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Abstract

Data Mining has wide applications in many areas such as bgnkiedicine, scientific research and among gov-
ernment agencies. Classification is one of the commonly tastd in data mining applications. For the past decade,
due to the rise of various privacy issues, many theoreticdlgactical solutions to the classification problem have
been proposed under different security models. Howeveh thie recent popularity of cloud computing, users now
have the opportunity to outsource their data, in encryptenh f as well as the data mining tasks to the cloud. Since the
data on the cloud is in encrypted form, existing privacy preisg classification techniques are not applicable. Ia thi
paper, we focus on solving the classification problem overyged data. In particular, we propose a seGuféN
classifier over encrypted data in the cloud. The propésBidN protocol protects the confidentiality of the data, user’
input query, and data access patterns. To the best of ourl&dge; our work is the first to develop a secirdliN
classifier over encrypted data under the standard semshaormel. Also, we empirically analyze the efficiency of
our solution through various experiments.
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1 Introduction

Recently, the cloud computing paradigm[[10, 42] is revohizing the organizations’ way of operating their data
particularly in the way they store, access and process detan emerging computing paradigm, cloud computing
attracts many organizationsto consider seriously reggroud potential in terms of its cost-efficiency, flexityijiand
offload of administrative overhead. Most often, the orgatiins delegate their computational operations in additio
to their data to the cloud.

Despite tremendous advantages that the cloud offers,gyravad security issues in the cloud are preventing com-
panies to utilize those advantages. When data are high$jtsenthe data need to be encrypted before outsourcing to
the cloud. However, when data are encrypted, irrespecfitteeaunderlying encryption scheme, performing any data
mining tasks becomes very challenging without ever dearghe datal[46, 49]. In addition, there are other privacy
concerns, demonstrated by the following example.

Example 1 Suppose an insurance company outsourced its encryptedneest database and relevant data mining
tasks to a cloud. When an agent from the company wants tordigtethe risk level of a potential new customer, the
agent can use a classification method to determine the rigt & the customer. First, the agent needs to generate a
data recordq for the customer containing certain personal informatidthe customer, e.g., credit score, age, marital
status, etc. Then this record can be sent to the cloud, andltlug will compute the class label fgr Nevertheless,
sinceq contains sensitive information, to protect the customgirigacy,q should be encrypted before sending it to the
cloud.

The above example shows that data mining over encrypted d&&D) on a cloud also needs to protect a user’s
record when the record is a part of a data mining process. d#erecloud can also derive useful and sensitive
information about the actual data items by observing tha datess patterns even if the data are encrypted[19, 52].
Therefore, the privacy/security requirements of the DMEBhtem on a cloud are threefold: (1) confidentiality of the
encrypted data, (2) confidentiality of a user’s query recardl (3) hiding data access patterns.

Existing work on Privacy-Preserving Data Mining (eithertpebation or secure multi-party computation based
approach) cannot solve the DMED problem. Perturbed dataotipassess semantic security, so data perturbation
technigues cannot be used to encrypt highly sensitive dalso the perturbed data do not produce very accurate
data mining results. Secure multi-party computation baggmoach assumes data are distributed and not encrypted
at each participating party. In addition, many intermegl@mputations are performed based on non-encrypted data.



As a result, in this paper, we proposed novel methods to tefédg solve the DMED problem assuming that the
encrypted data are outsourced to a cloud. Specifically, wasfon the classification problem since it is one of the
most common data mining tasks. Because each classificaibmijue has their own advantage, to be concrete,
this paper concentrates on executing kheearest neighbor classification method over encrypted idathe cloud
computing environment.

1.1 Problem Definition

Suppose Alice owns a databaBeof n records/y, . . ., t, andm + 1 attributes. Let; ; denote the'*" attribute value
of recordt;,. Initially, Alice encrypts her database attribute-widgttis, she computes,; (¢; ;), for 1 < ¢ < n and
1 <7 <m+1,where columr{m + 1) contains the class labels. We assume that the underlyingpitn scheme is
semantically securé [45]. Let the encrypted database beteidbyD’. We assume that Alice outsourcBs as well
as the future classification process to the cloud.

Let Bob be an authorized user who wants to classify his inpedrdg = (g1, ..., gm) by applying thek-NN
classification method based d@». We refer to such a process as privacy-preseritidN (PPENN) classification
over encrypted data in the cloud. Formally, we define theNmPprotocol as:

PPNN(D’, q) — ¢4

wherec, denotes the class label fg@after applyingt-NN classification method o’ andq.

1.2 Our Contribution

In this paper, we propose a novel NN protocol, a securg-NN classifier over semantically secure encrypted data.
In our protocol, once the encrypted data are outsourcecetaltdud, Alice does not participate in any computations.
Therefore, no information is revealed to Alice. In partamibur protocol meets the following privacy requirements:

e Contents ofD or any intermediate results should not be revealed to thedclo

Bob’s queryg should not be revealed to the cloud.
e ¢, should be revealed only to Bob. In addition, no informati¢imen thanc, should be revealed to Bob.

Data access patterns, such as the records correspondimagjtaearest neighbors gf should not be revealed
to Bob and the cloud (to prevent any inference attacks).

We emphasize that the intermediate results seen by the olaug protocol are either newly generated randomized
encryptions or random numbers. Thus, which data recordsgond to thé&-nearest neighbors and the output class
label are not known to the cloud. In addition, after sendirggemcrypted query record to the cloud, Bob does not
involve in any computations. Hence, data access patteenfuigther protected from Bob. More details are given in
Sectiorb.

The rest of the paper is organized as follows. We discuss xfstiregy related work and some concepts as a
background in Sectio] 2. A set of privacy-preserving prote@nd their possible implementations are provided in
SectiorB. The proposed PRN protocol is explained in detail in Sectidh 5. Sectidn &disses the performance of
the proposed protocol based on various experiments. Wdummthe paper along with future work in Sectidn 7.

2 RELATED WORK

In this section, we first present existing work related togey preserving data mining and query processing over
encrypted data. Then, we present security definition anBaliker cryptosystem along with its additive homomorphic
properties. For ease of presentation, some common nagatied throughout this paper are summarized in Tdble 1.
At first, it seems fully homomorphic cryptosystems (e.g4]JZan solve the DMED problem since it allows a
third-party (that hosts the encrypted data) to executdrarlifunctions over encrypted data without ever decryptin
them. However, we stress that such techniques are very si¥peand their usage in practical applications have yet to



Table 1: SOME COMMON NOTATIONS
Alice The data owner holding database

(Epk, Dsi) | A pair of Paillier's encryption and decryption

functions with(pk, sk) as public-secret key pair

D’ Attribute-wise encryption oD

Bob An authorized user who can accdd$in the cloud

Bob’s input query

£

Number of data records iy

3

m Number of attributes irD

w Number of unique class labels in

l Domain size (in bits) of the Squared Euclidean
distance based ob

(z1,21) The least and most significant bits of integer

(2] Vector of encryptions of the individual bits ef

cq The class label correspondingd¢dased onD

be explored. For example, it was shownlin|[25] that even faxknsgecurity parameters one “bootstrapping” operation
of the homomorphic operation would take at least 30 seconastogh performance machine.

Due to the above reason, we usually need at least two paripesform arbitrary computations over encrypted data
based on an additive homomorphic encryption scheme. Ise@bssible to use the existing secret sharing techniques
in SMC, such as Shamir's schemel[51], to develop ANA¥ protocol. However, our work is different from the secret
sharing based solution from the following two aspects. @luBons based on the secret sharing schemes require at
least three parties whereas our work require only two part{@) Hiding data access patterns is still an unsolved
problem in the secret sharing based schemes, whereas dupvatects data access patterns from both participating
parties, and it can be extended into a solution under thessitaring schemes. For example, the constructions based
on Sharemind [8], a well-known SMC framework which is basadtle secret sharing scheme, assumes that the
number of participating parties is three. Thus, our workrihi@gonal to Sharemind and other secret sharing based
schemes. Therefore, for the rest of this paper, we omit theudsion related to the techniques that can be constructed
using fully homomorphic cryptosystems or secret sharifigses.

