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Abstract—A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database

of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific

time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy,

stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a

training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear

classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of

time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way

results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large data sets containing long

time series or time series of different lengths. For many of the data sets studied, classification performance exceeded that of

conventional instance-based classifiers, including one nearest neighbor classifiers using euclidean distances and dynamic time

warping and, most importantly, the features selected provide an understanding of the properties of the data set, insight that can guide

further scientific investigation.

Index Terms—Time-series analysis, classification, data mining

Ç

1 INTRODUCTION

TIME series, measurements of some quantity taken over
time, are measured and analyzed across the scientific

disciplines, including human heart beats in medicine, cos-
mic rays in astrophysics, rates of inflation in economics, air
temperatures in climate science, and sets of ordinary differ-
ential equations in mathematics. The problem of extracting
useful information from time series has similarly been
treated in a variety of ways, including an analysis of the dis-
tribution, correlation structures, measures of entropy or
complexity, stationarity estimates, fits to various linear and
nonlinear time-series models, and quantities derived from
the physical nonlinear time-series analysis literature. How-
ever, this broad range of scientific methods for understand-
ing the properties and dynamics of time series has received
less attention in the temporal data mining literature, which
treats large databases of time series, typically with the aim
of either clustering or classifying the data [1], [2], [3].
Instead, the problem of time-series clustering and classifica-
tion has conventionally been addressed by defining a dis-
tance metric between time series that involves comparing
the sequential values directly. Using an extensive database
of algorithms for measuring thousands of different time-
series properties (developed in previous work [4]), here we
show that general feature-based representations of time

series can be used to tackle classification problems in time-
series data mining. The approach is clearly important for
many applications across the quantitative sciences where
unprecedented amounts of data are being generated and
stored, and also for applications in industry (e.g., classifying
anomalies on a production line), finance (e.g., characterizing
share price fluctuations), business (e.g., detecting fraudulent
credit card transactions), surveillance (e.g., analyzing vari-
ous sensor recordings), and medicine (e.g., diagnosing heart
beat recordings).

Twomain challenges of time-series classification are typ-
ically: (i) selecting an appropriate representation of the time
series, and (ii) selecting a suitable measure of dissimilarity
or distance between time series [5]. The literature on repre-
sentations and distance measures for time-series clustering
and classification is extensive [1], [5], [6]. Perhaps the most
straightforward representation of a time series is its time-
domain form, then distances between time series relate to
differences between the time-ordered measurements them-
selves. When short time series encode meaningful patterns
that need to be compared, new time series can be classified
by matching them to similar instances of time series with a
known classification. This type of problem has traditionally
been the focus of the time series data mining community
[1], [5], andwe refer to this approach as instance-based classi-
fication. An alternative approach involves representing
time series using a set of derived properties, or features,
and thereby transforming the temporal problem to a static
one [7]. A very simple example involves representing a
time series using just its mean and variance, thereby trans-
forming time-series objects of any length into short vectors
that encapsulate these two properties. Here we introduce
an automated method for producing such feature-based rep-
resentations of time series using a large database of time-
series features. We note that not all methods fit neatly into
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these two categories of instance-based and feature-based
classification. For example, time-series shapelets [8], [9]
classify new time series according to the minimum distance
of particular time-series subsequences (or ‘shapelets’) to
that time series. Although this method uses distances calcu-
lated in the time-domain as a basis for classification (not
features), new time series do not need to be compared to a
large number of training instances (as in instance-based
classification). In this paper we focus on a comparison
between instance-based classification and our feature-
based classifiers.

Feature-based representations of time series are used
across science, but are typically applied to longer time series
corresponding to streams of data (such as extended medical
or speech recordings) rather than the short pattern-like time
series typically studied in temporal data mining. Neverthe-
less, some feature-based representations of shorter time
series have been explored previously: for example, Nano-
poulos et al. used the mean, standard deviation, skewness,
and kurtosis of the time series and its successive increments
to represent and classify control chart patterns [10],
M€orchen used features derived from wavelet and Fourier
transforms of a range of time-series data sets to classify
them [11], Wang et al. introduced a set of thirteen features
that contains measures of trend, seasonality, periodicity,
serial correlation, skewness, kurtosis, chaos, nonlinearity,
and self-similarity to represent time series [12], an approach
that has since been extended to multivariate time series [13],
and Deng et al. used measures of mean, spread, and trend
in local time-series intervals to classify different types of
time series [14]. As with the choice of representations and
distance metrics for time series, features for time-series clas-
sification problems are usually selected manually by a
researcher for a given data set. However, it is not obvious
that the features selected by a given researcher will be the
best features with which to distinguish the known data clas-
ses—perhaps simpler alternatives exist with better classifi-
cation performance? Furthermore, for many applications,
the mechanisms underlying the data are not well under-
stood, making it difficult to develop a well-motivated set of
features for classification.

In this work, we automate the selection of features for
time-series classification by computing thousands of
features from across the scientific time-series analysis liter-
ature and then selecting those with the best performance.
The classifier is thus selected according to the structure of
the data rather than the methodological preference of the
researcher, with different features selected for different
types of problems: e.g., we might discover that the vari-
ance of time series distinguishes classes for one type of
problem, but their entropy may be important for another.
The process is completely data-driven and does not
require any knowledge of the dynamical mechanisms
underlying the time series or how they were measured.
We describe our method as ‘highly comparative’ [4] and
draw an analogy to the DNA microarray, which compares
large numbers of gene expression profiles simultaneously
to determine those genes that are most predictive of a tar-
get condition; here, we compare thousands of features to
determine those that are most suited to a given time-series
classification task. As well as producing useful classifiers,

the features selected in this way highlight the types of
properties that are informative of the class structure in the
data set and hence can provide new understanding.

