
ar
X

iv
:1

30
4.

21
44

v1
  [

cs
.D

S]
  8

 A
pr

 2
01

3

Backward Path Growth for Efficient Mobile Sequential

Recommendation

Jianbin Huang, Xuejun Huangfu, Heli Sun, Hong Cheng and Qinbao Song ∗

October 30, 2018

Abstract

The problem of mobile sequential recommendation is presented to suggest a route connecting
some pick-up points for a taxi driver so that he/she is more likely to get passengers with less
travel cost. Essentially, a key challenge of this problem is its high computational complexity.
In this paper, we propose a dynamical programming based method to solve this problem. Our
method consists of two separate stages: an offline pre-processing stage and an online search
stage. The offline stage pre-computes optimal potential sequence candidates from a set of pick-
up points, and the online stage selects the optimal driving route based on the pre-computed se-
quences with the current position of an empty taxi. Specifically, for the offline pre-computation,
a backward incremental sequence generation algorithm is proposed based on the iterative prop-
erty of the cost function. Simultaneously, an incremental pruning policy is adopted in the
process of sequence generation to reduce the search space of the potential sequences effectively.
In addition, a batch pruning algorithm can also be applied to the generated potential sequences
to remove the non-optimal ones of a certain length. Since the pruning effect continuously in-
creases with the increase of the sequence length, our method can search the optimal driving
route efficiently in the remaining potential sequence candidates. Experimental results on real
and synthetic data sets show that the pruning percentage of our method is significantly improved
compared to the state-of-the-art methods, which makes our method can be used to handle the
problem of mobile sequential recommendation with more pick-up points and to search the op-
timal driving routes in arbitrary length ranges.
Key words: Mobile Sequential Recommendation, Potential Travel Distance, Backward Path
Growth, Sequence Pruning.

1 Introduction

With the wide utilization of the sensor, wireless communication and information infrastructures
such as GPRS, WiFi and RFID, we can easily access the location trace data for a large number of
moving objects. Finding useful knowledge from these trajectory data will provide strong support for
the real-time decision and the intelligence services in the related applications [1]. Reducing taxicab
cruising cost problem is a typical example [2, 3]. An unloaded taxi driving on the road not only leads
to waste of fuel and time, but also may result in traffic congestion. However, some high probability
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pick-up points in the taxi trajectory data of the high-yield drivers can be excavated to guide new
drivers to pick up passengers in a more economical and efficient way. Therefore, high-efficiency
mobile pattern mining and recommendation algorithm can improve business performance of the
drivers and reduce the energy consumption. This is a problem possessing considerable theoretical
significance and applicable values [3, 4].

In [2], Ge et al. have proposed a novel problem of Mobile Sequential Recommendation (MSR),
which is to suggest a route connecting some pick-up points for an empty cab so that the driver
is more likely to get passengers with less travel cost starting from its current position. It is a
challenging task, because we need to enumerate and compare all possible routes derived from the
given set of pick-up points which involves a rather high computational complexity. To solve the
MSR problem, they provided a function of Potential Travel Distance (PTD) for evaluating the
cost of a driving route. Essentially, the PTD value of a suggested route is the expected travel
distance for an empty cab before it successfully gets new passengers when it travels along the
route. To reduce the computational cost, two effective potential sequence pruning algorithms LCP
and SkyRoute, which are based on the monotone property of the PTD function, have been proposed
in [2]. However, the time and space complexities of these two algorithms both grow exponentially
with the number of pick-up points and the length of the suggested driving route, so they can only
perform the driving route recommendation with a length constraint in a small number of pick-up
points.

However, in real applications, a driver always wants to obtain the optimal driving routes in a
range of length, so that he/she can select a preferable driving route among them. In this paper,
we consider a generalized mobile sequential recommendation problem with minimal and maximal
length constraints. We propose a solution including an offline stage and an online stage. The offline
stage effectively prunes the search space and generates a small set of sequence candidates. The
online stage is for obtaining the optimal driving route given the current position of an unloaded
taxi as the starting point. Specifically, for the offline pre-computation, we have deeply studied the
nature of the PTD function and have found that it satisfies the iterative calculation feature. This
feature allows us to incrementally construct a potential driving route backward from the terminal
point to the starting point. Based on the above calculation feature of the PTD function, we have
also found that a set of potential sequences with the same length and the same starting point
satisfies the incremental and batch pruning properties. Then, we design a novel mobile sequential
recommendation method which takes full advantage of the iterative nature of the PTD function.
It incrementally generates potential sequences and removes a lot of impossible search space in the
process which greatly enhances the time efficiency and reduces the memory consumption. Among
the generated potential sequences with the same length, we can still remove a large number of
potential sequences which cannot form the optimal route by using a batch pruning policy. It
can dramatically reduce the number of the remaining sequence candidates. Experimental results
show that the offline pruning effect and the online search efficiency of our method are significantly
improved compared to the existing state-of-the-art methods.

The main contributions of the paper are given as follows: 1) Our algorithm can generate all
possible sequence candidates of arbitrary length which can be used to suggest the driving route
with any length range constraint; 2) The recursive formula of the PTD function is presented which
makes the incremental generation of the potential sequences possible; 3) A backward incremental
sequence generation algorithm with less time and a smaller space complexity is proposed; 4) An
efficient method for comparing the PTD cost of different potential sequences and driving routes
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Table 1: Adopted symbols.

Symbols Definition

C A set of potential pick-up points.

ci A location point. It represents the current location of the cab when i = 0 and a pick-up
point in C with i > 0.

N The number of pick-up points in C.

P (ci) The probability of successfully taking passenger at ci.

D The distance matrix of pairs of location points.

Dci,cj The distance from ci to cj .

~r The potential mobile sequence containing one or more different pick-up points.

‖~r‖ The length of potential sequence ~r (i.e., the number of different pick-up points in ~r).

C~r The set of pick-up points in the potential sequence ~r.

P~r The probability vector of the pick-up points consisting of the potential sequence ~r.

|A| The number of elements in the set A.

〈c, ~r〉 A driving route that travels the potential sequence ~r starting from the location point c.

s(~r) The source point of the potential sequence ~r.
−→
R A set of all potential sequences.
−→
RL A set of potential sequences with length L.
−→
RL

~r A set of potential sequences that have the same length, source point and pick-up point set
as ~r.

−→
RL

c A set of potential sequences with length L and source point c.

is presented; 5) An effective sequence pruning method combining incremental pruning and batch
pruning is adopted which significantly improves the offline pruning effect.

The rest of the paper is organized as follows. Section 2 introduces the background and the
related work. Section 3 gives the iterative nature of the PTD function and the proposed sequence
pruning principle. In Section 4, the offline sequence generation and online search algorithms are
described in detail. Section 5 gives the experimental results and analysis. Section 6 discusses some
extension of our method. Finally, section 7 concludes the paper.

2 BACKGROUND

In this section, we first introduce the MSR problem and then describe the previous works.

2.1 Problem Statement

Let ci be a potential pick-up position and C = {c1, c2, ..., cN} be a set of N pick-up points. The
probability that a taxi can successfully carry passengers at the pick-up point ci is denoted by P (ci),
and the set of mutually independence probability is P = {P (c1), P (c2), ..., P (cN )}. Which driving
route will lead to the minimum cost of picking up a new passenger when a taxi travels all or part
of the pick-up points in C starting from its current location? This is the MSR problem introduced
by Ge et al. [2]. The problem can also be found in other scenarios such as recommending tourist
routes, searching parking places, etc. In the following, we introduce some concepts of the MSR
problem and all the symbols used in this paper are described in Table 1.

Let ~r = 〈c1, c2, · · · , cL〉 be a potential sequence with length L derived from the pick-up points
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Figure 1: An example of the driving route and its PTD cost.

set C, where each ci in ~r is different from each other. c1 is called the source point of ~r and cL is
called the destination point. C~r = {c1, c2, · · · , cL} denotes the pick-up points set of the potential

sequence ~r.
−→
R = {~r|C~r ⊆ C ∧ C~r 6= ∅} is the set of all potential sequences derived from C.

∣

∣

∣

−→
R
∣

∣

∣
= M is the number of all possible potential sequences in

−→
R . P (~r) = 〈P (c1), P (c2), · · · , P (cL)〉

is the probability vector of the potential sequence ~r consisting of the probabilities of all the pick-up
points in ~r. ~d = 〈c0, ~r〉 is a driving route, where c0 is the current location of a taxi, ~r is the sequence

of pick-up points, and
∥

∥

∥

~d
∥

∥

∥
= ‖~r‖ = k is the length of ~d.

