (EC-correlation), degree frequency distributions, and community detection accuracy. It can be observed that

EC is close to the optimal solution in all evaluations but fails to anonymize LesMis whenk is set as 3 and 4,

because EC applies only Adding Edge with edge-redirection to reduce the number of new edges. Moreover, for

AirPort with all k and LesMis withk = 2, CBS is very close to the optimal solution because CBS applies Splitting

Vertex only when Adding Edge alone cannot achieve the anonymization. In contrast, MBS and FS deviate from

the optimal solutions, because these heuristics apply Splitting Vertex and begin the anonymization from vertices of

small degrees in order to guarantee the success of anonymization for any instance. Here the results are consistent

9http://www-01.ibm.com/software/integration/optimization/cplex/.

http://www-01.ibm.com/software/integration/optimization/cplex/

26

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4

C
C

k

orig.
opt
EC

CBS

MBS
FS

IEC
Sonly

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

2 3 4

A
S

P
L

k

orig.
EC

CBS
MBS

FS
IEC
opt

Sonly

1000

1200

1400

1600

1800

2000

2200

2 3 4

B
C

k

orig.
opt
EC

CBS

MBS
FS

IEC
Sonly

0

0.1

0.2

0.3

0.4

0.5

2 3 4

D
C

k

orig.
opt
EC

CBS

MBS
FS

IEC
Sonly

0.5

0.6

0.7

0.8

0.9

1

2 3 4

E
C

 C
or

re
la

tio
n

(w
.r

.t.
 o

rig
.)

k

opt
EC

CBS
MBS

FS
IEC

Sonly

(a) (b) (c) (d) (e)

0

20

40

60

80

100

10 20 30 40 50 60 70

F
re

qu
en

cy

Distribution of degree

orig.
EC/CBS (k=3)

MBS (k=3)
FS (k=3)

Sonly (k=3)
opt (k=3)

IEC (k=3)

0%

20%

40%

60%

80%

100%

2 3 4

A
cc

ur
ac

y
(%

)

k

EC
CBS
MBS

FS

IEC
Sonly

opt

0%

5%

10%

15%

20%

2 3 4

E
dg

e
C

ha
ng

es
 (

%
)

k

EC
CBS
MBS

FS

IEC
Sonly

opt

0%

5%

10%

15%

20%

2 3 4

V
er

te
x

S
pl

it
(%

)

k

EC
CBS
MBS

FS

IEC
Sonly

opt

0

10

20

30

40

50

2 3 4

A
vg

. S
ub

st
itu

te
 V

er
te

x

k

EC
CBS
MBS

FS

IEC
Sonly

opt

(f) (g) (h) (i) (j)

Fig. 16. Performance evaluations on AirPort.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4

C
C

k

orig.
opt
EC

CBS

MBS
FS

Sonly

2.5

3

3.5

4

4.5

5

5.5

6

2 3 4

A
S

P
L

k

orig.
EC

CBS
MBS

FS
opt

Sonly

100

200

300

400

500

600

700

800

2 3 4

B
C

k

orig.
opt
EC

CBS

MBS
FS

Sonly

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4

D
C

k

orig.
opt
EC

CBS
MBS

FS
Sonly

0.5

0.6

0.7

0.8

0.9

1

2 3 4

E
C

 C
or

re
la

tio
n

(w
.r

.t.
 o

rig
.)

k

opt
EC

CBS
MBS

FS
Sonly

(a) (b) (c) (d) (e)

0

10

20

30

40

50

5 10 15 20 25 30

F
re

qu
en

cy

Distribution of degree

orig.
CBS (k=3)
MBS (k=3)

FS (k=3)
Sonly (k=3)

opt (k=3)

0%

20%

40%

60%

80%

100%

2 3 4

A
cc

ur
ac

y
(%

)

k

EC
CBS
MBS

FS
Sonly

opt

0%

5%

10%

15%

20%

2 3 4

E
dg

e
C

ha
ng

es
 (

%
)

k

EC
CBS
MBS

FS

Sonly
opt

0%

10%

20%

30%

40%

50%

60%

70%

2 3 4

V
er

te
x

S
pl

it
(%

)

k

EC
CBS
MBS

FS

Sonly
opt

0

5

10

15

20

25

2 3 4

A
vg

. S
ub

st
itu

te
 V

er
te

x

k

EC
CBS
MBS

FS
Sonly

opt

(f) (g) (h) (i) (j)

Fig. 17. Performance evaluations on LesMis.

with those obtained on the large social networks of DBLP and ca-CondMat.