2 DATA AND METHODS

Central to our approach is the ability to represent time
series using a large and diverse set of their measured
properties. In this section, we describe how this represen-
tation is constructed and how it forms a basis for classifi-
cation. In Section 2.1, the data sets analyzed in this work
are introduced. The feature-vector representation of time
series is then discussed in Section 2.2, and the methodol-
ogy used to perform feature selection and classification is
described in Section 2.3.

2.1 Data

The twenty data sets analyzed in this work are obtained
from The UCR Time Series Classification/Clustering Homepage
[15]. All data sets are of labeled, univariate time series and
all time series in each data set have the same length. Note
that this resource has since (late in 2011) been updated to
include an additional 25 data sets [16], which are not ana-
lyzed here. The data sets (which are listed in Table 1 and
described in more detail in Supplementary Table 1, which
can be found on the Computer Society Digital Library
at http://doi . ieeecomputersociety. org/10.1109/
TKDE.2014.2316504), span a range of: (i) time-series lengths,
N , from N ¼ 60 for the Synthetic Control data set, to N ¼
637 samples for Lightning (two); (ii) data set sizes, from a
number of training (ntrain) and test (ntest) time series of
ntrain ¼ 28 and ntest ¼ 28 for Coffee, to ntrain ¼ 1,000 and
ntest ¼ 6,164 for Wafer; and (iii) number of classes, nclasses,
from nclasses ¼ 2 for Gun point, to nclasses ¼ 50 for 50 Words.
The data sets are derived from a broad range of systems:
including measurements of a vacuum-chamber sensor dur-
ing the etch process of silicon wafer manufacture (Wafer
[17]), spectrograms of different types of lightning strikes
(Lightning [18]), the shapes of Swedish leaves (Swedish Leaf
[19]), and yoga poses (Yoga [20]). All the data is used exactly
as obtained from the UCR source [15], without any prepro-
cessing and using the specified partitions of each data set
into training and test portions. The sensitivity of our results
to different such partitions is compared for all data sets in
Supplementary Table 2, available online; test set classifica-
tion rates are mostly similar to those for the given partitions.
We present only results for the specified partitions through-
out the main text to aid comparison with other studies.

2.2 Feature Vector Representation

Feature-based representations of time series are con-
structed using an extensive database of over 9,000 time-
series analysis operations developed in previous work [4].
The operations quantify a wide range of time-series prop-
erties, including basic statistics of the distribution of time-
series values (e.g., location, spread, Gaussianity, outlier
properties), linear correlations (e.g., autocorrelations, fea-
tures of the power spectrum), stationarity (e.g., StatAv,
sliding window measures, prediction errors), information
theoretic and entropy/complexity measures (e.g., auto-
mutual information, Approximate Entropy, Lempel-Ziv
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complexity), methods from the physical nonlinear time-
series analysis literature (e.g., correlation dimension, Lya-
punov exponent estimates, surrogate data analysis), linear
and nonlinear model fits [e.g., goodness of fit estimates
and parameter values from autoregressive moving average
(ARMA), Gaussian Process, and generalized autoregres-
sive conditional heteroskedasticity (GARCH) models], and
others (e.g., wavelet methods, properties of networks
derived from time series, etc.) [4]. All of these different
types of analysis methods are encoded algorithmically as
operations. Each operation, r, is an algorithm that takes a
time series, x ¼ ðx1; x2; . . . ; xNÞ, as input, and outputs a sin-
gle real number, i.e., r : RN ! R. We refer to the output of
an operation as a ‘feature’ throughout this work. All calcu-
lations are performed using Matlab 2011a (a product of
The MathWorks, Natick, MA). Although we use over 9,000
operations, many groups of operations result from using
different input parameters to the same type of time-series
method (e.g., autocorrelations at different time lags), mak-
ing the number of conceptually-distinct operations signifi-
cantly smaller: approximately 1,000 according to one
estimate [4]. The Matlab code for all the operations used in
this work can be explored and downloaded at www.comp-
engine.org/timeseries.

Differences between instance-based time-series classifi-
cation, where distances are calculated between the ordered
values of the time series, and feature-based time-series
classification, which learns a classifier using a set of fea-
tures extracted from the time series, are illustrated in
Fig. 1. Although the simplest ‘lock step’ distance measure
[5] is depicted in Fig. 1A, more complex choices, such as
dynamic time warping (DTW) [21], can accommodate
unaligned patterns in the time series, for example [5]. The
method proposed here is depicted in Fig. 1B, and involves
representing time series as extensive feature vectors, f ,
which can be used as a basis for selecting a reduced

number of informative features, ~f , for classification.
Although we focus on classification in this work, we note
that dimensionality reduction techniques, such as princi-
pal components analysis, can be applied to the full feature
vector, f , which can yield meaningful lower-dimensional
representations of time-series data sets that can be used
for clustering, as demonstrated in previous work [4], and
illustrated briefly for the Swedish Leaf data set in Supple-
mentary Fig. 1, available online.

In some rare cases, an operation may output a ‘special
value’, such as an infinity or imaginary number, or it
may not be appropriate to apply it to a given time series,
e.g., when a time series is too short, or when a positive-
only distribution is being fit to data that is not positive.
Indeed, many of the operations used here were designed
to measure complex structure in long time-series record-
ings, such as the physical nonlinear time-series analysis
literature and some information theoretic measures, that
require many thousands of points to produce a robust
estimate of that feature, rather than the short time-series
patterns of hundreds of points or less analyzed here. In
this work, we filtered out all operations that produced
any special values on a data set prior to performing any
analysis. After removing these operations, between 6,220
and 7,684 valid operations remained for the data sets
studied here.

