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Abstract— The performance of prediction models is often based on “abstract metrics” that estimate the model’s ability to
limit residual errors between the observed and predicted values. However, meaningful evaluation and selection of prediction
models for end-user domains requires holistic and application-sensitive performance measures. Inspired by energy consumption
prediction models used in the emerging “big data” domain of Smart Power Grids, we propose a suite of performance measures to

rationally compare models along the dimensions of scale independence, reliability, volatility and cost. We include both application
independent and dependent measures, the latter parameterized to allow customization by domain experts to fit their scenario.
While our measures are generalizable to other domains, we offer an empirical analysis using real energy use data for three
Smart Grid applications: planning, customer education and demand response, which are relevant for energy sustainability. Our
results underscore the value of the proposed measures to offer a deeper insight into models’ behavior and their impact on real
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100,000’s of customer smart meters at 15 mins sam-
pling intervals [29] — orders of magnitude greater than
traditional readings done once a month — offers a
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+—.1 INTRODUCTION

—i T HERE is a heightened emphasis on applying data

0% mining and machine learning techniques to do-

mains with societal impact, and, in the process, un-
derstanding the gaps in existing research [36]. One
() emerging community contending with a data explo-
; sion is Smart Power Grids. Advanced instrumentation
and controls being deployed to upgrade aging power
< grid infrastructure is offering utilities unprecedented
1 access to power data at fine spatial and temporal
S granularities, with near realtime availability E] [30].
= However, this data needs to be translated into action-
>< able intelligence by means of novel modeling, mining
R and evaluation methods to ensure sustainable energy
generation and supply [28]].

One critical opportunity lies in reliably, accurately
and efficiently predicting electric enerqy consumption for
individual premises. The growing availability of en-
ergy consumption data (Kilowatt-Hour (kWh)) from
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1. Smart Meter deployments continue to rise, US Energy Info.
Admin., 2012 www.eia.gov/todayinenergy/detail.cfm?id=8590

unique challenge in applying forecasting models and
evaluating their efficacy for Smart Grid applications.
The impact of such predictions includes strategic
planning of renewable generation, power purchases
from energy markets, daily planning to meet peak
power loads, and engaging customers in energy sav-
ings programs [25], [37], all of which can enhance long
term energy sustainability and security.

Historically, data at the feeder and sub-station level
have been collected using SCADA systems. Hence
contemporary load forecasting models exist at the
coarser spatial granularity of total utility area using
Bayesian modeling [10], Support Vector Machines [9],
Artificial Neural Networks [21] and time series meth-
ods [23]. However, energy consumption predictiorﬂ
for individual customers is less studied, both due
to the lack of input data and the limited need for
such predictions till recently with Smart Grids [16].
As a result, prediction models at the consumer level,
with more intra-day and seasonal variability, and for
innovative Smart Grid applications, which engage
customers in sustainability, have not been well un-
derstood nor a set of performance measures for their
evaluation identified.

The performance of prediction models are often
based on “abstract metrics”, detached from their

2. In this article, we address energy consumption prediction,
which deals with average energy over an interval (i.e., kWh). This
is different from demand (or load) prediction [2], [33] that deals
with predicting instantaneous power (kW).
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meaningful evaluation for the end-user domain [36].
Common performance measures like Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE)
form the basis for selecting a suitable prediction
model. However, we suggest that these measures are in-
sufficient to evaluate prediction models for emerging Smart
Grid applications. This gap, discussed below, is relevant
to many applied domains beyond just Smart Grids.

(1) The impact of under- and over- predictions can
be asymmetric on the domain, and measures like
RMSE are insensitive to prediction bias. For e.g., under-
prediction of consumption forecasts is more deleteri-
ous to Smart Grid applications that respond to peak
demand. (2) Scale-dependent metrics are unsuitable
for comparing prediction models applied to different
customer sizes. (3) The focus on the magnitude of
errors overlooks the frequency with which a model
outperforms a baseline model or predicts within an
error tolerance. Reliable prediction is key for certain
domain applications. (4) Volatility is a related factor
that is ignored in common measures, wherein a less
volatile prediction model performs consistently better
than a baseline model. (5) Lastly, given the “Big Data”
consequences of emerging applications, the cost of col-
lecting data and running models cannot be disregarded.
The extra cost for improved accuracy from a model
may be impractical at large scales in a Smart Grid
with millions of customers [19], or the latency for
a prediction can make it unusable for operational
decisions. These gaps highlight the need for holistic
performance measures to meaningfully evaluate and
compare prediction models by domain practitioners.

Contributions. Specifically, we make the following
novel contributions. (1) We propose a suite of per-
formance measures for evaluating prediction models
in Smart Grids, defined along three dimensions: scale
in/dependence, reliability and cost (. These include
two existing measures and eight innovative ones (4}
§9), and also encompass parameterized measures that
can be customized for the domain. (2) We analyze the
usefulness of these concrete measures by evaluating
ARIMA and regression tree prediction models (§6)
applied to three Smart Grid applications (§7) in the
Los Angeles Smart Grid Project

Significance. In this article, we offer meaningful
performance measures to evaluate predictive models
along dimensions that go beyond just the magnitude
of errors, and explore bias, reliability, volatility and
cost [36]. Not all our measures are novel and some ex-
tend from other disciplines — this offers completeness
and also gives a firm statistical grounding. Our novel
application dependent measures with parameterized
coefficients set by domain experts allow apples-to-
apples comparison that is meaningful for that scenario
[12]. A model that seems good using common error

3.Los Angeles Department of Water and Power: Smart Grid
Regional Demonstration, US Department of Energy, 2010

metrics may behave poorly or prove inadequate for
a given application; this intuition is validated by
our analysis. All our measures are reusable by other
domains, though they are inspired by and evaluated
for the emerging Smart Grid domain.

As Smart Grid data becomes widely available, data
mining and machine learning research can provide
immense societal benefits to this under-served do-
main [28]. Our study based on real Smart Grid data
collected over 3 years E] is among the first of its kind
in defining holistic measures and evaluating candi-
date consumption models for emerging microgrid and
utility applications. Our analysis of the measures
underscores their key ability to offer: deeper insight
into models’ behavior that can help improve their per-
formance, better understanding of prediction impact
on real applications, intelligent cost-benefit trade-offs
between models, and a comprehensive, yet accessible,
goodness of fit for picking the right model. Our work
offers a common frame of reference for future re-
searchers and practitioners, while also exposing gaps
in existing predictive research for this new domain.