2.1 Privacy-Preserving Data Mining (PPDM)

Privacy Preserving Data Mining (PPDM) is defined as the psad extracting/deriving the knowledge about data
without compromising the privacy of datal [3,/41] 48]. In th@espdecade, many privacy-preserving classification
techniques have been proposed in the literature in orderdteqt user privacy. Agrawal and Srikant [3], Lindell
and Pinkas[40] introduced the notion of privacy-preseguinder data mining applications. In particular to privacy-
preserving classification, the goal is to build a classifierider to predict the class label of input data record based o
the distributed training dataset without compromisinggheacy of data.

1. Data Perturbation Methodsn these methods, values of individual data records ateifeyd by adding random
noise in a such way that the distribution of perturbed dab kery different from that of actual data. After such a
transformation, the perturbed data is sent to the minerffope the desired data mining tasks. Agrawal and SriKant [3]
proposed the first data perturbation technique to build &sibectree classifier. Since then many other randomization
based methods have been proposed in the literature sucfPasa®, 44,58]. However, as mentioned earlier in Section
[Il, data perturbation techniques cannot be applicable foas#cally secure encrypted data. Also, they do not produce
accurate data mining results due to the addition of stediktioises to the data.

2. Data Distribution MethodsThese methods assume the dataset is partitioned eitheohtaily or vertically
and distributed across different parties. The parties e collaborate to securely mine the combined data and lear



the global data mining results. During this process, dataeaby individual parties is not revealed to other parties.
This approach was first introduced by Lindell and Pinkas {®#0d proposed a decision tree classifier under two-party
setting. Since then much work has been published usingeseuultiparty computation techniqués([1]/15,33[37, 55].

Classification is one important task in many applicationdai mining such as health-care and business. Recently,
performing data mining in the cloud attracted significatetion. In cloud computing, data owner outsources his/her
data to the cloud. However, from user’s perspective, pyi@@omes an important issue when sensitive data needs
to be outsourced to the cloud. The direct way to guard theoouted data is to apply encryption on the data before
outsourcing.

Unfortunately, since the hosted data on the cloud is in gxied/form in our problem domain, the existing privacy
preserving classification techniques are not sufficientapplicable to PENN due to the following reasong:) In
existing methods, the data are partitioned among at leaspasties, whereas in our case encrypted data are hosted on
the cloud.(i7) Since some amount of information is loss due to the additfestatistical noises in order to hide the
sensitive attributes, the existing methods are not aceuféat) Leakage of data access patterns: the cloud can easily
derive useful and sensitive information about users’ disms by simply observing the database access patterns.
For the same reasons, in this paper, we do not consider seaearest neighbor techniques in which the data are
distributed between two parties (e.q..[47]).

2.2 Query processing over encrypted data

Using encryption as a way to achieve the data confidentiaddy cause another issue at the cloud during the query
evaluation. The question here is “how can the cloud perfasmputations over encrypted data while the data stored
are in encrypted form?” Along this direction, various teicjues related to query processing over encrypted data have
been proposed, e.g./[2,130] 32]. However, we observe thalllRRs a more complex problem than the execution of
simple kNN queries over encrypted dafa [53]| 54]. For one, the intdiatek-nearest neighbors in the classification
process, should not be disclosed to the cloud or any userenvghasize that the recent methodlin| [54] reveals the
k-nearest neighbors to the user. Secondly, even if we knovk-thearest neighbors, it is still very difficult to find
the majority class label among these neighbors since thegrarypted at the first place to prevent the cloud from
learning sensitive information. Third, the existing wotkl dot addressed the access pattern issue which is a crucial
privacy requirement from the user’s perspective.

In our most recent work [20], we proposed a novel seéunearest neighbor query protocol over encrypted data
that protects data confidentiality, user’s query privacg hides data access patterns. However, as mentioned above,
PP:NN is a more complex problem and it cannot be solved directipgithe existing securk-nearest neighbor
techniques over encrypted data. Therefore, in this papem®xtend our previous work i [20] and provide a new
solution to the PENN classifier problem over encrypted data.

More specifically, this paper is different from our preliraimy work [20] in the following four aspects. First, in this
paper, we introduced new security primitives, namely secoinimum (SMIN), secure minimum out of numbers
(SMIN,,), secure frequency (SF), and proposed new solutions fon.tf@econd, the work i [20] did not provide
any formal security analysis of the underlying sub-protec®n the other hand, this paper provides formal security
proofs of the underlying sub-protocols as well as th&RR protocol under the semi-honest model. Additionally,
we demonstrate various techniques through which the pegppotocol can possibly be extended to a protocol that
is secure under the malicious model. Third, our preliminaoyk in [20] addresses only secut®&IN query which is
similar to Stage 1 of PENN. However, Stage 2 in BN is entirely new. Finally, our empirical analyses in Seuqti
VI are based on a real dataset whereas the resultslin [20haezgllon a simulated dataset. In addition, new results are
included in this paper.

As mentioned earlier, one can implement the proposed potstamder secret sharing schemes. By doing so, we
need to have at least three independent parties. In this, werknly concentrate on the two party situation; thus, we
adopted the Paillier cryptosystem. Two-party and multigpéhree or more parties) SMC protocols are complement
to each other, and their applications mainly depend on tineeun of available participants. In practice, two mutually
independent clouds are easier to find and are cheaper tat@pénathe other hand, utilizing three cloud servers and
secret sharing schemes to implement the proposed protmeyisesult more efficient running time. We believe both
two-party and multi-party schemes are important. As a futuork, we will consider secret sharing based:NR



implementations.

2.3 Threat Model

In this paper, privacy/security is closely related to theoant of information disclosed during the execution of a
protocol. In the proposed protocols, our goal is to ensuiiefeomation leakage to the involved parties other than what
they can deduce from their own outputs. There are many wagsfioe information disclosure. To maximize privacy
or minimize information disclosure, we adopt the securéfimitions in the literature of secure multiparty compudati
(SMC) first introduced by Yao'’s Millionaires’ problem for wdh a provably secure solution was developed[[56, 57].
This was extended to multiparty computations by Goldreical €]28]. It was proved in[[28] that any computation
which can be done in polynomial time by a single party can Alsaone securely by multiple parties. Since then
much work has been published for the multiparty case (&g, 12, 18,16, 26, 38, 39]).

There are three common adversarial models under SMC: sendsh, covert and malicious. An adversarial model
generally specifies what an adversary or attacker is alldeetb during an execution of a secure protocol. In the
semi-honest model, an attacker (i.e., one of the particigatarties) is expected to follow the prescribed steps of a
protocol. However, the attacker can compute any additimrfi@tmation based on his or her private input, output and
messages received during an execution of the secure plofega result, whatever can be inferred from the private
input and output of an attacker is not considered as a privatgtion. An adversary in the semi-honest model can
be treated as a passive attacker whereas an adversary irmlicos model can be treated as an active attacker who
can arbitrarily diverge from the normal execution of a poatio On the other hand, the covert adversary madel [4] lies
between the semi-honest and malicious models. More spabifian adversary under the covert model may deviate
arbitrarily from the rules of a protocol, however, in the €ad cheating, the honest party is guaranteed to detect this
cheating with good probability.