2.3 Feature Selection and Classification

Feature selection is used to select a reduced set of fea-
tures, ~f ¼ f~fig, from a large initial set of thousands,
f ¼ ffig, with the aim of producing such a set, ~f , that
best contributes to distinguishing a known classification
of the time series. Many methods have been developed
for performing feature selection [22], [23], [24], including
the Lasso [25] and recursive feature elimination [26]. In
this work we use a simple and interpretable method:

Fig. 1. A visual comparison of two different approaches to comparing time series that form the basis for instance-based and feature-based classifica-
tion. A Instance-based classification involves measuring the distance between pairs of time series represented as an ordered set of measurements
in the time domain. In the upper portion of the plot, the two time series, x1 and x2, are offset vertically for clarity, but are overlapping in the lower plot,
where shading has been used to illustrate the distance between x1 and x2. B An alternative approach, that forms the focus of this work, involves rep-
resenting time series using a set of features that summarize their properties. Each time series, x, is analyzed by computing a large number of time-
series analysis algorithms, yielding an extensive set of features, f , that encapsulates a broad range of its properties. Using the structure of a labeled
training data set, these features can then be filtered to produce a reduced, feature-based representation of the time series, ~f , and a classification rule
learned on ~f can then be used to classify new time series. In the figure, feature vectors are normalized and represented using a grayscale color map,
where black represents low values and white represents high values of a given feature.
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greedy forward feature selection, which grows a set of
important features incrementally by optimizing the linear
classification rate on the training data [27]. Although bet-
ter performance could be achieved using more complex
feature selection and classification methods, we value
transparency over sophistication to demonstrate our
approach here. The greedy forward feature selection
algorithm is as follows: (i) Using a given classifier, the
classification rates of all individual features, fi, are calcu-
lated and the feature with the highest classification rate
is selected as the first feature in the reduced set, ~f1. (ii)
The classification rates of all features in combination with
~f1 are calculated and the feature that, in combination
with ~f1, produces a classifier with the highest classifica-
tion rate is chosen next as ~f2. (iii) The procedure is
repeated, choosing the operation that provides the great-
est improvement in classification rate at each iteration
until a termination criterion is reached, yielding a
reduced set of m features: ~f ¼ f~f1; ~f2; . . . ; ~fmg. For itera-
tions at which multiple features produce equally good
classification rates, one of them is selected at random.
Feature selection is terminated at the point at which the
improvement in the training set classification rate upon
adding an additional feature drops below 3 percent, or
when the training set misclassification rate drops to 0
(after which no further improvement is possible). Our
results are not highly sensitive to setting this threshold at
3 percent; this sensitivity is examined in Supplementary
Fig. 3, available online.

To determine the classification rate of each feature (or
combination of features), we use a linear discriminant
classifier, implemented using the classify function from
Matlab’s Statistics Toolbox, which fits a multivariate nor-
mal density to each class using a pooled estimate of
covariance. Because the linear discriminant is so simple,
over-fitting to the training set is not problematic, and we

found that using 10-fold cross validation within the train-
ing set produced similar overall results. Cross validation
can also be difficult to apply to some data sets studied
here, which can have as few as a single training example
for a given class. For data sets with more than two classes,
linear classification boundaries are constructed between
all pairs of classes and new time series are classified by
evaluating all classification rules and then assigning the
new time series to the class with the most ‘votes’ from
this procedure.

The performance of our linear feature-based classifier is
compared to three different instance-based classifiers,
which are labeled as: (i) ‘euclidean 1-NN’, a 1-NN classifier
using the euclidean distance, (ii) ‘DTW 1-NN’, a 1-NN clas-
sifier using a dynamic time warping distance, and (iii)
‘DTW 1-NN (best warping window, r)’, a 1-NN classifier
using a dynamic time warping distance with a warping
window learned using the Sakoe-Chiba Band (cf. [28]).
These results were obtained from The UCR Time Series Clas-
sification/Clustering Homepage [15]. Results using a 1-NN
classifier with euclidean distances were verified by us and
were consistent with the UCR source [15].

3 RESULTS

In this section, we demonstrate our highly comparative,
feature-based approach to time-series classification. In
Section 3.1 we illustrate the method using selected data sets,
in Section 3.2 we compare the results to instance-based classi-
ficationmethods across all twenty data sets, and in Section 3.3
we discuss the computational complexity of ourmethod.

3.1 Selected Data Sets

For some data sets, we found that the first selected feature
(i.e., ~f1, the feature with the lowest linear misclassification
rate on the training data) distinguished the labeled classes

Fig. 2. For some data sets, single extracted features separate the labeled classes accurately. In this way, the dimensionality of the problem is vastly
reduced: from the ordered set of N measurements that constitute each time series, to a single feature extracted from it. We show two examples: A
and B show the feature trev (t ¼ 3) for the Trace data set, and C and D plot the proportion of local maxima in time series from the Wafer data set. The
distribution of each feature across its range is shown for each of the labeled classes in the training (upper panels) and test (lower panels) sets sepa-
rately. The classes are plotted with different colors, and selected time series (indicated by pink circles) are annotated to each distribution.
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with high accuracy, corresponding to vast dimensionality
reduction: from representing time series using all N mea-
sured points, to just a single extracted feature. Examples
are shown in Fig. 2 for the Trace and Wafer data sets. The
Trace data set contains four classes of transients relevant to
the monitoring and control of industrial processes [29].
There are 25 features in our database that can classify the
training set without error, one of which is a time-reversal
asymmetry statistic, trevðt ¼ 3Þ, where trevðtÞ is defined as

trevðtÞ ¼ hðxtþt � xtÞ3i
hðxtþt � xtÞ2i3=2

; (1)

where xi are the values of the time series, t is the time lag
(t ¼ 3 for this feature), and averages, h�i, are performed
across the time series [30]. This operation with t ¼ 3 produ-
ces distributions for the four classes of the Trace data set as
shown in Figs. 2A and 2B for the training and test sets,
respectively. Simple thresholds on this feature, learned
using a linear classifier, allow new time series to be classi-
fied by evaluating Eq. (1). In this way, the test set of Trace is
classified with 99 percent accuracy, producing similar per-
formance as DTW (which classifies the test set without
error) but using just a single feature, and circumventing the
need to compute distances between pairs of time series.