For a driving route ~d = 〈c0, ~r〉, a PTD function is defined in [2] to evaluate its travel cost. Let

D(~d) =

〈

Dc0,c1 , (Dc0,c1 +Dc1,c2), . . . ,
L
∑

i=1

Dci−1,ci , D∞

〉

be the distance vector of ~d and probability

vector P (~d) =

〈

P (c1), P (c1) · P (c2), . . . ,
L−1
∏

i=1

P (ci) · P (cL),
L
∏

i=1

P (ci)

〉

, then the PTD cost of ~d can be

calculated by
F (~d) = F (c0, ~r, P (~r)) = D(~d) · P (~d), (1)

where D∞ represents the desired maximum cruising distance of a driver for picking up new passen-
gers, and it can be manually specified. The PTD value of a driving route ~d represents the expected
travel distance of an empty cab for picking up new passengers when it is driving along the route.
The smaller the PTD cost of a driving route, the shorter travel distance and the less required energy
and cost for the cab to take new guests driving along it.

The objective of the simple MSR problem is to recommend a driving route derived from the set
of pick-up points C for a cab driver, so that the expected potential travel distance (PTD) for finding
new passengers is minimal. An illustration example is shown in Figure 1, there are two different
driving routes ~d1 = 〈c0, c1, c2〉 and ~d2 = 〈c0, c2, c3〉 with length 2. Let D∞ = 10. We can get that

D(~d1) = 〈Dc0,c1 , (Dc0,c1 +Dc1,c2),D∞〉 = 〈2, 7, 10〉, P (~d1) =
〈

P (c1), P (c1) · P (c2), P (c1) · P (c2)
〉

=

〈0.5, 0.15, 0.35〉, D(~d2) = 〈Dc0,c2 , (Dc0,c2 +Dc2,c3),D∞〉 = 〈4, 5, 10〉, and

P (~d2) =
〈

P (c2), P (c2) · P (c3), P (c2) · P (c3)
〉

= 〈0.3, 0.56, 0.14〉. So the PTD cost of ~d1 is F (~d1) =

2×0.5+7×0.15+10×0.35 = 5.55 and the PTD cost of ~d2 is F (~d2) = 4×0.3+5×0.56+10×0.14 = 5.4.
We can see that the PTD cost of ~d2 is smaller than that of ~d1 and then ~d2 should be recommended.

Since the computational complexity of the simple MSR problem is O(N !) [2], a brute-force
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method for searching the optimal route in
−→
R is inefficient. In [2], Ge et al. focus on the MSR

problem with a length constraint due to the high complexity of the simple MSR problem.
However, in real life, a user usually prefers to request a route within a length range. For example,

a cab driver wants to get an optimal driving route in the nearby area with length between 3 and 5.
In this case, a recommendation method with a length constraint will be inefficient in handling such
a service request while a recommendation method with unconstraint simple MSR problem is also
inefficient when the suggested length is less than 3 or more than 5. Therefore, we focus on a more
general MSR problem in this paper with length between the minimum Lmin and the maximum
Lmax. The generalized MSR problem is given as follows.

The generalized MSR problem

Given:

A set of potential pick-up points C = {c1, c2, ..., cN};
A probability set P = {P (c1), P (c2), ..., P (cN)};
A potential sequence set

−→
R = {~r1, ~r2, ..., ~rM};

The position c0 of a cab who needs the service;
The suggested minimal length Lmin ∈ {1, 2, . . . , N};
The suggested maximal length Lmax ∈ {Lmin, . . . , N}.

Objective: Recommending an optimal driving route
~d =< c0, ~r >, s.t.

min
~r∈

−→
R

F (c0, ~r, P (~r)),

where ~r ∈
−→
R and Lmin ≤

∥

∥

∥

~d

∥

∥

∥
≤ Lmax.

Actually, the above problem is a computational extension of the simple MSR problem with
more flexible parameter specification. When we set Lmin = 1 and Lmax = N , it is the simple
MSR problem. Moreover, the length constrained MSR problem can be obtained by setting Lmin =
Lmax = L [2]. In this paper, we present a method to handle any cases of 1 ≤ Lmin ≤ Lmax ≤ N . In
particular, in order to compare the cost of potential sequences in various lengths, we set the D∞
to be equal for all the suggested routes of arbitrary length.

Since the number of driving routes satisfying the length constraint from Lmin to Lmax is
Lmax
∑

L=Lmin

(

N

L

)

· L!, the computational complexity of the generalized MSR problem is no more

than the complexity of the simple MSR problem O(N !) and is no less than the complexity of the
MSR problem with fixed length Lmax. Therefore, it cannot be effectively solved by the brute-force
search method.

2.2 Related Work

In recent years, intelligent transportation systems and trajectory data mining have aroused widespread
attentions [1, 7, 8, 9]. Mobile navigation and route recommendation have become a hot topic in
this research field [2, 11, 12, 13, 14, 15, 21, 10, 22, 23].

The MSR problem presented by Ge et al. in [2] is rather different from the traditional problems
such as Shortest-Path problem [16, 17], Traveling-Salesman problem [18] and Vehicle-Scheduling
problem [19]. Because for the shortest path computation problem, the source and destination nodes
of an object are known in advance. However, for MSR problem, both of them are unknown. The
traditional Traveling-Salesman Problem (TSP) gets a shortest path that includes all N locations
while MSR problem is to find a path that consists of a subset of given N locations. In addition,
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the traditional Vehicle-Scheduling problem needs to determine a set of duties in advance while the
pick-up routes (jobs) among several locations is uncertain for the MSR problem.

In [2], the authors focus on the MSR problem with a length constraint due to the high com-
putational complexity of the unconstraint simple MSR problem. To reduce the search space, they
proposed a route dominance based sequence pruning algorithm LCP. However, the proposed algo-
rithm has difficulty in handling the problem with a large number of pick-up points. A novel skyline
based algorithm SkyRoute is also introduced for searching the optimal route which can service
multiple cabs online. However, the skyline query is inefficient in handling , since it is processed
online.

Yuan et al. proposed a probability model for detecting pick-up points [4]. It finds a route with
the biggest pick-up probability to the parking position constrained by a distance threshold instead
of the minimal cost of the route and provides location recommendation service both for the cab
drivers and for the people needing the taxi services. In contrast, the problem solved in [21, 22] is
different from the MSR problem which is to recommend a fastest route to a destination place with
starting position and time constraints.

Powell et al. [3] proposed a grid-based approach to suggest profit locations for taxi drivers by
constructing a spatio-temporal profitability map, on which, the nearby regions of the driver are
scored according to the potential profit calculated by the historical data. However, this method
only finds a parking place with the biggest profit in a local scope instead of a set of pick-up points
with overall consideration.

Lu et al. [11] introduced a problem of finding optimal trip route with time constraint. They
also proposed an efficient trip planning method considering the current position of a user. However,
their method uses the score of attractions to measure the preference of a route.

3 PROPOSED METHOD

To address the computational challenge of the generalized MSR problem, we first identify the
iterative property of the PTD function,which makes the incremental generation of the potential
sequences possible and then propose the pruning principle, which uses the iterative property to
efficiently reduce the search space.

3.1 The Iterative Property Of The PTD Function

As described in section 2, the PTD function gives a computable measure for the cost of a route. In
the following, we study the property of the PTD function.

Actually, an iterative computational formula of the PTD function [5] can be obtained without
considering the driving distance beyond the last pick-up point of a driving route. For this purpose,
we introduce the concept of PTD sub-function.

Definition 1. (PTD Sub-function F1) Given a driving route ~d = 〈c0, c1, c2, . . . , cL〉, c0 is its
starting point and ~r = 〈c1, c2, . . . , cL〉 is its pick-up sequence. Let the distance sub-vector of D(~d)
be

˜
D(~d) =

〈

Dc0,c1 , (Dc0,c1 +Dc1,c2), . . . ,
L
∑

i=1

Dci−1,ci

〉
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and the probability sub-vector of P (~d) be

˜
P (~d) =

〈

P (c1), P (c1) · P (c2), . . . ,
L−1
∏

i=1

P (ci) · P (cL)

〉

.