4) Comparison of EC with IEC and Sonly: We compare EdgeConnect (EC) with Inverse EdgeConnect (IEC)

and SplittingOnly (Sonly) to explore the intuition beyond the design of Algorithm EdgeConnect and the extensions.

First, EC is compared with IEC on DBLP in Figure 14, ca-CondMat in Figure 15, and AirPort in Figure 1610.

Indeed, the results indicate that IEC outperforms EC in terms of the average shortest path length (ASPL) and

betweenness centrality (BC) (for the cases IEC returns a feasible solution, i.e., whenk = 2, 4, 6 in Figure 14,

k = 5, 15, 25 in Figure 15, andk = 2, 3 in Figure 16), because EC takes as its priority choosingthe vertices

with large degrees. As those vertices are more inclined to participate in the shortest paths of any two vertices, EC

reduces ASPL and BC in the anonymized graph. Therefore, IEC is suitable for the application scenarios in which

the characteristics of shortest paths are the major properties required to be preserved during anonymization.

On the other hand, the clustering coefficient (CC) of the anonymized graph from EC is closer to the CC value of

10The comparison is not performed on LesMis, because IEC is notable to return feasible solutions on LesMis.

27

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

DBLP ca-CondMat AirPort LesMis

S
uc

ce
ss

fu
l R

at
es

 (
%

)

Method

EC
CBS

MBS
FS

IEC
Sonly

Fig. 18. Successful rates of heuristics.

the original graph, and EC is able to achieve better accuracyin community detection for most cases, as demonstrated

in Figures 14(g), 15(g) and 16(g). It is noteworthy that EC incurs fewer new edges than IEC in Figures 14(h), 15(h)

and 16(h), and generates a higher successful rate in anonymization, as seen in Figure 18. The reason is that a new

edge involved in the edge-redirection operation of EC has more opportunities to be reused in the anonymization

of other vertices considered later, as EC adds new edges between anonymizing vertexv and vertices of large

degrees prior to being anonymized. EC is thus more capable ofhandling the input instances that are difficult to be

anonymized by introducing only new edges.

The comparisons of EC and Sonly being conducted on DBLP are presented in Figure 14, on ca-CondMat in

Figure 15, on AirPort in Figure 16, and on LesMis in Figure 17.Whereas Sonly preserves ASPL and BC better

than EC in DBLP and ca-CondMat whenk is small, for AirPort and LesMis, EC significantly outperforms Sonly.

This is because the degree differences between the verticesof the largest degree and the other vertices are more

significant in DBLP and ca-CondMat datasets, and EC is prone to connecting the vertices of large degrees to the

others, which thereby significantly shortens many of the shortest paths among the vertices. In contrast, for a small

k, Sonly only needs to split a few vertices of the largest degree to fulfill k-structural diversity. This results in the

lengths of the shortest paths increasing slightly. For the other parameters, such as CC, DC, EC-correlation, degree

frequency distribution, and community detection in most cases, the findings indicate that EC outperforms Sonly

because Splitting Vertex not only decreases the vertex degrees but also tends to change the community structure.

Nevertheless, as demonstrated in Figure 18, operation Splitting Vertex is necessary in our algorithm design for the

social graphs that are difficult to anonymize.

5) Anonymization Successful Rate: Here we compare the successful rates of the heuristics on DBLP, ca-CondMat,

AirPort and LesMis datasets. The results in Figure 18 show that MBS, FS, and Sonly are guaranteed to anonymize

any social graph thanks to operation Splitting Vertex. Those approaches begin the anonymization process from the

vertices of small degrees to generate anonymous groups. Forthis reason, the anonymous group of degree 1 will

be generated first, and Splitting Vertex can thus partition avertex of any degree into multiple substitute vertices of

degree 1, even in the most challenging case in anonymization. In contrast, EC, CBS and IEC may not always be

able to anonymize a graph. The vertices of large degrees usually appear in the same community (e.g., a clique), and

not every community contains sufficient vertices of small degrees for anonymization. Therefore, when anonymous

groups of large degrees are generated prior to those of smalldegrees, the added new edges within a community

may significantly increase the degrees of the not-yet-anonymized vertices originally with small degrees, such that

it becomes difficult afterward to anonymize other vertices with small degrees. Compared with the other schemes,

the successful rate of IEC is smaller because IEC takes priority to add new edges connecting to the vertices with

small degrees, thereby further increasing the difficulty toanonymize those vertices.