In this paper, to develop secure and efficient protocols, sseime that parties are semi-honest for two reasons.
First, as mentioned iri_[35], developing protocols under gbmi-honest setting is an important first step towards
constructing protocols with stronger security guarant&escond, it is worth pointing out that all the practical SMC
protocols proposed in the literature (e.@../[31/34/35) 48¢ implemented only under the semi-honest model. By
semi-honest model, we implicitly assume that the cloudiserproviders (or other participating users) utilized im ou
protocols do not collude. Since current known cloud serpiceviders are well established IT companies, it is hard
to see the possibility for two companies, e.g., Google andiZan, to collude as it will damage their reputations
and consequently place negative impact on their revenuass, Th our problem domain, assuming the participating
parties are semi-honest is very realistic. Detailed sicdsfinitions and models can be found(in[[26, 27]. Briefly, the
following definition captures the above discussion regag@i secure protocol under the semi-honest model.

Definition 1 Leta; be the input of party?;, II;(7) be P;’s execution image of the protocelandb; be the output for
party P; computed fromr. Then,r is secure iflI;(7) can be simulated from; andb; such that distribution of the
simulated image is computationally indistinguishablerfid; ().

In the above definition, an execution image generally inetuthe input, the output and the messages communi-
cated during an execution of a protocol. To prove a protaceécure under semi-honest model, we generally need to
show that the execution image of a protocol does not leakr#foyration regarding the private inputs of participating
parties [26]. In this paper, we first propose akRIN protocol that is secure under the semi-honest model. \&e th
extend it to be secure under other adversarial models.

2.4 Palillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic arwdbpbilistic asymmetric encryption scheme whose security
is based on the Decisional Composite Residuosity Assumidi6]. Let £, be the encryption function with public
key pk given by (V, g) and D, be the decryption function with secret key given by a trapdoor function (that is,

the knowledge of the factors @¥). Here, N is the RSA modulus of bit lengtk” and generatog € Z3... For any
givena,b € Zy, the Paillier encryption scheme exhibits the followingmedies:



a. Homomorphic Addition

D (Epr(a+ b)) = Dai.(Epr(a) * Epi(b) mod N?)

b. Homomorphic Multiplication

Do (Epr(a % b)) = Dy (Epr(a)® mod N?)

¢. Semantic Security -The encryption scheme is semantically securé [26, 29].flgrigiven a set of ciphertexts, an
adversary cannot deduce any additional information reggitie corresponding plaintexts.

In this paper, we assume that a data owner encrypted his atat@using Paillier cryptosystem before outsourcing
to a cloud. However, we stress that any other additive honmphio public-key cryptosystem satisfying the above
properties can also be used to implement our proposed miotd&e simply use the well-known Paillier's scheme in
our implementations. Also, for ease of presentation, we dne mod N2 term during the homomaorphic operations
in the rest of this paper. In addition, many extensions tdP@idier cryptosystem have been proposed in the literature
[17,18/23]. However, to be more specific, in this paper wethseriginal Paillier cryptosystem [45]. Nevertheless,
our work can be directly applied to the above mentioned eskoms of the Paillier’s scheme.

3 Privacy-Preserving Protocols

In this section, we present a set of generic sub-protocatsthl be used in constructing our proposedIN protocol

in Sectiorb. All of the below protocols are considered urtderparty semi-honest setting. In particular, we assume
the exist of two semi-honest parti& and P, such that the Paillier's secret kay is known only toP, whereak is
treated as public.

e Secure Multiplication (SM) Protocol:
This protocol consider®; with input (E,;(a), Epr (b)) and outputsE,,(a * b) to P, wherea andb are not
known to P; and . During this process, no information regardingndb is revealed ta?; andP.

e Secure Squared Euclidean Distance (SSED) Protocol:
In this protocol,P; with input (E,(X), E,,(Y)) and P, with sk securely compute the encryption of squared
Euclidean distance between vectdfsandY. HereX andY arem dimensional vectors whetE,,(X) =
(Epe(z1), ..., Epr(@m)) andEp, (Y) = (Epk (Y1), - - -, Epk(ym)). The output of the SSED protocolis,, (| X —
Y'|?) which is known only toP;.

e Secure Bit-Decomposition (SBD) Protocol:
Py with input E,,..(z) and P, securely compute the encryptions of the individual bits ofvhere0 < » < 2.
The outpulz] = (Epk(21), - .., Epi(z1)) is known only toP; . Herez; andz; are the most and least significant
bits of integerz, respectively.

e Secure Minimum (SMIN) Protocol:
In this protocol,P; holds private inputw’, v") andP, holdssk, wherew' = ([u], Epk(s.)) andv’ = ([v], Epi(sy)).
Heres, (resp.,s,) denotes the secret associated witfresp.,v). The goal of SMIN is forP; and P; to jointly
compute the encryptions of the individual bits of minimummher betweem andv. In addition, they compute
Epk(Smin(u,v))- Thatis, the output ig[min(u, v)], Epk (Smin(u,v))) Which will be known only toP;. During
this protocol, no information regarding the contents.0f, s,,, ands,, is revealed ta?; and P.

e Secure Minimum out ofi Numbers (SMIN,) Protocol:
In this protocol, we consideP, with n encrypted vector§d], ..., [d,]) along with their respective encrypted
secrets and® with sk. Here[d;] = (Epi(di1),. .., Epk(di;)) whered; ; andd, ; are the most and least sig-
nificant bits of integew; respectively, forl < ¢ < n. The secret ofi; is given bys,,. P, and P; jointly
computelmin(ds, . .., dy)]. In addition, they comput&,. (smin(d,.....d,))- At the end of this protocol, the out-
put ((min(dy, ..., dn)], Epk(Smin(ds ,....d,))) 1S known only toP;. During the SMIN, protocol, no information
regarding any ofl;’s and their secrets is revealedfp and P».



Algorithm 1 SM(Epx(a), Epi (b)) — Epk(a *b)
Require: P hasE,;(a) andE,(b); P» hassk
1. P

(a). Pick two random numbersg, r, € Zy

(b). @’ «+ Epi(a) * Epk(ra)

(©). b < Epi(b) x Epi(1p); senda’, b’ to P,
2: Py

(a). Receiver’ andd’ from P,

(b). ha < Dsi(a’); hy < Dsi(b')

(). h < hg * hy mod N

(d). b < E,i(h); sendh’ to P,
3 P

(a). Receivey from P,

(b). s« B/« Ep(a)N ="

(€). 8" < s* Ep(b)N~"a

(d). Epk(axb) < "% Epp(rq x7p)N "

e Secure Bit-OR (SBOR) Protocol:
Py with input (Ep(01), Epk(02)) and P, securely comput&,,;. (o1 V 02), whereo; andos are two bits. The
outputE,x (01 V 02) is known only toP;.

e Secure Frequency (SF) Protocol:
In this protocol,P; with private input((E,x(c1), - .. Epk(cw)), (Epk(ch), - .., Epk(c},))) and P, securely com-
pute the encryption of the frequencygf denoted byf(c;), inthe list{c],..., ¢} ), for1 < j < w. We explic-
itly assume that;’s are unique and, € {ci,..., ¢y}, forl <i <k. The output E,(f(c1)), ..., Epr(f(cw)))
will be known only toP;. During the SF protocol, no information regarditfgc;, and f(c;) is revealed taP,
andP,, forl1 <i < kandl <j <w.

Now we either propose a new solution or refer to the most effidknown implementation to each of the above pro-
tocols. First of all, efficient solutions to SM, SSED, SBD &#®BOR were presented in our preliminary work[20].
However, for completeness, we briefly discuss those saolstiere. Also, we discuss SMIN, SM}Nand SF problems

in detail and propose new solutions to each one of them.

