
ar
X

iv
:1

40
3.

50
01

v3
 [

cs
.C

R
]

6
A

ug
 2

01
4 k-Nearest Neighbor Classification over

Semantically Secure Encrypted Relational Data

Bharath K. Samanthula, Yousef Elmehdwi and Wei Jiang
Email: {bspq8, ymez76, wjiang}@mst.edu

March 10, 2014

Technical Report
Department of Computer Science, Missouri S&T

500 West 15th Street, Rolla, Missouri 65409

1

http://arxiv.org/abs/1403.5001v3

Abstract

Data Mining has wide applications in many areas such as banking, medicine, scientific research and among gov-
ernment agencies. Classification is one of the commonly usedtasks in data mining applications. For the past decade,
due to the rise of various privacy issues, many theoretical and practical solutions to the classification problem have
been proposed under different security models. However, with the recent popularity of cloud computing, users now
have the opportunity to outsource their data, in encrypted form, as well as the data mining tasks to the cloud. Since the
data on the cloud is in encrypted form, existing privacy preserving classification techniques are not applicable. In this
paper, we focus on solving the classification problem over encrypted data. In particular, we propose a securek-NN
classifier over encrypted data in the cloud. The proposedk-NN protocol protects the confidentiality of the data, user’s
input query, and data access patterns. To the best of our knowledge, our work is the first to develop a securek-NN
classifier over encrypted data under the standard semi-honest model. Also, we empirically analyze the efficiency of
our solution through various experiments.

Keywords - Security,k-NN Classifier, Outsourced Databases, Encryption

1 Introduction

Recently, the cloud computing paradigm [10, 42] is revolutionizing the organizations’ way of operating their data
particularly in the way they store, access and process data.As an emerging computing paradigm, cloud computing
attracts many organizations to consider seriously regarding cloud potential in terms of its cost-efficiency, flexibility, and
offload of administrative overhead. Most often, the organizations delegate their computational operations in addition
to their data to the cloud.

Despite tremendous advantages that the cloud offers, privacy and security issues in the cloud are preventing com-
panies to utilize those advantages. When data are highly sensitive, the data need to be encrypted before outsourcing to
the cloud. However, when data are encrypted, irrespective of the underlying encryption scheme, performing any data
mining tasks becomes very challenging without ever decrypting the data [46, 49]. In addition, there are other privacy
concerns, demonstrated by the following example.

Example 1 Suppose an insurance company outsourced its encrypted customers database and relevant data mining
tasks to a cloud. When an agent from the company wants to determine the risk level of a potential new customer, the
agent can use a classification method to determine the risk level of the customer. First, the agent needs to generate a
data recordq for the customer containing certain personal information of the customer, e.g., credit score, age, marital
status, etc. Then this record can be sent to the cloud, and thecloud will compute the class label forq. Nevertheless,
sinceq contains sensitive information, to protect the customer’sprivacy,q should be encrypted before sending it to the
cloud.

The above example shows that data mining over encrypted data(DMED) on a cloud also needs to protect a user’s
record when the record is a part of a data mining process. Moreover, cloud can also derive useful and sensitive
information about the actual data items by observing the data access patterns even if the data are encrypted [19, 52].
Therefore, the privacy/security requirements of the DMED problem on a cloud are threefold: (1) confidentiality of the
encrypted data, (2) confidentiality of a user’s query record, and (3) hiding data access patterns.

Existing work on Privacy-Preserving Data Mining (either perturbation or secure multi-party computation based
approach) cannot solve the DMED problem. Perturbed data do not possess semantic security, so data perturbation
techniques cannot be used to encrypt highly sensitive data.Also the perturbed data do not produce very accurate
data mining results. Secure multi-party computation basedapproach assumes data are distributed and not encrypted
at each participating party. In addition, many intermediate computations are performed based on non-encrypted data.

2

As a result, in this paper, we proposed novel methods to effectively solve the DMED problem assuming that the
encrypted data are outsourced to a cloud. Specifically, we focus on the classification problem since it is one of the
most common data mining tasks. Because each classification technique has their own advantage, to be concrete,
this paper concentrates on executing thek-nearest neighbor classification method over encrypted data in the cloud
computing environment.

1.1 Problem Definition

Suppose Alice owns a databaseD of n recordst1, . . . , tn andm+ 1 attributes. Letti,j denote thejth attribute value
of recordti. Initially, Alice encrypts her database attribute-wise, that is, she computesEpk(ti,j), for 1 ≤ i ≤ n and
1 ≤ j ≤ m+1, where column(m+1) contains the class labels. We assume that the underlying encryption scheme is
semantically secure [45]. Let the encrypted database be denoted byD′. We assume that Alice outsourcesD′ as well
as the future classification process to the cloud.

Let Bob be an authorized user who wants to classify his input recordq = 〈q1, . . . , qm〉 by applying thek-NN
classification method based onD′. We refer to such a process as privacy-preservingk-NN (PPkNN) classification
over encrypted data in the cloud. Formally, we define the PPkNN protocol as:

PPkNN(D′, q)→ cq

wherecq denotes the class label forq after applyingk-NN classification method onD′ andq.

1.2 Our Contribution

In this paper, we propose a novel PPkNN protocol, a securek-NN classifier over semantically secure encrypted data.
In our protocol, once the encrypted data are outsourced to the cloud, Alice does not participate in any computations.
Therefore, no information is revealed to Alice. In particular, our protocol meets the following privacy requirements:

• Contents ofD or any intermediate results should not be revealed to the cloud.

• Bob’s queryq should not be revealed to the cloud.

• cq should be revealed only to Bob. In addition, no information other thancq should be revealed to Bob.

• Data access patterns, such as the records corresponding to thek-nearest neighbors ofq, should not be revealed
to Bob and the cloud (to prevent any inference attacks).

We emphasize that the intermediate results seen by the cloudin our protocol are either newly generated randomized
encryptions or random numbers. Thus, which data records correspond to thek-nearest neighbors and the output class
label are not known to the cloud. In addition, after sending his encrypted query record to the cloud, Bob does not
involve in any computations. Hence, data access patterns are further protected from Bob. More details are given in
Section 5.

The rest of the paper is organized as follows. We discuss the existing related work and some concepts as a
background in Section 2. A set of privacy-preserving protocols and their possible implementations are provided in
Section 3. The proposed PPkNN protocol is explained in detail in Section 5. Section 6 discusses the performance of
the proposed protocol based on various experiments. We conclude the paper along with future work in Section 7.

2 RELATED WORK

In this section, we first present existing work related to privacy preserving data mining and query processing over
encrypted data. Then, we present security definition and thePaillier cryptosystem along with its additive homomorphic
properties. For ease of presentation, some common notations used throughout this paper are summarized in Table 1.

At first, it seems fully homomorphic cryptosystems (e.g., [24]) can solve the DMED problem since it allows a
third-party (that hosts the encrypted data) to execute arbitrary functions over encrypted data without ever decrypting
them. However, we stress that such techniques are very expensive and their usage in practical applications have yet to

3

Table 1: SOME COMMON NOTATIONS
Alice The data owner holding databaseD

〈Epk, Dsk〉 A pair of Paillier’s encryption and decryption

functions with(pk, sk) as public-secret key pair

D′ Attribute-wise encryption ofD

Bob An authorized user who can accessD′ in the cloud

q Bob’s input query

n Number of data records inD

m Number of attributes inD

w Number of unique class labels inD

l Domain size (in bits) of the Squared Euclidean

distance based onD

〈z1, zl〉 The least and most significant bits of integerz

[z] Vector of encryptions of the individual bits ofz

cq The class label corresponding toq based onD

be explored. For example, it was shown in [25] that even for weak security parameters one “bootstrapping” operation
of the homomorphic operation would take at least 30 seconds on a high performance machine.

Due to the above reason, we usually need at least two parties to perform arbitrary computations over encrypted data
based on an additive homomorphic encryption scheme. It is also possible to use the existing secret sharing techniques
in SMC, such as Shamir’s scheme [51], to develop a PPkNN protocol. However, our work is different from the secret
sharing based solution from the following two aspects. (i) Solutions based on the secret sharing schemes require at
least three parties whereas our work require only two parties. (ii) Hiding data access patterns is still an unsolved
problem in the secret sharing based schemes, whereas our work protects data access patterns from both participating
parties, and it can be extended into a solution under the secret sharing schemes. For example, the constructions based
on Sharemind [8], a well-known SMC framework which is based on the secret sharing scheme, assumes that the
number of participating parties is three. Thus, our work is orthogonal to Sharemind and other secret sharing based
schemes. Therefore, for the rest of this paper, we omit the discussion related to the techniques that can be constructed
using fully homomorphic cryptosystems or secret sharing schemes.

2.1 Privacy-Preserving Data Mining (PPDM)

Privacy Preserving Data Mining (PPDM) is defined as the process of extracting/deriving the knowledge about data
without compromising the privacy of data [3, 41, 48]. In the past decade, many privacy-preserving classification
techniques have been proposed in the literature in order to protect user privacy. Agrawal and Srikant [3], Lindell
and Pinkas [40] introduced the notion of privacy-preserving under data mining applications. In particular to privacy-
preserving classification, the goal is to build a classifier in order to predict the class label of input data record based on
the distributed training dataset without compromising theprivacy of data.

1. Data Perturbation Methods: In these methods, values of individual data records are perturbed by adding random
noise in a such way that the distribution of perturbed data look very different from that of actual data. After such a
transformation, the perturbed data is sent to the miner to perform the desired data mining tasks. Agrawal and Srikant [3]
proposed the first data perturbation technique to build a decision-tree classifier. Since then many other randomization-
based methods have been proposed in the literature such as [5,21,22,44,58]. However, as mentioned earlier in Section
1, data perturbation techniques cannot be applicable for semantically secure encrypted data. Also, they do not produce
accurate data mining results due to the addition of statistical noises to the data.

2. Data Distribution Methods:These methods assume the dataset is partitioned either horizontally or vertically
and distributed across different parties. The parties later can collaborate to securely mine the combined data and learn

4

the global data mining results. During this process, data owned by individual parties is not revealed to other parties.
This approach was first introduced by Lindell and Pinkas [40]who proposed a decision tree classifier under two-party
setting. Since then much work has been published using secure multiparty computation techniques [1,15,33,37,55].

Classification is one important task in many applications ofdata mining such as health-care and business. Recently,
performing data mining in the cloud attracted significant attention. In cloud computing, data owner outsources his/her
data to the cloud. However, from user’s perspective, privacy becomes an important issue when sensitive data needs
to be outsourced to the cloud. The direct way to guard the outsourced data is to apply encryption on the data before
outsourcing.

Unfortunately, since the hosted data on the cloud is in encrypted form in our problem domain, the existing privacy
preserving classification techniques are not sufficient andapplicable to PPkNN due to the following reasons.(i) In
existing methods, the data are partitioned among at least two parties, whereas in our case encrypted data are hosted on
the cloud.(ii) Since some amount of information is loss due to the addition of statistical noises in order to hide the
sensitive attributes, the existing methods are not accurate. (iii) Leakage of data access patterns: the cloud can easily
derive useful and sensitive information about users’ data items by simply observing the database access patterns.
For the same reasons, in this paper, we do not consider securek-nearest neighbor techniques in which the data are
distributed between two parties (e.g., [47]).

2.2 Query processing over encrypted data

Using encryption as a way to achieve the data confidentialitymay cause another issue at the cloud during the query
evaluation. The question here is “how can the cloud perform computations over encrypted data while the data stored
are in encrypted form?” Along this direction, various techniques related to query processing over encrypted data have
been proposed, e.g., [2, 30, 32]. However, we observe that PPkNN is a more complex problem than the execution of
simplekNN queries over encrypted data [53, 54]. For one, the intermediatek-nearest neighbors in the classification
process, should not be disclosed to the cloud or any users. Weemphasize that the recent method in [54] reveals the
k-nearest neighbors to the user. Secondly, even if we know thek-nearest neighbors, it is still very difficult to find
the majority class label among these neighbors since they are encrypted at the first place to prevent the cloud from
learning sensitive information. Third, the existing work did not addressed the access pattern issue which is a crucial
privacy requirement from the user’s perspective.

In our most recent work [20], we proposed a novel securek-nearest neighbor query protocol over encrypted data
that protects data confidentiality, user’s query privacy, and hides data access patterns. However, as mentioned above,
PPkNN is a more complex problem and it cannot be solved directly using the existing securek-nearest neighbor
techniques over encrypted data. Therefore, in this paper, we extend our previous work in [20] and provide a new
solution to the PPkNN classifier problem over encrypted data.

