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Abstract. We propose a protocol for secure mining of association rules
in horizontally distributed databases. The current leading protocol is
that of Kantarcioglu and Clifton [12]. Our protocol, like theirs, is based
on the Fast Distributed Mining (FDM) algorithm of Cheung et al. [6],
which is an unsecured distributed version of the Apriori algorithm. The
main ingredients in our protocol are two novel secure multi-party algo-
rithms — one that computes the union of private subsets that each of
the interacting players hold, and another that tests the inclusion of an
element held by one player in a subset held by another. Our protocol
offers enhanced privacy with respect to the protocol in [12]. In addition,
it is simpler and is significantly more efficient in terms of communication
rounds, communication cost and computational cost.

Key words: Privacy Preserving Data Mining, Distributed Computa-
tion, Frequent Itemsets, Association Rules

1 Introduction

We study here the problem of secure mining of association rules in horizontally
partitioned databases. In that setting, there are several sites (or players) that
hold homogeneous databases, i.e., databases that share the same schema but hold
information on different entities. The goal is to find all association rules with
given minimal support and confidence levels that hold in the unified database,
while minimizing the information disclosed about the private databases held by
those players.

That goal defines a problem of secure multi-party computation. In such prob-
lems, there are M players that hold private inputs, x1, . . . , xM , and they wish to
securely compute y = f(x1, . . . , xM ) for some public function f . If there existed
a trusted third party, the players could surrender to him their inputs and he
would perform the function evaluation and send to them the resulting output.
In the absence of such a trusted third party, it is needed to devise a protocol
that the players can run on their own in order to arrive at the required output
y. Such a protocol is considered perfectly secure if no player can learn from his
view of the protocol more than what he would have learnt in the idealized setting
where the computation is carried out by a trusted third party. Yao [21] was the
first to propose a generic solution for this problem in the case of two players.
Other generic solutions, for the multi-party case, were later proposed in [2,4,10].
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In our problem, the inputs are the partial databases, and the required out-
put is the list of association rules with given support and confidence. As the
above mentioned generic solutions rely upon a description of the function f as
a Boolean circuit, they can be applied only to small inputs and functions which
are realizable by simple circuits. In more complex settings, such as ours, other
methods are required for carrying out this computation. In such cases, some re-
laxations of the notion of perfect security might be inevitable when looking for
practical protocols, provided that the excess information is deemed benign (see
examples of such protocols in e.g. [12,20,23]).

Kantarcioglu and Clifton studied that problem in [12] and devised a protocol
for its solution. The main part of the protocol is a sub-protocol for the secure
computation of the union of private subsets that are held by the different play-
ers. (Those subsets include candidate itemsets, as we explain below.) That is
the most costly part of the protocol and its implementation relies upon crypto-
graphic primitives such as commutative encryption, oblivious transfer, and hash
functions. This is also the only part in the protocol in which the players may
extract from their view of the protocol information on other databases, beyond
what is implied by the final output and their own input. While such leakage of
information renders the protocol not perfectly secure, the perimeter of the excess
information is explicitly bounded in [12] and it is argued that such information
leakage is innocuous, whence acceptable from practical point of view.

Herein we propose an alternative protocol for the secure computation of the
union of private subsets. The proposed protocol improves upon that in [12] in
terms of simplicity and efficiency as well as privacy. In particular, our proto-
col does not depend on commutative encryption and oblivious transfer (what
simplifies it significantly and contributes towards reduced communication and
computational costs). While our solution is still not perfectly secure, it leaks
excess information only to a small number of coalitions (three), unlike the pro-
tocol of [12] that discloses information also to some single players. In addition,
we claim that the excess information that our protocol may leak is less sensitive
than the excess information leaked by the protocol of [12].

The protocol that we propose here computes a parameterized family of func-
tions, which we call threshold functions, in which the two extreme cases corre-
spond to the problems of computing the union and intersection of private subsets.
Those are in fact general-purpose protocols that can be used in other contexts
as well. Another problem of secure multi-party computation that we solve here
as part of our discussion is the problem of determining whether an element held
by one player is included in a subset held by another.

1.1 Preliminaries

Let D be a transaction database. As in [12], we view D as a binary matrix
of N rows and L columns, where each row is a transaction over some set of
items, A = {a1, . . . , aL}, and each column represents one of the items in A. (In
other words, the (i, j)th entry of D equals 1 if the ith transaction includs the
item aj , and 0 otherwise.) The database D is partitioned horizontally between
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M players, denoted P1, . . . , PM . Player Pm holds the partial database Dm that
contains Nm = |Dm| of the transactions in D, 1 ≤ m ≤ M . The unified database

is D = D1 ∪ · · · ∪DM , and N =
∑M

m=1
Nm.

An itemset X is a subset of A. Its global support, supp(X), is the number of
transactions in D that contain it. Its local support, suppm(X), is the number of

transactions in Dm that contain it. Clearly, supp(X) =
∑M

m=1
suppm(X). Let s

be a real number between 0 and 1 that stands for a required threshold support.
An itemset X is called s-frequent if supp(X) ≥ sN . It is called locally s-frequent
at Dm if suppm(X) ≥ sNm.

For each 1 ≤ k ≤ L, let F k
s denote the set of all k-itemsets (namely, item-

sets of size k) that are s-frequent, and F k,m
s be the set of all k-itemsets that

are locally s-frequent at Dm, 1 ≤ m ≤ M . Our main computational goal is to
find, for a given threshold support 0 < s ≤ 1, the set of all s-frequent itemsets,
Fs :=

⋃L

k=1
F k
s . We may then continue to find all (s, c)-association rules, i.e., all

association rules of support at least sN and confidence at least c. (Recall that if
X and Y are two disjoint subsets of A, the support of the corresponding associ-
ation rule X ⇒ Y is supp(X ∪ Y ) and its confidence is supp(X ∪ Y )/supp(X).)