Secure Multiplication (SM). Consider a party?; with private input( £, (a), Ep, (b)) and a partyP, with the secret
key sk. The goal of the secure multiplication (SM) protocol is tture the encryption ok « b, i.e., E,,(a * b) as
output toP;. During this protocol, no information regardiagandb is revealed taP; and P,. The basic idea of the
SM protocol is based on the following property which holdsday givena, b € Zy:

axb=(a+ry)x(b+ry) —axr,—bxre—rexmy (1)

where all the arithmetic operations are performed ur&ler The overall steps in SM are shown in Algorittit 1.
Briefly, P; initially randomizes: andb by computings’ = E,i(a) * Ep(r,) andd’ = E,;(b) * Epi(rp), and sends
them toP,. Herer, andr;, are random numbers iy, known only toP;. Upon receiving P, decrypts and multiplies
them to geth = (a + r,) * (b + ) mod N. Then, P, encryptsh and sends it td?;. After this, P, removes extra
random factors from’ = E,;((a + r,) * (b + rp)) based on Equatidd 1 to g&t,x(a x b). Note that, under Paillier



Algorithm 2 SSEQE,x (X), Epi(Y)) — Epr(|X — Y|?)
Require: P, hasE,;(X)andE,;(Y); P, hassk
1. P, for1 <¢<mdo:

(@). Epk(zi — yi) « Epi(x;) * Epk(yi)N_l

2. PrandP,, for 1 <7 <mdo:

(a). ComputeF,((x; — y;)?) using the SM protocol
3 Py

@). Epn(|X =Y ?) [T Epr (i — vi)?)

cryptosystem, N — z” is equivalent to “-x” in Z . Hereafter, we use the notatiore p Z  to denote- as a random
number inZy .

Example 2 Let us assume that = 59 andb = 58. For simplicity, letr, = 1 andr, = 3. Initially, P, computes
a' = Ep(60) = Epp(a) * Epg(ra), V) = Epr(61) = Epk(b) * Ep,(rp) and sends them tB,. Then,P, decrypts and
multiplies them to get = 3660. After this, P, encryptsh to geth’ = E,(3660) and sends it td”;. Upon receiving
B, Py computess = E,;(3483) = Epr (3660 — a x 1), ands’ = Ep,(3425) = E,;(3483 — b * r,). Finally, P,
computes, (a * b) = Epr(3422) = ELr (3425 — 1 % 13). O

Secure Squared Euclidean Distance (SSED)n the SSED protocol; holds two encrypted vectof&,; (X ), Epr(Y))
andP; holds the secretkesk. HereX andY” are twom-dimensional vectors whete,, (X ) = (Epi (1), - .., Epk(zm))
andE,,(Y) = (Epk(y1), - - -, Epk(ym)). The goal of the SSED protocol is to securely compg(| X —Y'|?), where
|X — Y| denotes the Euclidean distance between vectoendY. At a high level, the basic idea of SSED follows
from following equation:

(X = Y2 =) (=) (2)
i=1
The main steps involved in the SSED protocol are as shown gothm[2. Briefly, forl < i < m, P initially
computesE,x(x; — y;) by using the homomorphic properties. ThEn and P jointly computeE,x ((z; — v:)?)
using the SM protocol, fot < ¢ < m. Note that the outputs of SM are known only . Finally, by applying
homomorphic properties b, ((z; — y;)?), P1 computest,, (| X — Y|?) locally based on Equatidn 2.

Example 3 Letus assume thd@ holds the encrypted data recordsX@fandY given byE,;(X) = (E,x(63), Epi(1),
Epk(l)’ Epk(145)a Epp (233)5 Epk(l)’ Epp (3)’ Epp (0)7 Epy, (6)’ Epy (O)> and Epy, (Y) = <Epk(56)7 Epk(l)’ Epp (3)7
E,1(130), Epr(256), Epk(1), Epk(2), Epi (1), Epi(6), Epr(2)). During the SSED protocolP; initially computes
Epi(z1 —y1) = Epi(7), ..., Epi(z10 — y10) = Ep(—2). Then, Py and P, jointly computeE, ((z1 — y1)?) =
Epi(49) = SM(Epk(7), Epi (7)), - - s Ep((T10 — y10)?) = SM(Ep(—2), Epi(—2)) = Ei(4). Py locally com-
putesEp (| X — Y[?) = Epk(zggl(fi —yi)?) = Epr(813). O]

Secure Bit-Decomposition (SBD).We assume thaP; hasE,;(z) and P, hassk, wherez is not known to both
parties and) < z < 2'. Given E,;(z), the goal of the secure bit-decomposition (SBD) protocebisompute the
encryptions of the individual bits of binary representatad z. That is, the output i§z] = (Epi(21),. .., Epk(21)),
wherez; andz; denote the most and least significant bits eéspectively. At the end, the output is known only to
Py. During this process, neither the valuexafior anyz;’s is revealed ta?; and P.

Since the goal of this paper is not to investigate existindp SBotocols, we simply use the most efficient SBD
protocol that was recently proposed(in[[50].



Example 4 Let us assume that= 55 and!/ = 6. Then the SBD protocol i [$0] with private inpdt,; (55) returns
[55] = <Epk(1), Epk(l), Ep (0), Epk(l), Epk(l), Epk(l» as the output ta?; . [l

Secure Minimum (SMIN). In this protocol, we assume th& holds private inputw’, v") and P, holdssk, where
v = ([u], Epx(sy)) andv’ = ([v], Epk(sy)). Heres, ands, denote the secrets correspondingitandv, respec-
tively. The main goal of SMIN is to securely compute the eptigns of the individual bits ofnin(u, v), denoted
by [min(u,v)]. Here[u] = (Epk(u1),. .., Epp(w)) andv] = (Epk(v1), ..., Epe(vi)), whereu; (resp.,v1) and;
(resp.u;) are the most and least significant bitadfresp. v), respectively. In addition, they comput®y. (smin(u,v))»
the encryption of the secret corresponding to the minimulmesbetween, andv. At the end of SMIN, the output
([min(u, v)], Epk(Smin(u,v))) is kKnown only toP; .

We assume that < u,v < 2' and propose a novel SMIN protocol. Our solution to SMIN is mhaimotivated
from the work of [20]. Precisely, the basic idea of the praggbSMIN protocol is forP; to randomly choose the
functionality F' (by flipping a coin), wheréd”' is eitheru > v or v > u, and to obliviously execut& with P,. SinceF'
is randomly chosen and known only By, the result of the functionality’ is oblivious toP,. Based on the comparison
result and chosef, Py computesmin(u, v)] and Epk (Smin(u,)) l0cally using homomorphic properties.

The overall steps involved in the SMIN protocol are shown igokithm[3. To start with P, initially chooses the
functionality F' as either: > v or v > w randomly. Then, using the SM protocé}, computesE, i, (u; * v;) with the
help of P, for 1 < i <. After this, the protocol has the following key steps, peried byP; locally, for1 < i < :

e Compute the encrypted bit-wise XOR between the djtandv; asT; = Ep,(u; 4 v;) using the below formu-
latiort]:

T = Epi(u;) * Epg(vi) % Epg(u; % v;)N 2

e Compute an encrypted vectdf by preserving the first occurrence éf,; (1) (if there exists one) irf" by
initializing Hy = E,(0). The rest of the entries df are computed afl; = H;*, = T;. We emphasize that at
most one of the entry ifif is E,;(1) and the remaining entries are encryptions of either O or damrmnumber.

e Then, P, computes?; = E,,(—1) = H;. Note that “-1” is equivalent to ‘N — 1” underZy. From the
above discussions, it is clear thhf = E,;(0) at most once sincé&l; is equal toE,; (1) at most once. Also,
if ®; = E,(0), then index;j is the position at which the bits af andv differ first (starting from the most
significant bit position).