A second example is shown in Figs. 2C and 2D for the
Wafer data set, which contains measurements of various
sensors during the processing of silicon wafers for semicon-
ductor fabrication that are either ‘normal’ or ‘abnormal’
[17]. As can be seen from the annotations in Figs. 2C and
2D, each class of time series in this data set is quite

heterogenous. However, the single feature selected for this
data set simply counts the frequency of the pattern
‘decrease-increase-decrease-increase’ in successive pairs of
samples of a time series, expressed as a proportion of the
time-series length. A simple threshold learned on this fea-
ture classifies the test set with an accuracy of 99.98 percent,
slightly higher than the best instance-based result of 99.5
percent for euclidean 1-NN, but much more efficiently:
using a single extracted feature rather than comparing all
152 samples of each time series to find matches in the train-
ing set.

Feature-based classifiers constructed for most time-series
data sets studied here combine multiple features. An exam-
ple is shown in Fig. 3 for the Synthetic Control data set,
which contains six classes of noisy control chart patterns,
each with distinctive dynamical properties: (i) ‘normal’
(dark green), (ii) ‘cyclic’ (orange), (iii) ‘increasing trend’
(blue), (iv) ‘decreasing trend’ (pink), (v) ‘upward shift’ (light
green), (vi) ‘downward shift’ (yellow) [31]. In statistical pro-
cess control, it is important to distinguish these patterns to
detect potential problems with an observed process. As
shown in Fig. 3A for greedy forward feature selection, the
misclassification rate in both the training and test sets drops
sharply when a second feature is added to the classifier, but
plateaus as subsequent features are added. The data set is
plotted in the space of these first two selected features,
ð~f1; ~f2Þ, in Fig. 3B. The first feature, ~f1, is named PH_ForcePo-
tential_sine_10_004_10_median, and is plotted on the hori-
zontal axis of Fig. 3B. This feature behaves in a way that is
analogous to performing a cumulative sum through time of
the z-scored time series (the cumulative sum, St, is defined
as St ¼

Pt
i¼1 xi), and then returning its median (i.e., the

Fig. 3. Feature selection for the Synthetic Control data set. A The training and test set misclassification rates as a function of the number of selected
features. Our feature selection method terminates after two features (shown boxed) because the subsequent improvement in training set classifica-
tion rate from adding another feature is less than 3 percent. Misclassification rates for instance-based classifiers are shown as horizontal lines for
comparison (cf. Section 2.3). B The training (circles) and test (squares) data are plotted in the space of the two features selected in A (shown boxed),
which are described in the main text. The test set misclassification rate of each individual feature is indicated in parentheses in the form (training,
test). The labeled classes: ‘normal’ (dark green), ‘cyclic’ (orange), ‘increasing trend’ (blue), ‘decreasing trend’ (pink), ‘upward shift’ (light green), and
‘downward shift’ (yellow), are well separated in this space. A selected time series from each class has been annotated to the plot and background
shading has been added manually to guide the eye.
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median of St for t ¼ 1; 2; . . . ; N).1 This feature takes high
values for time series that have a decreasing trend (the
cumulative sum of the z-scored time series initially
increases and then decreases back to zero), moderate values
for time series that are approximately mean-stationary (the
cumulative sum of the z-scored time series oscillates about
zero), and low values for time series that have an increasing
trend (the cumulative sum of the z-scored time series
initially decreases and then increases back to zero). As
shown in Fig. 3B, this feature on its own distinguishes most
of the classes well, but confuses the two classes without an
underlying trend: the uncorrelated random number series,
‘normal’ (green), and the noisy oscillatory time series,
‘cyclic’ (orange). The second selected feature, ~f2, named
SP_basic_pgram_hamm_power_q90mel, is on the vertical axis
of Fig. 3B and measures the mel-frequency at which the
cumulative power spectrum (obtained as a periodogram
using a Hamming window) reaches 90 percent of its maxi-
mum value.2 This feature gives low values to the cyclic time
series (orange) that have more low-frequency power, and
high values to the uncorrelated time series (dark green).
Even though this feature alone exhibits poor classification
performance (a misclassification rate of 52.3 percent on the
test data), it compensates for the weakness of the first fea-
ture, which confuses these two classes. These two features
are selected automatically and thus complement one
another in a way that facilitates accurate classification of
this data set. Although DTW is more accurate at classifying
this data set (cf. Fig. 3A), this example demonstrates how
selected features can provide an understanding of how the
classifier uses interpretable time-series properties to distin-
guish the classes of a data set (see Supplementary Fig. 2,
available online, for an additional example using the Two
Patterns data set). Furthermore, our results follow
dimensionality reduction from 60-sample time series down
to two simple extracted features, allowing the classifier to
be applied efficiently to massive databases and to very long
time series (cf. Section 3.3).

For many data sets, such as the six-class OSU Leaf data
set [32], the classification accuracy is improved by includ-
ing more than two features, as shown in Fig. 4. The classi-
fication rates of all three 1-NN instance-based classifiers
(horizontal lines labeled in Fig. 4) are exceeded by the lin-
ear feature-based classifier with just two features. The
classification performance improves further when more
features are added, down to a test set misclassification
rate of just 9% with eleven features (the test set classifica-
tion rate plateaus as more features are added while the
training set classification rate slowly improves, indicating
a modest level of over-fitting beyond this point). The
improvement in training-set misclassification rate from
adding an additional feature drops below 3 percent after

selecting five features, yielding a test set misclassification
rate of 16.5 percent (shown boxed in Fig. 4), outperform-
ing all instance-based classifiers by a large margin despite
dimensionality reduction from 427-sample time series to
five extracted features.