28

orig.

0.7

0.75

0.8

0.85

EC/CBSMBS FS

C
C

Method

c=16
c=20
c=24

5

5.5

6

orig.

7

7.5

EC/CBSMBS FS

A
S

P
L

Method

c=16
c=20
c=24

orig.

0.001

0.002

0.003

0.004

0.005

EC/CBSMBS FS

D
C

Method

c=16
c=20
c=24

0.8

0.85

0.9

0.95

1

EC/CBS MBS FSE
C

 C
or

re
la

tio
n

(w
.r

.t.
 o

rig
.)

Method

c=16
c=20
c=24

(a) (b) (c) (d)

Fig. 19. Sensitivity studies given different numbers of communities.

0

10

20

30

40

50

60

20000 40000 60000 80000 100000

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Vertices

k=5
k=10
k=15
k=20

0

10

20

30

40

50

60

20000 40000 60000 80000 100000

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Vertices

k=5
k=10
k=15
k=20

0

1

2

3

4

5

6

7

8

20000 40000 60000 80000 100000

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Vertices

k=5
k=10
k=15
k=20

0

1

2

3

4

5

6

7

8

20000 40000 60000 80000 100000

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Vertices

k=5
k=10
k=15
k=20

(a) (b) (c) (d)

Fig. 20. Scalability of Algorithm (a) EdgeConnect, (b) CreateBySplit, (c) MergeBySplit and (d) FlexSplit.

6) Sensitivity: Consider the case that the communities are not given explicitly and, instead, community detection

techniques are used to obtain the community information forstructural diversity. We then explore the sensitivities of

Algorithm EC, CBS, MBS and FS to the number of communities obtained by community detection techniques. In

these experiments, we conduct the analysis on DBLP as we knowthe ground truth of the communities in the data

set. Figure 19 presents the CC, ASPL, DC and EC-correlation,respectively, for|C| = 16, 20 and24. Specifically,

EC and CBS show a little bit of sensitivity on the evaluation of ASPL because these two algorithms perform more

Adding Edge operations than Splitting Vertex, and as such will connect distant vertices in a large community, when

the number of detected communities is small. Nonetheless, the influence of the number of communities detected is

quite small for the four algorithms.

7) Scalability: We demonstrate the execution efficiency of our algorithms onsynthetic data sets with the number

of vertices ranging from 20,000 to 100,000. The experimental environment is a Debian GNU/Linux server with

double dual-core 2.4 GHz Opteron processors and 4GB RAM. Although Figure 20 shows that the execution time

grows as the value ofk increases, the proposed algorithms can anonymize the graphto satisfyk-structural diversity

in a linear-time scale of the graph size.

VII. C ONCLUSION

In this paper, we addressed a new privacy issue, community identification, and formulated thek-Structural

Diversity Anonymization (k-SDA) problem to protect the community identity of each individual in published social

networks. Fork-SDA, we proposed an Integer Programming formulation to findoptimal solutions, and also devised

scalable heuristics. The experiments on real data sets demonstrated that our approaches can ensure thek-structural

diversity and preserve much of the characteristics of the original social networks.

ACKNOWLEDGEMENTS

This work is supported in part by the National Science Council of Taiwan under Contract NSC101-2628-E-001-

003-MY3 and NSC100-2221-E-001-006-MY2, US NSF through grants IIS-0905215, CNS-1115234, IIS-0914934,

29

DBI-0960443, and OISE-1129076, US Department of Army through grant W911NF-12-1-0066, Google Mobile

2014 Program, Huawei and KAU grants.

REFERENCES

[1] L. Backstrom, C. Dwork, and J. M. Kleinberg, ”Wherefore art thou r3579x?: Anonymized social networks, hidden patterns, and structural

steganography,” WWW, 2007.

[2] A. Bettinelli, P. Hansen, and L. Liberti, ”Algorithm forparametric community detection in networks,” Physical Review E, 2012.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos, ”R-mat: A recursive model for graph mining,” SDM, 2004.

[4] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee, ”Toward privacy in public databases,” TCC, 2005.

[5] J. Cheng, A. W. Fu, and J. Liu, ”K-isomorphism: privacy preserving network publication against structural attacks,” SIGMOD, 2010.