More specifically, this paper is different from our preliminary work [20] in the following four aspects. First, in this
paper, we introduced new security primitives, namely secure minimum (SMIN), secure minimum out ofn numbers
(SMINn), secure frequency (SF), and proposed new solutions for them. Second, the work in [20] did not provide
any formal security analysis of the underlying sub-protocols. On the other hand, this paper provides formal security
proofs of the underlying sub-protocols as well as the PPkNN protocol under the semi-honest model. Additionally,
we demonstrate various techniques through which the proposed protocol can possibly be extended to a protocol that
is secure under the malicious model. Third, our preliminarywork in [20] addresses only securekNN query which is
similar to Stage 1 of PPkNN. However, Stage 2 in PPkNN is entirely new. Finally, our empirical analyses in Section
VI are based on a real dataset whereas the results in [20] are based on a simulated dataset. In addition, new results are
included in this paper.

As mentioned earlier, one can implement the proposed protocols under secret sharing schemes. By doing so, we
need to have at least three independent parties. In this work, we only concentrate on the two party situation; thus, we
adopted the Paillier cryptosystem. Two-party and multi-party (three or more parties) SMC protocols are complement
to each other, and their applications mainly depend on the number of available participants. In practice, two mutually
independent clouds are easier to find and are cheaper to operate. On the other hand, utilizing three cloud servers and
secret sharing schemes to implement the proposed protocolsmay result more efficient running time. We believe both
two-party and multi-party schemes are important. As a future work, we will consider secret sharing based PPkNN

5

implementations.

2.3 Threat Model

In this paper, privacy/security is closely related to the amount of information disclosed during the execution of a
protocol. In the proposed protocols, our goal is to ensure noinformation leakage to the involved parties other than what
they can deduce from their own outputs. There are many ways todefine information disclosure. To maximize privacy
or minimize information disclosure, we adopt the security definitions in the literature of secure multiparty computation
(SMC) first introduced by Yao’s Millionaires’ problem for which a provably secure solution was developed [56, 57].
This was extended to multiparty computations by Goldreich et al. [28]. It was proved in [28] that any computation
which can be done in polynomial time by a single party can alsobe done securely by multiple parties. Since then
much work has been published for the multiparty case (e.g., [6,7,12,13,16,26,38,39]).

There are three common adversarial models under SMC: semi-honest, covert and malicious. An adversarial model
generally specifies what an adversary or attacker is allowedto do during an execution of a secure protocol. In the
semi-honest model, an attacker (i.e., one of the participating parties) is expected to follow the prescribed steps of a
protocol. However, the attacker can compute any additionalinformation based on his or her private input, output and
messages received during an execution of the secure protocol. As a result, whatever can be inferred from the private
input and output of an attacker is not considered as a privacyviolation. An adversary in the semi-honest model can
be treated as a passive attacker whereas an adversary in the malicious model can be treated as an active attacker who
can arbitrarily diverge from the normal execution of a protocol. On the other hand, the covert adversary model [4] lies
between the semi-honest and malicious models. More specifically, an adversary under the covert model may deviate
arbitrarily from the rules of a protocol, however, in the case of cheating, the honest party is guaranteed to detect this
cheating with good probability.

In this paper, to develop secure and efficient protocols, we assume that parties are semi-honest for two reasons.
First, as mentioned in [35], developing protocols under thesemi-honest setting is an important first step towards
constructing protocols with stronger security guarantees. Second, it is worth pointing out that all the practical SMC
protocols proposed in the literature (e.g., [31, 34, 35, 43]) are implemented only under the semi-honest model. By
semi-honest model, we implicitly assume that the cloud service providers (or other participating users) utilized in our
protocols do not collude. Since current known cloud serviceproviders are well established IT companies, it is hard
to see the possibility for two companies, e.g., Google and Amazon, to collude as it will damage their reputations
and consequently place negative impact on their revenues. Thus, in our problem domain, assuming the participating
parties are semi-honest is very realistic. Detailed security definitions and models can be found in [26,27]. Briefly, the
following definition captures the above discussion regarding a secure protocol under the semi-honest model.

Definition 1 Letai be the input of partyPi, Πi(π) bePi’s execution image of the protocolπ andbi be the output for
partyPi computed fromπ. Then,π is secure ifΠi(π) can be simulated fromai andbi such that distribution of the
simulated image is computationally indistinguishable fromΠi(π).

In the above definition, an execution image generally includes the input, the output and the messages communi-
cated during an execution of a protocol. To prove a protocol is secure under semi-honest model, we generally need to
show that the execution image of a protocol does not leak any information regarding the private inputs of participating
parties [26]. In this paper, we first propose a PPkNN protocol that is secure under the semi-honest model. We then
extend it to be secure under other adversarial models.

2.4 Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic and probabilistic asymmetric encryption scheme whose security
is based on the Decisional Composite Residuosity Assumption [45]. LetEpk be the encryption function with public
keypk given by (N, g) andDsk be the decryption function with secret keysk given by a trapdoor functionλ (that is,
the knowledge of the factors ofN). Here,N is the RSA modulus of bit lengthK and generatorg ∈ Z

∗

N2 . For any
givena, b ∈ ZN , the Paillier encryption scheme exhibits the following properties:

6

a. Homomorphic Addition

Dsk(Epk(a+ b)) = Dsk(Epk(a) ∗ Epk(b) mod N2)

b. Homomorphic Multiplication

Dsk(Epk(a ∗ b)) = Dsk(Epk(a)
b mod N2)

c. Semantic Security -The encryption scheme is semantically secure [26, 29]. Briefly, given a set of ciphertexts, an
adversary cannot deduce any additional information regarding the corresponding plaintexts.

In this paper, we assume that a data owner encrypted his or herdata using Paillier cryptosystem before outsourcing
to a cloud. However, we stress that any other additive homomorphic public-key cryptosystem satisfying the above
properties can also be used to implement our proposed protocol. We simply use the well-known Paillier’s scheme in
our implementations. Also, for ease of presentation, we drop themod N2 term during the homomorphic operations
in the rest of this paper. In addition, many extensions to thePaillier cryptosystem have been proposed in the literature
[17, 18, 23]. However, to be more specific, in this paper we usethe original Paillier cryptosystem [45]. Nevertheless,
our work can be directly applied to the above mentioned extensions of the Paillier’s scheme.

3 Privacy-Preserving Protocols

In this section, we present a set of generic sub-protocols that will be used in constructing our proposedk-NN protocol
in Section 5. All of the below protocols are considered undertwo-party semi-honest setting. In particular, we assume
the exist of two semi-honest partiesP1 andP2 such that the Paillier’s secret keysk is known only toP2 whereaspk is
treated as public.

• Secure Multiplication (SM) Protocol:
This protocol considersP1 with input (Epk(a), Epk(b)) and outputsEpk(a ∗ b) to P1, wherea andb are not
known toP1 andP2. During this process, no information regardinga andb is revealed toP1 andP2.

• Secure Squared Euclidean Distance (SSED) Protocol:
In this protocol,P1 with input (Epk(X), Epk(Y)) andP2 with sk securely compute the encryption of squared
Euclidean distance between vectorsX andY . HereX andY arem dimensional vectors whereEpk(X) =
〈Epk(x1), . . . , Epk(xm)〉 andEpk(Y) = 〈Epk(y1), . . . , Epk(ym)〉. The output of the SSED protocol isEpk(|X−
Y |2) which is known only toP1.

• Secure Bit-Decomposition (SBD) Protocol:
P1 with inputEpk(z) andP2 securely compute the encryptions of the individual bits ofz, where0 ≤ z < 2l.
The output[z] = 〈Epk(z1), . . . , Epk(zl)〉 is known only toP1. Herez1 andzl are the most and least significant
bits of integerz, respectively.

• Secure Minimum (SMIN) Protocol:
In this protocol,P1 holds private input(u′, v′) andP2 holdssk, whereu′ = ([u], Epk(su)) andv′ = ([v], Epk(sv)).
Heresu (resp.,sv) denotes the secret associated withu (resp.,v). The goal of SMIN is forP1 andP2 to jointly
compute the encryptions of the individual bits of minimum number betweenu andv. In addition, they compute
Epk(smin(u,v)). That is, the output is([min(u, v)], Epk(smin(u,v))) which will be known only toP1. During
this protocol, no information regarding the contents ofu, v, su, andsv is revealed toP1 andP2.

• Secure Minimum out ofn Numbers (SMINn) Protocol:
In this protocol, we considerP1 with n encrypted vectors([d1], . . . , [dn]) along with their respective encrypted
secrets andP2 with sk. Here[di] = 〈Epk(di,1), . . . , Epk(di,l)〉 wheredi,1 anddi,l are the most and least sig-
nificant bits of integerdi respectively, for1 ≤ i ≤ n. The secret ofdi is given bysdi

. P1 andP2 jointly
compute[min(d1, . . . , dn)]. In addition, they computeEpk(smin(d1,...,dn)). At the end of this protocol, the out-
put ([min(d1, . . . , dn)], Epk(smin(d1,...,dn))) is known only toP1. During the SMINn protocol, no information
regarding any ofdi’s and their secrets is revealed toP1 andP2.

7

Algorithm 1 SM(Epk(a), Epk(b))→ Epk(a ∗ b)

Require: P1 hasEpk(a) andEpk(b); P2 hassk
1: P1:

(a). Pick two random numbersra, rb ∈ ZN

(b). a′ ← Epk(a) ∗ Epk(ra)

(c). b′ ← Epk(b) ∗ Epk(rb); senda′, b′ toP2

2: P2:

(a). Receivea′ andb′ fromP1

(b). ha ← Dsk(a
′); hb ← Dsk(b

′)

(c). h← ha ∗ hb mod N

(d). h′ ← Epk(h); sendh′ to P1

3: P1:

(a). Receiveh′ fromP2

(b). s← h′ ∗ Epk(a)
N−rb

(c). s′ ← s ∗ Epk(b)
N−ra

(d). Epk(a ∗ b)← s′ ∗ Epk(ra ∗ rb)
N−1

• Secure Bit-OR (SBOR) Protocol:
P1 with input (Epk(o1), Epk(o2)) andP2 securely computeEpk(o1 ∨ o2), whereo1 ando2 are two bits. The
outputEpk(o1 ∨ o2) is known only toP1.

• Secure Frequency (SF) Protocol:
In this protocol,P1 with private input(〈Epk(c1), . . . Epk(cw)〉, 〈Epk(c

′

1), . . . , Epk(c
′

k)〉) andP2 securely com-
pute the encryption of the frequency ofcj , denoted byf(cj), in the list〈c′1, . . . , c

′

k〉, for 1 ≤ j ≤ w. We explic-
itly assume thatcj ’s are unique andc′i ∈ {c1, . . . , cw}, for 1 ≤ i ≤ k. The output〈Epk(f(c1)), . . . , Epk(f(cw))〉
will be known only toP1. During the SF protocol, no information regardingc′i, cj , andf(cj) is revealed toP1

andP2, for 1 ≤ i ≤ k and1 ≤ j ≤ w.

Now we either propose a new solution or refer to the most efficient known implementation to each of the above pro-
tocols. First of all, efficient solutions to SM, SSED, SBD andSBOR were presented in our preliminary work [20].
However, for completeness, we briefly discuss those solutions here. Also, we discuss SMIN, SMINn, and SF problems
in detail and propose new solutions to each one of them.

Secure Multiplication (SM). Consider a partyP1 with private input(Epk(a), Epk(b)) and a partyP2 with the secret
key sk. The goal of the secure multiplication (SM) protocol is to return the encryption ofa ∗ b, i.e.,Epk(a ∗ b) as
output toP1. During this protocol, no information regardinga andb is revealed toP1 andP2. The basic idea of the
SM protocol is based on the following property which holds for any givena, b ∈ ZN :

a ∗ b = (a+ ra) ∗ (b+ rb)− a ∗ rb − b ∗ ra − ra ∗ rb (1)

where all the arithmetic operations are performed underZN . The overall steps in SM are shown in Algorithm 1.
Briefly, P1 initially randomizesa andb by computinga′ = Epk(a) ∗ Epk(ra) andb′ = Epk(b) ∗ Epk(rb), and sends
them toP2. Herera andrb are random numbers inZN known only toP1. Upon receiving,P2 decrypts and multiplies
them to geth = (a + ra) ∗ (b + rb) mod N . Then,P2 encryptsh and sends it toP1. After this,P1 removes extra
random factors fromh′ = Epk((a + ra) ∗ (b + rb)) based on Equation 1 to getEpk(a ∗ b). Note that, under Paillier

8

Algorithm 2 SSED(Epk(X), Epk(Y))→ Epk(|X − Y |
2)

Require: P1 hasEpk(X) andEpk(Y); P2 hassk
1: P1, for 1 ≤ i ≤ m do:

(a). Epk(xi − yi)← Epk(xi) ∗ Epk(yi)
N−1

2: P1 andP2, for 1 ≤ i ≤ m do:

(a). ComputeEpk((xi − yi)
2) using the SM protocol

3: P1:

(a). Epk(|X − Y |
2)←

∏m
i=1Epk((xi − yi)

2)

cryptosystem, “N − x” is equivalent to “−x” in ZN . Hereafter, we use the notationr ∈R ZN to denoter as a random
number inZN .