1.2 The Fast Distributed Mining algorithm

The protocol of [12], as well as ours, are based on the Fast Distributed Mining
(FDM) algorithm of Cheung et al. [6], which is an unsecured distributed version
of the Apriori algorithm. Its main idea is that any s-frequent itemset must be
also locally s-frequent in at least one of the sites. Hence, in order to find all
globally s-frequent itemsets, each player reveals his locally s-frequent itemsets
and then the players check each of them to see if they are s-frequent also globally.
The stages of the FDM algorithm are as follows:

(1) Initialization: It is assumed that the players have already jointly calculated
F k−1
s . The goal is to proceed and calculate F k

s .

(2) Candidate Sets Generation: Each Pm generates a set of candidate k-
itemsets Bk,m

s out of F k−1,m
s ∩ F k−1

s — the (k − 1)-itemsets that are both
globally and locally frequent, using the Apriori algorithm.

(3) Local Pruning: For each X ∈ Bk,m
s , Pm computes suppm(X) and retains

only those itemsets that are locally s-frequent. We denote this collection of
itemsets by Ck,m

s .

(4) Unifying the candidate itemsets: Each player broadcasts his Ck,m
s and

then all players compute Ck
s :=

⋃M

m=1
Ck,m

s .

(5) Computing local supports. All players compute the local supports of all
itemsets in Ck

s .

(6) Broadcast Mining Results: Each player broadcasts the local supports
that he computed. From that, everyone can compute the global support of
every itemset in Ck

s . Finally, F k
s is the subset of Ck

s that consists of all
globally s-frequent k-itemsets.
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1.3 Overview and organization of the paper

The FDM protocol violates privacy in two stages: In Stage 4, where the play-
ers broadcast the itemsets that are locally frequent in their private databases,
and in Stage 6, where they broadcast the sizes of the local supports of candi-
date itemsets. Kantarcioglu and Clifton [12] proposed secure implementations
of those two stages. Our improvement is with regard to the secure implemen-
tation of Stage 4, which is the more costly stage of the protocol, and the one
in which the protocol of [12] leaks excess information. In Section 2 we describe
[12]’s secure implementation of Stage 4. We then describe our alternative im-
plementation and we proceed to compare the two implementations in terms of
privacy of efficiency. In the next two short Sections 3 and 4 we describe briefly,
for the sake of completeness, [12]’s implementation of the two remaining stages
of the distributed protocol: The identification of those candidate itemsets that
are globally s-frequent, and then the derivation of all (s, c)-association rules.
Section 5 includes a review of related work. We conclude the paper in Section 6.

Like in [12] we assume that the players are semi-honest; namely, they follow
the protocol but try to extract as much information as possible from their own
view. (See [11,18,23] for a discussion and justification of that assumption.) We
too, like [12], assume that M > 2. (The case M = 2 is discussed in [12, Section
5]; the conclusion is that the problem of secure computation of frequent itemsets
and association rules in the two-party case is unlikely to be of use.)

2 Secure computation of all locally frequent itemsets

Here we discuss the secure computation of the union Ck
s =

⋃M

m=1
Ck,m

s . We de-
scribe the protocol of [12] (Section 2.1) and then our protocol (Sections 2.2–2.3).
We analyze the privacy of the two protocols in Section 2.4, their communication
cost in Section 2.5, and their computational cost in Section 2.6.

2.1 The protocol of [12] for the secure computation of all locally
frequent itemsets

Protocol 1 (UniFI-KC hereinafter) is the protocol that was suggested by Kantar-
cioglu and Clifton [12] for computing the unified list of all locally frequent item-

sets, Ck
s =

⋃M

m=1
Ck,m

s , without disclosing the sizes of the subsets Ck,m
s nor their

contents. It is based on two ideas: Hiding the sizes of the subsets Ck,m
s by means

of fake itemsets, and hiding their content by means of encryption. Let Ap(F k−1
s )

denote the set of k-itemsets which the Apriori algorithm generates when ap-
plied on F k−1

s . Clearly, Ck,m
s ⊆ Ap(F k−1

s ), whence |Ck,m
s | ≤ |Ap(F k−1

s )|, for all
1 ≤ m ≤ M . Therefore, after each player computes Ck,m

s , he adds to it fake
itemsets until its size becomes |Ap(F k−1

s )| in order to hide the number of locally
frequent itemsets that he has. In order to hide the actual itemsets, they use
a commutative encryption algorithm. (A commutative encryption means that
EK1

◦EK2
= EK2

◦EK1
for any pair of keys K1 and K2.) We proceed to describe
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Protocol 1 (UniFI-KC) Unifying lists of locally Frequent Itemsets [12]

Input: Each player Pm has an input set Ck,m
s ⊆ Ap(F k−1

s ), 1 ≤ m ≤ M .
Output: Ck

s =
⋃M

m=1
Ck,m

s .
1: Phase 0: Getting started

2: The players decide on a commutative cipher and each player Pm, 1 ≤ m ≤ M ,
selects a random secret encryption key Km.

3: The players select a hash function h and compute h(x) for all x ∈ Ap(F k−1
s ).

4: If there exist x1 6= x2 ∈ Ap(F k−1
s ) for which h(x1) = h(x2), select a different h.

5: Build a lookup table T = {(x, h(x)) : x ∈ Ap(F k−1
s )}.

6: Phase 1: Encryption of all itemsets

7: for all Player Pm, 1 ≤ m ≤ M , do
8: Set Xm = ∅.
9: for all x ∈ Ck,m

s do

10: Player Pm computes EKm
(h(x)) and adds it to Xm.

11: end for

12: Player Pm adds to Xm faked itemsets until its size becomes |Ap(F k−1
s )|.