2 RELATED WORK

The performance evaluation of predictive models of-
ten involves a single dimension, such as an error
measure, which is simple to interpret and compare,
but does not necessarily probe all aspects of a model’s
performance or its goodness for a given applica-
tion [36]. A new metric is proposed in [12] based
on aggregating performance ratios across time series
for fair treatment of over- and under-forecasting. [27]
emphasizes the importance of treating predictive per-
formance as a multi-dimensional problem for a more
reliable evaluation of the trade-offs between various
aspects. [15] introduces a measure to reduce the double
penalty effect in forecasts whose features are displaced
in space or time, compared to point-wise metrics. Fur-
ther, [35] identifies the need for cost-benefit measures
to help capture the performance of a prediction model
by a single profit-maximization metric which can
be easily interpreted by practitioners. [5] highlights
the importance of scale, along with measures like
cost, sensitivity, reliability, understandability, and re-
lationship for decision making using forecasts. Other
studies [32] also go beyond standard error measures
to include dimensions of sensitivity and specificity.
Our effort is in a similar vein. We propose a holistic
set of measures along multiple dimensions to assist
domain users in intelligent model selection for their
application, with empirical validation for emerging
Smart Grid domain.

Existing approaches for consumption prediction in-
clude our and other prior work on regression tree [3],
[26], time series models [4], artificial neural networks

4. “Where’s the Data in the Big Data Wave?”, Gerhard Weikum,
SIGMOD Blog, Mar 2013. wp.sigmod.org/?p=786


http://www.smartgrid.gov/project/los_angeles_department_water_and_power_smart_grid_regional_demonstration
http://www.smartgrid.gov/project/los_angeles_department_water_and_power_smart_grid_regional_demonstration
http://wp.sigmod.org/?p=786

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

and expert systems [21], [22], [23]. In practice, utilities
use simpler averaging models based on recent con-
sumption [1f], [11]. In this spirit, our baseline models
for comparative evaluation consider Time of the Week
(ToW) and Day of the Week (DoW) averages.

As elsewhere, Smart Grid literature often evaluates
predictive model performance in terms of the mag-
nitude of errors between the observed and predicted
values [8], [20]. Common statistical measures for time
series forecasting [5] are Mean Absolute Error (MAE),
the Root Mean Square Error (RMSE) and the Mean
Absolute Percent Error (MAPE), the latter given by:

1 <~ [pi — o

MAPE =~ ; . 1)

where o; is the observed value at interval i, p; is
the model predicted value, and n is the number of
intervals for which the predictions are made. Mean
Error Relative (MER) to the mean of the observed,
has also been used to avoid the effects of observed
values close to zero [23]. RMSE values normalized by
the mean of observed values, called the coefficient of
variation of the RMSE (CVRMSE), is also used [3], [13]:

CVRMSE = )

Ql| =

where 0 is the mean of the n observed values, and
pi,0; and n are as before. While these measures offer
a necessary statistical standard of model performance,
they by themselves are inadequate due to the reasons
listed before, viz., their inability to address prediction-
bias, reliability, scale independence and cost of build-
ing models and making predictions.

Some researchers have proposed application-
specific metrics. [24] defines metrics related to
Demand-Response. The Demand Shed Variability
Metric (SVM) and Peak Demand Variability Metric
(PVM) help reduce over-fitting and extrapolation er-
rors that increase error variance or introduce pre-
diction bias. Our application-dependent (rather than
-specific) measures are defined more broadly, with
measure parameters that can be tuned for diverse
applications that span even beyond Smart Grids.

Relative measures help compare a prediction model
with a baseline model [5]. Percent Better gives the
fraction of forecasts by a model that are more ac-
curate than a random walk model. This is a unit-
free measure that is also immune to outliers present
in the series, by discarding information about the
amount of change. The Relative Absolute Error (RAE),
calculated as a ratio of forecast error for a model
to the corresponding error for the random walk, is
simple to interpret and communicate to the domain
users. The prediction horizon also has an impact on
model performance. Cumulative RAE [5]] is defined as
the ratio of the arithmetic sum of the absolute error

for the proposed model over the forecast horizon and
the corresponding error for the random walk model.
Relative and horizon metrics have been used less
often for smart grid prediction models.

Prediction error metrics have been categorized into
scale-dependent measures, percentage errors, relative
errors and scaled errors [17]. RMSE and MAE are
scale-dependent and applicable to datasets with similar
values. Scale-independent Percentage errors like MAPE
and CVRMSE can be used to compare performance
on datasets with different magnitudes. Relative mea-
sures are determined by dividing model errors by the
errors of a baseline model, while scaled errors remove
the scale of data by normalizing the errors with the
errors obtained from a baseline prediction method.

In summary, standard statistical measures of per-
formance for predictive models may not be adequate
or meaningful for domain-specific applications, while
narrowly defined measures for a single application
are not reusable or comparable across applications.
This gap is particularly felt in the novel domain of
Smart Grids. Our work is an attempt to address this
deficiency by introducing a suite of performance mea-
sures along several dimensions, while also leveraging
existing measures where appropriate.

3 PERFORMANCE MEASURE DIMENSIONS

Performance measures that complement standard sta-
tistical error measures for evaluating prediction mod-
els fall along several dimensions that we discuss here.

Application In/dependent: Application indepen-
dent measures are specified without knowledge of
how predictions from the model are being used. These
do not have any specific dependencies on the usage
scenario and can be used as a uniform measure of
comparison across different candidate models. Ap-
plication dependent measures incorporate parameters
that are determined by specific usage scenarios of the
prediction model. The measure formulation itself is
generic but requires users to set values of parameters
(e.g., acceptable error thresholds) for the application.
These allow a nuanced evaluation of prediction mod-
els that is customized for the application in concern.

Scale-Independent Errors: In defining error met-
rics, the residual errors are measured as a difference
between the observed and predicted values. So, if o;
is the i*" observed value and p; is the i*" predicted
value, then the scale-dependent residual or prediction
error, e; = p; —o;. MAE and RMSE are based on resid-
ual errors, and suffer from being highly dependent
on the range of observed values. Scale-independent
errors, on the other hand, are usually normalized
against the observed value and hence better suited
for comparing model performance across different
magnitudes of observations.