The PTD sub-function F1 of the driving route ~d is defined as

F1(~d) =
˜
D(~d) ·

˜
P (~d). (2)

Compared to the distance vector D(~d) and probability vector P (~d), the sub-vectors
˜
D(~d) and

˜
P (~d) of a driving route ~d = 〈c0, ~r〉 only lack the last component respectively. Therefore, the PTD
cost of a driving route ~d can be expressed using its PTD subfunction by the following equation

F (~d) = F1(~d) +D∞ ·
L
∏

i=1

P (ci). (3)

In fact, we do not have the starting point of a cab in the stage of offline processing. For
enhancing the online search efficiency, we pre-compute the costs of all the potential sequences. The
involved concept of probability summation function PE is introduced as follows.

Definition 2. (Probability Summation Function PE) Let ~r = 〈c1, c2, . . . , cL〉 be a potential sequence
with length L and ~d = 〈c0, ~r〉 be a driving route derived from ~r. The probability summation of ~r is

the sum of all the dimensions in the probability sub-vector
˜
P (~d), and it is given as

PE(~r) = P (c1) + P (c1) · P (c2) + . . .+

L−1
∏

i=1

P (ci) · P (cL). (4)

Since the sum of all the components in the probability vector P (~d) is equal to 1, the value of
the probability summation function PE of ~r has the following property.

PE(~r) = PE(c1, c2, . . . , cL) = 1−
L
∏

i=1

P (ci). (5)

The value of the function PE can be calculated recursively. Given a potential sequence ~r1 =
〈c1, c2, . . . , ck〉 and its postfix sub-sequence ~r2 = 〈c2, c3, . . . , ck〉, PE(~r1) can be iteratively calculated
by

PE(~r1) = P (c1) + P (c1) · PE(~r2). (6)

According to the above definitions, we can obtain the iterative computation theorem of the
potential sequences as follows.

Theorem 3.1. Let ~r = 〈c1, c2, . . . , cL〉 be a potential sequence with length L. The distance sub-
vector of ~r is

D̃(~r) =

〈

Dc1,c2 , (Dc1,c2 +Dc2,c3), . . . ,

L
∑

i=2

Dci−1,ci

〉

,
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and its probability sub-vector is

P̃ (~r) =

〈

P (c2), P (c2) · P (c3), . . . ,
L−1
∏

i=2

P (ci) · P (cL)

〉

.

Then the PTD sub-function F1 of ~r is

F1(~r) = D̃(~r) · P̃ (~r).

Given a potential sequence ~r1 = 〈c1, c2, . . . , ck〉 1 ≤ k ≤ N and its postfix sub-sequence ~r2 =
〈c2, c3, . . . , ck〉, the F1(~r1) can be iteratively calculated as

F1(~r1) = P (c2) · F1(~r2) +Dc1,c2 · PE(~r2). (7)

Proof. Based on the definition of the PTD sub-function F1, we have

F1(~r1) = D̃(~r1) · P̃ (~r1)

= Dc1,c2 · P (c2) + (Dc1,c2 +Dc2,c3) · P (c2) · P (c3) + · · ·+
k
∑

i=2

Dci−1,ci ·
k−1
∏

i=2

P (ci) · P (ck)

= Dc2,c3 · P (c2) · P (c3) + · · ·+
k
∑

i=3

Dci−1,ci ·
k−1
∏

i=2

P (ci) · P (ck) +Dc1,c2 ·

(

P (c2) + P (c2) · P (c3) + · · ·+
k−1
∏

i=2

P (ci) · P (ck)

)

= P (c2) ·

(

Dc2,c3 · P (c3) + · · ·+
k
∑

i=3

Dci−1,ci ·
k−1
∏

i=3

P (ci) · P (ck)

)

+Dc1,c2 ·

(

P (c2) + P (c2) · P (c3) + · · ·+
k−1
∏

i=2

P (ci) · P (ck)

)

= P (c2) · F1(~r2) +Dc1,c2 · PE(~r2)

According to the Formulas 6 and 7, we can get the backward recursive formula for calculating
the PTD sub-function F1 of the potential sequence ~r.

The initial value:
∀c ∈ C, F1(c) = 0, PE(c) = P (c)
Iterative formula:

F1(c1, c2, . . . , cL) = P (c2) · F1(c2, c3, . . . , cL) +Dc1,c2 · PE(c2, c3, . . . , cL)

PE(c1, c2, . . . , cL) = P (c1) + P (c1) · PE(c2, . . . , cL)

The recursive formula given above shows that the F1 value of the potential sequence ~r =
〈c1, c2, . . . , cL〉 can be recursively calculated by the F1 and PE values of its postfix sub-sequence
~r′ = 〈c2, c3, . . . , cL〉. In the stage of offline analysis, we only have the set of potential pick-up points
C, but the locations of the cabs are unknown. Therefore, we can construct short postfix sequences
and then incrementally add new pick-up points ahead of them, and this will lead to longer potential
sequences. Actually, if we want to recommend a driving route with length L, we need to generate
all potential sequences with length L. Once we get the current location c0 of a cab online, we can
obtain the driving routes satisfying the length constraint by inserting the current location of the
cab c0 to the head of the potential sequences with length L as the starting point.

The PTD sub-function of the driving route ~d = 〈c0, ~r〉 can be calculated using the values of
F1(~r) and PE(~r) via

F1(~d) = P (c1) · F1(~r) +Dc0,c1 · PE(~r). (8)

8



By combining Formula 3 with Formula 8, the PTD cost of the driving route ~d can be calculated
using the formula

F (~d) = P (c1) · F1(~r) + Dc0,c1 · PE(~r) +D∞ ·
∏L

i=1
P (ci)

= P (c1) · F1(~r) +Dc0,c1 · PE(~r) +D∞ · (1− PE(~r)).
(9)

For the driving route ~d = 〈c0, c1, c2, . . . , cL〉 with length L, we can efficiently calculate the value
of the PTD sub-function F1 of its pick-up sequence ~r = 〈c1, c2, . . . , cL〉 in advance. When the
current location c0 of the cab is received online, we can calculate the PTD value of ~d based on
Formula 9. Then we can recommend the driving route satisfying the length constraint with the
minimum PTD cost to the user.

Using the iterative property of the PTD function, we give a recursive computational formula
for the PTD cost as well as an incremental backward path growth method which can generate a
potential sequence from its postfix sub-sequence. In this way, we do not have to calculate the PTD
cost for each possible driving route from scratch, but recursively calculate it from the F1 and PE

values of its postfix sub-sequences. Therefore, the cost of calculating the PTD of the routes can be
reduced significantly.

4 SEQUENCE PRUNING

In [2], Ge et al. proposed a sequence pruning algorithm LCP based on route dominance. Let
us briefly illustrate the principle of route dominance based pruning used in algorithm LCP. In
Figure 2, two potential sequences with length three ~r1 = 〈c1, c2, c5〉 and ~r2 = 〈c1, c4, c5〉 have the
same source and destination pick-up points. The associated DP vectors are defined as DP (~r1) =
〈

Dc1,c2 , P (c2),Dc2,c5 , P (c5)
〉

andDP (~r2) =
〈

Dc1,c4 , P (c4),Dc4,c5, P (c5)
〉

. Because (Dc1,c2 ≤ Dc1,c4)∧
(

P (c2) ≤ P (c4)
)

∧ (Dc2,c5 ≤ Dc4,c5) ∧
(

P (c5) ≤ P (c5)
)

and (Dc1,c2 < Dc1,c4) ∨
(

P (c2) < P (c4)
)

∨

(Dc2,c5 < Dc4,c5) ∨
(

P (c5) < P (c5)
)

are both valid, we can infer that ~r1 dominates ~r2. Thus, ~r2

will be pruned in advance by the algorithm LCP.
In algorithms LCP, all possible potential sequences should be generated. Since a route being

dominated by another route depends on the value of each dimension of the DP vector, the pruning
effect is not high. If we can identify and remove some non-optimal potential sequences incrementally
in the stage of sequence generation, the pruning effect would be improved. Along this line, we
introduce the sequence pruning principle adopted in our method.

Definition 3. (Sequence Precedence) Given two potential sequences ~a = 〈ca1 , . . . , cak 〉 and ~b =
〈cb1 , . . . , cbk〉 with equal length k (1 ≤ k ≤ N), for a starting position c0, we will get two driving

routes ~d1 = 〈c0, ca1 , . . . , cak 〉 and ~d2 = 〈c0, cb1 , . . . , cbk〉 with equal length k derived from ~a and ~b

respectively. If F (~d1) < F (~d2) holds for any possible c0, then ~a precedes ~b, and it is denoted as
~a ≺ ~b.