13: end for

14: for i = 2 to M do

15: Pm sends a permutation of Xm to Pm+1.
16: Pm receives from Pm−1 the permuted Xm−1.
17: Pm computes a new Xm as the encryption of the permuted Xm−1 using Km.
18: end for

19: Phase 2: Merging itemsets

20: Each odd player sends his encrypted sets to player P1.
21: Each even player sends his encrypted sets to player P2.
22: P1 unifies all sets that were sent by the odd players and removes duplicates.
23: P2 unifies all sets that were sent by the even players and removes duplicates.
24: P2 sends his permuted list of itemsets to P1.
25: P1 unifies his list of itemsets and the list received from P2 and then removes

duplicates from the unified list. Denote the final list by ECk
s .

26: Phase 3: Decryption

27: for m = 1 to M − 1 do

28: Pm decrypts all itemsets in ECk
s using Km.

29: Pm sends the permuted (and Km-decrypted) ECk
s to Pm+1.

30: end for

31: PM decrypts all itemsets in ECk
s using EM ; denote the resulting set by Ck

s .
32: PM uses the lookup table T to remove from Ck

s faked itemsets.
33: PM broadcasts Ck

s .

the protocol. Since all protocols that we present here involve cyclic communica-
tion rounds, PM+1 always means P1, while P0 means PM .

In the preliminary Phase 0 (Steps 2-5) the players select the needed cryp-
tographic primitives: They jointly select a commutative cipher, and each player
selects a corresponding random private key. In addition, they select a hash func-
tion h to apply on all itemsets prior to encryption. It is essential that h will not
experience collusions on Ap(F k−1

s ) in order to make it invertible on Ap(F k−1
s ).

Hence, if such collusions occur (an event of a very small probability), a different
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hash function must be selected. At the end, the players compute a lookup table
with the hash values of all candidate itemsets in Ap(F k−1

s ), which will be used
later on to find the preimage of a given hash value.

In Phase 1, all players compute a composite encryption of the hashed sets
Ck,m

s , 1 ≤ m ≤ M . First (Steps 7-13), each player Pm hashes all itemsets in Ck,m
s

and then encrypts them using the keyKm. (Hashing is needed in order to prevent
leakage of algebraic relations between itemsets, see [12, Appendix].) Then, he
adds to the resulting set faked itemsets until its size becomes |Ap(F k−1

s )|. We
denote the resulting set by Xm. Then (Steps 14-18), the players start a loop of
M − 1 cycles, where in each cycle they perform the following operation: Player
Pm send a permutation of Xm to the next player Pm+1; Player Pm receives from
Pm−1 a permutation of the set Xm−1 and then computes a new Xm as Xm =
EKm

(Xm−1). At the end of this loop, Pm holds an encryption of the hashed
Ck,m+1

s using all M keys. Due to the commutative property of the selected
cipher, Player Pm holds the set {EM (· · · (E2(E1(h(x)))) · · ·) : x ∈ Ck,m+1

s }.

In Phase 2 (Steps 20-25), all odd players send the sets that they have to P1,
who unifies them. Consequently, P1 will hold all hashed and encrypted itemsets
of the even players. Similarly, all even players send the sets that they have to
P2, who also unifies them; hence, P2 will hold all hashed and encrypted itemsets
of the odd players. At this stage, both P1 and P2 remove duplicates, as those
stand (with high probability) for itemsets that were frequent in more than one
site. Then, player P2 permutes his list and sends it to P1 who unifies it with the
list that he got. Therefore, at the completion of this stage P1 holds the union set
Ck

s =
⋃M

m=1
Ck,m

s hashed and then encrypted by all encryption keys, together
with some fake itemsets that were used for the sake of hiding the sizes of the
sets Ck,m

s ; those fake itemsets are not needed anymore and will be removed after
decryption in the next phase.

In phase 3 (Steps 27-33) a similar round of decryptions is initiated. At the
end, the last player who performs the last decryption uses the lookup table T
that was constructed in Step 5 in order to identify and remove the fake itemsets
and then to recover Ck

s . Finally, he broadcasts Ck
s to all his peers.

2.2 A secure multiparty protocol for computing the OR

Protocol UniFI-KC securely computes of the union of private subsets of some
publicly known ground set (Ap(F k−1

s )). Such a problem is equivalent to the
problem of computing the OR of private vectors. Indeed, if we let n denote the
size of the ground set, then the private subset that player Pm, 1 ≤ m ≤ M ,
holds may be described by a binary vector bm ∈ Z

n
2 , and the union of the

private subsets is described by the OR of those private vectors, b :=
∨M

m=1
bm.

We present here a protocol for computing that function which is simpler than
UniFI-KC and employs less cryptographic primitives.

The protocol that we present (Protocol 2) computes a wider range of func-
tions, which we call threshold functions.
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Definition 1. Let b1, . . . , bM be M bits and 1 ≤ t ≤ M be an integer. Then

Tt(b1, . . . , bM ) =







1 if
∑M

m=1
bm ≥ t

0 if
∑M

m=1
bm < t

(1)

is called the t-threshold function. Given binary vectors bm = (bm(1), . . . , bm(n)) ∈
Z
n
2 , we let Tt(b1, . . . ,bM ) denote the binary vector in which the ith component

equals Tt(b1(i), . . . , bM (i)), 1 ≤ i ≤ n.

The OR and AND functions are the 1- and M -threshold functions, respectively;
i.e.,

M
∨

m=1

bm = T1(b1, . . . ,bM ) , and

M
∧

m=1

bm = TM (b1, . . . ,bM ) .

Those special cases may be used, as we show in Section 2.3, to compute in a
privacy-preserving manner unions and intersections of subsets.