Now, depending o', P, creates two encrypted vectdig andI" as follows, forl < i < :

o If F':u > v, compute

Wi = Epp(u;) * Epg(u; * Ui)N_l
= Epp(u;* (1 —v;))
Fi = Epk (’Ui — ’U,l) * Epk (721)
Epr(vi —ui +7;)
e If F:v > u,compute:
Wi = Epi(v;) * Epg(u; * vi)N_l
= Ep(vi* (1 —w;))
Fi = Epk (’U,l — vi) * Epk (721)
Epk (ui —v; + 721)

1In general, for any two given bits; andos, the propertyo; @ 02 = 01 + 02 — 2(01 * 02) always hold.
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Algorithm 3 SMIN(v/, v") — ([min(u, v)], Epk (smin(uw)))

Require:

1. P

(a).
(b).

(c).

(d).
(e).

2: Ps:

(a).
(b).

(c).

(d).

3 P

(a).
(b).
(c).

Py hasu’ = ([u], Epk(sy)) andv’ = ([v], Epk(sy)), where0 < u,v < 2'; P, hassk

Randomly choose the functionaliy
for i =1toldo:

o Epp(u; % v;) < SM(Epk(us), Epk(vs))

o T; «— Epk(ui (&%) vi)

o H, leil xT;, 1 ER LN andHO = Epk(O)

o &, Epk(—l) x H;

o if F:u>vthenW; «+ Epk(ui) * Epk(ui * Ui)N71 andl’; + Epk(Ui — ui) * Epk(fi); 7 ER LN
elseW; <+ Epk(vi) * Epk(ui * vi)Nil andl’; <+ Epk(ui — ’Ui) * Epk(’f’i); i €ER LN

o L Wi 1! €p Ly
if F':u>vthen: 6 < Epi(sy — sy) * Epi(F)
elsed < Epp(sy — sv) * Epi(T), wherer €g Zn
IV « st (F) andL’ « 7T2(L)
Send), I andL’ to P,

Decryption:M; <+ Dy (L%), for1 <i <1

if 3 j such thatV/; = 1thena « 1
elsea <0

if a = 0 then:

o M| <+ Ep(0),for1 <i<lI
o ¢ + Ep(0)

else

o M! « T *rN, wherer €cg Zy and is different forl < i <1
e § «+ dxr), wherers €g Zy

SendM’, E,; (o) andé’ to Py

M « 7y H(M') andf « &' % Epp(a)N "
A — ]sz * Epk(a)Nfﬂ, forl <<
if F:u > vthen:

° Epk(smin(u,v)) < Epk(su) * 0
o Epp(min(u, v);) < Eprp(us) * As, forl <i <{

else

° Epk(smin(u,v)) < Epk(sv) * 0
o Epp(min(u, v);) < Eprp(v;) * As, forl <4 <{

11



Table 2: P, chooses asv > u whereu = 55 andv = 58 (Note: All column values are in encrypted form except
M; column. Also,r €g Zy is different for each row and column. )

1 1 0 r 0 0 -1 r 1+7r r r 0 1

1 1 0 r 0 0 -1 T r r T 0 1

0 1 1 -1+ 1 1 0 1 1+7r r r -1 0

1 0 0 1+7r 1 r r r —1+7r r r 1 1

1 1 0 r 0 r r r r 1 1 0 1

1 0 0 1+7r 1 T T T r r T 1 1
where7; is a random number iy. The observation here is # : u > v, thenW,; = E,;(1) iff u; > v;, and

W; = E,;(0) otherwise. Similarly, whed : v > u, we haveW,; = E,(1) iff v; > u;, andW; = E,;(0) otherwise.
Also, depending of, I'; stores the encryption of randomized difference betwgemdwv; which will be used in later
computations.

After this, P, computes. by combining® andW. More precisely,P; computes.; = W; x* tI)Z;‘, wherer} is a
random number i . The observation here is¥an indexj such tha, = E,;(0), denoting the first flip in the bits
of v andv, thenW; stores the corresponding desired information, i.e., wéreth > v; orv; > u; in encrypted form.
In addition, dependlng oA, P, computes the encryption of randomized difference betwgeamds, and storesiitin
d. Specifically, ifF' : u > v, thend = Epi (s, — s, + 7). Otherwiseg = Ep;(sy — sy + 7), Wherer €g Zy.

After this, P, permutes the encrypted vectdraind L using two random permutation functions andrs. Specif-
ically, P, computed” = 7 (T") andL’ = m»(L), and sends them along withto P,. Upon receiving P, decryptsL’
component-wise to get/; = D, (L}), for 1 < i <, and checks for index. Thatis, ifM; = 1, thenP, setsa to 1,
otherwise sets it to 0. In additio®, computes a new encrypted vecfar’ depending on the value of Precisely, if
a =0, thenM! = E,,(0), for1 <i <. HereE,;(0) is different for eachi. On the other hand, when= 1, P, sets
M to the re-randomized value 6f. That is, M/ = T, x 7", where the termN comes from re-randomization and
r €r Zy should be different for each FurthermorePg computes§’ E,(0) if & = 0. However, wherwv = 1,
P, setsd’ to § « rlY, wherer; is a random number il . Then, P, sendsM’ »k(a) andd’ to Pp. After receiving
M', E,; () andd’, P, computes the inverse permutation/af asM = wl_l(M’). Then,P; performs the following
homomorphic operations to compute the encryptioit’obit of min(u, v), i.e., Epy (min(u, v);), for 1 <i <1

 Remove the randomness fral; by computing); = M; « Epi ()N =7

e If F':u > v, compute the'” encrypted bit ofnin(u, v) asE, (min(u, v);) = Epk(u;) * i = Epr(u; + o *
(v; — u;)). Otherwise, comput&,, (min(u,v);) = Epk(vi) * A = Epi(vi + a * (u; — v;)).

Also, depending orF', P; computeski (Smin(u,»)) as follows. IfF : u > v, Pi computesEp(Smin(u,v)) =
Epi(su) * 0, where = §' x E,, ()N 7. Otherwise, he/she computesy, (smin(u,v)) = Epk(sv) * 0.

In the SMIN protocol, one main observation (upon which we also justify the correctness of the final output)
is that if F : u > v, thenmin(u,v); = (1 — «) * u; + a * v; always holds, fol < i < [. On the other hand, if
F :v > u, thenmin(u,v); = a *u; + (1 — a) * v; always holds. Similar conclusions can be drawnd@f; u,v)-
We emphasize that using similar formulations one can alsigdea SMAX protocol to computémax(u,v)] and
Epk (Smax(u,v)). Also, we stress that there can be multiple secrebs afidv that can be fed as input (in encrypted
form) to SMIN and SMAX. For example, let. ands? (resp.,s’ andsz) be two secrets associated with(resp.v).
Then the SMIN protocol take§u], Epr(sh), Epk(si)) and([v], By, (sh), Epi(s2)) asPy's private input and outputs
[min(u, v)], Epg (st andE, (s> to P;.

min(u, ’U)) Smin(u,'u))

Example 5 For simplicity, consider that. = 55, v = 58, and! = 6. Suppose, ands, be the secrets associated
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Algorithm 4 SMIN,, (([d1], Epk(Sdy))s - - - » ([dn], Epk(54,.))) = ([dmin]s Epk(Sdm )
Require: Py has(([d1], Epk(Sa.)), - - ([dn], Epk(sa,.))); P2 hassk
1. P

(@). [d}] « [d;] ands] < Epi(saq,),forl <i<n
(b). num +n
2: for i = 1to [log, n]:

(a). for 1 < j < |2um|:
e if i =1then:

= ([dy;_1], 85;_1) = SMIN(z,y), wherex = ([dy; ], s5;_,) andy = ([dy;], s5;)
— [dy;] <= 0andss; < 0
else
= ([dai5-1y41) 8% j—1)41) < SMIN(z,y), wherex = ([dy;;_y) 1) 85;j_1)41) @Ay =

([dIQij—l]a Sl2ij—1)

= [dy;;—1] = Oandsh;;_; <0

(b). num + [%W

3. Py [dunin] < [d}] and B,y (sq,..) < 8,

with v and v, respectively. Assume th& holds([55], E,k(sy.)) ([58], Epk(sy)). In addition, we assume thad’'s
random permutation functions are as given below.

i = 1 2 3 4 5 6
4 { 4 { { {

(1) = 6 5 4 3 2 1

ma(2) = 2 1 5 6 3 4

Without loss of generality, suppo$g chooses the functionalitff : v > w. Then, various intermediate results
based on the SMIN protocol are as shown in Téble 2. Followimg fTabld 2, we observe that:

¢ At most one of the entry il is E,;(1), namelyHs, and the remaining entries are encryptions of either 0 or a
random number itz .

e Index;j = 3 is the first position at which the corresponding bitsucind v differ.
o &3 = F,;,(0) sinceHs is equal toE,;(1). Also, sincells = 1, P, setsa to 1.

e In additiOH,Epk(Smin(uyv)) =Ey (s, +(1— a) * Sv) = Epk(su)

At the end of SMIN, only; knowsmin(u, v)] = [u] = [55] and Epx (Smin(u,v)) = Epk(5u)- O
Secure Minimum out of n Numbers (SMIN,,). ConsiderP; with private input([di], ..., [d,]) along with their
encrypted secrets ankh with sk, where0 < d; < 2! and[d;] = (Epk(din1),- .., Epe(diy)), for 1 < i < n.
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[dmin] = [d}] < [min(d], df)]

[d}] < [min(d [df]
[d}] < [min(d [d5] < [min(df, d}y)][df] < [min(dy,
) () AR AR

Figure 1: Binary execution tree far= 6 based on SMIly

Here the secret of; is denoted by, (sq,), for 1 < i < n. The main goal of the SMIN protocol is to compute
[min(dy, ..., d,)] = [dmin] Without revealing any information abod}’s to P, and P,. In addition, they compute
the encryption of the secret corresponding to the globairmim, denoted by, (sq,,;.). Here we construct a new
SMIN,, protocol by utilizing SMIN as the building block. The proasSMIN, protocol is an iterative approach and

it computes the desired output in an hierarchical fashiomalch iteration, minimum between a pair of values and the
secret corresponding to the minimum value are computedn@rnypted form) and fed as input to the next iteration,
thus, generating a binary execution tree in a bottom-updastit the end, only?; knows the final resulfd,;,] and

Epk (Sdrnin)'

The overall steps involved in the proposed SMIpfrotocol are highlighted in Algorithinl 4. InitiallyP; assigns
[d;] and E,;(sq,) to a temporary vectofd;] and variables], for 1 < i < n, respectively. Also, he/she creates
a global variablenum and initializes it ton, wherenum represents the number of (non-zero) vectors involved in
each iteration. Since the SM}Norotocol executes in a binary tree hierarchy (bottom-upitag, we havelog, n|
iterations, and in each iteration, the number of vectorslired varies. In the first iteration (i.ei,= 1), P; with
private input(([dy; _, ], s5;_,), ([d3;], 55;)) and P with sk involve in the SMIN protocol, forl < j < |nwm | At
the end of the first iteration, onli, knows [min(d;; ,,d5;)] ands; ) and nothing is revealed B, for

1<j< |2em|. Also, Py stores the resulinin(dy, ,,d5;)] ands, o

In addition, P updates the values @f5,], s, to 0 andnum to [mgﬂ respectively.

During thei'” iteration, only the non-zero vectors (along with the cquoesling encrypted secrets) are involved
in SMIN, for 2 < i < [log, n|. For example, during the second iteration (iies 2), only ([d}], s}), ([d5], s5), and
so on are involved. Note that in each iteration, the outprevsaled only taP; andnum is updated td%] At the
end of SMIN,, P; assigns the final encrypted binary vector of global minimatueg, i.e.[min(dy, ..., d,)] whichis
stored in[d}], t0 [dmin]. In addition,P; assignss} t0 Ep (Sd,.,,)-

min(dy; 4,

min(d}

) in [dy; ;] andsy; ,, respectively.

Example 6 SupposeP; holds([di], ..., [dg]) (i.e.,n = 6). For simplicity, here we are assuming that there are no
secrets associated Wim’s Then, based on the SMINrotocol, the binary execution tree (in a bottom-up fashion
computgmin(ds, . .., dg)] is shown in Figuré€ll. Note thafiy;] is initially set to[d;], for1 < i < 6. O

Secure Bit-OR (SBOR). SupposeP; holds(E,(01), Epk(02)) and P, holds sk, whereo; ando, are two bits not
known to both parties. The goal of the SBOR protocol is to selgicomputeF, . (01 V o2). At the end of this protocol,
only P; knowsE,; (01 V o2). During this process, no information relatedbtoando, is revealed ta? andP,. Given
the secure multiplication (SM) protocdf; can compute,; (o1 V 02) as follows:

e P, with input (E,x(01), Epk(02)) and P, involve in the SM protocol. At the end of this step, the output
E,i (01 % 02) is known only toP; . Note that, since, ando, are bits,E,; (01 * 02) = Epi(01 A 02).

o Epr(01V 02) = Ep(01 + 02) % Epi(01 A og) V7L,
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We emphasize that, for any given two bitsandoo, the property; V 0o = 01 + 02 — 01 A 02 always holds. Note
that, by homomorphic addition proper,i (o1 + 02) = Epi(01) * Epg(02).

Secure Frequency (SF).Consider a situation wher®, holds ((Epx(c1),. .., Epk(cw)), (Epr(ch), - ., Epr(c))))
andP, holds the secret keyk. The goal of the SF protocol is to securely comphig (f(c;)), for1 < j < w. Here
f(c;) denotes the number of times elemepbccurs (i.e., frequency) in the ligt], ..., c¢;). We explicitly assume
thatc, € {c1,...,cup}, forl1 <i <k.

The output(E,.(f(c1)), ..., Epr(f(cw))) is revealed only taP;. During the SF protocol, neithef nor c; is
revealed taP; andP». Also, f(c;) is kept private from bottP; and P, for1 <i < kandl < j < w.

The overall steps involved in the proposed SF protocol acevehin Algorithm[3. To start with,P; initially
computes an encrypted vect®r such thatS; ; = E i (c; — ¢}), for1 < j < w. Then,P; randomizesS; component-
wise to getS; ; = Epi(rij * (¢; — c;)), wherer; ; is arandom number ifi v . After this, forl <4 <k, P, randomly
permutesS; component-wise using a random permutation functiptknown only toP;). The outputZ; < m;(S})
is sent toP,. Upon receiving P, decryptsZ; component-wise, computes a vectgrand proceeds as follows:

o If Dy (Z; ;) =0, thenu, ; is setto 1. Otherwisey, ; is setto 0.

e The observationis, sineg € {ci, ..., ¢y}, that exactly one of the entries in vectéyis an encryption of 0 and
the rest are encryptions of random numbers. This furtheli@mthat exactly one of the decrypted valuesZpf
is 0 and the rest are random numbers. Precisely, if= 1, thenc; = c;-1(;).

e Computel; ; = Epi(u, ;) and sendittadPy, forl <i < kandl < j < w.