Example 2 Let us assume thata = 59 andb = 58. For simplicity, letra = 1 and rb = 3. Initially, P1 computes
a′ = Epk(60) = Epk(a) ∗ Epk(ra), b′ = Epk(61) = Epk(b) ∗ Epk(rb) and sends them toP2. Then,P2 decrypts and
multiplies them to geth = 3660. After this,P2 encryptsh to geth′ = Epk(3660) and sends it toP1. Upon receiving
h′, P1 computess = Epk(3483) = Epk(3660 − a ∗ rb), ands′ = Epk(3425) = Epk(3483 − b ∗ ra). Finally, P1

computesEpk(a ∗ b) = Epk(3422) = Epk(3425− ra ∗ rb). �

Secure Squared Euclidean Distance (SSED).In the SSED protocol,P1 holds two encrypted vectors(Epk(X), Epk(Y))
andP2 holds the secret keysk. HereX andY are twom-dimensional vectors whereEpk(X) = 〈Epk(x1), . . . , Epk(xm)〉
andEpk(Y) = 〈Epk(y1), . . . , Epk(ym)〉. The goal of the SSED protocol is to securely computeEpk(|X−Y |

2), where
|X − Y | denotes the Euclidean distance between vectorsX andY . At a high level, the basic idea of SSED follows
from following equation:

|X − Y |2 =

m∑

i=1

(xi − yi)
2 (2)

The main steps involved in the SSED protocol are as shown in Algorithm 2. Briefly, for1 ≤ i ≤ m, P1 initially
computesEpk(xi − yi) by using the homomorphic properties. ThenP1 andP2 jointly computeEpk((xi − yi)

2)
using the SM protocol, for1 ≤ i ≤ m. Note that the outputs of SM are known only toP1. Finally, by applying
homomorphic properties onEpk((xi − yi)

2), P1 computesEpk(|X − Y |
2) locally based on Equation 2.

Example 3 Let us assume thatP1 holds the encrypted data records ofX andY given byEpk(X) = 〈Epk(63), Epk(1),
Epk(1), Epk(145), Epk(233), Epk(1), Epk(3), Epk(0), Epk(6), Epk(0)〉 andEpk(Y) = 〈Epk(56), Epk(1), Epk(3),
Epk(130), Epk(256), Epk(1), Epk(2), Epk(1), Epk(6), Epk(2)〉. During the SSED protocol,P1 initially computes
Epk(x1 − y1) = Epk(7), . . . , Epk(x10 − y10) = Epk(−2). Then,P1 andP2 jointly computeEpk((x1 − y1)

2) =
Epk(49) = SM(Epk(7), Epk(7)), . . . , Epk((x10 − y10)

2) = SM(Epk(−2), Epk(−2)) = Epk(4). P1 locally com-
putesEpk(|X − Y |

2) = Epk(
∑10

i=1(xi − yi)
2) = Epk(813). �

Secure Bit-Decomposition (SBD).We assume thatP1 hasEpk(z) andP2 hassk, wherez is not known to both
parties and0 ≤ z < 2l. GivenEpk(z), the goal of the secure bit-decomposition (SBD) protocol isto compute the
encryptions of the individual bits of binary representation of z. That is, the output is[z] = 〈Epk(z1), . . . , Epk(zl)〉,
wherez1 andzl denote the most and least significant bits ofz respectively. At the end, the output[z] is known only to
P1. During this process, neither the value ofz nor anyzi’s is revealed toP1 andP2.

Since the goal of this paper is not to investigate existing SBD protocols, we simply use the most efficient SBD
protocol that was recently proposed in [50].

9

Example 4 Let us assume thatz = 55 and l = 6. Then the SBD protocol in [50] with private inputEpk(55) returns
[55] = 〈Epk(1), Epk(1), Epk(0), Epk(1), Epk(1), Epk(1)〉 as the output toP1. �

Secure Minimum (SMIN). In this protocol, we assume thatP1 holds private input(u′, v′) andP2 holdssk, where
u′ = ([u], Epk(su)) andv′ = ([v], Epk(sv)). Heresu andsv denote the secrets corresponding tou andv, respec-
tively. The main goal of SMIN is to securely compute the encryptions of the individual bits ofmin(u, v), denoted
by [min(u, v)]. Here[u] = 〈Epk(u1), . . . , Epk(ul)〉 and[v] = 〈Epk(v1), . . . , Epk(vl)〉, whereu1 (resp.,v1) andul
(resp.,vl) are the most and least significant bits ofu (resp.,v), respectively. In addition, they computeEpk(smin(u,v)),
the encryption of the secret corresponding to the minimum value betweenu andv. At the end of SMIN, the output
([min(u, v)], Epk(smin(u,v))) is known only toP1.

We assume that0 ≤ u, v < 2l and propose a novel SMIN protocol. Our solution to SMIN is mainly motivated
from the work of [20]. Precisely, the basic idea of the proposed SMIN protocol is forP1 to randomly choose the
functionalityF (by flipping a coin), whereF is eitheru > v or v > u, and to obliviously executeF with P2. SinceF
is randomly chosen and known only toP1, the result of the functionalityF is oblivious toP2. Based on the comparison
result and chosenF , P1 computes[min(u, v)] andEpk(smin(u,v)) locally using homomorphic properties.

The overall steps involved in the SMIN protocol are shown in Algorithm 3. To start with,P1 initially chooses the
functionalityF as eitheru > v or v > u randomly. Then, using the SM protocol,P1 computesEpk(ui ∗ vi) with the
help ofP2, for 1 ≤ i ≤ l. After this, the protocol has the following key steps, performed byP1 locally, for1 ≤ i ≤ l:

• Compute the encrypted bit-wise XOR between the bitsui andvi asTi = Epk(ui ⊕ vi) using the below formu-
lation1:

Ti = Epk(ui) ∗ Epk(vi) ∗ Epk(ui ∗ vi)
N−2

• Compute an encrypted vectorH by preserving the first occurrence ofEpk(1) (if there exists one) inT by
initializing H0 = Epk(0). The rest of the entries ofH are computed asHi = Hri

i−1 ∗ Ti. We emphasize that at
most one of the entry inH isEpk(1) and the remaining entries are encryptions of either 0 or a random number.

• Then,P1 computesΦi = Epk(−1) ∗ Hi. Note that “−1” is equivalent to “N − 1” underZN . From the
above discussions, it is clear thatΦi = Epk(0) at most once sinceHi is equal toEpk(1) at most once. Also,
if Φj = Epk(0), then indexj is the position at which the bits ofu andv differ first (starting from the most
significant bit position).

Now, depending onF , P1 creates two encrypted vectorsW andΓ as follows, for1 ≤ i ≤ l:

• If F : u > v, compute

Wi = Epk(ui) ∗ Epk(ui ∗ vi)
N−1

= Epk(ui ∗ (1− vi))

Γi = Epk(vi − ui) ∗ Epk(r̂i)

= Epk(vi − ui + r̂i)

• If F : v > u, compute:

Wi = Epk(vi) ∗ Epk(ui ∗ vi)
N−1

= Epk(vi ∗ (1 − ui))

Γi = Epk(ui − vi) ∗ Epk(r̂i)

= Epk(ui − vi + r̂i)

1In general, for any two given bitso1 ando2, the propertyo1 ⊕ o2 = o1 + o2 − 2(o1 ∗ o2) always hold.

10

Algorithm 3 SMIN(u′, v′)→ ([min(u, v)], Epk(smin(u,v)))

Require: P1 hasu′ = ([u], Epk(su)) andv′ = ([v], Epk(sv)), where0 ≤ u, v < 2l; P2 hassk
1: P1:

(a). Randomly choose the functionalityF

(b). for i = 1 to l do:

• Epk(ui ∗ vi)← SM(Epk(ui), Epk(vi))

• Ti ← Epk(ui ⊕ vi)

• Hi ← Hri
i−1 ∗ Ti; ri ∈R ZN andH0 = Epk(0)

• Φi ← Epk(−1) ∗Hi

• if F : u > v thenWi ← Epk(ui) ∗ Epk(ui ∗ vi)
N−1 andΓi ← Epk(vi − ui) ∗ Epk(r̂i); r̂i ∈R ZN

elseWi ← Epk(vi) ∗ Epk(ui ∗ vi)
N−1 andΓi ← Epk(ui − vi) ∗ Epk(r̂i); r̂i ∈R ZN

• Li ← Wi ∗ Φ
r′i
i ; r′i ∈R ZN

(c). if F : u > v then: δ ← Epk(sv − su) ∗ Epk(r̄)
elseδ ← Epk(su − sv) ∗ Epk(r̄), wherer̄ ∈R ZN

(d). Γ′ ← π1(Γ) andL′ ← π2(L)

(e). Sendδ,Γ′ andL′ toP2

2: P2:

(a). Decryption:Mi ← Dsk(L
′

i), for 1 ≤ i ≤ l

(b). if ∃ j such thatMj = 1 then α← 1
elseα← 0

(c). if α = 0 then:

• M ′

i ← Epk(0), for 1 ≤ i ≤ l

• δ′ ← Epk(0)

else

• M ′

i ← Γ′

i ∗ r
N , wherer ∈R ZN and is different for1 ≤ i ≤ l

• δ′ ← δ ∗ rNδ , whererδ ∈R ZN

(d). SendM ′, Epk(α) andδ′ toP1

3: P1:

(a). M̃ ← π−1
1 (M ′) andθ ← δ′ ∗ Epk(α)

N−r̄

(b). λi ← M̃i ∗Epk(α)
N−r̂i , for 1 ≤ i ≤ l

(c). if F : u > v then:

• Epk(smin(u,v))← Epk(su) ∗ θ

• Epk(min(u, v)i)← Epk(ui) ∗ λi, for 1 ≤ i ≤ l

else

• Epk(smin(u,v))← Epk(sv) ∗ θ

• Epk(min(u, v)i)← Epk(vi) ∗ λi, for 1 ≤ i ≤ l

11

Table 2: P1 choosesF asv > u whereu = 55 andv = 58 (Note: All column values are in encrypted form except
Mi column. Also,r ∈R ZN is different for each row and column.)

[u] [v] Wi Γi Gi Hi Φi Li Γi’ L′

i Mi λi mini

1 1 0 r 0 0 −1 r 1 + r r r 0 1

1 1 0 r 0 0 −1 r r r r 0 1

0 1 1 −1 + r 1 1 0 1 1 + r r r −1 0

1 0 0 1 + r 1 r r r −1 + r r r 1 1

1 1 0 r 0 r r r r 1 1 0 1

1 0 0 1 + r 1 r r r r r r 1 1

wherer̂i is a random number inZN . The observation here is ifF : u > v, thenWi = Epk(1) iff ui > vi, and
Wi = Epk(0) otherwise. Similarly, whenF : v > u, we haveWi = Epk(1) iff vi > ui, andWi = Epk(0) otherwise.
Also, depending ofF , Γi stores the encryption of randomized difference betweenui andvi which will be used in later
computations.

After this,P1 computesL by combiningΦ andW . More precisely,P1 computesLi = Wi ∗ Φ
r′i
i , wherer′i is a

random number inZN . The observation here is if∃ an indexj such thatΦj = Epk(0), denoting the first flip in the bits
of u andv, thenWj stores the corresponding desired information, i.e., whetheruj > vj or vj > uj in encrypted form.
In addition, depending onF , P1 computes the encryption of randomized difference betweensu andsv and stores it in
δ. Specifically, ifF : u > v, thenδ = Epk(sv − su + r̄). Otherwise,δ = Epk(su − sv + r̄), wherer̄ ∈R ZN .