Reliability: Reliability offers an estimate of how
consistently a model produces similar results. This
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dimension is important to understand how well a
model will perform on a yet unseen data that the sys-
tem will encounter in future, relative to the data used
while testing. A more reliable model provides its users
with more confidence in its use. Most commonly used
measures fail to consider the frequency of acceptable
model performance over a period of time, which we
address through measures we introduce.

Cost: Developing a prediction model has a cost
associated with it in terms of effort and time for
data collection, training and using the models. The
number of times a trained model can be reused is
also a factor. Data cost is a particularly important
consideration in this age of “Big Data” since qual-
ity checking, maintaining and storing large feature-
sets can be untenable. Compute costs can even be
intractable when prediction models are used millions
of times within short periods.

4 APPLICATION INDEPENDENT MEASURES

Several standard statistical measures with well un-
derstood theoretical properties fall in the category of
application independent measures. For completeness,
we recognize two relevant, existing scale-independent
measures, MAPE [20], [23] and CVRMSE [3], [13].
More importantly, we introduce novel application
independent measures, along the reliability and cost
dimensions, and their properties.

4.1 Mean Absolute Percentage Error (MAPE)

This is a variant of MAE, normalized by the observed
Valueﬂ at each interval , thus providing scale in-
dependence. It is simple to interpret and commonly
used for evaluating predictions in energy and related
domains [8]], [9], 18], [20], [23].

4.2 Coefficient of Variation of RMSE (CVRMSE)

It is the normalized version of the common RMSE
measure, that divides it by the average [| of the
observed values (2)) to offer scale independence. This is
an unbiased estimator that incorporates both the pre-
diction model bias and its variance, and gives a unit-
less percentage error measure. CVRMSE is sensitive
to infrequent large errors due to the squared term.

4.3 Relative Improvement (RIM)

We propose RIM as a relative measure for reliability
that is estimated as the frequency of predictions by a
candidate model that are better than a baseline model.
RIM is a simple, unitless measure that complements

5. MAPE is not defined if there are zero values in the input, which
is rare as energy consumption (kwh) values are generally non-zero
due to always present base consumption (unless there is a black-
out), and can be ensured by data pre-processing.

6. CVRMSE is not defined if this average is zero, which is rare
as energy consumption (kwh) values are generally positive (unless
there is net-metering), and can be ensured by data pre-processing.

error measures in cases where being accurate more
often than a baseline is useful, and occasional large
errors relative to the baseline are acceptable.

1 n
M= — is Oiy b
R - gj C(pi, 01, bs) 3)
where o;, p; and b; are the observed, model predicted

and baseline predicted values for interval i, and
C(pi,0;) is a count function defined as:

1, if |pi—01‘| < |bi_0i|
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4.4 \Volatility Adjusted Benefit (VAB)

VAB is another measure for relinbility that captures
how consistently a candidate model outperforms a
baseline model by normalizing the model’s error im-
provements over the baseline by the standard devi-
ation of these improvements. Inspired by the sharpe
ratio, this relative measure offers a “risk adjusted” scale-
independent error value. The numerator captures the
relative improvement of the candidate model’s MAPE
over the baseline’s (the benefit). If these error im-
provementéﬂ are consistent across 7, then their stan-
dard deviation would be low (the volatility) and the
VAB high. But, with high volatility, the benefits would
reduce reflecting a lack of consistent improvements.

b, —o0; . — 0
Ly (ol lpizody

J(M _ M)

0; 0;

VAB =
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where o;, p; and b; are the observed, model predicted
and baseline predicted values for interval :.

4.5 Computation Cost (CC)

The cost for training and predicting using a model can
prove important when it is used either at large scales
and/or in realtime applications that are sensitive to
prediction latency. CC is defined in seconds as the
sum of the wallclock time required to train a model,
CC%, and the wallclock time required to make predic-
tions using the model, CC,, for a given prediction du-
ration with a certain horizon. Thus, CC' = CC,+CC,,.

4.6 Data collection Cost (CD)

Rather than examine the raw size of data used for
training or predicting using a model, a more useful
measure is the effort required to acquire and assemble
the data. Size can be managed through cheap storage
but collecting the necessary data often requires human
and organizational effort. We propose a scale-dependent
measure of data cost defined in terms of the number

7. The error improvements offered by a given model over the
baseline model are expected to have normal distribution for VAB
to be meaningful.
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of unique values of features involved in a prediction
model. CD is defined for a particular training and
prediction duration as the sum of n,, the number
of static (time-invariant) features that require a one-
time collection effort, and n,4, the number of dynamic
features that need periodic acquisition.

ng

D= fs]+ Y ld) ©)

i=1

where [s;] and [d;] are the counts of the unique values
for the feature s; and d; respectively.

5 APPLICATION DEPENDENT MEASURES

Unlike the previous measures, application dependent
performance measures are parameterized to suit spe-
cific usage scenarios and can be customized by do-
main experts to fit their needs. The novel measures
we propose here are themselves not narrowly defined
for a single application (though they are motivated by
the needs observed in the smart grid domain). Rather,
they are generalized through the use of coefficients
that are themselves application specific. We group
them along the dimensions that we introduced earlier.

5.1 Domain Bias Percentage Error (DBPE)

We propose DBPE as a signed percentage error measure
that offers scale independence. It indicates if the predic-
tions are positively or negatively biased compared to
the observed values, which is important when over-
or under-prediction errors, relative to observed, have
a non-uniform impact on the application. We define
DBPE as an asymmetric loss function based on the
sign bias. Granger’s linlin function [14] is suitable for
this as it is linear on both sides of the origin but with
different slopes on each side. The asymmetric slopes
allow different penalties for positive/negative errors.

_ l - ‘C(piaoi)
DBPE =~ % === )

i=1 v

where L(p;,0;) is the linlin loss function defined as:

a-|pi — o, if p; > o;
‘C(piaoi) = 07 1f Pi = 04 (8)
B lpi — o], if p; <o;

where o; and p; are the observed and model predicted
values for the interval i, and o and § are penalty
parameters associated with over- and under- predic-
tion, respectively. a and (3 are configured for specific
application and the ratio o/ measures the relative
cost of over-prediction to under-prediction for that
application [34]. Further, we introduce a constraint
that « + § = 2 to provide DBPE the interesting
property of reducing to MAPE when o = 3 = 1.