If ~a ≺ ~b, the potential sequence~b cannot form an optimal driving route and it should be removed
from the collection of the sequence candidates in advance. For example, as shown in Figure 2,
there is another potential sequence ~r3 = 〈c1, c3, c5〉. Since for any possible starting position c0
the PTD value of the driving route ~d1 = 〈c0, c1, c2, c5〉 must be smaller than that of the driving
route ~d3 = 〈c0, c1, c3, c5〉, ~d3 is not an optimal driving route. Therefore, we can prune the potential
sequence ~r3 in the stage of offline processing.

9
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Figure 2: An example of the sequence dominance and precedence.

It is easy to see that if ~r dominates ~r′, then ~r ≺ ~r′ is also valid. On the contrary, if ~r ≺ ~r′, ~r does
not necessarily dominate ~r′. For example, as shown in Figure 2, even though ~r1 does not dominate
~r3, ~r1 ≺ ~r3 is still valid. It shows that sequence dominance is only a special case of sequence
precedence. As a result, the overall pruning effect of sequence precedence should be better than
that of route dominance.

In order to efficiently evaluate the costs of the potential sequences, we provide a criterion of
iterative precedence as follows.

Definition 4. (Iterative Precedence) Let ~a = 〈ca1 , . . . , cak〉 and ~b = 〈cb1 , . . . , cbk 〉 be two potential

sequences derived from the set of pick-up points C. If
(

F1(~a) ≤ F1(~b)
)

∧
(

1− PE(~a) < 1− PE(~b)
)

or
(

F1(~a) < F1(~b)
)

∧
(

1− PE(~a) ≤ 1− PE(~b)
)

, then ~a takes iterative precedence over ~b, denoted

by ~a ∝ ~b.

According to the definition of iterative precedence, we propose a method to determine the prece-
dence relationship between pairs of potential sequences in order to prune some sequence candidates
in the process of sequence generation. Note that since the PTD function F and the iterative calcu-
lation of the PTD sub-function F1 are both relevant to the source point of the sequence, we only
compare the PTD costs of the potential sequences with the same source point.

Theorem 4.1. Let 1 ≤ k ≤ N − 1, ~a = 〈cs, ca1 . . . , cak 〉 and ~b = 〈cs, cb1 . . . , cbk〉 be two potential
sequences with the same source point and the equal length k+1. ~a′ = 〈c1, c2, . . . , cm, cs, ca1 , . . . , cak 〉

and ~b′ = 〈c1, c2, . . . , cm, cs, cb1 , . . . , cbk〉 are two potential sequences derived from ~a and ~b by append-
ing the same prefix sequence ~r = 〈c1, c2, . . . , cm〉 (0 ≤ m ≤ N − k − 1, cm ∈ C) respectively. If
~a ∝ ~b, then ~a′ ≺ ~b′.

Proof. Let c0 be an arbitrary starting point,
−→
da =

〈

c0, c1, c2, . . . , cm, cs, ca1 , . . . , cak

〉

and
−→
db =

〈c0, c1, c2, . . . , cm, cs, cb1 , . . . , cbk〉 be two driving routes associated with the potential sequences ~a′

and ~b′ respectively. ~d = 〈c0, c1, c2, . . . , cm〉 is a driving route with pick-up point sequence ~r =
〈c1, c2, . . . , cm〉.

Let D0 = Dc0,c1 +Dc1,c2 +Dc2,c3 + . . .+Dcm,cs and P0 = P (c1) · P (c2) · P (c3) · . . . · P (cm), then

F (
−→
da) =F1(~d)+D0 · P0 + (D∞ −D0) · P0 · P (cs) · P (ca1) · P (ca2) · . . . · P (cak ) + F1(~a) · P0 · P (cs),

F (
−→
db) =F1(~d)+D0 · P0 + (D∞ −D0) · P0 · P (cs) · P (cb1) · P (cb2) · . . . · P (cbk) + F1(~b) · P0 · P (cs).

10
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Figure 3: An example of batch sequence pruning.

As we know,
P (cs) · P (ca1) · P (ca2) · . . . · P (cak) = 1− PE(~a),

P (cs) · P (cb1) · P (cb2) · . . . · P (cbk) = 1− PE(~b).

Then

F (
−→
da) =F1(~d)+D0 · P0+P0 · (F1(~a) · P(cs) + (D∞ −D0) · (1− PE(~a))),

F (
−→
db) =F1(~d)+D0 · P0+P0 · (F1(~b) · P (cs) + (D∞ −D0) · (1− PE(~b))).

So,

F (
−→
da)− F (

−→
db) = P0 · P (cs) · (F1(~a)− F1(~b)) + P0 · (D∞ −D0) · (PE(~b)− PE(~a))).

Since the desired travel distance increases along with the length of suggested driving routes,

we can get D∞ > D0. Thus, if ~a ∝ ~b, i.e.,
(

F1(~a) ≤ F1(~b)
)

∧
(

1− PE(~a) < 1− PE(~b)
)

or
(

F1(~a) < F1(~b)
)

∧
(

1− PE(~a) ≤ 1− PE(~b)
)

, then F (
−→
da) < F (

−→
db). That is to say, ~a′ ≺ ~b′.

According to the feature of the precedence relationship between the potential sequences, we
introduce the theory of batch and incremental sequence pruning as follows.

Corollary 4.2. (Batch Pruning) Given two potential sequences ~a = 〈cs, ca1 , . . . , cak〉 and ~b =

〈cs, cb1 , . . . , cbk〉 with the equal length k + 1(1 ≤ k ≤ N − 1) and the same source point cs, if ~a ∝ ~b,

then ~a ≺ ~b.

The above corollary shows that if ~a ∝ ~b, the driving route
〈

c0,~b
〉

derived from the potential

sequence ~b is not an optimal driving route. Thus, ~b should be pruned from the sequence candidates
with length k + 1.

In the batch pruning, we can compare the PTD cost among potential sequences with length
L(2 ≤ L ≤ N) using the values of F1 and PE calculated in the iterative process. However,

11
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Figure 4: An example of incremental sequence growing and pruning.

the batch pruning cannot be applied during the process of incremental sequence generation. For
example, as shown in Figure 3, there are two potential sequences ~r = 〈c1, c2, c4〉 and ~r′ = 〈c1, c3, c5〉.
We can generate a new potential sequence 〈c3, c1, c2, c4〉 considering ~r as its postfix. However, we
cannot append c3 ahead of ~r′, because the pick-up point c3 has existed in ~r′. Even though ~r ∝ ~r′, we
can not prune ~r′ in advance in the process of the incremental backward path growth. For example,
if 〈c2, c1, c3, c5〉 ≺ 〈c3, c1, c2, c4〉, we may miss the optimal route for the improper pruning of ~r′ in
advance. Along this line, we proposed a new corollary suitable for pruning potential sequences
incrementally.

Corollary 4.3. (Incremental Pruning) Given two potential sequences ~a = 〈cs, ca1 , . . . , cak 〉 and
~b = 〈cs, cb1 , . . . , cbk〉 with the equal length k + 1(2 ≤ k ≤ N − 1) and the same source point cs, if

{ca1 , . . . , cak } = {cb1 , . . . , cbk } and F1(~a) < F1(~b), then all the driving routes having the postfix

sub-sequence ~b cannot be an optimal driving route.

As we know, the major obstacle why batch pruning is not suitable for incrementally pruning
potential sequences is that we may not append the same prefix sequence for all of the potential
sequences with the same source point and length. In Corollary 4.3, we add a constraint that
the involved potential sequences must have the same source point and the same set of pick-up
points. Then, it is obvious that all the involved potential sequences with the same length can
be appended with the same possible prefix sequence. Since 1 − PE(~a) = Pcs · Pca1

· . . . · Pcak
,

1− PE(~b) = Pcs · Pcb1
· . . . · Pcbk

and {ca1 , . . . , cak } = {cb1 , . . . , cbk }, then 1− PE(~a) = 1− PE(~b).