After this,P1 permutes the encrypted vectorsΓ andL using two random permutation functionsπ1 andπ2. Specif-
ically, P1 computesΓ′ = π1(Γ) andL′ = π2(L), and sends them along withδ toP2. Upon receiving,P2 decryptsL′

component-wise to getMi = Dsk(L
′

i), for 1 ≤ i ≤ l, and checks for indexj. That is, ifMj = 1, thenP2 setsα to 1,
otherwise sets it to 0. In addition,P2 computes a new encrypted vectorM ′ depending on the value ofα. Precisely, if
α = 0, thenM ′

i = Epk(0), for 1 ≤ i ≤ l. HereEpk(0) is different for eachi. On the other hand, whenα = 1, P2 sets
M ′

i to the re-randomized value ofΓ′

i. That is,M ′

i = Γ′

i ∗ r
N , where the termrN comes from re-randomization and

r ∈R ZN should be different for eachi. Furthermore,P2 computesδ′ = Epk(0) if α = 0. However, whenα = 1,
P2 setsδ′ to δ ∗ rNδ , whererδ is a random number inZN . Then,P2 sendsM ′, Epk(α) andδ′ to P1. After receiving
M ′, Epk(α) andδ′, P1 computes the inverse permutation ofM ′ asM̃ = π−1

1 (M ′). Then,P1 performs the following
homomorphic operations to compute the encryption ofith bit of min(u, v), i.e.,Epk(min(u, v)i), for 1 ≤ i ≤ l:

• Remove the randomness from̃Mi by computingλi = M̃i ∗ Epk(α)
N−r̂i

• If F : u > v, compute theith encrypted bit ofmin(u, v) asEpk(min(u, v)i) = Epk(ui) ∗ λi = Epk(ui + α ∗
(vi − ui)). Otherwise, computeEpk(min(u, v)i) = Epk(vi) ∗ λi = Epk(vi + α ∗ (ui − vi)).

Also, depending onF , P1 computesEpk(smin(u,v)) as follows. IfF : u > v, P1 computesEpk(smin(u,v)) =
Epk(su) ∗ θ, whereθ = δ′ ∗ Epk(α)

N−r̄ . Otherwise, he/she computesEpk(smin(u,v)) = Epk(sv) ∗ θ.
In the SMIN protocol, one main observation (upon which we canalso justify the correctness of the final output)

is that if F : u > v, thenmin(u, v)i = (1 − α) ∗ ui + α ∗ vi always holds, for1 ≤ i ≤ l. On the other hand, if
F : v > u, thenmin(u, v)i = α ∗ ui + (1 − α) ∗ vi always holds. Similar conclusions can be drawn forsmin(u,v).
We emphasize that using similar formulations one can also design a SMAX protocol to compute[max(u, v)] and
Epk(smax(u,v)). Also, we stress that there can be multiple secrets ofu andv that can be fed as input (in encrypted
form) to SMIN and SMAX. For example, lets1u ands2u (resp.,s1v ands2v) be two secrets associated withu (resp.,v).
Then the SMIN protocol takes([u], Epk(s

1
u), Epk(s

2
u)) and([v], Epk(s

1
v), Epk(s

2
v)) asP1’s private input and outputs

[min(u, v)], Epk(s
1
min(u,v)) andEpk(s

2
min(u,v)) toP1.

Example 5 For simplicity, consider thatu = 55, v = 58, and l = 6. Supposesu andsv be the secrets associated

12

Algorithm 4 SMINn(([d1], Epk(sd1
)), . . . , ([dn], Epk(sdn

)))→ ([dmin], Epk(sdmin
))

Require: P1 has(([d1], Epk(sd1
)), . . . , ([dn], Epk(sdn

))); P2 hassk
1: P1:

(a). [d′i]← [di] ands′i ← Epk(sdi
), for 1 ≤ i ≤ n

(b). num← n

2: for i = 1 to ⌈log2 n⌉:

(a). for 1 ≤ j ≤
⌊
num
2

⌋
:

• if i = 1 then:

– ([d′2j−1], s
′

2j−1)← SMIN(x, y), wherex = ([d′2j−1], s
′

2j−1) andy = ([d′2j], s
′

2j)

– [d′2j]← 0 ands′2j ← 0

else

– ([d′2i(j−1)+1], s
′

2i(j−1)+1) ← SMIN(x, y), wherex = ([d′2i(j−1)+1], s
′

2i(j−1)+1) and y =

([d′2ij−1], s
′

2ij−1)

– [d′2ij−1]← 0 ands′2ij−1 ← 0

(b). num←
⌈
num
2

⌉

3: P1: [dmin]← [d′1] andEpk(sdmin
)← s′1

with u andv, respectively. Assume thatP1 holds([55], Epk(su)) ([58], Epk(sv)). In addition, we assume thatP1’s
random permutation functions are as given below.

i = 1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓

π1(i) = 6 5 4 3 2 1

π2(i) = 2 1 5 6 3 4

Without loss of generality, supposeP1 chooses the functionalityF : v > u. Then, various intermediate results
based on the SMIN protocol are as shown in Table 2. Following from Table 2, we observe that:

• At most one of the entry inH isEpk(1), namelyH3, and the remaining entries are encryptions of either 0 or a
random number inZN .

• Indexj = 3 is the first position at which the corresponding bits ofu andv differ.

• Φ3 = Epk(0) sinceH3 is equal toEpk(1). Also, sinceM5 = 1, P2 setsα to 1.

• In addition,Epk(smin(u,v)) = Epk(α ∗ su + (1− α) ∗ sv) = Epk(su).

At the end of SMIN, onlyP1 knows[min(u, v)] = [u] = [55] andEpk(smin(u,v)) = Epk(su). �

Secure Minimum out of n Numbers (SMINn). ConsiderP1 with private input([d1], . . . , [dn]) along with their
encrypted secrets andP2 with sk, where0 ≤ di < 2l and [di] = 〈Epk(di,1), . . . , Epk(di,l)〉, for 1 ≤ i ≤ n.

13

[dmin]← [d′
1
]← [min(d′

1
, d′

5
)]

[d′
1
]← [min(d′

1
, d′

3
)]

[d′
1
]← [min(d′

1
, d′

2
)]

[d′
1
] [d′

2
]

[d′
3
]← [min(d′

3
, d′

4
)]

[d′
3
] [d′

4
]

[d′
5
]

[d′
5
]← [min(d′

5
, d′

6
)]

[d′
5
] [d′

6
]

Figure 1: Binary execution tree forn = 6 based on SMINn

Here the secret ofdi is denoted byEpk(sdi
), for 1 ≤ i ≤ n. The main goal of the SMINn protocol is to compute

[min(d1, . . . , dn)] = [dmin] without revealing any information aboutdi’s to P1 andP2. In addition, they compute
the encryption of the secret corresponding to the global minimum, denoted byEpk(sdmin

). Here we construct a new
SMINn protocol by utilizing SMIN as the building block. The proposed SMINn protocol is an iterative approach and
it computes the desired output in an hierarchical fashion. In each iteration, minimum between a pair of values and the
secret corresponding to the minimum value are computed (in encrypted form) and fed as input to the next iteration,
thus, generating a binary execution tree in a bottom-up fashion. At the end, onlyP1 knows the final result[dmin] and
Epk(sdmin

).
The overall steps involved in the proposed SMINn protocol are highlighted in Algorithm 4. Initially,P1 assigns

[di] andEpk(sdi
) to a temporary vector[d′i] and variables′i, for 1 ≤ i ≤ n, respectively. Also, he/she creates

a global variablenum and initializes it ton, wherenum represents the number of (non-zero) vectors involved in
each iteration. Since the SMINn protocol executes in a binary tree hierarchy (bottom-up fashion), we have⌈log2 n⌉
iterations, and in each iteration, the number of vectors involved varies. In the first iteration (i.e.,i = 1), P1 with
private input(([d′2j−1], s

′

2j−1), ([d
′

2j], s
′

2j)) andP2 with sk involve in the SMIN protocol, for1 ≤ j ≤
⌊
num
2

⌋
. At

the end of the first iteration, onlyP1 knows[min(d′2j−1, d
′

2j)] ands′min(d′

2j−1
,d′

2j
), and nothing is revealed toP2, for

1 ≤ j ≤
⌊
num
2

⌋
. Also,P1 stores the result[min(d′2j−1, d

′

2j)] ands′min(d′

2j−1
,d′

2j
) in [d′2j−1] ands′2j−1, respectively.

In addition,P1 updates the values of[d′2j], s
′

2j to 0 andnum to
⌈
num
2

⌉
, respectively.

During theith iteration, only the non-zero vectors (along with the corresponding encrypted secrets) are involved
in SMIN, for 2 ≤ i ≤ ⌈log2 n⌉. For example, during the second iteration (i.e.,i = 2), only ([d′1], s

′

1), ([d
′

3], s
′

3), and
so on are involved. Note that in each iteration, the output isrevealed only toP1 andnum is updated to

⌈
num
2

⌉
. At the

end of SMINn, P1 assigns the final encrypted binary vector of global minimum value, i.e.,[min(d1, . . . , dn)] which is
stored in[d′1], to [dmin]. In addition,P1 assignss′1 toEpk(sdmin

).

Example 6 SupposeP1 holds〈[d1], . . . , [d6]〉 (i.e.,n = 6). For simplicity, here we are assuming that there are no
secrets associated withdi’s. Then, based on the SMINn protocol, the binary execution tree (in a bottom-up fashion) to
compute[min(d1, . . . , d6)] is shown in Figure 1. Note that,[d′i] is initially set to[di], for 1 ≤ i ≤ 6. �

Secure Bit-OR (SBOR). SupposeP1 holds(Epk(o1), Epk(o2)) andP2 holdssk, whereo1 ando2 are two bits not
known to both parties. The goal of the SBOR protocol is to securely computeEpk(o1∨o2). At the end of this protocol,
onlyP1 knowsEpk(o1 ∨ o2). During this process, no information related too1 ando2 is revealed toP1 andP2. Given
the secure multiplication (SM) protocol,P1 can computeEpk(o1 ∨ o2) as follows:

• P1 with input (Epk(o1), Epk(o2)) andP2 involve in the SM protocol. At the end of this step, the output
Epk(o1 ∗ o2) is known only toP1. Note that, sinceo1 ando2 are bits,Epk(o1 ∗ o2) = Epk(o1 ∧ o2).

• Epk(o1 ∨ o2) = Epk(o1 + o2) ∗ Epk(o1 ∧ o2)
N−1.

14

We emphasize that, for any given two bitso1 ando2, the propertyo1 ∨ o2 = o1 + o2 − o1 ∧ o2 always holds. Note
that, by homomorphic addition property,Epk(o1 + o2) = Epk(o1) ∗ Epk(o2).

Secure Frequency (SF).Consider a situation whereP1 holds (〈Epk(c1), . . . , Epk(cw)〉, 〈Epk(c
′

1), . . . , Epk(c
′

k)〉)
andP2 holds the secret keysk. The goal of the SF protocol is to securely computeEpk(f(cj)), for 1 ≤ j ≤ w. Here
f(cj) denotes the number of times elementcj occurs (i.e., frequency) in the list〈c′1, . . . , c

′

k〉. We explicitly assume
thatc′i ∈ {c1, . . . , cw}, for 1 ≤ i ≤ k.

The output〈Epk(f(c1)), . . . , Epk(f(cw))〉 is revealed only toP1. During the SF protocol, neitherc′i nor cj is
revealed toP1 andP2. Also,f(cj) is kept private from bothP1 andP2, for 1 ≤ i ≤ k and1 ≤ j ≤ w.

The overall steps involved in the proposed SF protocol are shown in Algorithm 5. To start with,P1 initially
computes an encrypted vectorSi such thatSi,j = Epk(cj − c

′

i), for 1 ≤ j ≤ w. Then,P1 randomizesSi component-
wise to getS′

i,j = Epk(ri,j ∗ (cj − c
′

i)), whereri,j is a random number inZN . After this, for1 ≤ i ≤ k, P1 randomly
permutesS′

i component-wise using a random permutation functionπi (known only toP1). The outputZi ← πi(S
′

i)
is sent toP2. Upon receiving,P2 decryptsZi component-wise, computes a vectorui and proceeds as follows:

• If Dsk(Zi,j) = 0, thenui,j is set to 1. Otherwise,ui,j is set to 0.

• The observation is, sincec′i ∈ {c1, . . . , cw}, that exactly one of the entries in vectorZi is an encryption of 0 and
the rest are encryptions of random numbers. This further implies that exactly one of the decrypted values ofZi

is 0 and the rest are random numbers. Precisely, ifui,j = 1, thenc′i = cπ−1(j).

• ComputeUi,j = Epk(ui,j) and send it toP1, for 1 ≤ i ≤ k and1 ≤ j ≤ w.

Upon receivingU , P1 performs row-wise inverse permutation on it to getVi = π−1
i (Ui), for 1 ≤ i ≤ k. Finally,P1

computesEpk(cj) =
∏k

i=1 Vi,j locally, for1 ≤ j ≤ w.

4 Security Analysis of Privacy-Preserving Primitives under the Semi-Honest
Model

First of all, we emphasize that the outputs in the above mentioned protocols are always in encrypted format, and are
known only toP1. Also, all the intermediate results revealed toP2 are either random or pseudo-random. Note that,
the SBD protocol in [50] is secure under the semi-honest model. Therefore, here we provide security proofs for the
other protocols under the semi-honest model. Informally speaking, we claim that all the intermediate results seen by
P1 andP2 in the mentioned protocols are either random or pseudo-random.