5.2 Reliability Threshold Estimate (REL)

Often, applications may care less about the absolute
errors of a model’s predictions and prefer an estimate
of how frequently the errors fall within a set threshold
that the application can withstand. We define REL as
the frequency of prediction errors that are less than
an application determined error threshold, e;.

REL = % Zn: C(pi, 0:) ©)

i=1

where o; and p; are the observed and the model
predicted values for the interval ¢, and C(p;,0;) is a
count function defined as:

: ‘pz_0i|
1, if o < e
lf [pi—oi]

(10)

:et

i
if lpizoil
y if % > ey

5.3 Total Compute Cost (TCC)

In the context of an application, it is meaningful to
supplement the data and compute costs (CD and
CC) with an estimate of the total running cost of
using a model for a duration of interest specific to that
application. We define the parameters:

o 7, the number of times a model is trained within
the duration,

o 7, the number of times a model makes predic-
tions with a given horizon, in that duration.

These parameters are not just application specific but
also vary by the candidate model, based on how
frequently it needs to be trained and its effective
prediction horizon. We define the total training cost
in seconds for a prediction duration based on 7 and
m, and the unit costs for training and prediction using
the model, CC; and CC,, introduced in §

TCC =CCy-7+CCp- 7 (11)

5.4 Cost-Benefit Measure (CBM)

Rather than treat cost in a vacuum, it is worthwhile
to consider the cost for a model relative to the gains
it provides. CBM compares candidate models having
different error measures and costs to evaluate which
provides a high reward for a unit compute cost spent.

(1- DBPE)
TCC

The numerator is an estimate of the accuracy (one
minus error measure) while the denominator is the
compute cost. We use DBPE as the error measure and
TCC as the cost, but these can be replaced by other
application dependent error measures (e.g., CVRMSE,
MAPE) and costs (e.g., CD, CC}). A model with high
accuracy but prohibitive cost may be unsuitable.

CBM = (12)
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6 CANDIDATE PREDICTION MODELS

The candidate models for evaluation of the proposed
measures were selected based on our prior study [3]
as well as existing literature discussed in §

Time Series Model: A time series (TS) model pre-
dicts the future values of a variable based on its
previous observations. The ARIMA (Autoregressive
Integrated Moving Average) model is a commonly
used TS prediction model. It is defined in terms of the
number (d) of times a time series needs to be differ-
enced to make it stationary; the autoregressive order
(p) that captures the number of past values; and the
moving average order (¢) that captures the number
of past white noise error terms. These parameters are
determined using autocorrelation and partial autocor-
relation functions, using the Box-Jenkins test [6].

ARIMA is simple to use as it does not require
knowledge of the underlying domain [4]. However,
estimating the model parameters, d, p, and g, requires
human examination of the partial correlogram of the
time series, though some automated functions per-
form a partial parameter sweep to select these values.

Regression Tree Model: A regression tree (RT)
model [7] is a kind of decision tree that recursively
partitions the data space into smaller regions, until a
constant value or a linear regression model can be fit
for the smallest partition.

Our earlier work on an RT model for campus
microgrid consumption prediction identified several
advantages [3]. It's flowchart style tree structure helps
interpret the impact of different features on consump-
tion. Making predictions on a trained model is fast
though collecting feature data and training the model
can be costly. It can be used to make predictions far
into the future if the feature values are available.

7 EXPERIMENTAL SETUP

We validate the efficacy of our proposed perfor-
mance measures for real world applications. The USC
campus microgrid [31] is a testbed for the DOE-
sponsored Los Angeles Smart Grid Project. ARIMA
and Regression Tree prediction models are used to
predict energy consumption at 24-hour and 15-min
granularities, for the entire campus and for 35 indi-
vidual buildings. Here, we consider the campus and
four representative buildings: DPT, a small depart-
ment with teaching and office space; RES, a suite
of residential dormitories with decentralized control
of cooling and appliance power loads; OFF, hosting
administrative offices and telepresence lab; and ACD,
a large academic teaching building. These buildings
were considered after several pilot studies to provide
diversity in terms of floor size, age, end use, types of
occupants, and net electricity consumption.

TABLE 1: Electricity consumption dataset. Summary
statistics of the campus microgrid consumption data
for training years 2008-2009, and testing year 2010, at
different spatial and temporal granularities.

Entity Mean (kWh) Std. Deviation (kWh)
Training  Testing Training Testing

Campus

24-hour data 462,970 440,803 52,956 43,454

15-min data 4,823 4,377 809 770

DPT

24-hour data 405.64 405.56 112.39 108.14

15-min data 423 4.16 1.93 1.98

RES

24-hour data  4,220.30 3,670.56  1,809.00 1,460.08

15-min data 43.97 37.79 22.36 17.93

OFF

24-hour data  2,93890  2,790.70 591.97 549.37

15-min data 30.66 28.42 13.05 10.03

ACD

24-hour data  4,466.40  4,055.85 640.92 552.64

15-min data 46.65 41.30 14.08 13.09

71

Electricity Consumption Data E} We used 15-min
granularity electricity consumption data collected by
the USC Facility Management Services between 2008
to 2010 (Table [I). These gave 3 x 365 x 96 or ~100K
samples per building. We linearly interpolated miss-
ing values (<3% of samples) and aggregated 15-min
data in each day to get the 24-hour granularity values
(~1K samples per building). Observations from 2008
and 2009 were used for training the models while the
predictions were evaluated against the out-of-sample
observed values for 2010 [l

Weather Data E} We collected historical hourly
average and maximum temperature data curated by
NOAA for Los Angeles/USC Campus for 2008-2010.
These values were linearly interpolated to get 15-
min values. We also collected daily maximum tem-
peratures that were used for the 24-hour granularity
models.

Schedule DataB We gathered campus information
related to the semester periods, working days and
holidays from USC’s Academic Calendar.

Datasets

7.2 Model Configurations

Regression Tree (RT) Models: For 24-hour (granu-
larity) predictions, we used five features for the RT
model: Day of the Week (Sun-Sat), Semester (Fall,
Spring, Summer), Maximum and Average Tempera-
tures, and a Holiday/Working day flag. For the 15-
min (granularity) predictions, we used five features:

8. The electric consumption datasets used in this article are
available upon request for academic use.

9. The 24-hour data was available only till Nov 2010 at the time
of experiments, and hence 24-hour models are tested for a 11 month
period. The 15-min models span the entire 12 months.