The main idea behind Protocol 2 (Threshold henceforth), which is based
on the protocol suggested in [5] for secure computation of the sum, is to compute
shares of the sum vector and then use those shares to securely verify the threshold
conditions in each component. Since the sum vector may be seen as a vector over
ZM+1, each player starts by creating random shares in Z

n
M+1 of his input vector

(Step 1). In Step 2 all players send to all other players the corresponding shares
in their input vector. Then (Step 3), player Pℓ, 1 ≤ ℓ ≤ M , adds the shares that
he got and arrives at his share, sℓ, in the sum vector. Namely, if we let a :=
∑M

m=1
bm denote the sum of the input vectors, then a =

∑M

ℓ=1
sℓ mod (M +1);

furthermore, anyM−1 vectors out of {s1, . . . , sM} do not reveal any information
on the sum a. In Steps 4-5, all players, apart from the last one, send their shares
to P1 who adds them up to get the share s. Now, players P1 and PM hold
additive shares of the sum vector a: P1 has s, PM has sM , and a = (s + sM )
mod (M + 1). It is now needed to check for each component 1 ≤ i ≤ n whether
(s(i) + sM (i)) mod (M + 1) < t. Equivalently, we need to check whether

(s(i) + sM (i)) mod (M + 1) ∈ {j : 0 ≤ j ≤ t− 1} . (2)

The inclusion in (2) is equivalent to

s(i) ∈ Θ(i) := {(j − sM (i)) mod (M + 1) : 0 ≤ j ≤ t− 1} . (3)

The value of s(i) is known only to P1 while the set Θ(i) is known only to PM .
The problem of verifying the set inclusion in Eq. (3) can be seen as a simplified
version of the privacy-preserving keyword search, which was solved by Freedman
et. al. [15]. In the case of the the OR function, t = 1, which is the relevant case
for us, the set Θ(i) is of size 1, and therefore it is the problem of oblivious string
comparison, a problem that was solved in e.g. [9]. However, we claim that, since
M > 2, there is no need to invoke neither of the secure protocols of [15] or
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Protocol 2 (Threshold) Secure computation of the t-threshold function

Input: Each player Pm has an input binary vector bm ∈ Z
n
2 , 1 ≤ m ≤ M .

Output: b := Tt(b1, . . . ,bM ).
1: Each Pm selects M random share vectors bm,ℓ ∈ Z

n
M+1, 1 ≤ ℓ ≤ M , such that

∑M

ℓ=1
bm,ℓ = bm mod (M + 1).

2: Each Pm sends bm,ℓ to Pℓ for all 1 ≤ ℓ 6= m ≤ M .
3: Each Pℓ computes sℓ = (sℓ(1), . . . , sℓ(n)) :=

∑M

m=1
bm,ℓ mod (M + 1).

4: Players Pℓ, 2 ≤ ℓ ≤ M − 1, send sℓ to P1.
5: P1 computes s = (s(1), . . . , s(n)) :=

∑M−1

ℓ=1
sℓ mod (M + 1).

6: for i = 1, . . . , n do

7: If (s(i) + sM (i)) mod (M + 1) < t set b(i) = 0 otherwise set b(i) = 1.
8: end for

9: Output b = (b(1), . . . , b(n)).

[9]. Indeed, as M > 2, the existence of other semi-honest players can be used
to verify the inclusion in Eq. (3) much more easily. This is done in Protocol 3
(SetInc) which we proceed to describe next.

Protocol SetInc starts with players P1 and PM agreeing on a keyed hash
function hK(·) (e.g., HMAC [3]), a corresponding secret key K, and a long
random bit string r (Steps 1-2). Then (Steps 3-4), P1 converts his sequence
of elements s = (s(1), . . . , s(n)) into a sequence of corresponding “signatures”
s′ = (s′(1), . . . , s′(n)), where s′(i) = hK(r, i, s(i)) and PM does a similar con-
versions to the subsets that he holds. P1 then sends s′ to P2 and PM sends to
P2 a random permutation of each of the subsets Θ′(i), 1 ≤ i ≤ n. Finally, P2

performs the relevant inclusion verifications on the signature values. If he finds
out that for a given 1 ≤ i ≤ n, s′(i) ∈ Θ′(i), he may infer, with high probability,
that s(i) ∈ Θ(i), whence he sets b(i) = 0. If, on the other hand, s′(i) /∈ Θ′(i),
then, with certainty, s(i) /∈ Θ(i), whence he sets b(i) = 1.

Two comments are in order:

(1) If the index i had not been part of the input to the hash function (Steps
3-4), then two equal components in P1’s input vector, say s(i) = s(j), would
have been mapped to two equal signatures, s′(i) = s′(j). Hence, in that
case player P2 would have learnt that in P1’s input vector the ith and jth
components are equal. To prevent such leakage of information, we include
the index i in the input to the hash function.

(2) An event in which s′(i) ∈ Θ′(i) while s(i) /∈ Θ(i) indicates a collusion;
specifically, it implies that there exist θ′ ∈ Θ(i) and θ′′ ∈ Ω \ Θ(i) for
which hK(r, i, θ′) = hK(r, i, θ′′). Hash functions are designed so that the
probability of such collusions is negligible, whence the risk of a collusion
can be ignored. However, it is possible for player PM to check upfront the
selected random values (K and r) in order to verify that for all 1 ≤ i ≤ n, the
sets Θ′(i) = {hK(r, i, θ) : θ ∈ Θ(i)} and Θ′′(i) = {hK(r, i, θ) : θ ∈ Ω \ Θ(i)}
are disjoint.
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Protocol 3 (SetInc) Set Inclusion computation

Input: P1 has a vector s = (s(1), . . . , s(n)) and PM has a vectorΘ = (Θ(1), . . . , Θ(n)),
where for all 1 ≤ i ≤ n, s(i) ∈ Ω and Θ(i) ⊆ Ω for some ground set Ω.

Output: The vector b = (b(1), . . . , b(n)) where b(i) = 0 if s(i) ∈ Θ(i) and b(i) = 1
otherwise, 1 ≤ i ≤ n.