Thus, we can simplify the iterative condition of precedence as F1(~a) < F1(~b).
Let us study the example shown in Figure 4. There are three sequences with length 4:

~r1 = 〈c4, c1, c2, c3〉 , ~r2 = 〈c4, c3, c2, c1〉 and ~r3 = 〈c4, c2, c1, c3〉. For any pick-up point c ∈
C−{c1, c2, c3, c4}, it can be appended ahead of the three sequences to construct three new potential
sequences with length 5. If F1(~r1) < F1(~r2) < F1(~r3), then ~r1 ∝ ~r2 ∝ ~r3, i.e., ~r1 ≺ ~r2 ≺ ~r3. That
is to say, ~r2 and ~r3 can be pruned in advance. Because any possible driving routes with a postfix
sequence of the pruned sequence are not the optimal routes, they can be removed incrementally.
However, ~r1 remains as a sequence candidate with length 4 and it is considered as the possible
postfix of other longer potential sequences.

4.1 The Analysis of Pruning Effect

In this subsection, we analyze the pruning ratio of our incremental and batch pruning methods
respectively. Let the total number of potential sequences be M and the number of the remaining
sequences after pruning be M ′, the pruning ratio η = (M −M ′)/M .

12



Theorem 4.4. For all possible potential sequences with length L (3 ≤ L ≤ N), the incremental
pruning ratio is η = 1− 1/(L− 1)!.

Proof. Given a set of potential pick-up points C with |C| = N , the number of the potential se-

quences with length L (3 ≤ L ≤ N) is M =

(

N

L

)

· L!. In the process of incremental pruning,

we only consider a group of potential sequences with the same source point and the same set
of pick-up points. Based on Corollary 4.3, the precedence relationships of these sequences are
only related to the F1 values of them. Actually, in most cases we choose an optimal sequence
with the minimum F1 value from all these potential sequences. Since the number of the permu-
tation of L − 1 pick-up points except for the same source point is (L − 1)!, the number of the

remaining sequences M ′ =

(

N

L

)

· L!

/

(L− 1)! =

(

N

L

)

· L. Then the pruning percentage is

η = (M −M ′)/M = 1−

((

N

L

)

· L

)/((

N

L

)

· L!

)

= 1− 1/(L− 1)!.

Note that the incremental pruning method is only applied to deal with the potential sequences
with the length L ≥ 3. According to Theorem 4.4, the incremental pruning ratio sharply increases
along with the increase of the length of the sequences. In order to remove more non-optimal se-
quences, we need to use the batch pruning method on the remaining sequences after the incremental
pruning process. As a result, the pruning ratio can be improved further.

In the process of batch pruning, we compare the precedence relations between the remaining
potential sequences with the same source point c ∈ C and the same length L. As we know,
whether a potential sequence will be removed by the batch pruning method is related to the F1
and PE values of the sequences. Therefore, with the increase of the length L, the probability of
the equivalence of the F1 and PE for any pair of sequences with the same source point will become
lower and lower. As a result, the number of the remaining sequence candidates after incremental
and batch pruning process is close or equal to N when the length L is close to N .

5 THE ALGORITHM

Based on the analysis above, we first present the offline generation algorithm of the potential
sequence candidates and the online route query algorithm. Then, we analyze the computational
complexity of our algorithms.

5.1 The Offline Processing Algorithms

The detail of our dynamic programming based algorithm BP-Growth is given in Algorithm 1.
It generates the potential sequence candidates in the offline stage when the position of a cab is
not involved. In order to construct all possible potential sequence candidates incrementally and
efficiently, a backward path growth procedure and an incremental sequence pruning process are
employed which combines with the iterative calculation of the F1 and PE values of the potential
sequences.

After the sequence generation and pruning process of Algorithm 1, we will obtain a set of
sequence candidates with length from 1 to N . For the potential sequence candidates, we adopt the
batch pruning algorithm to reduce the number of sequence candidates further. As we know, after

13



Algorithm 1 BP-Growth
Input: A set of potential pick-up points C, the probability set P for all pick-up points, the pairwise driving distance matrix

D of pick-up points.

Output: A set of the potential sequence candidates
−→
R with length L from 1 to N

1:
−→
R1 ← ∅;

2: for each ci ∈ C do

3: ~r ← 〈ci〉; F1(~r)← 0; PE(~r)← P (ci);
−→
R1 ←

−→
R1 ∪ {~r};

4: end for

5: for L = 2 to N do

6:
−→
RL ← ∅;

7: for each ~r ∈
−−−→
RL−1 do

8: for each ci ∈ (C − C~r) do

9: //Potential Sequence Generation
10: ~p← 〈ci, ~r〉; c← s(~r);

11: F1(~p)← F1(~r) · P (c) +Dci,cPE(~r);

12: PE(~p)← PE(~r) · P (ci) + P (ci);
13: //Incremental Sequence Pruning

14:
−→
RL

~p
= {~q|~q ∈

−→
RL, s(~q) = s(~p), C~q = C~p};

15: if
−→
RL

~p
= ∅ then

16:
−→
RL ←

−→
RL ∪ {~p};

17: else

18: if ∀~q ∈
−→
RL

~p
(F1(~p) = F1(~q)) then

19:
−→
RL ←

−→
RL ∪ {~p};

20: end if

21: else

22: if ∀~q ∈
−→
RL

~p
(F1(~p) < F1(~q)) then

23:
−→
RL ←

(−→
RL −

−→
RL

~p

)

∪ {~p};

24: end if

25: end if

26: end for

27: end for

28: end for

29: return
−→
R =

N

∪
L=1

−→
RL;

the sequence candidates are produced offline, the F1 and PE values of these sequences have also
been calculated iteratively. Therefore, we can directly compare the F1 and PE values between
the potential sequence candidates to prune the non-optimal ones during the batch pruning process
which is described in Algorithm 2.

5.2 The Online Search Algorithm

Our method is able to provide real-time driving route recommendation service for the unloaded
cabs at various positions. When a cab at the position c0 requests the recommendation service, an
online search algorithm is adopted to find an optimal driving route from the remaining potential
sequences generated in the offline stage. Algorithm 3 shows the online search procedure of optimal
route in detail.

In Algorithm 3, for each L (Lmin ≤ L ≤ Lmax), we first generate the potential driving routes
−→
DL with length L by connecting c0 with each potential sequence candidate in the set

−→
RL. Then

we calculate the PTD value of each potential driving route with Formula 9. Finally, the driving
routes with the minimal PTD value are selected and returned to the users.

14



Algorithm 2 BatchPruning

Input: A set of the potential sequences
−→
RL with length L.

Output: A set of the remaining sequence candidates
−−→
R′L with length L.

1: for each c ∈ C do

2:
−→
RL

c ← ∅;
3: end for

4: for each ~r ∈
−→
RL do

5: c← s(~r);

6:
−→
RL

c ←
−→
RL

c ∪
{−→r

}

;

7: for each −→q ∈
−→
RL

c ∧
−→r 6= −→q do

8: if ~q ∝ ~r then

9:
−→
RL

c ←
−→
RL

c −
{−→r

}

;
10: break;
11: else

12: if ~r ∝ ~q then

13:
−→
RL

c ←
−→
RL

c −
{−→q

}

;
14: end if

15: end if

16: end for

17: end for

18: return
−−→
R

′L = ∪
c∈C

−→
RL

c ;

Algorithm 3 RouteOnline

Input: : A set of the sequence candidates
−→
R , the current position of a cab c0 and the minimum length Lmin and maximum

length Lmax of the suggested driving route (1 ≤ Lmin ≤ Lmax ≤ N).

Output: : A set of the optimal driving routes
−−−→
Dmin.

1:
−−−→
Dmin ← ∅; Fmin ← +∞;

2: for L = Lmin to Lmax do

3: for each ~r ∈
−→
RL do

4: c = s(~r);

5: ~d = 〈c0, ~r〉;

6: F (~d) = F1(~r) · (1− P (c)) +Dc0,c · PE(~r) +D∞ · (1 − PE(~r));

7: if
−−−→
Dmin = ∅ ∨ F (~d) = Fmin then

8:
−−−→
Dmin ←

−−−→
Dmin ∪ {

→

d };
9: else

10: if F (~d) < Fmin then

11:
−−−→
Dmin ← {

→

d }; Fmin ← F (~d);
12: end if

13: end if

14: end for

15: end for

16: return
−−−→
Dmin;

5.3 Analysis of Computational Complexity

In this subsection, we analyze the computational complexities of the offline sequence generation
and the online search algorithm respectively.