3.2 All Results

Having provided some intuition for our method using spe-
cific data sets as examples, we now present results for all
twenty time-series data sets from The UCR Time Series Classi-
fication/Clustering Homepage (as of mid-2011) [15]. For these
data sets of short patterns whose values through time can
be used as the basis of computing a meaningful measure of
distance between them, DTW has been shown to set a high
benchmark for classification performance [33]. However, as
shown above, it is possible for feature-based classifiers to
outperform instance-based classifiers despite orders of mag-
nitude of dimensionality reduction. Results for all data sets
are shown in Table 1, including test set misclassification
rates for three instance-based classifiers and for our linear
feature-based classifier. The final two columns of Table 1
demonstrate extensive dimensionality reduction using fea-
tures for all data sets, using an average of nfeat ¼ 3.2 features
to represent time series containing an average of N ¼ 282.1
samples. A direct comparison of 1-NN DTWwith our linear
feature-based classifier is shown in Fig. 5 for all data sets.
Both methods yield broadly similar classification results for
most data sets, but some data sets exhibit large improve-
ments in classification rate using one method over the other.
Note that results showing the variation across different
training/test partitions (retaining training/test proportions)
are shown in Supplementary Table 2, available online, for
euclidean 1-NN and our linear feature-based classifier; the

Fig. 4. Feature selection for the OSU Leaf data set. Training and test set
misclassification rates are plotted as a function of the number of features
learned using greedy forward feature selection. Misclassification rates
for three instance-based 1-NN classifiers are shown using horizontal
lines for comparison. The number of features in the classifier is chosen
at the point the improvement in classification rate on adding another fea-
ture drops below 3 percent, which is five features for this data set (shown
with a gray rectangle).

1. In fact, this operation treats the time series as a drive to a particle
in a sinusoidal potential and outputs the median values of the particle
across its trajectory. However, the parameter values for this operation
are such that the force from the potential is so much lower than that of
the input drive from the time series that the effect of the sinusoidal
potential can be neglected and the result is, to a very good approxima-
tion, identical to taking a cumulative sum.

2. The ‘mel scale’ is a monotonic transformation of frequency, v, as
1127 logðv=ð1400pÞ þ 1Þ.
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results are mostly similar to those shown here for fixed par-
titions. Across all data sets, a wide range of time-series fea-
tures were selected for classification, including measures of
autocorrelation and automutual information, motifs in sym-
bolized versions of time series, spectral properties, entro-
pies, measures of stationarity, outlier properties, scaling
behavior, and others. Names of all features selected for each
data set, along with their Matlab code names, are provided
in Supplementary Table 3, available online.

As with all approaches to classification, a feature-based
approach is better suited to some data sets than others [34].
Indeed, we found that feature-based classifiers outperform
instance-based alternatives on a number of data sets, and
sometimes by a large margin. For example, in the ECG data
set, the feature-based classifier yields a test set misclassifica-
tion rate of 1.0 percent using just a single extracted feature,
whereas the best instance-based classifiers (euclidean 1-NN
and DTW 1-NN using the best warping window) have a
misclassification rate of 12.0 percent. In the Coffee data set,
the test set is classified without error using a single
extracted feature, whereas the best instance-based classifiers
(both using DTW) have a misclassification rate of 17.9 per-
cent. In other cases, instance-based approaches (including
the euclidean 1-NN classifier) performed better. For exam-
ple, the 50 Words data set has a large number of classes (50)
and a large heterogeneity in training set size (from as low as
1 to 52 training examples in a given class), for which match-
ing to a nearest neighbor using instance-based methods out-
performs the linear feature-based classifier. The Face (four)
data set also has relatively few, quite heterogenous, and

Fig. 5. Test-set misclassification rates of a 1-NN DTW instance-based
classifier compared to a feature-based linear classifier. The dotted line
indicates the threshold between better performance using features (data
sets labeled orange) and using DTW (data sets labeled green). Feature-
based classification uses an average of nfeat = 3.2 features compared to
an average of N = 282.1 samples that make up each time series (see
Table 1).

TABLE 1
Misclassification Rates for Classifiers Applied to All 20 Time-Series Data Sets Analyzed in This Work

Dataset Euclidean DTW DTW 1-NN Feature-based, N (samples) nfeat

1-NN (%) 1-NN (%) best WW [r] (%) linear (%)
Synthetic Control 12.0 0.7 1.7 [6] 3.7 60 2
Gun point 8.7 9.3 8.7 [0] 7.3 150 2
CBF 14.8 0.3 0.4 [11] 28.9 128 2

Face (all) 28.6 19.2 19.2 [3] 29.2 131 5
OSU Leaf 48.3 40.9 38.4 [7] 16.5 427 5
Swedish Leaf 21.1 21.0 15.7 [2] 22.7 128 5
50 Words 36.9 31.0 24.2 [6] 45.3 270 7
Trace 24.0 0.0 1.0 [3] 1.0 275 1

Two Patterns 9.3 0.0 0.2 [4] 7.4 128 2
Wafer 0.5 2.0 0.5 [1] 0.0 152 1

Face (four) 21.6 17.0 11.4 [2] 26.1 350 3
Lightning (two) 24.6 13.1 13.1 [6] 19.7 637 2
Lightning (seven) 42.5 27.4 28.8 [5] 43.8 319 4

ECG 12.0 23.0 12.0 [0] 1.0 96 1
Adiac 38.9 39.6 39.1 [3] 35.5 176 5
Yoga 17.0 16.4 15.5 [2] 22.6 426 3
Fish 21.7 16.7 16.0 [4] 17.1 463 6
Beef 46.7 50.0 46.7 [0] 43.3 470 5
Coffee 25.0 17.9 17.9 [3] 0.0 286 1
Olive Oil 13.3 13.3 16.7 [1] 10.0 570 2