1: P1 and PM agree on a keyed-hash function hK(·) and on a secret key K.
2: P1 and PM agree on a long random bit string r.
3: P1 computes s′ = (s′(1), . . . , s′(n)), where s′(i) = hK(r, i, s(i)), 1 ≤ i ≤ n.
4: PM computes Θ′ = (Θ′(1), . . . , Θ′(n)), where Θ′(i) = {hK(r, i, θ) : θ ∈ Θ(i)},

1 ≤ i ≤ n.
5: P1 sends to P2 the vector s′.
6: PM sends to P2 the vector Θ′ in which each Θ(i) is randomly permuted.
7: For all 1 ≤ i ≤ n, P2 sets b(i) = 0 if s′(i) ∈ Θ′(i) and b(i) = 1 otherwise.
8: P2 broadcasts the vector b = (b(1), . . . , b(n)).

We refer hereinafter to the combination of Protocols Threshold and Set-

Inc as Protocol Threshold-C; namely, it is Protocol Threshold where the
inequality verifications in Steps 6-8 are carried out by Protocol SetInc. Then
our claims are as follows:

Theorem 1. Assume that the M > 2 players are semi-honest and that the keyed
hash function in Protocol SetInc is preimage-resistant. Then:

(a) Protocol Threshold-C is correct (i.e., it computes the threshold function).
(b) Let C ⊂ {P1, P2, . . . , PM} be a coalition of players.

(i) If P2 /∈ C and at least one of P1 and PM is not in C either, then
Protocol Threshold-C is perfectly private with respect to C.

(ii) If P2 ∈ C but P1, PM /∈ C, the protocol is computationally private with
respect to C.

(iii) Otherwise, C includes at least two of the players P1, P2, PM ; such coali-

tions may learn the sum a =
∑M

m=1
bm, but no further information

beyond the sum.

Proof.
(a) Protocol Threshold operates correctly if the inequality verifications in

Step 7 are carried out correctly, since (s(i) + sM (i)) mod (M + 1) equals the

ith component a(i) in the sum vector a =
∑M

m=1
bm. The inequality verification

is correct if Protocol SetInc is correct. The latter protocol is indeed correct
if the randomly selected K and r are such that for all 1 ≤ i ≤ n, the sets
Θ′(i) = {hK(r, i, θ) : θ ∈ Θ(i)} and Θ′′(i) = {hK(r, i, θ) : θ ∈ Ω \ Θ(i)} are
disjoint. (As discussed earlier, such a verification can be carried out upfront,
and most all selections of K and r are expected to pass that test.)

(b) Any single player Pℓ, 1 ≤ ℓ ≤ M , learns in the course of the protocol his
share sℓ of the sum a in a M -out-of-M secret sharing scheme for a (see Step
3 in Protocol Threshold). Two players learn more information: P1 receives
the shares s2, . . . , sM−1 (Step 4 in Protocol Threshold) and P2 receives the
signatures s′ and Θ′ during Protocol SetInc.
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(i) If P2, P1 /∈ C then the players in C have, at most, the shares s3, . . . , sM .
Since the secret sharing scheme is perfect, any number of shares which is
less than M reveals no information on a, since the missing shares were
chosen at random. If P2, PM /∈ C, then the worst scenario is that in which
P1 ∈ C; in that case, the coalition knows the shares s1, . . . , sM−1. Once
again, as the missing share sM was chosen at random by PM , the shares
s1, . . . , sM−1 reveal no information on a.

(ii) If P2 ∈ C and P1, PM /∈ C, then C has at most the M − 2 additive shares
s2, . . . , sM−1. The additional knowledge that P2 holds enables, in theory,
the recovery of the missing shares s1 and sM and then the recovery of
a =

∑M

ℓ=1
sℓ. Indeed, by scanning all possible keys K of the keyed hash

function and all possible random strings r, P2 may find a key K and a
string r for which the signature values that he got from P1 and PM (namely,
s′ and Θ′) are consistent with the signature scheme and the elements of
Ω = {0, 1, . . . ,M}. Hence, the protocol does not provide perfect privacy in
the information-theoretic sense with respect to such coalitions. However,
since such a computation is infeasible, and as the hash function is preimage-
resistant, the protocol provides computational privacy with respect to such
coalitions.

(iii) If P1, PM ∈ C, then by adding s (known to P1) and sM (known to PM ), they
will get the sum a. No further information on the input vectors b1, . . . ,bM

may be deduced from the inputs of the players in such a coalition; specif-
ically, every set of vectors b1, . . . ,bM that is consistent with the sum a is
equally likely. Coalitions C that include either P1, P2 or P2, PM can also
recover a. Indeed, P2 knows s′ and Θ′ and P1 or PM knows hK , K and
r. Hence, a coalition of P2 with either P1 or PM may recover from those
values the preimages s and Θ. Hence, such a coalition can recover s and
sM , and consequently a. As argued before, the shares available for such
coalitions do not reveal any further information about the input vectors
b1, . . . ,bM .

✷

The susceptibility of Protocol Threshold-C to coalitions is not very signif-
icant because of two reasons:

– The entries of the sum vector a do not reveal information about specific input
vectors. Namely, knowing that a(i) = p only indicates that p out of the M
bits bm(i), 1 ≤ m ≤ M , equal 1, but it reveals no information regarding
which of the M bits are those.

– There are only three players that can collude in order to learn information
beyond the intention of the protocol. Such a situation is far less severe than
a situation in which any player may participate in a coalition, since if it is
revealed that a collusion took place, there is a small set of suspects.
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2.3 An improved protocol for the secure computation of all locally
frequent itemsets

As before, we denote by F k−1
s the set of all globally frequent (k−1)-itemsets, and

by Ap(F k−1
s ) the set of k-itemsets that the Apriori algorithm generates when

applied on F k−1
s . All players can compute that set and decide on an ordering of it.

(Since all itemsets are subsets of A = {a1, . . . , aL}, they may be viewed as binary
vectors in {0, 1}L and, as such, they may be ordered lexicographically.) Then,
since the sets of locally frequent k-itemsets, Ck,m

s , 1 ≤ m ≤ M , are subsets of
Ap(F k−1

s ), they may be encoded as binary vectors of length nk := |Ap(F k−1
s )|.