5.3.1 Offline processing algorithms

We first analyze the computational complexity of our offline algorithm BP-Growth. The key step
in the algorithm BP-Growth is the incremental process of the sequence growing and pruning. As
we know, in order to generate the potential sequences with length L, we append each pick-up
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point c ahead of the sequence candidates with length L − 1 that do not contain c. When the
length of the potential sequence L = 1, all pick-up points will be enumerated, so the computational
complexity is N . When L = 2, as we know, the number of sequence candidates with length 1
is N . Since each pick-up point only appears once in a potential sequence, we still have N −
1 possible pick-up points for each sequence candidate. Therefore, the loop execution times of
the key step for L = 2 is N(N − 1). When we generate the potential sequences with length
L > 2, the number of the remaining sequence candidates with length L − 1 after the incremental

pruning process is

(

N

L− 1

)

· (L− 1)!

/

(L− 2)!. Nevertheless, we still have N − L + 1 pick-up

points to be appended to the heads of these sequence candidates, and the computational times is
((

N

L− 1

)

· (L− 1)!

/

(L− 2)!

)

· (N − L + 1) =

(

N

L

)

· L · (L − 1). It can be seen that the

computational complexity of the process with length L = 1 is O(N). It increases gradually and

reaches the peak with L =
⌊

N/2

⌋

. After that, the computational complexities decrease and drop

to O(N2) with L = N .
We then present the computational complexity analysis of our algorithm BP-Growth for gen-

erating all possible sequences with length from 1 to N .
Given a set of pick-up points C with |C| = N , as we know, the total execution times for

generating all the potential sequences with length L ≤ N is

f(N) = N +N · (N − 1) +
N
∑

L=3
(L− 1) · L

(

N

L

)

.

f(N) can be transformed to

f(N) = N + 2

(

N

2

)

+ 2 · 3

(

N

3

)

+ . . .+ (N − 2) · (N − 1)

(

N

N − 1

)

+ (N − 1) ·N

(

N

N

)

.

Since L ·

(

N

L

)

= (N − L+ 1)

(

N

L− 1

)

, then f(N) can also be described by the following

equation

f(N) = N + (N − 1)

(

N

1

)

+ 2(N − 2)

(

N

2

)

+ 3(N − 3)

(

N

3

)

+ . . .+ (N − 1)

(

N

N − 1

)

.

If we add above two equations, we will obtain the following deduction.

2f(N) = 2N + (N − 1)

(

N

1

)

+ 2(N − 1)

(

N

2

)

+ 3(N − 1)

(

N

3

)

+ . . .+N(N − 1)

(

N

N

)

= 2N + (N − 1)(

(

N

1

)

+ 2

(

N

2

)

+ 3

(

N

3

)

+ . . .+N

(

N

N

)

)

= 2N +N(N − 1) · 2N−1

.

Then f(N) = N +N(N − 1) · 2N−2. Thus, O(f(N)) = O(N2 · 2N ).
In summary, the computational complexity of incremental generation of the potential sequences

with all possible length L (1 ≤ L ≤ N) via BP-Growth is O(N2 · 2N ).

5.3.2 Online search algorithm

The computational complexity of our online search algorithm with Lmin = Lmax = L directly

depends on the number of the remaining sequence candidates in
−→
RL. For the set of the sequence
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candidates
−→
RL produced by algorithm BP-Growth with incremental pruning,

∣

∣

∣

−→
RL

∣

∣

∣
=

(

N

L

)

· L.

Therefore, when we set L = 1 or N , the computational complexity of our online search algorithm

RouteOnline is O (N). When L =
⌊

N/2

⌋

, the computational complexity is the highest which is

close to O
(

N · 2N
)

. If we use both the incremental and the batch pruning processes, the search
efficiency can be significantly enhanced. However, it is hard to obtain the precise analysis of its
computational complexity. As for the search time of route query with a constraint of minimum
length Lmin and maximum length Lmax, it is just the sum of the search time in each set of sequence

candidates
−→
RL (Lmin ≤ L ≤ Lmax).

6 EXPERIMENTAL EVALUATIONS

In this section, we evaluate the performance of our method by comparing its pruning effect, Memory
consumption and online search time with those of other state-of-the-art methods. All acronyms
of evaluated algorithms are given in Table 2. LCP and SkyRoute are two route dominance based
pruning algorithms proposed in [2]. In particular, SkyRoute is an online pruning algorithm, where
two skyline computing methods BNL and D&C can be applied to prune potential sequences [6].
Its corresponding online search methods are denoted by SR(BNL)S and SR(D&C)S, respectively.
All the algorithms were implemented in Visual C++ 6.0. The experiments were conducted on a
PC with a Intel Pentium Dual E2180 processor and 4GB RAM.

6.1 Data Sets

The adopted experimental data sets are divided into two categories: real-world data and synthetic
data.

Real-World Data. In the experiments, we adopt real-world cab mobility traces used in [2],
which are provided by Exploratorium - the museum of science, art and human perception. It
contains GPS location traces of 514 taxis collected around 30 days in the San Francisco Bay Area.
We extract 21,980 and 38,280 historical pick-up locations of all the taxi drivers on two time periods:
2PM-3PM and 6PM-7PM. In total, we obtain 10 and 25 clusters as well as their probabilities on
these two real data sets using the same method adopted in [2].

Synthetic Data. We also generate four synthetic data sets. Specifically, we randomly generate
potential pick-up points and their pick-up probabilities within a special area by a standard uniform
distribution. In total, we have four synthetic data sets with 10, 15, 20 and 25 pick-up points
respectively. The Euclidean distance instead of the driving distance is adopted to measure the
distances between pairs of pick-up points.

For both real-world and synthetic data, we randomly generate the positions of the target cab
for recommendation.

6.2 The Overall Comparison of Pruning Effect

As we know, algorithms BFS and LCP need to enumerate all possible sequences of a certain length
L. For a set of potential pick-up points C with |C| = N , the number of all possible sequences

with length L is

(

N

L

)

· L!. And the computational complexity is O(N !) when L = N . When
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Table 2: Some acronyms used in experimental analysis.
LCP Sequence pruning via route dominance

SkyRoute Sequence pruning via skyline query
SR(BNL) SkyRoute with skyline computing method BNL
SR(D&C) SkyRoute with skyline computing method D&C

IP Generation of potential sequence candidates
via BP-Growth with incremental pruning

IBP Generation of potential sequence candidates
via BP-Growth with Incremental and Batch Pruning

BFS Brute-force search
LCPS Search via LCP

SR(BNL)S Skyline search via the algorithm SkyRoute + BNL
SR(D&C)S Skyline search via the algorithm SkyRoute + D&C

IPS Search on the potential sequences generated by IP
IBPS Search on the potential sequences generated by IBP

the number of pick-up points N or the length of suggested route L is a little larger (e.g., N = 20
and L = 6), both BFS and LCPS cannot finish the enumeration process in a rather long time.
Therefore, when we analyze the pruning ratio varying with the length of suggested driving routes
on the same set of pick-up points, we make the number of pick-up points small (e.g., |C| = 10) in
order to show the overall comparison of all concerned algorithms. When we analyze the pruning
ratio varying with the number of pick-up points on the fixed length of driving routes, we also make
the length of the routes small (e.g., L = 3 and L = 5). For the algorithms proposed in this paper,
since the sequences are pruned incrementally, both the time and space complexity are better than
that of BFS and LCP. Thus, we can use the synthetic data set with |C| = 25 to analyze the pruning
effect of the proposed incremental algorithm BP-Growth in detail.

6.2.1 The Pruning Ratio Varying with the Length of Potential Sequence
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(a) Real-World Data
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Figure 5: The pruning ratio of different algorithms w.r.t. the length of potential sequence on the
data sets with |C| = 10.

Figure 5 shows the varying of pruning ratio of several algorithms with the length of potential
sequence on both real-world and synthetic data with |C| = 10. Algorithms LCP, SkyRoute, IP and
IBP are all able to prune some non-optimal sequences derived from C. When the length L = 2 or
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L = 3, the proposed algorithms IBP and IP perform worse than the algorithms SkyRoute and IP.
However, as the length of the potential sequence L increases, the pruning ratios of our algorithms
IP and IBP are both significantly improved. It can be observed that IBP outperforms SkyRoute
and IP outperforms LCP on both real and synthetic data when L ≥ 5. Furthermore, the pruning
ratios of our algorithms are gradually improved and close to 1 when the length of suggested driving
route L ≥ 6. In contrast, the change of the pruning ratios of LCP shows a trend of parabola. When
L > 5, the pruning ratios of LCP and SkyRoute both gradually drop. When the length is equal to
the number of pick-up points (i.e., L = |C|), the pruning ratios of them decrease to 0.