[6] S. Chester and G. Srivastava, ”Social Network Privacy for Attribute Disclosure Attacks,” ASONAM, 2011.

[7] A. Clauset, M. E. J. Newman, and C. Moore, ”Finding community structure in very large networks,” Physical Review E., 70(6), 2004.

[8] C. Dwork, ”Differential privacy: A survey of results,” TAMC, 2008.

[9] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, ”Privacy-preserving data publishing: A survey of recent developments,” ACM Comput.

Surv., 42(4), 2010.

[10] A. Gupta, A. Roth, and J. Ullman, ”Iterative constructions and private data release,” Manuscript, 2011.

[11] M. Hay, C. Li, G. Miklau, and D. Jensen, ”Accurate estimation of the degree distribution of private networks,” ICDM,2009.

[12] M. Hay, G. Miklau, D. Jensen, D. F. Towsley, and P. Weis, ”Resisting structural re-identification in anonymized social networks,” VLDB,

2008.

[13] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, ”Private analysis of graph structure,” VLDB, 4(11), 2011.

[14] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, ”Statistical properties of community structure in large social and information

networks,” WWW, 2008.

[15] N. Li, T. Li, and S. Venkatasubramanian, ”t-Closeness:privacy beyond k-Anonymity and l-Diversity,” ICDE, 2007.

[16] J. Li, Y. Tao, and X. Xiao, ”Preservation of proximity privacy in publishing numerical sensitive data,” SIGMOD, 2008.

[17] K. Liu and E. Terzi, ”Towards identity anonymization ongraphs,” SIGMOD, 2008.

[18] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, ” L-diversity: privacy beyond k-anonymity,”TKDD, 1(1), 2007.

[19] M. E. Nergiz, M. Atzori, and C. Clifton, ”Hiding the presence of individuals from shared databases,” SIGMOD, 2007.

[20] M. E. Nergiz, C. Clifton, and A. E. Nergiz, ”Multirelational k-Anonymity,” IEEE TKDE, 21(8), 2009.

[21] P. Samarati and L. Sweeney, ”Generalizing data to provide anonymity when disclosing information,” PODS, 1998.

[22] L. Sweeney, ”k-anonymity: A model for protecting privacy,” IJUFKS, 10(5), 2002.

[23] C.-H. Tai, P.-J. Tseng, P. S. Yu and, M.-S. Chen, ”Identity Protection in Sequential Releases of Dynamic Social Networks,” ICDM, 2011.

[24] X. Wu, X. Ying, K. Liu, and L. Chen,A Survey of Privacy- Preservation of Graphs and Social Networks, Springer US, 2010.

[25] X. Ying and X. Wu, ”Randomizing social networks: a spectrum preserving approach,” SDM, 2008.

[26] L. Zhang and W. Zhang, ”Edge anonymity in social networkgraphs,” CSE, 2009.

[27] E. Zheleva and L. Getoor, ”Preserving the privacy of sensitive relationships in graph data,” PinKDD, 2007.

[28] B. Zhou and J. Pei, ”Preserving privacy in social networks against neighborhood attacks,” ICDE, 2008.

[29] B. Zhou, J. Pei, and W. Luk, ”A brief survey on anonymization techniques for privacy preserving publishing of socialnetwork data, ”

SIGKDD Explorations, 10(2), 2008.

[30] L. Zou, L. Chen, and M. T.̈Ozsu, ”K-automorphism: a general framework for privacy preserving network publication,” VLDB, 2009.

	I Introduction
	II Related Work
	III Problem Formulation
	IV Integer Programming
	IV-A Formulation with Adding Edge
	IV-B Formulation with Splitting Vertex as well

	V Scalable Approaches
	V-A Algorithm EdgeConnect
	V-B Algorithm CreateBySplit
	V-C Algorithm MergeBySplit
	V-D Algorithm FlexSplit
	V-E Complexity Analysis

	VI Experiments
	VI-A Privacy Violation in Real Social Networks
	VI-B Anonymization Performance
	VI-B1 Utility Studies
	VI-B2 Vertex Change and Edge Change
	VI-B3 Comparison with Optimal Solution
	VI-B4 Comparison of EC with IEC and Sonly
	VI-B5 Anonymization Successful Rate
	VI-B6 Sensitivity
	VI-B7 Scalability

	VII Conclusion
	References