Results are shown for three instance-based 1-NN classifiers, and our linear feature-based classifier, labeled ‘Feature-based, linear’, in which time
series are represented using a set of extracted features, trained by greedy forward feature selection using a linear classifier from a database contain-
ing thousands of features. All percentages in the table are test set misclassification rates. Results using dynamic time warping (DTW) were obtained
from The UCR Time Series Classification/Clustering Homepage [15]. ‘Warping window’ has been abbreviated as ‘WW’ in the third column, and the
parameter r is expressed as a percentage of the time-series length. The classifier with the lowest misclassification rate for each data set is printed in
boldface. The final two columns list the number of samples,N, in each time series in the data set, that are used in instance-based classification, com-
pared to the number of features, nfeat, chosen from feature selection. The dimensionality reduction from using feature selection is large, while classifi-
cation performance is often comparable or superior to instance-based classification (cf. Fig. 5). Note that results for different training/test partitions of
the data sets are mostly similar to those shown here, and are in Supplementary Table 2, available online.
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class-unbalanced training examples, making it difficult to
select features that best capture the class differences;
instance-based methods also outperform our feature-based
approach on this data set. The ability of DTW to adapt on a
pairwise basis to match each test time series to a similar
training time series can be particularly powerful mechanism
for some data sets, and is unavailable to a static, feature-
based classifier, which does not have access to the training
data once the classifier has been trained. This mechanism is
seen to be particularly important for the Lightning (seven)
data set, which contains heterogenous classes with
unaligned patterns—DTW performs well here (misclassifi-
cation rate of 27.2 percent), while 1-NN euclidean distance
and feature-based classifiers perform worse, with misclassi-
fication rates exceeding 40 percent. Our feature-based classi-
fiers are trained to optimize the classification rate in the
training set, and thus assume similar class proportions in
the test set, which is often not the case; by simply matching
instances of time series to the training set, discrepancies
between class ratios in training and test sets are less prob-
lematic for instance-based classification. This may be a con-
tributing factor to the poor performance of feature-based
classification for the 50 Words, Lightning (seven), Face
(four) and Face (all) data sets. A feature-based representa-
tion also struggles when only a small number of heteroge-
nous training examples are available, as with the 50 Words,
Lightning (seven), and CBF data sets. In this case it can be
difficult to select features that represent differences within a
class as ‘the same’, and simultaneously capture differences
between classes as ‘different’. Although we demonstrate
improved performance on the Adiac data set, with a mis-
classification rate of 35.5%, this remains high. We note that
the properties of this data set provide multiple challenges
for our method, that may also contribute to its difficulty
with instance-based approaches, including a small number
and large variation in the number of examples in the train-
ing set (between 5 and 15 examples per class), a negative
correlation between training set size and test set size (where
our method assumes the same class proportions in the test
set), and a large number of classes (37), which are relatively
heterogenous within a given class, and visually quite simi-
lar between classes.

Despite some of the challenges of feature-based classifi-
cation, representing time series using extracted features
brings additional benefits, including vast dimensionality
reduction and, perhaps most importantly, interpretable
insights into the differences between the labeled classes (as
demonstrated in Section 3.1). This ability to learn about the
properties and mechanisms underlying class differences in
the time series in some sense corresponds to the ‘ultimate
goal of knowledge discovery’ [11], and provides a strong
motivation for pursuing a feature-based representation of
time-series data sets where appropriate.

3.3 Computational Complexity

In this section, the computational effort required to classify
time series using extracted features is compared to that of
instance-based approaches. Calculating the euclidean dis-
tance between two time series has a time complexity of
OðNÞ, where N is the length of each time series (which
must be constant). The distance calculation for dynamic

time warping has a time complexity of OðN2Þ in general,
or OðNwÞ using a warping window, where w is the warp-
ing window size [5]. Classifying a new time series using a
1-NN classifier and sequential search (i.e., sequentially cal-
culating distances between a new time series and all time
series in the training set) therefore has a time complexity
of OðNntrainÞ for euclidean distances and either OðN2ntrainÞ
or OðNwntrainÞ for DTW, where ntrain is the number of time
series in the training set [5]. Although the amortized time
complexity of the distance calculation can be improved
using lower bounds [1], [5], [35], and speedups can be
obtained using indexing [36], [37], [38] or time-domain
dimensionality reduction [39], the need to calculate many
distances between pairs of time series is fundamental to
instance-based classification, such that scaling with the
time-series length, N , and the size of the training set, ntrain,
is inevitable. Instance-based classification can therefore
become computationally prohibitive for long time series
and/or very large data sets. While the use of shapelets [8],
[9] addresses some of these issues, here we avoid compari-
sons in the time domain completely and instead classify
time series using a static representation in terms of
extracted features.

In contrast to instance-based classifiers, the bulk of the
computational burden for our feature-based method is asso-
ciated with learning a classification rule on the training
data, which involves the computation of thousands of fea-
tures for each training time series, which can be lengthy.
However, this is a one-off computational cost: once the clas-
sifier has been trained, new time series are classified quickly
and independent of the training data. For most cases in this
work, selected features correspond to simple algorithms
with a time complexity that scales linearly with the time
series length, as OðNÞ. The classification of a new time
series then involves simply computing nfeat features, and
then evaluating the linear classification rule. Hence, if all
features have time complexities that scale as OðNÞ, the total
time complexity of classifying a new time series scales as
OðNnfeatÞ if the features are calculated serially (we note, of
course, that calculating each of the nfeat features can be trivi-
ally distributed). This result is independent of the size of
the training data set and, importantly, the classification pro-
cess does not require any training data to be loaded into
memory, which can be a major limitation for instance-based
classification of large data sets.