As mentioned in Section 2.3, to formally prove that a protocol is secure [26] under the semi-honest model, we
need to show that the simulated execution image of that protocol is computationally indistinguishable from its actual
execution image. Remember that, an execution image generally includes the messages exchanged and the information
computed from these messages.

4.1 Proof of Security for SM

According to Algorithm 1, let the execution image ofP2 be denoted byΠP2
(SM) which is given byΠP2

(SM) =
{〈a′, ha〉, 〈b

′, hb〉} whereha = a + ra mod N andhb = b + rb mod N are derived upon decryptinga′ and b′,
respectively. Note thatha andhb are random numbers inZN . Suppose the simulated image ofP2 be denoted by
ΠS

P2
(SM), whereΠS

P2
(SM) = {〈a∗, r′a〉, 〈b

∗, r′b〉} Herea∗ andb∗ are randomly generated fromZN2 whereasr′a and
r′b are randomly generated fromZN . SinceEpk is a semantically secure encryption scheme with resulting ciphertext
size less thanN2, a′ andb′ are computationally indistinguishable froma∗ andb∗, respectively. Similarly, asra and
rb are randomly chosen fromZN , ha andhb are computationally indistinguishable fromr′a andr′b, respectively.
Combining the two results, we can conclude thatΠP2

(SM) is computationally indistinguishable fromΠS
P2
(SM).

Similarly, the execution image ofP1 in SM is given byΠP1
(SM) = {h′}. Hereh′ is an encrypted value. Let the

simulated image ofP1 be given byΠS
P1
(SM) = {h∗}, whereh∗ is randomly chosen fromZN2 . SinceEpk is a seman-

tically secure encryption scheme with resulting ciphertext size less thanN2, h′ is computationally indistinguishable

15

Algorithm 5 SF(Λ,Λ′)→ 〈Epk(f(c1)), . . . , Epk(f(cw))〉

Require: P1 hasΛ = 〈Epk(c1), . . . , Epk(cw)〉, Λ′ = 〈Epk(c
′

1), . . . , Epk(c
′

k)〉 and〈π1, . . . , πk〉; P2 hassk
1: P1:

(a). for i = 1 to k do:

• Ti ← Epk(c
′

i)
N−1

• for j = 1 tow do:

– Si,j ← Epk(cj) ∗ Ti

– S′

i,j ← Si,j
ri,j , whereri,j ∈R ZN

• Zi ← πi(S
′

i)

(b). SendZ toP2

2: P2:

(a). ReceiveZ fromP1

(b). for i = 1 to k do

• for j = 1 tow do:

– if Dsk(Zi,j) = 0 then ui,j ← 1
elseui,j ← 0

– Ui,j ← Epk(ui,j)

(c). SendU toP1

3: P1:

(a). ReceiveU fromP2

(b). Vi ← π−1
i (Ui), for 1 ≤ i ≤ k

(c). Epk(f(cj))←
∏k

i=1 Vi,j , for 1 ≤ j ≤ w

fromh∗. As a result,ΠP1
(SM) is computationally indistinguishable fromΠS

P1
(SM). Putting the above results together

and following from Definition 1, we can claim that SM is secureunder the semi-honest model.

4.2 Proof of Security for SSED

The security of SSED directly follows from SM which is used asthe fundamental building block in SSED. This is
because, apart from SM, the rest of the steps in SSED are non-interactive. More specifically, as shown in Algorithm
2, P1 andP2 jointly computeEpk((xi − yi)

2) using SM, for1 ≤ i ≤ m. After this, P1 performs homomorphic
operations onEpk((xi − yi)

2) locally (i.e., no interaction betweenP1 andP2).

4.3 Proof of Security for SMIN

According to Algorithm 3, let the execution image ofP2 be denoted byΠP2
(SMIN), where

ΠP2
(SMIN) = {〈δ, s+ r̄ mod N〉, 〈Γ′

i, µi + r̂i modN〉, 〈L′

i, α〉}

16

Observe thats + r̄ mod N andµi + r̂i modN are derived upon decryptingδ andΓ′

i, for 1 ≤ i ≤ l, respectively.
Note that the modulo operator is implicit in the decryption function. Also,P2 receivesL′ from P1 and letα denote
the (oblivious) comparison result computed fromL′. Without loss of generality, suppose the simulated image ofP2

beΠS
P2
(SMIN), where

ΠS
P2
(SMIN) = {〈δ∗, r∗〉, 〈s′1,i, s

′

2,i〉, 〈s
′

3,i, α
′〉 | for 1 ≤ i ≤ l}

Hereδ∗, s′1,i ands′3,i are randomly generated fromZN2 whereasr∗ ands′2,i are randomly generated fromZN . In
addition,α′ denotes a random bit. SinceEpk is a semantically secure encryption scheme with resulting ciphertext
size less thanN2, δ is computationally indistinguishable fromδ∗. Similarly, Γ′

i andL′

i are computationally indis-
tinguishable froms′1,i ands′3,i, respectively. Also, as̄r and r̂i are randomly generated fromZN , s + r̄ mod N and
µi + r̂i mod N are computationally indistinguishable fromr∗ ands′2,i, respectively. Furthermore, because the func-
tionality is randomly chosen byP1 (at step 1(a) of Algorithm 3),α is either 0 or 1 with equal probability. Thus,α is
computationally indistinguishable fromα′. Combining all these results together, we can conclude thatΠP2

(SMIN) is
computationally indistinguishable fromΠS

P2
(SMIN) based on Definition 1. This implies that during the executionof

SMIN, P2 does not learn any information regardingu, v, su, sv and the actual comparison result. Intuitively speaking,
the informationP2 has during an execution of SMIN is either random or pseudo-random, so this information does not
disclose anything regardingu, v, su andsv. Additionally, asF is known only toP1, the actual comparison result is
oblivious toP2.

On the other hand, the execution image ofP1, denoted byΠP1
(SMIN), is given by

ΠP1
(SMIN) = {M ′

i , Epk(α), δ
′ | for 1 ≤ i ≤ l}

HereM ′

i andδ′ are encrypted values, which are random inZN2 , received fromP2 (at step 3(a) of Algorithm 3). Let
the simulated image ofP1 beΠS

P1
(SMIN), where

ΠS
P1
(SMIN) = {s′4,i, b

′, b′′ | for 1 ≤ i ≤ l}

The valuess′4,i, b
′ andb′′ are randomly generated fromZN2 . SinceEpk is a semantically secure encryption scheme

with resulting ciphertext size less thanN2, it implies thatM ′

i , Epk(α) andδ′ are computationally indistinguishable
froms4,i, b

′ andb′′, respectively. Therefore,ΠP1
(SMIN) is computationally indistinguishable fromΠS

P1
(SMIN) based

on Definition 1. As a result,P1 cannot learn any information regardingu, v, su, sv and the comparison result during
the execution of SMIN.

Based on the above analysis, we can say that the proposed SMINprotocol is secure under the semi-honest model
(following from Definition 1).

4.4 Proof of Security for SMINn

According to Algorithm 4, it is clear that SMINn uses the SMIN protocol as a building block in an iterative manner.
As proved above, SMIN is secure under the semi-honest model.Also, the output of SMIN which are passed as input to
the next iteration in SMINn are in encrypted format. Note that, SMINn is solely based on SMIN and there are no other
interactive steps betweenP1 andP2. Hence, by Composition Theorem [26], we claim that sequential combination of
SMIN routines lead to our SMINn protocol that guarantees security under the semi-honest model.

4.5 Proof of Security for SBOR

The security of SBOR depends solely on the underlying SM protocol. This is because, the only step at whichP1 and
P2 interact in SBOR is during SM. Since SM is secure under the semi-honest model, we claim that SBOR is also
secure under the semi-honest model.

17

4.6 Proof of Security for SF

Without loss of generality, let the execution image of SF forP2 be denoted byΠP2
(SF), and is given as (according to

Algorithm 5)
ΠP2

(SF) = {Zi,j , ui,j | for 1 ≤ j ≤ w}

whereui,j is derived upon decryptingZi,j (at step 2(b) of Algorithm 5). Suppose the simulated image ofP2 be
denoted byΠS

P2
(SF) which can be given by

ΠS
P2
(SF) = {Z∗

i,j , u
∗

i,j | for 1 ≤ j ≤ w}

HereZ∗

i,j is randomly generated fromZN2 . Also,u∗i is a vector generated at random such that exactly one of them is 0
and the rest are random numbers inZN . SinceEpk is a semantically secure encryption scheme with resulting ciphertext
size less thanN2,Zi,j is computationally indistinguishable fromZ∗

i,j . Also, sinceπi is a random permutation function
known only toP1, ui will be a vector with exactly one zero (at random location) and the rest are random numbers in
ZN . Hence,ui is computationally indistinguishable fromu∗i . Thus, we can claim thatΠP2

(SF) is computationally
indistinguishable fromΠS

P2
(SF).

On the other hand, let the execution image ofP1 be denoted byΠP1
(SF), and is given by

ΠP1
(SF) = {Ui,j | for 1 ≤ i ≤ k and1 ≤ j ≤ w}

HereUi,j is an encrypted value sent byP2 at step 2(c) of Algorithm 5. Suppose the simulated image ofP1 be given
by

ΠS
P1
(SF) = {U∗

i,j | for 1 ≤ i ≤ k and1 ≤ j ≤ w}

whereU∗

i,j is a random number inZN2 . SinceEpk is a semantically secure encryption scheme with resulting ciphertext
size less thanN2, Ui,j is computationally indistinguishable fromU∗

i,j . As a result,ΠP1
(SF) is computationally

indistinguishable fromΠS
P1
(SF). Combining all the above results, we can claim that SF is secure under the semi-

honest model according on Definition 1.

5 The Proposed Protocol

In this section, we propose a novel privacy-preservingk-NN classification protocol, denoted by PPkNN, which is
constructed using the protocols discussed in Section 3 as building blocks. As mentioned earlier, we assume that
Alice’s database consists ofn records, denoted byD = 〈t1, . . . , tn〉, andm+ 1 attributes, whereti,j denotes thejth

attribute value of recordti. Initially, Alice encrypts her database attribute-wise, that is, she computesEpk(ti,j), for
1 ≤ i ≤ n and1 ≤ j ≤ m+1, where column(m+1) contains the class labels. Let the encrypted database be denoted
byD′. We assume that Alice outsourcesD′ as well as the future classification process to the cloud. Without loss of
generality, we assume that all attribute values and their Euclidean distances lie in[0, 2l). In addition, letw denote the
number of unique class labels inD.

In our problem setting, we assume the existence of two non-colluding semi-honest cloud service providers, denoted
byC1 andC2, which together form a federated cloud. Under this setting,Alice outsources her encrypted databaseD′

to C1 and the secret keysk to C2. Here it is possible for the data owner Alice to replaceC2 with her private server.
However, if Alice has a private server, we can argue that there is no need for data outsourcing from Alice’s point
of view. The main purpose of usingC2 can be motivated by the following two reasons. (i) With limited computing
resource and technical expertise, it is in the best interestof Alice to completely outsource its data management and
operational tasks to a cloud. For example, Alice may want to access her data and analytical results using a smart
phone or any device with very limited computing capability.(ii) Suppose Bob wants to keep his input query and
access patterns private from Alice. In this case, if Alice uses a private server, then she has to perform computations
assumed byC2 under which the very purpose of outsourcing the encrypted data toC1 is negated.

In general, whether Alice uses a private server or cloud service providerC2 actually depends on her resources. In
particular to our problem setting, we prefer to useC2 as this avoids the above mentioned disadvantages (i.e., in case

18

of Alice using a private server) altogether. In our solution, after outsourcing encrypted data to the cloud, Alice does
not participate in any future computations.

The goal of the PPkNN protocol is to classify users’ query records usingD′ in a privacy-preserving manner.
Consider an authorized user Bob who wants to classify his query recordq = 〈q1, . . . , qm〉 based onD′ in C1. The
proposed PPkNN protocol mainly consists of the following two stages:

• Stage 1 - Secure Retrieval ofk-Nearest Neighbors (SRkNN):
In this stage, Bob initially sends his queryq (in encrypted form) toC1. After this,C1 andC2 involve in a set of
sub-protocols to securely retrieve (in encrypted form) theclass labels corresponding to thek-nearest neighbors
of the input queryq. At the end of this step, encrypted class labels ofk-nearest neighbors are known only toC1.

• Stage 2 - Secure Computation of Majority Class (SCMCk):
Following from Stage 1,C1 andC2 jointly compute the class label with a majority voting amongthek-nearest
neighbors ofq. At the end of this step, only Bob knows the class label corresponding to his input query record
q.