The binary vector that encodes the union Ck
s :=

⋃M

m=1
Ck,m

s is the OR of the
vectors that encode the sets Ck,m

s , 1 ≤ m ≤ M . Hence, the players can compute
the union by invoking Protocol Threshold-C on their binary input vectors.
This approach is summarized in Protocol 4 (UniFI). (Replacing T1 with TM in
Step 2 will result in computing the intersection of the private subsets.)

Protocol 4 (UniFI) Unifying lists of locally Frequent Itemsets

Input: Each player Pm has an input subset Ck,m
s ⊆ Ap(F k−1

s ), 1 ≤ m ≤ M .
Output: Ck

s =
⋃M

m=1
Ck,m

s .
1: Each player Pm encodes his subset Ck,m

s as a binary vector bm of length nk =
|Ap(F k−1

s )|, in accord with the agreed ordering of Ap(F k−1
s ).

2: The players invoke Protocol Threshold-C to compute b = T1(b1, . . . ,bM ) =∨M

m=1
bm.

3: Ck
s is the subset of Ap(F k−1

s ) that is described by b.

2.4 Privacy

We begin by analyzing the privacy offered by Protocol UniFI-KC. That proto-
col does not respect perfect privacy since it reveals to the players information
that is not implied by their own input and the final output. In Step 11 of Phase
1 of the protocol, each player augments the set Xm by fake itemsets. To avoid
unnecessary hash and encryption computations, those fake itemsets are random
strings in the ciphertext domain of the chosen commutative cipher. The proba-
bility of two players selecting random strings that will become equal at the end
of Phase 1 is negligible; so is the probability of Player Pm to select a random
string that equals EKm

(h(x)) for a true itemset x ∈ Ap(F k−1
s ). Hence, every

encrypted itemset that appears in two different lists indicates with high proba-
bility a true itemset that is locally s-frequent in both of the corresponding sites.
Therefore, Protocol UniFI-KC reveals the following excess information:

(1) P1 may deduce for any subset of the even players, the number of itemsets
that are locally supported by all of them.

(2) P2 may deduce for any subset of the odd players, the number of itemsets
that are locally supported by all of them.
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(3) P1 may deduce the number of itemsets that are supported by at least one
odd player and at least one even player.

(4) If P1 and P2 collude, they reveal for any subset of the players the number
of itemsets that are locally supported by all of them.

As for the privacy offered by Protocol UniFI, we consider two cases: If there
are no collusions, then, by Theorem 1, Protocol UniFI offers perfect privacy
with respect to all players Pm, m 6= 2, and computational privacy with respect
to P2. This is a privacy guarantee better than that offered by Protocol UniFI-

KC, since the latter protocol does reveal information to P1 and P2 even if they
do not collude with any other player.

If there are collusions, both Protocols UniFI-KC and UniFI allow the col-
luding parties to learn forbidden information. In both cases, the number of “sus-
pects” is small — in Protocol UniFI-KC only P1 and P2 may benefit from a
collusion while in Protocol UniFI only P1, P2 and PM can extract additional
information if two of them collude (see Theorem 1). In Protocol UniFI-KC, the
excess information which may be extracted by P1 and P2 is about the number of
common frequent itemsets among any subset of the players. Namely, they may
learn that, say, P2 and P3 have many itemsets that are frequent in both of their
databases (but not which itemsets), while P2 and P4 have very few itemsets
that are frequent in their corresponding databases. The excess information in
Protocol UniFI is different: If any two out of P1, P2 and PM collude, they can
learn the sum of all private vectors. That sum reveals for each specific itemset in
Ap(F k−1

s ) the number of sites in which it is frequent, but not which sites. Hence,
while the colluding players in Protocol UniFI-KC can distinguish between the
different players and learn about the similarity or dissimilarity between them,
Protocol UniFI leaves the partial databases totally indistinguishable, as the
excess information that it leaks is with regard to the itemsets only.

To summarize, given that ProtocolUniFI reveals no excess information when
there are no collusions, and, in addition, when there are collusions, the excess
information still leaves the partial databases indistinguishable, it offers enhanced
privacy preservation in comparison to Protocol UniFI-KC.

2.5 Communication cost

Here and in the next section we analyze the communication and computational
costs of Protocols UniFI-KC and UniFI. In doing so, we let nk := |Ap(F k−1

s )|

and n :=
∑L

k=2
nk; also, the kth iteration refers to the iteration in which F k

s is
computed from F k−1

s (2 ≤ k ≤ L).
We start with Protocol UniFI-KC. Let t denote the number of bits required

to represent an itemset. Clearly, t must be at least log2 nk for all 2 ≤ k ≤ L.
However, as Protocol UniFI-KC hashes the itemsets and then encrypts them, t
should be at least the recommended ciphertext length in commutative ciphers.
RSA [17], Pohlig-Hellman [16] and ElGamal [7] ciphers are examples of commu-
tative encryption schemes. As the recommended length of the modulus in all of
them is at least 1024 bits, we take t = 1024.
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During Phase 1 of Protocol UniFI-KC, there are M − 1 rounds of communi-
cation, where in each one of them each of the M players sends to the next player
a message; the length of that message in the kth iteration is tnk. Hence, the
communication cost of this phase in the kth iteration is (M − 1)Mtnk. During
Phase 2 of the protocol all odd players send their encrypted itemsets to P1 and
all even players send their encrypted itemsets to P2. Then P2 unifies the item-
sets he got and sends them to P1. Hence, this phase takes 2 more rounds and
its communication cost in the kth iteration is bounded by 1.5Mtnk. In the last
phase a similar round of decryptions is initiated. The unified list of all encrypted
true and fake itemsets may contain in the kth iteration up to Mnk itemsets.
Hence, that phase involves M − 1 rounds with communication cost of no more
than (M − 1)Mtnk. To summarize: Protocol UniFI-KC entails 2M communi-
cation rounds (in each of the iterations) and the communication cost in the kth
iteration is Θ(M2tnk). (In fact, since the majority of the itemsets are expected
to be fake itemsets, the communication cost in the decryption phase is close to
(M − 1)Mtnk and then the overall communication cost is roughly 2M2tnk.)