Having outlined the computational steps involved in fea-
ture-based classification, we now describe the actual time
taken to perform classification using specific examples. First
we show that even though the methods used in this work
were applied to relatively short time series (of lengths
between 60 and 637 samples), they are also applicable to
time series that are orders of magnitude longer (indeed
many operations are tailored to capturing complex dynam-
ics in long time-series recordings). For example, the features
selected for the Trace and Wafer data sets shown in Fig. 2
were applied to time series of different lengths, as plotted in
Fig. 6. Note that the following is for demonstration purposes
only: these algorithms were implemented directly in Matlab
and run on a normal desktop PC with no attempt to opti-
mize performance. The figure shows that both of these oper-
ations have a time complexity that scales approximately
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linearly with the time-series length, as OðNÞ. Feature-based
classification is evidently applicable to time series that are
many orders of magnitude longer than short time-series
patterns (as demonstrated in previous work [4])—in this
case a 100,000-sample time series is converted to a single
feature: either trevðt ¼ 3Þ, or the decrease-increase-decrease-
increase motif frequency, in under 5 ms. Note that although
simple OðNÞ operations tended to be selected for many of
the data sets studied in this work, other more sophisticated
operations (those based on nonlinear model fits, for exam-
ple) have computational time complexities that scale nonli-
nearly with the time-series length, N . The time complexity
of any particular classifier thus depends on the features
selected in general (however, in future computational con-
straints could be placed on the set of features searched
across, e.g., restricting the search to features that scaled line-
arly asOðNÞ, as discussed in Section 4).

Next we outline the sequence of calculations involved in
classifying the Wafer data set as a case study. We empha-
size that in this paper, we are not concerned with optimiz-
ing the one-off cost of training a classifier and simply
calculated the full set of 9,288 features on each training
data set, despite high levels of redundancy in this set of fea-
tures [4] and the inclusion of thousands of nonlinear meth-
ods designed for long streams of time-series data. In
future, calculating a reduced set (of say 50 features) could
reduce the training computation times reported here by
orders of magnitude. The calculation of this full set of 9,288

features on a (152-sample) time series from the Wafer data
set took an average of approximately 31 s. Performing these
calculations serially for this very large training set with
ntrain ¼ 1,000, this amounts to a total calculation time of
8.6 hours. This is the longest training time of any data set
studied here due to a large number of training examples;
other data sets had as few as 24 training examples, with a
total training time under 15 min. Furthermore, all calcula-
tions are independent of one another and can be trivially
distributed; for example, with as many nodes as training
time series, the total computation is the same as for a single
time series, �30 s in this case (or, furthermore, with as
many nodes as time series/operation pairs, the total com-
putation time is equal to that of the slowest single opera-
tion operating on any single time series, reducing the
computation time further). For the Wafer data set, feature
selection took 6 s, which produced a (training set) misclas-
sification rate of 0 percent and terminated the feature selec-
tion process. Although just a single feature was selected
here, more features are selected in general, which take � 6–
10 s per feature to select. It then took a total of 32.5 s to load
all 6,164 test time series into memory, a total of 0.1 s to cal-
culate the selected feature and evaluate the linear classifica-
tion rule on all time series on a basic desktop PC. The result
classified 6,163 of the 6,164, or 99.98 percent, of the test
time series correctly.

In summary, the bulk of the computational burden of our
highly comparative feature-based classification involves the
calculation of thousands of features on the training data
(which could be heavily optimized in future work).
Although instance-based methods match new time series to
training instances and do not require such computational
effort to train, the investment involved in training a feature-
based classification rule allows new time series to be classi-
fied rapidly and independent of the training data. The clas-
sification of a new time series simply involves extracting
feature(s) and evaluating a linear classification rule, which
is very fast (� 3 � 10�8 s per time series for the Wafer exam-
ple above), and limited by the loading of data into memory
(� 5 � 10�3 s per time series for the Wafer data set). In gen-
eral, calculation times will depend on the time-series length,
N , the number of features selected during the feature selec-
tion process, nfeat, and the computational time complexity
of those selected features. Performing feature-based classifi-
cation in this way is thus suited to applications that value
fast, real-time classification of new time series and can
accommodate the relatively lengthy training process (or
where sufficient distributed computational power is avail-
able to speed up the training process). There are clear appli-
cations to industry, where measured time series need to be
checked in real time on a production line, for quality con-
trol, or the rapid classification of large quantities of medical
samples, for example.

4 DISCUSSION

In summary, we have introduced a highly comparative
method for learning feature-based classifiers for time series.
Our main contributions are as follows:

i) Previous attempts at feature-based time-series classi-
fication in the data mining literature have reported

Fig. 6. Scaling of two features with time-series length, N. The features
are those selected for (i) the Trace data set: trevðt ¼ 3Þ, and (ii) the Wafer
data set: the normalized frequency of the decrease-increase-decrease-
increase motif (labeled ‘down-up-down-up motif frequency’ in the plot),
cf. Fig. 2. Both operations have a time complexity that scales approxi-
mately linearly with the time-series length, N. Calculation times were
evaluated on Gaussian-distributed white noise time series and each
point represents the average of 100 repeats of the calculation on a basic
desktop PC, along with a standard deviation either side of the mean.
Unlike instance-based classification that requires the calculation of dis-
tances between many pairs of time series, this feature-based approach
can be applied to much longer time series, where the time taken to
reduce a time series of 100,000 samples, for example, to one of these
relevant features, is of the order of milliseconds.
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small sets of (�10 or fewer) manually selected or
generic time-series features. Here, for the first time,
we apply a diverse set of thousands of time-series
features and introduce a method that compares
across these features to construct feature-based clas-
sifiers automatically.

ii) Features selected for the data sets studied here
included measures of outlier properties, entropy
measures, local motif frequencies, and autocorrela-
tion-based statistics. These features provide inter-
pretable insights into the properties of time series
that differ between labeled classes of a data set.

iii) Of the 20 UCR time-series data sets studied here, fea-
ture-based classifiers used an average of 3.2 features
compared to an average time-series length of 282.1
samples, representing two orders of magnitude of
dimensionality reduction.

iv) Despite dramatic dimensionality reduction and an
inability to compare and match similar patterns
through time, our feature-based representations of
time series produced good classification perfor-
mance that was in many cases superior to DTW, and
in some cases by a large margin.

v) Unlike instance-based classification, the training of a
feature-based classifier incurs a significant computa-
tional expense. However, this one-off cost allows
new time series to be classified extremely rapidly
and independent of the training set. Furthermore,
there is much scope for optimizing this training cost
in future by exploiting redundancy in our massive
feature set.