The main steps involved in the proposed PPkNN protocol are as shown in Algorithm 6. We now explain each ofthe
two stages in PPkNN in detail.

5.1 Stage 1 : Secure Retrieval ofk-Nearest Neighbors (SRkNN)

During Stage 1, Bob initially encrypts his queryq attribute-wise, that is, he computesEpk(q) = 〈Epk(q1), . . . , Epk(qm)〉
and sends it toC1. The main steps involved in Stage 1 are shown as steps 1 to 3 in Algorithm 6. Upon receiving
Epk(q), C1 with private input(Epk(q), Epk(ti)) andC2 with the secret keysk jointly involve in the SSED protocol.
HereEpk(ti) = 〈Epk(ti,1), . . . , Epk(ti,m)〉, for 1 ≤ i ≤ n. The output of this step, denoted byEpk(di), is the en-
cryption of squared Euclidean distance betweenq andti, i.e.,di = |q − ti|2. As mentioned earlier,Epk(di) is known
only toC1, for 1 ≤ i ≤ n. We emphasize that the computation of exact Euclidean distance between encrypted vectors
is hard to achieve as it involves square root. However, in ourproblem, it is sufficient to compare the squared Euclidean
distances as it preserves relative ordering. Then,C1 with inputEpk(di) andC2 securely compute the encryptions of
the individual bits ofdi using the SBD protocol. Note that the output[di] = 〈Epk(di,1), . . . , Epk(di,l)〉 is known only
toC1, wheredi,1 anddi,l are the most and least significant bits ofdi, for 1 ≤ i ≤ n, respectively.

After this,C1 andC2 compute the encryptions of class labels corresponding to the k-nearest neighbors ofq in
an iterative manner. More specifically, they computeEpk(c

′

1) in the first iteration,Epk(c
′

2) in the second iteration,
and so on. Herec′s denotes the class label ofsth nearest neighbor toq, for 1 ≤ s ≤ k. At the end ofk iterations,
only C1 knows〈Epk(c

′

1), . . . , Epk(c
′

k)〉. To start with, consider the first iteration.C1 andC2 jointly compute the
encryptions of the individual bits of the minimum value among d1, . . . , dn and encryptions of the location and class
label corresponding todmin using the SMINn protocol. That is,C1 with input (θ1, . . . , θn) andC2 with sk com-
pute([dmin], Epk(I), Epk(c

′)), whereθi = ([di], Epk(Iti), Epk(ti,m+1)), for 1 ≤ i ≤ n. Heredmin denotes the
minimum value amongd1, . . . , dn; Iti andti,m+1 denote the unique identifier and class label corresponding to the
data recordti, respectively. Specifically,(Iti , ti,m+1) is the secret information associated withti. For simplicity, this
paper assumesIti = i. In the output,I andc′ denote the index and class label corresponding todmin. The output
([dmin], Epk(I), Epk(c)) is known only toC1. Now,C1 performs the following operations locally:

• AssignEpk(c
′) toEpk(c

′

1). Remember that, according to the SMINn protocol,c′ is equivalent to the class label
of the data record that corresponds todmin. Thus, it is same as the class label of the most nearest neighbor to q.

• Compute the encryption of difference betweenI andi, where1 ≤ i ≤ n. That is,C1 computesτi = Epk(i) ∗
Epk(I)

N−1 = Epk(i− I), for 1 ≤ i ≤ n.

• Randomizeτi to getτ ′i = τrii = Epk(ri ∗ (i − I)), whereri is a random number inZN . Note thatτ ′i is an
encryption of either 0 or a random number, for1 ≤ i ≤ n. Also, it is worth noting that exactly one of the entries
in τ ′ is an encryption of 0 (which happens iffi = I) and the rest are encryptions of random numbers. Permute
τ ′ using a random permutation functionπ (known only toC1) to getβ = π(τ ′) and send it toC2.

19

Algorithm 6 PPkNN(D′, q)→ cq

Require: C1 hasD′ andπ; C2 hassk; Bob hasq
1: Bob:

(a). ComputeEpk(qj), for 1 ≤ j ≤ m

(b). SendEpk(q) = 〈Epk(q1), . . . , Epk(qm)〉 toC1

2: C1 andC2:

(a). C1 receivesEpk(q) from Bob

(b). for i = 1 to n do:

• Epk(di)← SSED(Epk(q), Epk(ti))

• [di]← SBD(Epk(di))

3: for s = 1 to k do:

(a). C1 andC2:

• ([dmin], Epk(I), Epk(c
′))← SMINn(θ1, . . . , θn), whereθi = ([di], Epk(Iti), Epk(ti,m+1))

• Epk(c
′

s)← Epk(c
′)

(b). C1:

• ∆← Epk(I)
N−1

• for i = 1 to n do:

– τi ← Epk(i) ∗∆

– τ ′i ← τrii , whereri ∈R ZN

• β ← π(τ ′); sendβ toC2

(c). C2:

• Receiveβ fromC1

• β′

i ← Dsk(βi), for 1 ≤ i ≤ n

• ComputeU ′, for 1 ≤ i ≤ n:

– if β′

i = 0 thenU ′

i = Epk(1)

– elseU ′

i = Epk(0)

• SendU ′ toC1

(d). C1:

• ReceiveU ′ fromC2 and computeV ← π−1(U ′)

(e). C1 andC2, for 1 ≤ i ≤ n and1 ≤ γ ≤ l:

• Epk(di,γ)← SBOR(Vi, Epk(di,γ))

4: SCMCk(Epk(c
′

1), . . . , Epk(c
′

k))

20

Upon receivingβ, C2 decrypts it component-wise to getβ′

i = Dsk(βi), for 1 ≤ i ≤ n. After this, he/she computes
an encrypted vectorU ′ of lengthn such thatUi = Epk(1) if β′

i = 0, andEpk(0) otherwise. Since exactly one of
entries inτ ′ is an encryption of 0, this further implies that exactly one of the entries inU ′ is an encryption of 1 and the
rest of them are encryptions of 0’s. It is important to note that if β′

k = 0, thenπ−1(k) is the index of the data record
that corresponds todmin. Then,C2 sendsU ′ to C1. After receivingU ′, C1 performs inverse permutation on it to get
V = π−1(U ′). Note that exactly one of the entry inV isEpk(1) and the remaining are encryptions of 0’s. In addition,
if Vi = Epk(1), thenti is the most nearest tuple toq. However,C1 andC2 do not know which entry inV corresponds
toEpk(1).

Finally,C1 updates the distance vectors[di] due to the following reason:

• It is important to note that the first nearest tuple toq should be obliviously excluded from further computations.
However, sinceC1 does not know the record corresponding toEpk(c

′

1), we need to obliviously eliminate the
possibility of choosing this record again in next iterations. For this,C1 obliviously updates the distance corre-
sponding toEpk(c

′

1) to the maximum value, i.e.,2l− 1. More specifically,C1 updates the distance vectors with
the help ofC2 using the SBOR protocol as below, for1 ≤ i ≤ n and1 ≤ γ ≤ l.

Epk(di,γ) = SBOR(Vi, Epk(di,γ))

Note that whenVi = Epk(1), the corresponding distance vectordi is set to the maximum value. That is, under
this case,[di] = 〈Epk(1), . . . , Epk(1)〉. On the other hand, whenVi = Epk(0), the OR operation has no effect
on the corresponding encrypted distance vector.

The above process is repeated untilk iterations, and in each iteration[di] corresponding to the current chosen label is
set to the maximum value. However,C1 andC2 do not know which[di] is updated. In iterations,Epk(c

′

s) is returned
only to C1. At the end of Stage 1,C1 has〈Epk(c

′

1), . . . , Epk(c
′

k)〉 - the list of encrypted class labels ofk-nearest
neighbors to the input queryq.

5.2 Stage 2 : Secure Computation of Majority Class (SCMCk)

Without loss of generality, suppose Alice’s datasetD consists ofw unique class labels denoted byc = 〈c1, . . . , cw〉.
We assume that Alice outsources her list of encrypted classes toC1. That is, Alice outsources〈Epk(c1), . . . , Epk(cw)〉
to C1 along with her encrypted databaseD′ during the data outsourcing step. Note that, for security reasons, Alice
may add dummy categories into the list to protect the number of class labels, i.e.,w from C1 andC2. However, for
simplicity, we assume that Alice does not add any dummy categories toc.

During Stage 2,C1 with private inputsΛ = 〈Epk(c1), . . . , Epk(cw)〉 andΛ′ = 〈Epk(c
′

1), . . . , Epk(c
′

k)〉, andC2

with sk securely computeEpk(cq). Herecq denotes the majority class label amongc′1, . . . , c
′

k. At the end of stage 2,
only Bob knows the class labelcq.

The overall steps involved in Stage 2 are shown in Algorithm 7. To start with,C1 andC2 jointly compute the
encrypted frequencies of each class label using thek-nearest set as input. That is, they computeEpk(f(ci)) using
(Λ,Λ′) asC1’s input to the secure frequency (SF) protocol, for1 ≤ i ≤ w. The output〈Epk(f(c1)), . . . , Epk(f(cw))〉
is known only toC1. Then,C1 withEpk(f(ci)) andC2 with sk involve in the secure bit-decomposition (SBD) protocol
to compute[f(ci)], that is, vector of encryptions of the individual bits off(ci), for 1 ≤ i ≤ w. After this,C1 and
C2 jointly involve in the SMAXw protocol. Briefly, SMAXw utilizes the sub-routine SMAX to eventually compute
([fmax], Epk(cq)) in an iterative fashion. Here[fmax] = [max(f(c1), . . . , f(cw))] andcq denotes the majority class
out ofΛ′. At the end, the output([fmax], Epk(cq)) is known only toC1. After this,C1 computesγq = Epk(cq + rq),
whererq is a random number inZN known only toC1. Then,C1 sendsγq to C2 andrq to Bob. Upon receivingγq,
C2 decrypts it to get the randomized majority class labelγ′q = Dsk(γq) and sends it to Bob. Finally, upon receiving
rq fromC1 andγ′q fromC2, Bob computes the output class label corresponding toq ascq = γ′q − rq mod N .

5.3 Security Analysis of PPkNN under the Semi-honest Model

Here we provide a formal security proof for the proposed PPkNN protocol under the semi-honest model. First of all,
we stress that due to the encryption ofq and by semantic security of the Paillier cryptosystem, Bob’s input queryq is

21

Algorithm 7 SCMCk(Epk(c
′

1), . . . , Epk(c
′

k))→ cq

Require: 〈Epk(c1), . . . , Epk(cw)〉, 〈Epk(c
′

1), . . . , Epk(c
′

k)〉 are known only toC1; sk is known only toC2

1: C1 andC2:

(a). 〈Epk(f(c1)), . . . , Epk(f(cw))〉 ← SF(Λ,Λ′), whereΛ = 〈Epk(c1), . . . , Epk(cw)〉, Λ′ = 〈Epk(c
′

1), . . . ,
Epk(c

′

k)〉

(b). for i = 1 tow do:

• [f(ci)]← SBD(Epk(f(ci)))

(c). ([fmax], Epk(cq))← SMAXw(ψ1, . . . , ψw), whereψi = ([f(ci)], Epk(ci)), for 1 ≤ i ≤ w

2: C1:

(a). γq ← Epk(cq) ∗ Epk(rq), whererq ∈R ZN

(b). Sendγq toC2 andrq to Bob

3: C2:

(a). Receiveγq fromC1

(b). γ′q ← Dsk(γq); sendγ′q to Bob

4: Bob:

(a). Receiverq fromC1 andγ′q fromC2

(b). cq ← γ′q − rq mod N

protected from Alice,C1 andC2 in our PPkNN protocol. Apart from guaranteeing query privacy, remember that the
goal of PPkNN is to protect data confidentiality and hide data access patterns.

In this paper, to prove a protocol’s security under the semi-honest model, we adopted the well-known security
definitions from the literature of secure multiparty computation (SMC). More specifically, as mentioned in Section
2.3, we adopt the security proofs based on the standard simulation paradigm [26]. For presentation purpose, we
provide formal security proofs (under the semi-honest model) for Stages 1 and 2 of PPkNN separately. Note that the
outputs returned by each sub-protocol are in encrypted formand known only toC1.

5.3.1 Proof of Security for Stage 1

As mentioned earlier, the computations involved in Stage 1 of PPkNN are given as steps 1 to 3 in Algorithm 6. For
ease of presentation, we consider the messages exchanged betweenC1 andC2 in a single iteration (however, similar
analysis can be deduced for other iterations).