We now turn to analyze the communication cost of Protocol UniFI. It con-
sists of 3 communication rounds: One for Step 2 of Protocol Threshold that it
invokes, one for Step 4 of that protocol, and one for the threshold verifications
in Steps 6-8 (in which Protocol SetInc is invoked). Hence, it improves upon
Protocol UniFI-KC that entails 2M communication rounds.

In the kth iteration, the length of the vectors in Protocol Threshold is nk;
each entry in those vectors represents a number between 0 and M − 1, whence
it may be encoded by log2 M bits. Therefore:

– The communication cost of Step 2 in Protocol Threshold is M(M −
1)(log2 M)nk bits.

– The communication cost of Step 4 in ProtocolThreshold is (M−2)(log2 M)nk

bits.
– Steps 6-8 in Protocol Threshold are carried out by invoking Protocol Set-

Inc. The communication cost of Steps 5-6 in the latter protocol is 2|h|nk,
where |h| is the size in bits of the hash function’s output. (Recall that when
Protocol SetInc is called in the framework of Protocol Threshold-C, the
size of each of the sets Θ(i) is 1.)

Hence, the overall communication cost of Protocol Threshold-C in the kth
iteration is ((M2 − 2)(log2 M) + 2|h|)nk bits.

As discussed earlier, a plausible setting of t would be t = 1024. A typical
value of |h| is 160. With those parameters, the improvement factor in terms
of communication cost, as offered by Protocol UniFI with respect to Protocol
UniFI-KC, is approximately

2M2tnk

(M2 log2 M + 2|h|)nk

=

(

log2 M

2t
+

|h|

M2t

)

−1

=

(

log2 M

2048
+

0.15625

M2

)

−1

.

For M = 4 we get an improvement factor of roughly 93, while for M = 8 we get
a factor of about 256.
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2.6 Computational cost

In Protocol UniFI-KC each of the players needs to perform hash evaluations
as well as encryptions and decryptions. As the cost of hash evaluations is sig-
nificantly smaller than the cost of commutative encryption, we focus on the
cost of the latter operations. In Steps 9-11 of the protocol, player Pm performs
|Ck,m

s | ≤ nk = |Ap(F k−1
s )| encryptions (in the kth iteration). Then, in Steps

14-18, each player performs M − 1 encryptions of sets that include nk items.
Hence, in Phase 1 in the kth iteration, each player performs between (M − 1)nk

and Mnk encryptions. In Phase 3, each player decrypts the set of items ECk
s .

ECk
s is the union of the encrypted sets from all M players, where each of those

sets has nk items — true and fake ones. Clearly, the size of ECk
s is at least nk.

On the other hand, since most of the items in the M sets are expected to be
fake ones, and the probability of collusions between fake items is negligible, it is
expected that the size of ECk

s would be close to Mnk. So, in all its iterations
(2 ≤ k ≤ L), Protocol UniFI-KC requires each player to perform an overall
number of close to 2Mn (but no less than Mn) encryptions or decryptions,

where, as before n =
∑L

k=2
nk. Since commutative encryption is typically based

on modular exponentiation, the overall computational cost of the protocol is
Θ(Mt3n) bit operations per player.

In Protocol Threshold, which Protocol UniFI calls, each player needs to
generate (M − 1)n (pseudo)random (log2 M)-bit numbers (Step 1). Then, each
player performs (M − 1)n additions of such numbers in Step 1 as well as in Step
3. Player P1 has to perform also (M − 2)n additions in Step 5. Therefore, the
computational cost for each player is Θ(Mn log2 M) bit operations. In addition,
Players 1 and M need to perform n hash evaluations.

Estimating the practical gain in computation time Here, we estimate the
practical gain in computation time, as offered by Protocol UniFI in comparison
to Protocol UniFI-KC. We adopt the same estimation methodology that was
used in [12, Section 6.2]. We measured the times to perform the basic operations
used by the two protocols on an Intel(R) Core(TM)2 Quad CPU 2.67 GHz
personal computer with 8 GB of RAM:

– Modular addition took (on average) 0.762 µs (microseconds);
– random byte generation took 0.0126 µs;
– equality verification between two 160-bit values took 0.13 µs;
– modular exponentiation with modulus of t = 1024 bits took 12251 µs; and
– computing HMAC on an input of 512 bits took on average 15.7 µs.

As in [12], we estimate the added computational cost due to the secure compu-
tations in the two protocols when implemented in the experimental setting that
was used in [6]. In that experimental setting, the number of sites was M = 3, the
number of items was L = 1000 and the unified database contained N = 500, 000
transactions. Using a support threshold of s = 0.01, [6] reports that n =

∑L

k=2
nk

was just over 100,000.
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In Protocol UniFI-KC each player performs roughly 2Mn encryptions and
decryptions. Hence, the corresponding encryption time per player is 2·3·100, 000·
12251 µs in this setting, i.e., approximately 7350 seconds. In comparison, Proto-
col UniFI requires each player to generate (M − 1)n log2 M pseudo random bits
(50,000 bytes in this setting, which mean 630 µs), and perform (2M − 2)n addi-
tions (400,000 modular additions in this case, which mean 0.305 seconds). P1 has
to perform (M − 2)n additional additions (0.076 seconds); P1 and PM need to
perform 100,000 HMAC computations (1.57 seconds); and P2 performs 100,000
verifications of equality between 160-bit values (0.013 seconds). The overall com-
putational overhead for the least busy player (P2) is 0.318 seconds and for the
busiest player (P1) is 1.951 seconds. Hence, compared to 7350 seconds for each
player in ProtocolUniFI-KC, the improvement in computational time overhead
is overwhelming.