To introduce the highly comparative approach, we have
favored the interpretability of feature selection and classifi-
cation methods over their sophistication. Feature selection
was achieved using greedy forward selection, and classifica-
tion was done using linear discriminant classifiers. Many
more sophisticated feature selection [22], [23], [24] and clas-
sification [27] methods exist (e.g., that allow for more robust
and/or nonlinear classification boundaries) and should
improve the classification results presented here. This flexi-
bility to incorporate a large and growing literature of
sophisticated classifiers operating on feature vectors,
including decision trees and support vector machines or
even k-NN applied in a feature space, is a key benefit of our
approach [27]. Considering combinations of features that
are not necessarily the result of a greedy selection process
(e.g., classifiers that combine features with poor individual
performance have been shown to be very powerful on some
data sets [23]), should also improve classification perfor-
mance. However, we note that complex classifiers may be
prone to over-fitting the training data and thus may require
cross-validation on the training data to reduce the in-sample
bias. However, cross-validation is problematic for some of
the data sets examined here that have small numbers of
training examples (as low as just a single training example
for a class in the 50 Words data set). We used the total classi-
fication rate as a cost function for greedy forward feature
selection to aid comparison to other studies, even though
many data sets have unequal numbers of time series in each
class and different class proportions in the training and test
sets, thus focusing the performance of classifiers towards

those classes containing the greatest number of time series.
In future, more subtle cost functions could be investigated,
that optimize the mean classification rate across classes, for
example, rather than the total number of correct classifica-
tions. In summary, the simple classification and feature
selection methods used here were chosen to demonstrate
our approach as clearly as possible and produce easily-
interpretable results; more sophisticated methods could be
investigated in future to optimize classification accuracies
for real applications.

Because we used thousands of features developed across
many different scientific disciplines, many sets of features
are highly correlated to one another [4]. Greedy forward
feature selection chooses features incrementally based on
their ability to increase classification performance, so if a
feature is selected at the first iteration, a highly correlated
feature is unlikely to increase the classification rate further.
Thus, the non-independence of features does not affect our
ability to build successful feature-based classifiers in this
way. However, strong dependencies between operations
can mean that features selected using different partitions of
the data into training and testing portions can be different
(or even for the same partition when two or more features
yield the same classification rate and are selected at ran-
dom). For homogenous data sets, features that differ for dif-
ferent data partitions are typically slight variants of one
another; for example, the second feature selected for the
Synthetic Control data set (cf. Section 3.1) is a summary of
the power spectrum for some partitions and an autocorrela-
tion-based measure for others—both features measure
aspects of the linear correlation present in the time series
and thus contribute a similar understanding of the time
series properties that are important for classification. The
selection of either feature yields similar performance on the
unseen data partition. We also note that this redundancy in
the feature set could be exploited in future to produce a
powerful reduced set of approximately independent, com-
putationally inexpensive, and interpretable features with
which to learn feature-based classifiers for time series.
Future work could also focus on adding new types of fea-
tures found to be useful for time-series classification (or
comparing them to our implementation of existing meth-
ods, cf. [4]), as our ability to construct useful feature-based
time-series classifiers is limited by those features contained
in our library of features, which is currently comprehensive
but far from exhaustive. Together, these refinements of the
feature set could dramatically speed up the computation
times reported here, improve the interpretability of selected
features, and increase classification performance.

Many features in our database are designed for long, sta-
tionary streams of recorded data and yet here we apply
them to short and often non-stationary time series. For exam-
ple, estimating the correlation dimension of a time-delay
embedded time series requires extremely long and precise
recordings of a system [40]. Although the output of a correla-
tion dimension estimate on a 60-sample time series will not
be a robust nor meaningful estimate of the correlation
dimension, it is nevertheless the result of an algorithm oper-
ating on a time series andmay still contain some useful infor-
mation about its structure. Regardless of the conventional
meaning of a time-series analysis method therefore, our
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approach judges features according to their demonstrated
usefulness in classifying a data set. Appropriate care must
therefore be taken in the interpretation of features should
they prove to be useful for classifying a given data set.

Although feature-based and instance-based approaches
to time-series classification have been presented as oppos-
ing methodologies here, future work could link them
together. For example, Batista et al. [41] used a simple new
feature claimed to resemble ‘complexity’, to rescale conven-
tional euclidean distances calculated between time series,
demonstrating an improvement in classification accuracy.
Rather than using this specific, manually-selected feature,
our highly comparative approach could be used to find
informative but computationally inexpensive features to
optimally rescale traditional euclidean distances.

5 CONCLUSIONS

In 1993, Timmer et al. [42] wrote: “The crucial problem is
not the classificator function (linear or nonlinear), but the
selection of well-discriminating features. In addition, the
features should contribute to an understanding [...].” In
this work, we applied an unprecedented diversity of sci-
entific time-series analysis methods to a set of classifica-
tion problems in the temporal data mining literature and
showed that successful classifiers can be produced in a
way that contributes an understanding of the differences
in properties between the labeled classes of time series.
Although the data sets studied here are well suited to
instance-based classification, we showed that a highly
comparative method for constructing feature-based repre-
sentations of time series can yield competitive classifiers
despite vast dimensionality reduction. Relevant features
and classification rules are learned automatically from the
labeled structure in the data set, without requiring any
domain knowledge about how the data were generated
or measured, allowing classifiers to adapt to the data,
rather than attempting to develop classifiers that work
‘best’ on generic data sets. Although the computation of
thousands of features can be intensive (if not distributed),
once the features have been selected and the classification
rule has been learned, the classification of new time series
is rapid and can outperform instance-based classification.
The approach can be applied straightforwardly to time
series of variable length, and to time series that are many
orders of magnitude longer than those studied here. Per-
haps most importantly, the results provide an under-
standing of the key differences in properties between
different classes of time series, insights that can guide fur-
ther scientific investigation. The code for generating the
features used in this work is freely available at http://
www.comp-engine.org/timeseries/.
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