According to Algorithm 6, the execution image ofC2 is given by

ΠC2
(PPkNN) = {〈βi, β

′

i〉 | for 1 ≤ i ≤ n}

whereβi is an encrypted value which is random inZN2 . Also, β′

i is derived upon decryptingβi by C2. Remember
that, exactly one of the entries inβ′ is 0 and the rest are random numbers inZN . Without loss of generality, let the
simulated image ofC2 be denoted byΠS

C2
(PPkNN) and is given as

ΠS
C2

(PPkNN) = {〈a′1,i, a
′

2,i〉 | for 1 ≤ i ≤ n}

herea′1,i is randomly generated fromZN2 and the vectora′2 is randomly generated in such a way that exactly one of
the entries is 0 and the rest are random numbers inZN . SinceEpk is a semantically secure encryption scheme with

22

resulting ciphertext size less thanZN2 , we claim thatβi is computationally indistinguishable froma′1,i. In addition,
since the random permutation functionπ is known only toC1, β′ is a random vector of exactly one 0 and random
numbers inZN . Thus,β′ is computationally indistinguishable froma′2. By combining the above results, we can
conclude thatΠC2

(PPkNN) is computationally indistinguishable fromΠS
C2

(PPkNN). This implies thatC2 does not
learn anything during the execution of Stage 1 in PPkNN.

On the other hand, suppose the execution image ofC1 be denoted byΠC1
(PPkNN), and is given by

ΠC1
(PPkNN) = {U ′}

whereU ′ is an encrypted value sent byC2 (at step 3(c) of Algorithm 6). Let the simulated image ofC1 in Stage 1 be
denoted byΠS

C1
(PPkNN), which is given as

ΠS
C1

(PPkNN) = {a′}

The value ofa′ is randomly generated fromZN2 . SinceEpk is a semantically secure encryption scheme with resulting
ciphertexts inZN2 , we claim thatU ′ is computationally indistinguishable froma′. This implies thatΠC1

(PPkNN) is
computationally indistinguishable fromΠS

C1
(PPkNN). Hence,C1 cannot learn anything during the execution of Stage

1 in PPkNN. Combining all these results together, it is clear that Stage 1 of PPkNN is secure under the semi-honest
model.

In each iteration, it is worth pointing out thatC1 andC2 do not know which data record belongs to current
global minimum. Thus, data access patterns are protected from bothC1 andC2. Informally speaking, at step 3(c) of
Algorithm 6, a component-wise decryption ofβ reveals the tuple that satisfy the current global minimum distance to
C2. However, due to the random permutation byC1, C2 cannot trace back to the corresponding data record. Also,
note that decryption operations on vectorβ by C2 will result in exactly one 0 and the rest of the results are random
numbers inZN . Similarly, sinceU ′ is an encrypted vector,C1 cannot know which tuple corresponds to current global
minimum distance.

5.3.2 Security Proof for Stage 2

In a similar fashion, we can formally prove that Stage 2 of PPkNN is secure under the semi-honest model. Briefly,
since the sub-protocols SF, SBD, and SMAXw are secure, no information is revealed toC2. On the other hand, the
operations performed byC1 are entirely on encrypted data; therefore, no information is revealed toC1.

Furthermore, the output data of Stage 1 which are passed as input to Stage 2 are in encrypted format. Therefore,
the sequential composition of the two stages lead to our PPkNN protocol and we claim it to be secure under the semi-
honest model according to the Composition Theorem [26]. In particular, based on the above discussions, it is clear that
the proposed PPkNN protocol protects the confidentiality of the data, user’sinput query, and also hides data access
patterns from Alice,C1, andC2. Note that Alice does not participate in any computations ofPPkNN.

5.4 Security under the Malicious model

The next step is to extend our PPkNN protocol into a secure protocol under the malicious model. Under the malicious
model, an adversary (i.e., eitherC1 or C2) can arbitrarily deviate from the protocol to gain some advantage (e.g.,
learning additional information about inputs) over the other party. The deviations include, as an example, forC1 (acting
as a malicious adversary) to instantiate the PPkNN protocol with modified inputs (sayEpk(q

′) andEpk(t
′

i)) and to
abort the protocol after gaining partial information. However, in PPkNN, it is worth pointing out that neitherC1 norC2

knows the results of Stages 1 and 2. In addition, all the intermediate results are either random or pseudo-random values.
Thus, even when an adversary modifies the intermediate computations he/she cannot gain any additional information.
Nevertheless, as mentioned above, the adversary can changethe intermediate data or perform computations incorrectly
before sending them to the honest party which may eventuallyresult in the wrong output. Therefore, we need to ensure
that all the computations performed and messages sent by each party are correct.

Remember that the main goal of SMC is to ensure the honest parties to get the correct result and to protect
their private input data from the malicious parties. Therefore, under the two-party SMC scenario, if both parties are
malicious, there is no point to develop or adopt an SMC protocol at the first place. In the literature of SMC [14],

23

it is the norm that at most one party can be malicious under thetwo-party scenario. When only one of the party is
malicious, the standard way of preventing the malicious party from misbehaving is to let the honest party validate the
other party’s work using zero-knowledge proofs [11]. However, checking the validity of computations at each step of
PPkNN can significantly increase the overall cost.

An alternative approach, as proposed in [36], is to instantiate two independent executions of the PPkNN protocol
by swapping the roles of the two parties in each execution. Atthe end of the individual executions, each party
receives the output in encrypted form. This is followed by anequality test on their outputs. More specifically, suppose
Epk1

(cq,1) andEpk2
(cq,2) be the outputs received byC1 andC2 respectively, wherepk1 andpk2 are their respective

public keys. Note that the outputs in our case are in encrypted format and the corresponding ciphertexts (resulted from
the two executions) are under two different public key domains. Therefore, we stress that the equality test based on the
additive homomorphic encryption properties which was usedin [36] is not applicable to our problem. Nevertheless,
C1 andC2 can perform the equality test based on the traditional garbled-circuit technique [35].

5.5 Complexity Analysis

The computation complexity of Stage 1 in PPkNN is bounded byO(n) instantiations of SBD and SSED,O(k) in-
stantiations of SMINn, andO(n ∗ k ∗ l) instantiations of SBOR. We emphasize that the computation complexity of
the SBD protocol proposed in [50] is bounded byO(l) encryptions andO(l) exponentiations (under the assumption
that encryption and decryption operations based on Paillier cryptosystem take similar amount of time). Also, the
computation complexity of SSED is bounded byO(m) encryptions andO(m) exponentiations. In addition, the com-
putation complexity of SMINn is bounded byO(l ∗ n ∗ log2 n) encryptions andO(l ∗ n ∗ log2 n) exponentiations.
Since SBOR utilizes SM as a sub-routine, the computation cost of SBOR is bounded by (small) constant number of
encryptions and exponentiations. Based on the above analysis, the total computation complexity of Stage 1 is bounded
byO(n ∗ (l +m+ k ∗ l ∗ log2 n)) encryptions and exponentiations.

On the other hand, the computation complexity of Stage 2 is bounded byO(w) instantiations of SBD, and one
instantiation of both SF and SMAXw. Here the computation complexity of SF is bounded byO(k ∗ w) encryptions
andO(k ∗w) exponentiations. Therefore, the total computation complexity of Stage 2 is bounded byO(w ∗ (l + k +
l ∗ log2 w)) encryptions and exponentiations.

In general,w ≪ n, therefore, the computation cost of Stage 1 should be significantly higher than that of Stage 2.
This observation is further justified by our empirical results given in the next section.

6 Empirical Results

In this section, we discuss some experiments demonstratingthe performance of our PPkNN protocol under different
parameter settings. We used the Paillier cryptosystem [45]as the underlying additive homomorphic encryption scheme
and implemented the proposed PPkNN protocol in C. Various experiments were conducted on a Linux machine with
an IntelR© XeonR© Six-CoreTM CPU 3.07 GHz processor and 12GB RAM running Ubuntu 12.04 LTS.

To the best of our knowledge, our work is the first effort to develop a securek-NN classifier under the semi-honest
model. Thus, there is no existing work to compare with our approach. Therefore, we evaluate the performance of our
PPkNN protocol under different parameter settings.

6.1 Dataset and Experimental Setup

For our experiments, we used the Car Evaluation dataset fromthe UCI KDD archive [9]. The dataset consists of
1728 data records (i.e.,n = 1728) with 6 input attributes (i.e.,m = 6). Also, there is a separate class attribute and
the dataset is categorized into four different classes (i.e., w = 4). We encrypted this dataset attribute-wise, using the
Paillier encryption whose key size is varied in our experiments, and the encrypted data were stored on our machine.
Based on our PPkNN protocol, we then executed a random query over this encrypted data. For the rest of this section,
we do not discuss about the performance of Alice since it is a one-time cost. Instead, we evaluate and analyze the
performances of the two stages in PPkNN separately.

24

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25

T
im

e
(m

in
ut

es
)

Number of k Nearest Neighbors

K=512
K=1024

(a) Total cost of Stage 1

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25

T
im

e
(s

ec
on

ds
)

Number of k Nearest Neighbors

K=512
K=1024

(b) Total cost of Stage 2

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25

T
im

e
(m

in
ut

es
)

Number of k Nearest Neighbors

SRkNN
SRkNNo
SRkNNp

(c) Efficiency gains of Stage 1 forK = 1024

Figure 2: Computation costs of PPkNN for varying number ofk nearest neighbors and different encryption key sizes
in bits (K)

6.2 Performance of PPkNN

We first evaluated the computation costs of Stage 1 in PPkNN for varying number ofk-nearest neighbors. Also, the
Paillier encryption key sizeK is either 512 or 1024 bits. The results are shown in Figure 2(a). ForK=512 bits, the
computation cost of Stage 1 varies from 9.98 to 46.16 minuteswhenk is changed from 5 to 25, respectively. On
the other hand, whenK=1024 bits, the computation cost of Stage 1 varies from 66.97to 309.98 minutes whenk is
changed from 5 to 25, respectively. In either case, we observed that the cost of Stage 1 grows almost linearly with
k. In addition, for any givenk, we identified that the cost of Stage 1 increases by almost a factor of 7 wheneverK is
doubled. For example, whenk=10, Stage 1 took 19.06 and 127.72 minutes to generate the encrypted class labels of
the 10 nearest neighbors underK=512 and 1024 bits, respectively. Furthermore, whenk=5, we observe that around
66.29% of cost in Stage 1 is accounted due to SMINn which is initiatedk times in PPkNN (once in each iteration).
Also, the cost incurred due to SMINn increases from 66.29% to 71.66% whenk is increased from 5 to 25.

We now evaluate the computation costs of Stage 2 for varyingk andK. As shown in Figure 2(b), forK=512 bits,
the computation time for Stage 2 to generate the final class label corresponding to the input query varies from 0.118
to 0.285 seconds whenk is changed from 5 to 25. On the other hand, forK=1024 bits, Stage 2 took 0.789 and 1.89
seconds whenk = 5 and 25, respectively. The low computation costs of Stage 2were due to SMAXw which incurs
significantly less computations than SMINn in Stage 1. This further justifies our theoretical analysis in Section 5.5.
Note that, in our dataset,w=4 andn=1728. Like in Stage 1, for any givenk, the computation time of Stage 2 increases
by almost a factor of 7 wheneverK is doubled. E.g., whenk=10, the computation time of Stage 2 varies from 0.175
to 1.158 seconds when the encryption key sizeK is changed from 512 to 1024 bits. As shown in Figure 2(b), a similar
analysis can be observed for other values ofk andK.

Based on the above results, it is clear that the computation cost of Stage 1 is significantly higher than that of Stage
2 in PPkNN. Specifically, we observed that the computation time of Stage 1 accounts for at least 99% of the total time
in PPkNN. For example, whenk = 10 andK=512 bits, the computation costs of Stage 1 and 2 are 19.06 minutes
and 0.175 seconds, respectively. Under this scenario, costof Stage 1 is 99.98% of the total cost of PPkNN. We also
observed that the total computation time of PPkNN grows almost linearly withn andk.

6.3 Performance Improvement of PPkNN

We now discuss two different ways to boost the efficiency of Stage 1 (as the performance of PPkNN depends pri-
marily on Stage 1) and empirically analyze their efficiency gains. First, we observe that some of the computations in
Stage 1 can be pre-computed. For example, encryptions of random numbers, 0s and 1s can be pre-computed (by the
corresponding parties) in the offline phase. As a result, theonline computation cost of Stage 1 (denoted by SRkNNo)
is expected to be improved. To see the actual efficiency gainsof such a strategy, we computed the costs of SRkNNo

and compared them with the costs of Stage 1 without an offline phase (simply denoted by SRkNN) and the results for
K = 1024 bits are shown in Figure 2(c). Irrespective of the values ofk, we observed that SRkNNo is around 33%
faster than SRkNN. E.g., whenk = 10, the computation costs of SRkNNo and SRkNN are 84.47 and 127.72 minutes,
respectively (boosting the online running time of Stage 1 by33.86%).