3 Identifying the globally s-frequent itemsets

ProtocolUniFI-KC yields the set Ck
s that consists of all itemsets that are locally

s-frequent in at least one site. Those are the k-itemsets that have potential to be
also globally s-frequent. In order to reveal which of those itemsets is globally s-
frequent there is a need to securely compute the support of each of those itemsets.
That computation must not reveal the local support in any of the sites. Let x be
one of the candidate itemsets in Ck

s . Then x is globally s-frequent if and only if

∆(x) := supp(x)− sN =

M
∑

m=1

(suppm(x) − sNm) ≥ 0 . (4)

Kantarcioglu and Clifton considered two possible settings. If the required output
includes all globally s-frequent itemsets, as well as the sizes of their supports,
then the values of ∆(x) can be revealed for all x ∈ Ck

s . In such a case, those
values may be computed using a secure summation protocol (e.g. [5]). The more
interesting setting, however, is the one where the support sizes are not part of
the required output. We proceed to discuss it.

Let q be an integer greater than 2N . Then, since |∆(x)| ≤ N , the itemset
x ∈ Ck

s is s-frequent if and only if ∆(x) mod q < q/2. The idea is to verify that
inequality by starting an implementation of the secure summation protocol of [5]
on the private inputs ∆m(x) := suppm(x)−sNm, modulo q. In that protocol, all
players jointly compute random additive shares of the required sum ∆(x) and
then, by sending all shares to, say, P1, he may add them and reveal the sum.
If, however, PM withholds his share of the sum, then P1 will have one random
share, s1(x), of ∆(x), and PM will have a corresponding share, sM (x); namely,
s1(x) + sM (x) = ∆(x) mod q. It is then proposed that the two players execute
the generic secure circuit evaluation of [21] in order to verify whether

(s1(x) + sM (x)) mod q ≤ q/2 . (5)

Those circuit evaluations may be parallelized for all x ∈ Ck
s .
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We observe that inequality (5) holds if and only if

s1(x) ∈ Θ(x) := {(j − sM (x)) mod q : 0 ≤ j ≤ ⌊(q − 1)/2⌋} . (6)

As s1(x) is known only to P1 while Θ(x) is known only to PM , the verification
of the set inclusion in (6) can theoretically be carried out by means of Protocol
SetInc. However, the ground set Ω in this case is Zq, which is typically a large
set. (Recall that when Protocol SetInc is invoked from UniFI, the ground set
Ω is ZM+1, which is typically a small set.) Hence, Protocol SetInc is not useful
in this case, and, consequently, Yao’s generic protocol remains, for the moment,
the simplest way to securely verify inequality (5). Yao’s protocol is designed for
the two-party case. In our setting, as M > 2, there exist additional semi-honest
players. (This is the assumption on which Protocol SetInc relies.) An interesting
question which arises in this context is whether the existence of such additional
semi-honest players may be used to verify inequalities like (5), even when the
modulus is large, without resorting to costly protocols such as oblivious transfer.

4 Identifying all (s, c)-association rules

Once all s-frequent itemsets are found (Fs), we may proceed to look for all (s, c)-
association rules (rules with support at least sN and confidence at least c). For
X,Y ∈ Fs, the corresponding association rule X ⇒ Y has confidence at least c
if and only if supp(X ∪ Y )/supp(X) ≥ c, or, equivalently,

CX,Y :=

M
∑

m=1

(suppm(X ∪ Y )− c · suppm(X)) ≥ 0 . (7)

Since |CX,Y | ≤ N , then by taking q = 2N + 1, the players can verify inequality
(7), in parallel, for all candidate association rules, as described in Section 3.

5 Related work

Previous work in privacy preserving data mining has considered two related
settings. One, in which the data owner and the data miner are two different
entities, and another, in which the data is distributed among several parties who
aim to jointly perform data mining on the unified corpus of data that they hold.

In the first setting, the goal is to protect the data records from the data
miner. Hence, the data owner aims at anonymizing the data prior to its release.
The main approach in this context is to apply data perturbation [1,8]. The idea is
that the perturbed data can be used to infer general trends in the data, without
revealing original record information.

In the second setting, the goal is to perform data mining while protecting the
data records of each of the data owners from the other data owners. This is a
problem of secure multi-party computation. The usual approach here is crypto-
graphic rather than probabilistic. Lindell and Pinkas [14] showed how to securely



Mining of Association Rules in Horizontally Distributed Databases 17

build an ID3 decision tree when the training set is distributed horizontally. Lin
et al. [13] discussed secure clustering using the EM algorithm over horizontally
distributed data. The problem of distributed association rule mining was stud-
ied in [20,22] in the vertical setting, where each party holds a different set of
attributes, and in [12] in the horizontal setting. Also the work of [18] considered
this problem in the horizontal setting, but they considered large-scale systems
in which, on top of the parties that hold the data records (resources) there are
also managers which are computers that assist the resources to decrypt mes-
sages; another assumption made in [18] that distinguishes it from [12] and the
present study is that no collusions occur between the different network nodes —
resources or managers.

6 Conclusion

We proposed a protocol for secure mining of association rules in horizontally
distributed databases that improves significantly upon the current leading pro-
tocol [12] in terms of privacy and efficiency. One of the main ingredients in our
proposed protocol is a novel secure multi-party protocol for computing the union
(or intersection) of private subsets that each of the interacting players hold. An-
other ingredient is a protocol that tests the inclusion of an element held by one
player in a subset held by another. The latter protocol exploits the fact that
the underlying problem is of interest only when the number of players is greater
than two.

One research problem that this study suggests was described in Section 3;
namely, to devise an efficient protocol for set inclusion verification that uses the
existence of a semi-honest third party. Such a protocol might enable to further
improve upon the communication and computational costs of the second and
third stages of the protocol of [12], as described in Sections 3 and 4. Another
research problem that this study suggests is the extension of those techniques to
the problem of mining generalized association rules [19].
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