To verify that our method can process the potential sequences derived from a larger number of
pick-up points, we test the pruning ratios of IP and IBP on the synthetic data set with |C| = 25.
We find that the trends of the pruning ratios of our algorithms on different data sets are consistent.
Since LCP and SkyRoute are only able to deal with the driving routes with L ≤ 5 on the data set
with |C| = 25, we can not obtain the whole result of them on this bigger data set.

Let us analyze the reason why the pruning ratios of algorithms IP and IBP are relatively high.
First, for the incremental pruning algorithm IP, its pruning ratio is equal to 1− 1/(L− 1)! which
dramatically increases along with the increase of the length of potential sequence. When L = 6,
the pruning percentage has reached 99.2%.
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Figure 6: The number of remaining sequence candidates after using the pruning algorithms IP and
IBP respectively on the synthetic data set with |C| = 10.

In addition, the algorithm IBP also adopts a batch pruning process to remove some non-optimal
potential sequences. As shown in Figures 6 and 7, the number of remaining sequences of IBP
can be several orders of magnitude smaller than that of IP, especially when |C| is large, which
demonstrates the effectiveness of batch pruning. The overall trend of the number of the remaining
sequence candidates presents a Gaussian distribution. It increases first with the increase of the
length L, and then decreases when L ≥ |C|/2. Moreover, it is close to the number of pick-up points
|C| when L → |C|, which is completely consistent with the analysis of Section 3.

In terms of LCP, whether a route is dominated by another route depends on the value of each
dimension of the vector DP. When the value of L is small, the pruning ratio has some growth with
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Figure 7: The number of remaining sequence candidates after using the pruning algorithms IP and
IBP respectively on the synthetic data set with |C| = 25.

the increase of the length. However, when the sequence length becomes larger, the number of the
dimensions of vector DP increases and the probability of domination in each dimension between
DP vectors becomes lower, which leads to the gradual decline of the pruning ratio. When L = |C|,
since all pick-up points are involved, it is impossible to make the probability of each pick-up point
in a sequence larger than that of another. Thus, the pruning percentage is 0 in this case. As for
SkyRoute, since the principle of it is similar as that of LCP, the overall trends of them are almost
the same.

6.2.2 The Pruning Ratio Varying with the Number of Pick-up Points
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Figure 8: The pruning ratio of different algorithms varying with the number of pick-up points on
the synthetic data with |C| = 25.

Figure 8 shows the varying of pruning ratio with the number of pick-up points on synthetic
data with |C| = 25 when L = 3 and L = 5 respectively. It can be observed that the pruning ratios
of LCP and IBP increase with the increase of the number of pick-up points, and the pruning ratio
of IP is constant. When L = 3, the pruning ratio of IP is equal to 0.5 and the pruning ratio of IBP
gradually increases with the number of pick-up points. However, our algorithms do not perform
better than algorithms LCP and SkyRoute. When L = 5, the pruning ratio of IP is more than 0.95
and the pruning ratio of IBP is close to 1 which are much higher than those of LCP and SkyRoute
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respectively.

6.3 Analysis of the Memory Consumption
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Figure 9: The internal memory consumption varying with the length of suggested driving routes
on the synthetic data sets with |C| = 10 and |C| = 20.

Figure 9 shows the varying of consumed internal memory storage with the length of potential
sequence on synthetic data sets with |C| = 10 and |C| = 20 respectively. When the length L ≤ 4,
the memory cost of IP is a little higher than those of the other three algorithms due to the storage of
some iterative calculation values, such as F1 and PE. However, as the length of potential sequence
L increases, the memory consumption of LCP, SR(BNL), and SR(D&C) dramatically increase. Our
algorithm IP presents an overall trend of parabola, which reaches the peak with 700K and 600M
RAM on these two data sets respectively. Among algorithms LCP, SR(BNL) and SR(D&C), the
space cost of SR(D&C) increases fastestly due to its recursive calculation process. In summary, the
trends of the space cost of our algorithm IP on different data sets are consistent, and it is almost
the same as the trend of the remaining sequence candidates.

Let us analyze the reason why the space cost of algorithm IP is relatively low. As we know,
the generated sequence candidates and the associated values of PE and F1 are stored in RAM
only during the incremental process of generating the potential sequences from the length L to
L + 1. Thus, the space cost is determined by the number of the remaining sequence candidates
with the length L and L+1 generated by IP. The number of the enumerated sequences dramatically
increases with the increase of the number of pick-up points N and the length of potential sequences
L. Therefore, when the size of pick-up points N becomes larger, the numbers of the remaining
sequence candidates dramatically increase. Since the algorithm IP uses an incremental method to
generate and reduce the potential sequences, its space performances are much better than those
of BFS and LCP. Nevertheless, when the number of pick-up points is larger (e.g., |C| = 25), the
generation process of IP can not be performed in the internal memory of a PC with 4G RAM. In this
case, we have to adopt external memory storage technology to generate the potential sequences.For
algorithms BFS, LCP and SkyRoute, it is necessary to enumerate all possible sequences of a certain
length, so the internal memory consumption is huge. As shown in Figure 9(a), they can only deal
with the potential sequences with length L ≤ 5 on the data set with |C| = 10. It can be observed
that the memory consumption of our algorithm is really much lower than those of other methods.
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Table 3: A comparison of search time (millisecond) on the real-world data set (2-3PM).

L = 2 L = 3 L = 4 L = 5

BFS 0.0077 0.0286 0.1980 1.4341

LCPS 0.0073 0.0157 0.0371 0.1175

SR(D&C)S 10.3269 41.6794 182.0520 1520.3100

SR(BNL)S 1.9306 24.3543 139.0600 2333.1200

IPS 0.0070 0.0110 0.0165 0.0246

IBPS 0.0068 0.0069 0.0076 0.0085

Table 4: A comparison of search time (millisecond) on the synthetic data set with |C| = 15 .
L = 2 L = 3 L = 4 L = 5

BFS 0.0125 0.0925 1.3028 17.9584

LCPS 0.0120 0.0458 0.3002 1.9866

SR(D&C)S 24.7075 154.6790 1962.8100 31210.4000

SR(BNL)S 3.3707 109.5560 3612.4100 210161.0000

IPS 0.0089 0.0556 0.2317 0.7322

IBPS 0.0086 0.0095 0.0107 0.0119

6.4 The Comparison of Online Search Time

In this subsection, we compare the efficiency of various online route search algorithms. Note that
all the results of search time come from the average values of 10 running cases. Tables 3, 4, 5 and 6
show the online search time consumed by algorithms BFS, LCPS, SR(D&C)S, SR(BNL)S, IPS and
IBPS on both real-world and synthetic data sets with various numbers of pick-up points and lengths
of suggested driving routes. It can be observed that the search time consumed by our algorithm
IBPS is the least. The online route search of IPS is a little slower than that of IBPS. However,
both of them always take a better performance over the other four algorithms. For IPS and LCPS,
as we know, when L is small (e.g., L = 3), the pruning ratio of IP is a little lower than that of LCP.
However, our algorithm IP outperforms LCP benefited from the recursive computation of the PTD
cost. The search time of the two skyline methods SR(D&C)S and SR(BNL)S is much longer. The
major reason is that skyline query is processed online which needs a rather long time. Therefore,
this type of method is not suitable for recommending driving routes for a single cab. Actually, it
performs better in providing multiple optimal driving routes for different cabs at the same place
and time.

Figure 10 shows the curves of the search time varying with the length of suggested routes on
the synthetic data set with |C| = 10. A comparison of the search time for a certain length of
driving routes L of all the five algorithms above is given in Figure 10(a). Obviously, the search
time of SR(D&C)S and SR(BNL)S dramatically increases along with the increase of the length of
the suggested route. Since the number of remaining sequence candidates is very small, the search
time consumed by our algorithms IBPS and IPS is always lower than those of other four algorithms,
and it becomes more and more obvious as the length of suggested driving routes increases.

In addition, we add some significant tests by t-test when the length is small. Tables 7 shows the
average search time for LCPS, IPS and IBPS. The table also shows p values from a paired t-test
for IPS and IBPS compared to LCPS. It can be observed that the search time consumed by our
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Table 5: A comparison of search time (millisecond) on the synthetic data set with |C| = 20.