Upon receiving/, P; performs row-wise inverse permutation on it to et= wi‘l(Ui), for1 <4 < k. Finally, P,
computesE, i (cj) = Hle Vi,; locally, forl < j < w.

4 Security Analysis of Privacy-Preserving Primitives undethe Semi-Honest
Model

First of all, we emphasize that the outputs in the above raeratl protocols are always in encrypted format, and are
known only toP;. Also, all the intermediate results revealedipare either random or pseudo-random. Note that,
the SBD protocol in[[50] is secure under the semi-honest mddeerefore, here we provide security proofs for the
other protocols under the semi-honest model. InformalBagmg, we claim that all the intermediate results seen by
P, and P in the mentioned protocols are either random or pseudoerand

As mentioned in Sectioh 2.3, to formally prove that a protassecure[[26] under the semi-honest model, we
need to show that the simulated execution image of that pobte computationally indistinguishable from its actual
execution image. Remember that, an execution image génierdlides the messages exchanged and the information
computed from these messages.

4.1 Proof of Security for SM

According to Algorithml, let the execution image Bf be denoted byIp, (SM) which is given byllp,(SM) =
{{d, hy), V', hy)} whereh, = a + r, mod N andh, = b+ r, mod N are derived upon decrypting andd’,
respectively. Note thalk, andh,; are random numbers iiy. Suppose the simulated image Bf be denoted by
I3, (SM), wherell?, (SM) = {(a*,r,), (b*,r})} Herea* andb* are randomly generated frofw- whereas-, and
r, are randomly generated frofw. SinceE, is a semantically secure encryption scheme with resulipigectext
size less thailV2, o’ andb’ are computationally indistinguishable frazt andb*, respectively. Similarly, as, and
ry are randomly chosen froféy, h, andh;, are computationally indistinguishable frorfu andr;, respectively.
Combining the two results, we can conclude tHat (SM) is computationally indistinguishable frofhy, (SM).
Similarly, the execution image d?; in SM is given byllp, (SM) = {h’}. Hereh' is an encrypted value. Let the
simulated image oP; be given byl'IISD1 (SM) = {h*}, whereh* is randomly chosen frorf y-. SinceE,;, is a seman-
tically secure encryption scheme with resulting ciphdrseze less thaiV2, &’ is computationally indistinguishable
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Algorithm 5 SFA, A') — (Byie(F (1))~ Bpi(f (c0)))
Require: P, hasA = (Epi(ct), ..., Epr(cw)), A = (Epr(c}), . .., Epr(c),)) and(m, ..., m); P» hassk
1. P

(a). for i = 1to k do:

o T; + Ep(c)N -1

%

e for j = 1tow do:
- S@j — Epk(Cj) * Tl
- S}, < Si;77, wherer; ; €gr Zn
(b). Send” to P,
2: Py
(a). ReceiveZ from Py
(b). for i =1tok do

e for j = 1tow do:

— if Dsk(Zi,j) = 0 then Uj,j 1
elseu; ; + 0

— Uij < Epr(uij)
(c). SendJ to P,
3 P

(a). Receivd/ from P,
(b). Vi < 7w, 1(U;), for1 <i <k
©)- Bpr(f(e;)  Ilizy Vigo for1 < j < w

fromh*. As aresult]lp, (SM) is computationally indistinguishable froffi?, (SM). Putting the above results together
and following from Definition 1, we can claim that SM is securaler the semi-honest model.

4.2 Proof of Security for SSED

The security of SSED directly follows from SM which is usedths fundamental building block in SSED. This is
because, apart from SM, the rest of the steps in SSED aremeractive. More specifically, as shown in Algorithm
[2, P, and P, jointly computeE,,((z; — y;)?) using SM, forl < i < m. After this, P, performs homomorphic
operations orE, ((z; — y:)?) locally (i.e., no interaction betwedd, andP,).

4.3 Proof of Security for SMIN
According to Algorithn 3, let the execution image Bf be denoted b¥Ip, (SMIN), where

I p, (SMIN) = {(3, s + 7 mod N, (T';, u; + 7 modN), (L}, a)}
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Observe that + 7 mod N andy; + #; mod N are derived upon decryptingandI';, for 1 < i < [, respectively.
Note that the modulo operator is implicit in the decryptiomdtion. Also,P, receivesL’ from P; and leta: denote
the (oblivious) comparison result computed frdrh Without loss of generality, suppose the simulated imagB,of
beIl?, (SMIN), where

HAls;g (SMIN) = {<5*v T*>7 <S/1,ia S/2,i>v <S£’>,i7 O/> | for1 S i S l}

Hered*, s} ; ands; ; are randomly generated frofy»- whereas* ands; ; are randomly generated frofw . In
addition,«’ denotes a random bit. Sindg,;, is a semantically secure encryption scheme with resultiplyectext
size less tharV?, § is computationally indistinguishable frofit. Similarly, I, and L’ are computationally indis-
tinguishable froms} ; andsy ;, respectively. Also, ag and#; are randomly generated frofwy, s + 7 mod N and
i +7; mod N are computationally indistinguishable frarh andsy ;, respectively. Furthermore, because the func-
tionality is randomly chosen bj; (at step 1(a) of Algorithril3)y is either 0 or 1 with equal probability. Thus,is
computationally indistinguishable fromd. Combining all these results together, we can concluddiratSMIN) is
computationally indistinguishable froﬁﬁ,@z(SMlN) based on Definition 1. This implies that during the executibn
SMIN, P, does not learn any information regarding, s., s, and the actual comparison result. Intuitively speaking,
the informationP, has during an execution of SMIN is either random or pseudolom, so this information does not
disclose anything regarding v, s,, ands,. Additionally, asF' is known only toP;, the actual comparison result is
oblivious to P,.

On the other hand, the execution image®f denoted byl p, (SMIN), is given by

Ip, (SMIN) = { M, Epi (), 8" |for1 <i <1}

Here M/ andd’ are encrypted values, which are randonZig:, received fromP; (at step 3(a) of Algorithriil3). Let
the simulated image o, beIl?, (SMIN), where

I3, (SMIN) = {s, ;,¥',0" [for1 < <1}

The valuess) ;, b’ andb” are randomly generated frofi-. SinceE,; is a semantically secure encryption scheme
with resulting ciphertext size less tha, it implies that)M/, E,,(«) andd’ are computationally indistinguishable
from s, ;, b’ andd”, respectively. Thereforé] p, (SMIN) is computationally indistinguishable frol’ft}_f,1 (SMIN) based
on Definition 1. As a resultP; cannot learn any information regardiagu, s,,, s, and the comparison result during
the execution of SMIN.

Based on the above analysis, we can say that the proposed @didtol is secure under the semi-honest model
(following from Definition 1).

4.4 Proof of Security for SMIN,,

According to Algorithni#, it is clear that SMINuses the SMIN protocol as a building block in an iterative nen
As proved above, SMIN is secure under the semi-honest matsl, the output of SMIN which are passed as input to
the nextiteration in SMII are in encrypted format. Note that, SM]Nk solely based on SMIN and there are no other
interactive steps betwedn and P,. Hence, by Composition Theorem [26], we claim that seqaéotimbination of
SMIN routines lead to our SMINprotocol that guarantees security under the semi-honedéimo

4.5 Proof of Security for SBOR

The security of SBOR depends solely on the underlying SMaeait This is because, the only step at whighand
P, interact in SBOR is during SM. Since SM is secure under thei-bemest model, we claim that SBOR is also
secure under the semi-honest model.
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4.6 Proof of Security for SF

Without loss of generality, let the execution image of SFReibe denoted byl p, (SF), and is given as (according to
Algorithm[5)
Up,(SP = {Z; j,u;; | for1 < j <w}

wherew; ; is derived upon decrypting; ; (at step 2(b) of Algorithni]5). Suppose the simulated imagéobe
denoted by, (SF) which can be given by

7, (SP) = {Z};,uj ; [for1 < j <w}

HereZ; ; is randomly generated froffiy-. Also, u; is a vector generated at random such that exactly one of thém i
and the rest are random number&iq. SinceE,, is a semantically secure encryption scheme with resulijfuectext
size less thatv?, Z; ; is computationally indistinguishable frofj ;. Also, sincer; is a random permutation function
known only to P, u; will be a vector with exactly one zero (at random locationd &me rest are random numbers in
Zn. Hence,u; is computationally indistinguishable from}. Thus, we can claim thal p, (SF) is computationally
indistinguishable fronl?, (SF).