10. NOAA Quality Controlled Local Climatological Data,
cdo.ncdc.noaa.gov/qcled/

11. USC Academic Calendar, academics.usc.edu/calendar/
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Day of the Week, Time of Day (1-96, representing
the 15-min slots in a day), Semester, temperature, and
Holiday /Working day flag. The RT model was trained
once using MATLAB’s classregtree function [7] to
find an optimally pruned tree.

ARIMA Time Series (TS) Models: For 24-hour
predictions, the ARIMA models are retrained and used
to make predictions every week for four different
prediction horizons: 1-week, 2-week, 3-week, and 4-
week ahead. Unlike RT, the performance of time series
models differ by the prediction horizon. We use a
moving window over the past 2 years for training
these models with (p,d,q) = (7,1,7), equivalent to a
7 day lag, selected after examining several variations.
For 15-min predictions, we retrain models and predict
every 2 hours for three different horizons: 2-hour, 6-
hour, and 24-hour ahead. We use a moving window
over the past 8 weeks for training, with (p,d,q) =
(8,1,8), equivalent to a 2 hour lag. We used the arima
function in the R forecast package [18] for constructing
the time series models. This function used conditional
sum of squares (CSS) as the fitting method.

Baseline Models: For 24-hour predictions, we se-
lected the Day of Week mean (DoW) as the baseline,
defined for each day of the week as the kWh value
for that day averaged over the training period (i.e., 7
values from averaging over 2008 and 2009). DoW was
chosen over Day of Year (DoY) and Annual Means
since it consistently out-performed them. For 15-min
predictions, we selected the Time of the Week mean
(ToW) as the baseline, defined for each 15-min in a
week as the kWh value for that interval averaged over
the training period (i.e., 7 x 96 values from averaging
over 2008 and 2009). Here too, ToW out-performed
Time of the Year (ToY) and Annual Means.

7.3 Smart Grid Applications

We introduce three applications, used within the USC
microgrid, to evaluate our proposed measures.

Planning: Planning capital infrastructure such as
building remodeling and power system upgrades for
energy efficiency trades-off investment against electric
power savings. Medium to long term electricity con-
sumption predictions at coarse (24-hour) granularity
for campus and individual buildings help this deci-
sion making. Such models are run six times in a year.

Customer Education: Educating power customers
on their energy usage can enhance their participation
in energy sustainability by curtailing demand and
meeting monthly budgets [28]. One form of education
is through giving consumption forecasts to customers
in a building on web and mobile apps | Building-
level predictions at 24-hour and 15-min granularities
are made during the day (6AM-10PM).

Demand Response: Demand Response (DR) opti-
mization is a critical technique for achieving energy

12. USC SmartGrid Portal, smartgrid.usc.edu

sustainability enabled by smart grids. In DR, cus-
tomers are encouraged to curtail consumption, on-
demand, to reduce the chance of black-outs when
peak power usage periods are anticipated by the
utility [24]. Historically, these high peaks occur be-
tween 1-5PM on weekdays [} and predictions during
these periods over the short time horizon at 15-min
granularity are vital for utilities to decide when to ini-
tiate curtailment requests from customers or change
their pricing. Often, the predictions are before, at the
beginning of, and during the high peak period.

8 ANALYSIS OF INDEPENDENT MEASURES

We first examine the use and value of the six appli-
cation independent measures (§ E]) to evaluate the
candidate models for predicting campus and building
consumption at coarse and fine time granularities.

8.1 24-hour Campus Predictions

Fig. |1a| presents the CVRMSE and MAPE measures
for the DoW baseline, RT, and TS models, the latter
for four different horizons, for campus 24-hour pre-
dictions. By these measures, TS models at different
horizons offer higher accuracy than the RT and DoW
models. This is understandable, given the noticeable
difference in mean and standard deviations (Table
between the training and test periods. TS incremen-
tally uses more recent data as a moving window, while RT
and DoW model are only trained on the two years’
test data. Also, the errors for TS deteriorate as the
prediction horizon increases. This is a consequence
of their dependence on recent lag values, making
them suited only for near-term predictions. RT models
are independent of prediction horizons (assuming future
feature values are known), and therefore preferable
for predictions with long horizons. The DoW errors
are marginally higher than RT. This is quickly evi-
dent using our relative improvement (RIM) measure
(Fig. 2a), that reports an improvement of 2.5% for RT
and 58.39% for TS (1wk) over the baseline. However,
when volatility is accounted for, this margin over the
DoW increases to a VAB of 11.45% and 74.42% for RT
and TS (1wk), making them much more dependable.

8.2 24-hour Building Predictions

The CVRMSE and MAPE measures for DPT (Fig.
diverge in their ranking of the RT and TS models;
RT is best based on CVRMSE while TS (1wk) is best
on MAPE. This divergence highlights the value of
having different error measures. In CVRMSE, residual
errors are squared and thus large errors are magnified
more than in MAPE. Our RIM measure offers another
perspective as a relative measure independent of error
values (Fig. 2b). TS (1wk) is clearly more favorable than

13. DWP TOU Pricing, bp.ladwp.com/energycredit/ energy-
credit.htm
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Fig. 1: CVRMSE and MAPE values
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line, ARIMA Time Series (TS) with
1, 2, 3 & 4-week prediction horizons,
and Regression Tree (RT) models are
on X-axis. Campus has the smallest
errors, RES residential building the
largest, and, except for OFF, TS and
RT outperform the baseline.