L = 2 L = 3 L = 4 L = 5

BFS 0.0189 0.2244 4.6117 89.7804

LCPS 0.0185 0.1092 0.8328 7.9164

SR(D&C)S 40.1345 617.7660 11858.1000 301341.0000

SR(BNL)S 11.0259 769.1580 49492.5000 5453600.0000

IPS 0.0149 0.0584 0.3480 1.5331

IBPS 0.0120 0.0141 0.0172 0.0202

Table 6: A comparison of search time (millisecond) on the synthetic data set with |C| = 25
L = 2 L = 3 L = 4 L = 5

BFS 0.0262 0.4479 11.9400 305.5830

LCPS 0.0260 0.1919 2.0199 22.6318

SR(D&C)S 52.1815 1362.7300 36792.0000 1093460.0000

SR(BNL)S 17.7717 1559.3200 144124.0000 24283100.0000

IPS 0.0189 0.1383 0.8135 5.1262

IBPS 0.0148 0.0182 0.0242 0.0446
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Figure 10: The search time varying with the length of suggested driving routes on the synthetic
data set with |C| = 10: (a) an overall comparison of various algorithms; (b) the comparison between
IPS and IBPS.

algorithms is always significantly lower than that of LCPS.
In order to make the trend of search time clearer, the curves of our algorithms with Lmin =

Lmax = L and Lmin = 1, Lmax = L on the synthetic data set with |C| = 10 are shown in figure 10(b)
respectively. We can see that the search time of our algorithm IPS for a certain length of driving
routes L also shows a parabola trend, the same as the trend of the remaining sequence candidates.
After the batch pruning, the number of remaining sequences becomes so small and the search time
of IBPS is almost constant. The search time of our algorithms IPS and IBPS with Lmin = 1 and
Lmax = L gradually increases with the increase of the maximal route length L. When L = 10, the
search time of our algorithms for all possible driving route with 1 ≤ L ≤ 10 is still less than 0.14ms.

In summary, our online search algorithm has much lower search time compared to other existing
methods. Moreover, it has a more flexible length constraint.
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Table 7: The paired t-test compared to LCPS
L = 2 L = 3 L = 4 L = 5

mean(LCPS) 0.0079 0.0191 0.0717 0.3381

mean(IPS) 0.0069 0.0101 0.0161 0.0225

mean(IBPS) 0.0060 0.0065 0.0076 0.0081

t-test(IPS, LCPS) p = 0.001 p = 0.000 p = 0.00 p = 0.000
p ≪ 0.01 p ≪ 0.01 p ≪ 0.01 p ≪ 0.01

t-test(IPS, LCPS) p = 0.000 p = 0.000 p = 0.000 p = 0.000
p ≪ 0.01 p ≪ 0.01 p ≪ 0.01 p ≪ 0.01

7 Discussion

In this section, we discuss some extensions of our method.

7.1 Multiple Evaluation Functions

As we know, the PTD function is a measure for evaluating the cost of a driving route. To meet
different business requirements, we can adopt other evaluation functions. Two examples are given
as follows.

The Potential Travel Time (PTT) [26]. Since the driving time between two pick-up points
usually depends on the traffic flow on the road, the distance does not always present the cost of
a travel route properly. Thus, it is also valuable to recommend a route with least driving time.
Let us give the definition of PTT. Assume that Tci−1,ci is the driving time from ci−1 to ci during
a certain period of time. In Formula 1, if we replace the distance Dci−1,ci with travel time Tci−1,ci

and D∞ with T∞, we can get a function of potential travel time

FT (~d) = Tc0,c1 · P (c1) + (Tc0,c1 + Tc1,c2) · P (c1) · P (c2) + · · ·+ T∞ ·
L
∏

i=1

P (ci), (10)

where T∞ denotes the desired maximum cruising time for a driver to pick up new passengers.
The Potential Travel and Waiting Time (PTW). In real life, the taxi drivers usually get

passengers through two ways: cruising on a road and waiting in a place [3, 4]. Assume that a cab
travels along a driving route ~d = 〈c0, c1, c2, . . . , cL〉 (1 ≤ L ≤ N), it has not gotten a passenger
when arriving the last pick-up point cL and waits at cL. Let the waiting time be a fixed value
TW and the probability that it successfully gets a passenger at cL during the waiting time TW be

PW (cL), the cruising time vector of ~d is T (~d) =

〈

Tc0,c1 , (Tc0,c1 + Tc1,c2), . . . ,
L
∑

i=1

Tci−1,ci

〉

and its

probability vector is P (~d) =

〈

P (c1), P (c1) · P (c2), . . . ,
L−1
∏

i=1

P (ci) · P (cL)

〉

. Then the time cost of

successfully picking up a passenger by cruising is FC(~d) = T (~d) · P (~d). The time cost of picking

up a passenger by waiting at the last point cL is FW (~d) = (
L
∑

i=1
Tci−1,ci + TW ) ·

L
∏

i=1
P (ci) · PW (cL).

The time cost when a driver does not get passengers after leaving the last point cL can be set to

F∞ = T∞ ·
L
∏

i=1
P (ci) · PW (cL). Then, the PTW of route ~d can be given as

24



FCW (~d) = FC(~d) + FW (~d) + F∞. (11)

(a) (b)

Figure 11: The detected potential pick-up points and c0 on real-world data set of 6-7PM.

With various evaluation functions, we can easily recommend different types of optimal driving
routes to the drivers. For example, in Figure 11, ten pick-up points ci(1 ≤ i ≤ 10) revealed on
the real-world data set of 6PM-7PM and the current position c0 of an empty cab are labeled on
the map. When we set L = 3, the optimal driving routes detected by PTD, PTT and PTW are
C0 → C4 → C5 → C7, C0 → C5 → C7 → C4 and C0 → C5 → C4 → C7, respectively. For
L = 5, the optimal driving routes evaluated by the PTD is C0 → C9 → C4 → C5 → C7 → C8,
which is labeled in Figure 11(a) while the optimal driving routes evaluated by the PTT and PTW
functions are the same: C0 → C5 → C7 → C4 → C10 → C8. It is observed that the optimal
drive routes are not always the same through different evaluation functions. Therefore, they can
be applied to different applications.

7.2 Recommendation with Destination Constraint

Actually, our method can deal with the MSR problem with the destination point constraint. For
example, if a driver wants to travel to a specified destination point, we can generate all possible
potential sequences with the same source and destination points using our proposed algorithm BP-
Growth. The slight difference is that we only perform the cost comparison and pruning among
the potential sequences with the same source and destination points. Then we can recommend
the optimal driving route satisfying the destination constraint to the driver online. Moreover, if
the driver wants to wait for passengers at the destination point, we can consider the destination
point as a temporal parking place and perform recommendation using the PTW measure presented
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above. For example, as shown in Figure 11(b), an optimal driving route revealed by the PTW
function is C0 → C5 → C7 → C4 → C10 → C1 when we set C1 as the destination, Lmin = 3 and
Lmax = 5.

7.3 Load Balance for Parallel Recommendations

We briefly discuss how to make the recommendation be suitable for many cabs in the same area at
the same time. For the generalized MSR problem, since both of the proposed algorithms IP and
IBP deal with the potential sequences with the same source point, we can obtain the optimal driving
routes starting from each pick-up point. Thus, we can get N optimal driving routes with different
source points. To perform the recommendation for multiple empty cabs simultaneously, we can
adopt the load balancing techniques used in [2]. The round-robin strategy maintains the number
of the multiple empty cabs requesting the service, chooses one from the N optimal driving routes
by the system in a circular manner [24, 25] for the kth request. For example, we can recommend
the No.1 route with source point c1 to the empty cab that first request the service, recommend
the No.2 with route source point c2 to the second empty cab, etc. And recommend the No.1 route
again for the (N + 1)th request.

8 Conclusion

This paper presents a dynamic programming based method to solve the problem of mobile sequential
recommendation. The proposed method utilizes the iterative nature of the cost function and
multiple pruning policies which greatly improve the pruning effect. The overall time complexity for
handling mobile sequential recommendation problem without length constraint has been reduced
from O(N !) to O(N2 ·2N ). Experimental results show that the pruning effect and the online search
time are better than those of other existing methods. In the future, it will be interesting to use
parallel algorithms for sequence generation and recommendation.
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