25

Stage Communication Size (in MBytes) Network Delay (in seconds)
Stage 1 154.741 123.79
Stage 2 0.037 0.0296

Table 3: Communication sizes and network delays in PPkNN for k = 10 andK = 1024 bits

Our second approach to improve the performance of Stage 1 is by using parallelism. Since operations on data
records are independent of one another, we claim that most computations in Stage 1 can be parallelized. To empirically
evaluate this claim, we implemented a parallel version of Stage 1 (denoted by SRkNNp) using OpenMP programming
and compared its cost with the costs of SRkNN (i.e., the serial version of Stage 1). The results forK = 1024 bits are
shown in Figure 2(c). The computation cost of SRkNNp varies from 12.02 to 55.5 minutes whenk is changed from 5
to 25. We observe that SRkNNp is almost 6 times more efficient than SRkNN. This is because our machine has 6 cores
and thus computations can be run in parallel on 6 separate threads. Based on the above discussions, it is clear that
efficiency of Stage 1 can indeed be improved significantly using parallelism. Moreover, we can also use the existing
map-reduce techniques to execute parallel operations on multiple nodes to drastically improve the performance further.
Hence, the level of achievable performance in PPkNN actually depends on the implementation.

On the other hand, Bob’s computation cost in PPkNN is mainly due to the encryption of his input query. In our
dataset, Bob’s computation cost is 4 and 17 milliseconds whenK is 512 and 1024 bits, respectively. It is apparent that
PPkNN is very efficient from Bob’s computational perspective which is especially beneficial when he issues queries
from a resource-constrained device (such as mobile phone and PDA).

6.4 Communication Costs of PPkNN

The communication costs of PPkNN for k = 10 andK = 1024 bits are shown in Table 3. Specifically, the total
communication sizes of Stages 1 and 2 in PPkNN are 154.741 and 0.037 MB, respectively. By assuming a standard
10 Mbps LAN setting, the corresponding network delays betweenC1 andC2 are 123.79 and 0.0296 seconds, respec-
tively. Here it is evident that the total network delay (around 2 minutes) of PPkNN is significantly less than its total
computation cost. Similar conclusions can be drawn for other parameter settings.

7 Conclusion

Classification is an important task in many data mining applications such as detection of fraud by credit card compa-
nies and prediction of tumor cells levels in blood. To protect user privacy, various privacy-preserving classification
techniques have been proposed in the literature for the pastdecade. Nevertheless, the existing techniques are not ap-
plicable in outsourced database environment where the dataresides in encrypted form on a third-party server. Along
this direction, this paper proposed a novel privacy-preservingk-NN classification protocol over encrypted data in the
cloud. Our protocol protects the confidentiality of the data, user’s input query, and hides the data access patterns. We
also evaluated the performance of our protocol under different parameter settings.

Since improving the efficiency of SMINn is an important first step for improving the performance of our PPkNN
protocol, we plan to investigate alternative and more efficient solutions to the SMINn problem in our future work.
Also, in this paper, we used the well-knownk-NN classifier and developed a privacy-preserving protocolfor it over
encrypted data. As a future work, we will investigate and extend our research to other classification algorithms.

References

[1] C. C. Aggarwal and P. S. Yu. A general survey of privacy-preserving data mining models and algorithms.
Privacy-preserving data mining, pages 11–52, 2008.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data. InACM SIGMOD,
pages 563–574, 2004.

26

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. InACM Sigmod Record, volume 29, pages 439–450.
ACM, 2000.

[4] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries.
Journal of Cryptology, 23(2):281–343, Apr. 2010.

[5] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. InIEE ICDE, pages 217–228,
2005.

[6] D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology - CRYPTO ’91, pages
377–391. Springer-Verlag, 1991.

[7] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp - a system for secure multi-party computation. InACM
CCS, October 2008.

[8] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In
Proceedings of the 13th European Symposium on Research in Computer Security: Computer Security, ESORICS
’08, pages 192–206. Springer, 2008.

[9] M. Bohanec and B. Zupan. The UCI KDD Archive. University of Cali-
fornia, Department of Information and Computer Science, Irvine, CA, 1997.
http://archive.ics.uci.edu/ml/datasets/Car+Evaluati on.

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer systems,
25(6):599–616, 2009.

[11] J. Camenisch and M. Michels. Proving in zero-knowledgethat a number is the product of two safe primes. In
EUROCRYPT, pages 107–122. Springer-Verlag, 1999.

[12] R. Canetti. Security and composition of multiparty cryptographic protocols.Journal of Cryptology, 13(1):143–
202, 2000.

[13] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. InIEEE FOCS, pages
136 – 145, oct. 2001.

[14] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. InProceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 11–19. ACM, 1988.

[15] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y.Zhu. Tools for privacy preserving distributed data
mining. ACM SIGKDD Explorations Newsletter, 4(2):28–34, 2002.

[16] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomorphic encryption. In
Advances in Cryptology – EUROCRYPT, pages 280–299, 2001.

[17] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of paillier’s probabilistic
public-key system. InProceedings of the 4th International Workshop on Practice and Theory in Public Key
Cryptography, pages 119–136. Springer-Verlag, 2001.

[18] I. Damgård and M. Jurik. A length-flexible threshold cryptosystem with applications. InProceedings of the
Australasian conference on Information security and privacy, pages 350–364. Springer-Verlag, 2003.

[19] S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Managing and accessing data in the cloud: Privacy risks
and approaches. In7th International Conference on Risk and Security of Internet and Systems (CRiSIS), pages 1
–9, 2012.

27

http://archive.ics.uci.edu/ml/datasets/Car+Evaluation

[20] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Securek-nearest neighbor query over encrypted data in out-
sourced environments. Inthe 30th IEEE International Conference on Data Engineering(ICDE), 2014. To appear.
http://web.mst.edu/ ˜ wjiang/SkNN-ICDE14.pdf .

[21] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of association rules.Informa-
tion Systems, 29(4):343–364, 2004.

[22] S. Fienberg and J. McIntyre. Data swapping: Variationson a theme by dalenius and reiss. InPrivacy in statistical
databases, pages 519–519. Springer, 2004.

[23] P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting or lotteries. InProceedings
of the 4th International Conference on Financial Cryptography, pages 90–104, 2001.

[24] C. Gentry. Fully homomorphic encryption using ideal lattices. InACM STOC, pages 169–178, 2009.

[25] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme. InEUROCRYPT, pages
129–148. Springer-Verlag, 2011.

[26] O. Goldreich.The Foundations of Cryptography, volume 2, chapter Encryption Schemes, pages 373–470. Cam-
bridge University Press, Cambridge, England, 2004.

[27] O. Goldreich. The Foundations of Cryptography, volume 2, chapter General Cryptographic Protocols, pages
599–746. Cambridge, University Press, Cambridge, England, 2004.

[28] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game - a completeness theorem for protocols
with honest majority. In19th Symposium on the Theory of Computing, pages 218–229, New York, 1987. ACM.

[29] S. Goldwasser, S. Micali, and C. Rackoff. The knowledgecomplexity of interactive proof systems.SIAM Journal
of Computing, 18:186–208, February 1989.

[30] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the database-service-provider
model. InACM SIGMOD, pages 216–227, 2002.

[31] W. Henecka, S. K ögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Tasty: tool for automating secure
two-party computations. InACM CCS, pages 451–462. ACM, 2010.

[32] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimensional range queries over outsourced
data.The VLDB Journal, 21(3):333–358, 2012.

[33] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homo-
morphism. InIEEE ICDE, pages 601–612, 2011.

[34] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than custom protocols? In
NDSS, 2012.

[35] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. In
Proceedings of the 20th USENIX conference on Security (SEC ’11), pages 35–35, 2011.

[36] Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual execution.
In IEEE Symposium on Security and Privacy, pages 272–284. IEEE Computer Society, 2012.

[37] M. Kantarcioglu and C. Clifton. Privately computing a distributed k-nn classifier. InProceedings of the 8th
European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD ’04, pages 279–
290, New York, NY, USA, 2004. Springer-Verlag.

[38] J. Katz and Y. Lindell.Introduction to Modern Cryptography. Chapman & Hall, CRC Press, 2007.

[39] Y. Lindell. General composition and universal composability in secure multiparty computation.Journal of
Cryptology, 22(3):395–428, 2009.

28

http://web.mst.edu/~wjiang/SkNN-ICDE14.pdf

[40] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Advances in Cryptology (CRYPTO), pages 36–54.
Springer, 2000.

[41] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving data mining.Journal of Privacy
and Confidentiality, 1(1):5, 2009.

[42] P. Mell and T. Grance. The nist definition of cloud computing (draft).NIST special publication, 800:145, 2011.

[43] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. Privacy-preserving ridge regression
on hundreds of millions of records. InIEEE Symposium on Security and Privacy (SP ’13), pages 334–348. IEEE
Computer Society, 2013.

[44] S. R. Oliveira and O. R. Zaiane. Privacy preserving clustering by data transformation. InProc. of the 18th
Brazilian Symposium on Databases, pages 304–318, 2003.

[45] P. Paillier. Public key cryptosystems based on composite degree residuosity classes. InEurocrypt, pages 223–
238. Springer-Verlag, 1999.

[46] S. Pearson and A. Benameur. Privacy, security and trustissues arising from cloud computing. InIEEE CloudCom,
pages 693–702, 2010.

[47] Y. Qi and M. J. Atallah. Efficient privacy-preserving k-nearest neighbor search. InProceedings of the 28th
International Conference on Distributed Computing Systems, pages 311–319, Washington, DC, USA, 2008.
IEEE Computer Society.

[48] S. Ravu, P. Neelakandan, M. Gorai, R. Mukkamala, and P. Baruah. A computationally efficient and scalable
approach for privacy preserving knn classification. InIEEE International Conference on High Performance
Computing (HiPC), 2012.

[49] A. Sahai. Computing on encrypted data.Information Systems Security, pages 148–153, 2008.

[50] B. K. Samanthula and W. Jiang. An efficient and probabilistic secure bit-decomposition. In8th ACM Symposium
on Information, Computer and Communications Security (ASIACCS), pages 541–546, 2013.

[51] A. Shamir. How to share a secret.Commun. ACM, 22(11):612–613, Nov. 1979.

[52] P. Williams, R. Sion, and B. Carbunar. Building castlesout of mud: practical access pattern privacy and correct-
ness on untrusted storage. InACM CCS, pages 139–148, 2008.

[53] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In
ACM SIGMOD, pages 139–152, 2009.

[54] X. Xiao, F. Li, and B. Yao. Secure nearest neighbor revisited. In IEEE ICDE, pages 733–744, 2013.

[55] L. Xiong, S. Chitti, and L. Liu. K nearest neighbor classification across multiple private databases. InProceedings
of the 15th ACM International Conference on Information andKnowledge Management, pages 840–841, New
York, NY, USA, 2006. ACM.

[56] A. C. Yao. Protocols for secure computations. InProceedings of the 23rd Annual Symposium on Foundations of
Computer Science, pages 160–164, Washington, DC, USA, 1982. IEEE Computer Society.

[57] A. C. Yao. How to generate and exchange secrets. InProceedings of the 27th Symposium on Foundations of
Computer Science, pages 162–167, Washington, DC, USA, 1986. IEEE Computer Society.

[58] P. Zhang, Y. Tong, S. Tang, and D. Yang. Privacy preserving naive bayes classification.Advanced Data Mining
and Applications, pages 730–730, 2005.

29

	1 Introduction
	1.1 Problem Definition
	1.2 Our Contribution

	2 RELATED WORK
	2.1 Privacy-Preserving Data Mining (PPDM)
	2.2 Query processing over encrypted data
	2.3 Threat Model
	2.4 Paillier Cryptosystem

	3 Privacy-Preserving Protocols
	4 Security Analysis of Privacy-Preserving Primitives under the Semi-Honest Model
	4.1 Proof of Security for SM
	4.2 Proof of Security for SSED
	4.3 Proof of Security for SMIN
	4.4 Proof of Security for SMINn
	4.5 Proof of Security for SBOR
	4.6 Proof of Security for SF

	5 The Proposed Protocol
	5.1 Stage 1 : Secure Retrieval of k-Nearest Neighbors (SRkNN)
	5.2 Stage 2 : Secure Computation of Majority Class (SCMCk)
	5.3 Security Analysis of PPkNN under the Semi-honest Model
	5.3.1 Proof of Security for Stage 1
	5.3.2 Security Proof for Stage 2

	5.4 Security under the Malicious model
	5.5 Complexity Analysis

	6 Empirical Results
	6.1 Dataset and Experimental Setup
	6.2 Performance of PPkNN
	6.3 Performance Improvement of PPkNN
	6.4 Communication Costs of PPkNN

	7 Conclusion