80%

60%
40%
20%

0%

-20%

-40%

-60%

-80%

TS (1wk)  TS(2wk)  TS(3wk) TS (4wk) RT
(a) Campus
80%
HRIM
60%
VAB
40%
17.6%
20 =
iR 4.4%
0%
-20% 3.7% G
-40%
-60%
-80%
TS(Iwk)  TS(2wk)  TS(3wk) TS (dwk) RT
80%
60%
40%  24.8% =
20% —73%  —39% — 7.5% -
0%
-20% 7.0%
-40% BRIM
-60%
-80%
TS(Iwk)  TS(2wk)  TS(3wk) TS (dwk)
(c) RES
80%
HRIM

60%

40%

20%

0%
-20%
-40%

-60%

-80%

TS (1wk) TS (2wk) TS (3wk) TS (4wk) RT
80%
ERIM
60%
40% VAB
20% — 4.9% 4.0%

20% -3 g gy 1.7% - 7.0923% g6y 6% — 1%k —
-40%

-60%
-80%

TS (1wk) TS (2wk) TS (3wk) TS (4wk) RT
(e) ACD
Fig. 2: Relative Improvement
(RIM) and  Volatility-Adjusted

Benefit (VAB) values for 24-hour
predictions for campus and four
buildings. Higher values indicate
better performance relative to
DoW baseline; zero value means
performance similar to baseline.
DoW is more volatile for RES due
to summer vacation. VAB for RT
and TS are high, showing resilience.
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RT, performing better than the baseline in 50% of pre-
dictions (RIM ~ 0) compared to RT (RIM=—19.88%).
When accounting for volatility in VAB, TS (1wk)
outperforms the DoW (VAB=17.62%) and even RT
exhibits lesser relative volatility (VAB=4.35%). These
demonstrate why multiple measures offer a more
holistic view of the model performance.

RES has 100’s of residential suites with indepen-
dent power controls, and hence higher consumption
variability. This accounts for the higher errors in pre-
dictions across models (Fig. [I). Further, the building
is unoccupied during summer and vacation periods.
Hence, it is unsurprising to see DoW perform partic-
ularly worse. (We verified the impact of summer by
comparing DoW with DoY. DoY did perform better,
but for consistency, we retain DoW as the baseline.)
RT has lower errors than DoW as it captures schedule-
related features like holidays and summer semester. How-
ever, the test data for RES has a smaller mean than
the training data (Table [I), thus skewing predictions.
TS (1wk) has the smallest error due to its ability to
capture changing and recent trends. The RIM (Fig.
with respect to DoW is greater than 0 for all models
except TS (4wk), which performs worse than the
baseline 7% of the time, even as it has comparatively
smaller errors. Given the high consumption variability
for RES, performance under volatility is important. A
high VAB is desirable and provided by all models.

For OFF (Fig. [Id), we again see a divergence in
model ranking when based on CVRMSE or on MAPE,
reflecting the benefit of each measure. Uniquely, nei-
ther RT nor TS are able to surpass the DoW baseline
in terms of CVRMSE. We independently verified if
the consumption pattern of this building is highly-
correlated with the DoW by examining the decision
tree generated by RT, the best choice in terms of
MAPE. We found the DoW feature to be present in
the root node of the tree while the holiday flag was at
the second level. RT is also the only model which
(marginally) outperforms the baseline on RIM and
VAB (Fig. 2d), thus delivering the benefits of using a
feature-based approach that subsumes DoW. TS fails
to do well, possibly due to temporal dependencies that
extend beyond the 7-day lag period. It is notable that
while DoW is the preferred model based on CVRMSE
(Fig. for OFF, measures we propose, such as RIM
and VAB (Fig. that evaluate performance against
the DoW baseline, indicate that RT is the better choice.

For ACD (Fig. , TS (1wk) and RT perform incre-
mentally better than DoW on CVRMSE and MAPE,
and VAB is positive for only these two models
(Fig. R€). The sharp change in standard deviation
between the training and test data accounts for the
higher sensitivity to volatility of the baseline (Table []).
But we observe slightly negative values of RIM for all
models, implying more frequent errors than the baseline.

8.3 15-min Campus Predictions

The 15-min predictions for the campus shows TS
(2hr) to fall closest to the observed values, based on
CVRMSE (6.88%) and MAPE (4.18%) (Fig. [Ba). This
accuracy is validated relative to the baseline, with
high RIM and VAB values (Fig. [4a)). These reflect the
twin benefits of large spatial granularity of the campus,
which make its consumption slower changing, and
the short horizon of TS (2hr), helping it capture tem-
poral similarity. RT is the next best, performing similar
to TS (6hr) and ToW baseline on CVRMSE, MAPE and
RIM, though it is better with volatility (VAB=5.21%).

8.4 15-min Building Predictions

For 15-min predictions for buildings, we see that TS
(2hr) is the only candidate model that always does
better than the ToW baseline on all four measures
(Figs. &[AbH4e). TS (6hr) and RT are occasionally
better than ToW on CVRMSE and MAPE, and TS
(24hr) rarely. Their CVRMSE errors are also uniformly
larger than MAPE, showing that the models suffer
more from occasional large errors. The academic en-
vironment with weekly class schedules encourages a
uniform energy use behavior based on ToW, that is
hard to beat. RES is the exception, where all candidate
models are better than the baseline (Fig. , given the
aberrant summer months when it is unused.
However, when we consider the RIM and VAB
measures, it is interesting to note that the candidate
models are not significantly worse than the baseline
(Fig. fbH4e). In fact, TS (6hr) is better than ToW
for all buildings but DPT, showing that it is more
often accurate and more reliable under volatility. RT,
however, is more susceptible to volatility and shows
negative values for all buildings but RES. While TS
(2hr) followed by TS (6hr) are obvious choices for
short horizons, ToW and RT have the advantages of
being able to predict over a longer term. In the latter
case, ToW actually turns out to be a better model.

8.5 Cost Measures

The data and compute cost measures, discussed here,
are orthogonal to the other application-independent
measures, and their values are summarized in Table 2}
Making cost assessment helps grid managers ensure
rational use of resources, including skilled manpower
and compute resources, in the prediction process.
Data Cost (CD): The baselines and TS are univariate
models that require only the electricity consumption
values for the training and test periods. Hence their
data costs are smaller, and correspond to the number
of intervals trained and tested over. RT model has a
higher cost due to the addition of several features
(§ [72). However, the cost does not increase linearly
with the number of features and instead depends on
the number of unique feature values. As a result, its
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usually offers highest reliability in all cases.

TABLE 2: Application-independent Cost Measures.
Prediction horizon is 4 weeks for 24-hour predictions;
and 24 hours for 15-min predictions. CD measures
number of unique feature values used in training and
testing. TS and baseline do not have a training cost.

Data Cost Compute Cost (millisec)
Model CD CCy CcC,
DoW/ToW Baseline
24-hour predictions 1,096 - -
15-min predictions 1,05,216 - -
Time Series
24-hour predictions 1,096 - 101
15-min predictions 1,05,216 - 933
Regression Tree
24-hour predictions 3,301 94 1.6
15-min predictions 1,31,629 17,275 48

data cost is only ~ 25% and ~ 300% greater than TS
for 24-hr and 15-min predictions respectively.
Compute Cost (CC): We train over 2 years and
predict for 4 weeks (24-hour granularity) and 24 hours
(15-min) on a Windows Server with AMD 3.0GHz
CPU and 64GB RAM, and report the average over
10 experiment runs. The baseline’s compute cost is
trivial as it is just an average over past values, and we
ignore it. For the TS models, retraining is interleaved
with the prediction and we report them as part of
the prediction cost (CC)). We found prediction times
for TS to be identical across campus and the four
buildings, and the 15-min predictions to be ~ 9x
the cost of 24-hour — understandable since there are
~ 10x the data points. The horizons did not affect
these times. For RT, we find the training and predic-
tion times to be similar (but not same) across campus
and four buildings, and this is seen in the differences
in the sizes of the trees constructed. We report their
average time. While RT has a noticeable training time
(17 secs for 15-min), its prediction time is an order
of magnitude smaller than TS. As a result, its regular

TABLE 3: Application Specific Parameters. o, 3 are
over- and under-prediction penalties for DBPE, and
e; is the error tolerance for REL.

Application & Prediction Type DBPE (o, 8) REL (e¢)
Planning

24-hour Buildings 0.50, 1.50 0.15
24-hour Campus 1.00, 1.00 0.10
Customer Education

24-hour Building 0.75, 1.25 0.15
15-min Buildings (6AM-10PM) 1.50, 0.50 0.10
Demand Response

15-min Campus (1PM-5PM) 0.50, 1.50 0.05
15-min Buildings (1PM-5PM) 0.50, 1.50 0.10

use for prediction is cheaper. It is more responsive,
with a lower prediction latency, even as the number
of buildings (or customers) increase to the thousands.

9 ANALYSIS OF DEPENDENT MEASURES

The application-dependent measures (§ [5) enable
model selection for specific application scenarios. For
each application (§ [7.3), the measures’ parameter
values are defined in consultation with the domain
experts. These values are listed in Tables [3] & [4

9.1

Planning requires medium- and long-term consump-
tion predictions at 24-hour granularities for the cam-
pus and buildings, six times a year. The short horizon
of TS (4 weeks) precludes its use. So we only consider
DoW and RT models, but do report TS results.
Campus: For campus-scale decisions, both over-
and under- predictions can be punitive. The former
will lead to over-provisioning of capacity with high
costs while the latter can cause reduced usability
of capital investments. Hence, for DBPE, we equally

Planning
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weight o = 1 and 8 = 1, whereby DBPE reduces to
MAPE. We set e, = 10%, a relatively lower tolerance,
since even a small swing in error % for a large
consumer like USC translates to large shifts in kWh.

Fig.[5a|shows RT (and TS) to perform better than the
DoW baseline on DBPE (6.87% vs. 7.56%, consistent
with MAPE). The RT model’s reliability is also higher
than DoW'’s (Fig. [pa)), with RT providing errors smaller
than the threshold 60.87% of the time — a probabilistic
measure for the planners to use. When we consider
the total compute cost for training and running the
model (Table [4), RT is trained once a year and used
six times, with a negligible compute cost of 103 msec
and a high CBM of 900%/ sec (Fig. [pa). These make RT
a better qualitative and cost-effective model for long
term campus planning.

Buildings: Buildings being upgraded for sustain-
ability and energy efficiency favor over-prediction of
consumption to ensure an aggressive reduction of
carbon footprint. Reflecting this, we set o = 0.5 and
B = 1.5 for DBPE. A higher error tolerance than
campus is acceptable, at e, = 15%. Cost parameters
and measure values are the same as campus.

DBPE reflects a truer measure of error for the appli-
cation and we see that it is smaller than MAPE across
all models and buildings (Fig [pb}5e). Investigating the
data reveals that the average kWh for the training period
was higher than that for the test period, leading to over-
predictions. Here, the models’ inclination to over-
predict works in their favor. While RT is uniformly
better than DoW on DBPE, it is less reliable for RES
and ACD (Figs. [6d & [6€), even falling below 0%,
indicating that predictions go over the error threshold
more often than below the threshold.

REL wunlike DBPE treats over- and under-
predictions similarly. While the baseline has fewer
errors above the threshold, their magnitudes are
much higher, causing DBPE (an average) to rise for
smaller REL. The costs for RT are minimal like for
campus and their CBMs similar. So the model of
choice depends on if the predictions need to be below
the threshold more often (DoW) or if the biased-
errors are lower (RT). Particularly, for OFF, REL
(Fig. [pd) shows RT is best for Planning even as DoW
was the better model based on CVRMSE (Fig. [1d).
Similarly, for ACD, REL (Fig. recommends DoW
for Planning even as CVRMSE (Fig. [Te) suggests RT
and MAPE (Fig. [le) suggests TS (1wk). These highlight
the wvalue of defining application-specific performance
measures like REL for meaningful model selection.

9.2 Customer Education

This application uses 24-hour and 15-min predictions
at the building-level made during the daytime (6AM-
10PM), and provides them to residents/occupants for
monthly budgeting and daily energy conservation.
24-hour predictions: 24-hour predictions impact
monthly power budgets, and over-predictions are bet-

ter to avoid slippage. We pick a = 0.75 and 5 = 1.25
for DBPE and an error tolerance e; = 15% for REL. We
use a 4-week prediction duration for costing with one
24-hour prediction done each day by RT and TS. RT is
trained once in this period. We report TCC (Table [),
DBPE & CBM (Figs. pbl5e), and REL (Figs. [6b}j6e).

Like for Planning that preferred over-predictions,
the DBPE here is smaller than MAPE for all models,
and it is mostly smaller for RT and TS models than
DoW. But for a building like ACD, while one may have
picked TS (1wk) based on the application-independent
MAPE measure (Fig. , both RT and DoW are better
for Customer Education on DBPE (Fig. [5¢). Similarly,
for both DPT and RES, TS (1wk) was the best option
based on MAPE (Figs. as well as on DBPE
for Customer Education (Figs. pb] pc). However, for
a different application, such as Planning, RT is the
recommended model based on DBPE (Figs. Bd).
This highlights how a measure that is tailored for a
specific application by setting tunable parameters can
guide the effective choosing of models for it.

When considering reliability, REL for RT is
marginally (DPT) or significantly (OFF) better than
DoW even as the application-independent RIM
showed RT to be worse or as bad as DoW respectively
— yet another benefit of measures customized for the
application. RT also equals or out-performs TS (1wk)
on both DBPE and REL on all buildings but RES. The
TCC cost for TS while being ~ 20x more than RT
is still small given the one month duration. This also
reflects in the CBM being much lower for TS.

15-min predictions: This application engages cus-
tomers by giving periodic forecasts during the day to
encourage efficiency. Over-predicting often or more
frequent errors will mitigate a customer’s interest. So
we set a = 1.5 and 3 = 0.5 for DBPE, and we have a
lower error tolerance at e; = 10% for REL. Prediction
duration is 4-weeks for cost parameters, with 8 uses
per day at 2 hour horizons. RT is trained once.

For all buildings, both DBPE and REL rank TS
(2hr) as the best model (Figs. & (Figs. [Bb}[8e).
These reaffirm the effectiveness of TS for short-term
predictions. For many models, the (daytime) DBPE
for this application is higher than the (all-day) MAPE
due to higher variations in the day. However, TS (2hr)
bucks this trend for RES, OFF and ACD. RT is worse
than even ToW on reliability, with REL below 0% for
all buildings. For RES, all models but TS (2hr) have
REL below 0%. So qualitatively, TS (2hr) is by far
a better model. However, on costs (Table , TS has
TCC =~ 209 secs. This may not seem much but when
used for 10,000’s of buildings in a utility, it can be
punitive. At large scales, CBM (Figs. may offer
a better trade-off and suggest RT for DPT and OFFE.

9.3 Demand Response

DR uses 15-min predictions to detect peak usage and
preemptively correct them to prevent grid instability.
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Fig. 7: DBPE, primary Y-axis, and
CBM, secondary Y-axis, for 15-min
predictions for Demand Response
and Customer Education. Customer
Ed. is not relevant for campus.
Lower DBPE and higher CBM are
desirable, and provided by TS (2hr)
and TS (6hr) for DR.
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Fig. 8: REL values for 15-min predictions for Demand Response and Customer Education. Higher is better.

TABLE 4: Application Specific Cost Parameters &
TCC. 7 is the trainings per duration, and = is the
model usage with a prediction horizon per duration.

Application  Trainings, 7 Uses, 7 (horizon) | TCC (millisec)
Planning (duration = 1 year)

24-hour RT 1 6 (2mo) 103
Customer Education (duration = 4 weeks)

24-hour RT 1 28 (1dy) 139
24-hour TS - 28 (1dy) 2,845
15-min RT 1 8-28 (2hr) 28,103
15-min TS - 8:28 (2hr) 2,09,037
Demand Response (duration = 4 weeks)

15-min RT 4 5-3 (6hr) 69,824
15-min TS - 4.5-3 (6hr) 55,992

Hence, over-predictions are favored than under to
avoid missing peaks, and we set « = 0.5 and 8 = 1.5
for DBPE. The campus is a large customer with tighter
requirements of error threshold at e, = 5% for REL,
while individual buildings with lower impact are
allowed a wider error margin of e; = 10%. Prediction
duration is 4 weeks for cost parameters, with the
models used thrice a weekday — before, at the start
and during the 1-5PM period, and RT trained weekly.
DBPE is uniformly smaller than MAPE for the
campus and buildings (Figs. [7alf7e), sometimes even
halving the errors. Thus the 4 hour DR periods in
the weekdays are more (over-)predictable than all-
day predictions. TS (2hr) has significantly better DBPE
than other models, with even TS (6hr) out-performing
RT and ToW. For campus, RT is better than DoW, in
part due to using temperature features that have a
cumulative impact on energy use during midday:.

We see TS (2hr) gives a high REL of 91% for campus
(Fig. and is the only model with positive REL for
RES. Also, TS (6hr) and RT prove to be more reliable
for DR in campus and DPT than their poorer showing
in the RIM and VAB independent measures (Fig. [),
making them competitive candidates. However, RT

suffers in reliable predictions for other buildings, with
lower or negative REL (Figs. while TS (2hr) and
(6hr) continue to perform reliably.

Cost-wise, we see RT and TS models are compara-
ble on TCC (Table ). For once, RT takes longer than
TS due to the more aggressive retraining (every week),
preferred for critical DR operations. But when seen
through the CBM measure, all TS models beat RT for
all cases but one (TS (24hr) on DPT). Thus, the TS (2hr)
and TS (6hr) are the best for DR on all measures.

10 CONCLUSION

The key consideration in evaluating a prediction
model by an end-user is its performance for the
task at hand. Traditionally, accuracy measures have
been used as the sole measure of prediction qual-
ity. In this article, we examine the value of holistic
performance measures along the dimensions of scale
independence, reliability and cost. In evaluating them
for consumption prediction in Smart Grids, we see
that scale independence ensures that performance can
be compared across models and applications and
for different customers; reliability evaluates a model’s
consistency of performance with respect to baseline
models; while cost is a key consideration when de-
ploying models at large scale for real world appli-
cations. We use existing scale-independent measures,
CVRMSE and MAPE, while extending and proposing
four additional measures, RIM and VAB for measuring
reliability; and CD and CC for data and compute costs.

Further, our novel application-dependent measures
can be customized by domain experts for meaningful
model evaluation for applications of interest. These
measures include DBPE for scale independence, REL
for reliability, and TCC and CBM for cost. The value
of these measures for scenario-specific model selec-
tion were empirically demonstrated using three Smart
Grid applications that anchored our analysis even
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as they are generalizable to other domains. Through
cross correlation analysis, we found that only MAPE
and CVRMSE show absolute correlation > 0.9, indi-
cating that all measures are individually useful. Our
results demonstrate the valuable insights that can be
gleaned on models’ behavior using holistic measures.
These help to improve their performance, and provide
an understanding of the predictions’ real impact in a
comprehensive yet accessible manner. As such, they
offer a common frame of reference for model evalua-
tion by future researchers and practitioners.
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