On the other hand, let the execution imagd’pfbe denoted byl p, (SF), and is given by

IIp, (SH ={U;; |forl <i<kandl <j<w}

HereU, ; is an encrypted value sent 5% at step 2(c) of Algorithmi]5. Suppose the simulated imag&dbe given
by
17, (SF) = {U;; [for1 <i < kandl < j < w}

whereU; ; is arandom number ii 2. Sincek,;, is a semantically secure encryption scheme with resulfpigectext
size Iess thanv?, U, ; is computationally indistinguishable froii ;. As a result,Ilp, (SF) is computationally

indistinguishable fronﬂlsp1 (SF. Combining all the above results, we can claim that SF isreeander the semi-
honest model according on Definition 1.

5 The Proposed Protocol

In this section, we propose a novel privacy-presenirgN classification protocol, denoted by FWN, which is
constructed using the protocols discussed in Setfion 3 idirmiblocks. As mentioned earlier, we assume that
Alice’s database consists afrecords, denoted b = (t1,...,t,), andm + 1 attributes, where; ; denotes thg"
attribute value of record;. Initially, Alice encrypts her database attribute-widwttis, she computes, (¢; ;), for
1 <i<nandl <j <m+1,wherecolumrim+ 1) contains the class labels. Let the encrypted database bédien
by D’. We assume that Alice outsourcBs as well as the future classification process to the cloudha\itloss of
generality, we assume that all attribute values and theifi@@an distances lie if, 2!). In addition, letw denote the
number of unique class labels In.

In our problem setting, we assume the existence of two ndineing semi-honest cloud service providers, denoted
by C; andC5, which together form a federated cloud. Under this settilige outsources her encrypted databaxe
to Cy and the secret keyk to Cs. Here it is possible for the data owner Alice to repla&ewith her private server.
However, if Alice has a private server, we can argue thatetii®no need for data outsourcing from Alice’s point
of view. The main purpose of using, can be motivated by the following two reasons. (i) With liatitcomputing
resource and technical expertise, it is in the best interfestice to completely outsource its data management and
operational tasks to a cloud. For example, Alice may wantcteess her data and analytical results using a smart
phone or any device with very limited computing capabilifii) Suppose Bob wants to keep his input query and
access patterns private from Alice. In this case, if Alicesua private server, then she has to perform computations
assumed by’s under which the very purpose of outsourcing the encrypteatda’; is negated.

In general, whether Alice uses a private server or cloudiceproviderC, actually depends on her resources. In
particular to our problem setting, we prefer to Usgas this avoids the above mentioned disadvantages (i.easi ¢

18



of Alice using a private server) altogether. In our solutiafter outsourcing encrypted data to the cloud, Alice does
not participate in any future computations.

The goal of the PENN protocol is to classify users’ query records usifgin a privacy-preserving manner.
Consider an authorized user Bob who wants to classify hisygqeeordg = (g1, ..., ¢,,) based onD’ in C;. The
proposed PENN protocol mainly consists of the following two stages:

e Stage 1 - Secure Retrieval bfNearest Neighbors (SRIN):
In this stage, Bob initially sends his queryin encrypted form) ta”;. After this,C; andCs involve in a set of
sub-protocols to securely retrieve (in encrypted form)dlass labels corresponding to thanearest neighbors
of the input query;. At the end of this step, encrypted class labels-okearest neighbors are known onlyde.

e Stage 2 - Secure Computation of Majority Class (SGMC
Following from Stage 1, andC; jointly compute the class label with a majority voting amadhgk-nearest
neighbors of;. At the end of this step, only Bob knows the class label cpoading to his input query record
q.

The main steps involved in the proposedRIR protocol are as shown in Algorithid 6. We now explain eackhef
two stages in PENN in detail.

5.1 Stage 1: Secure Retrieval of-Nearest Neighbors (SRNN)

During Stage 1, Bob initially encrypts his quergttribute-wise, that is, he computBsi (q) = (Epk(q1), - - -, Epk(gm))
and sends it t@;. The main steps involved in Stage 1 are shown as steps 1 to Bjoritam[8. Upon receiving
E,r(g), C1 with private input(E,x(q), Epr(t;)) andCs with the secret keyk jointly involve in the SSED protocol.
Here E i (t:) = (Epk(tin), .- Epk(tim)), for 1 < i < n. The output of this step, denoted By (d;), is the en-
cryption of squared Euclidean distance betweamdt;, i.e.,d; = |¢ — t;|>. As mentioned earliedz, (d;) is known
only toCy, for 1 < ¢ < n. We emphasize that the computation of exact Euclideanrdisthetween encrypted vectors
is hard to achieve as it involves square root. However, imooiblem, it is sufficient to compare the squared Euclidean
distances as it preserves relative ordering. Tidgnwith input £, (d;) andC> securely compute the encryptions of
the individual bits of; using the SBD protocol. Note that the outpdif = (Epx(d;1),- .., Epk(d;;)) is known only
to C1, whered; ; andd, ; are the most and least significant bitsipffor 1 < ¢ < n, respectively.

After this, C; andCy compute the encryptions of class labels correspondinge@-thearest neighbors a@f in
an iterative manner. More specifically, they compfig (c}) in the first iteration,E,x(c5) in the second iteration,
and so on. Here/, denotes the class label sf* nearest neighbor tg, for 1 < s < k. At the end ofk iterations,
only Cy knows (Epi(c)), ..., Ep(cy,)). To start with, consider the first iteratior”; and C jointly compute the
encryptions of the individual bits of the minimum value argah, . . ., d,, and encryptions of the location and class
label corresponding td,,i, using the SMIN, protocol. That is,Cy with input (64, ...,6,) andCs with sk com-
pute ([dmin), Epx (1), Ep ('), Whereb; = ([di], Epr(It,), Epk(tim+1)), for 1 < i < n. Heredmin denotes the
minimum value among, ..., d,; I;, andt; ,,4+1 denote the unique identifier and class label correspondiriiget
data record;, respectively. Specificallyl;,, t; m+1) is the secret information associated withFor simplicity, this
paper assumek, = i. In the output,] andc’ denote the index and class label corresponding,i@q. The output
([dwin], Epk(I), Epk(c)) is known only toCy. Now, C; performs the following operations locally:

e AssignE,;(c') to E,k(c}). Remember that, according to the SMINrotocol,c’ is equivalent to the class label
of the data record that correspondsltg,,. Thus, it is same as the class label of the most nearest raitihip.

e Compute the encryption of difference betweeand:, wherel < i < n. Thatis,C; computes; = E,; (i) *
Ep(D)N"Y =By (i —I),for1 <i<n.

e Randomizer; to getr] = 7, = Epi(r; * (i — I)), wherer; is a random number i ;. Note thatr] is an
encryption of either 0 or a random number, fox i < n. Also, it is worth noting that exactly one of the entries
in 7’ is an encryption of 0 (which happensift= I) and the rest are encryptions of random numbers. Permute
7/ using a random permutation functian(known only toC) to get8 = =(7’) and send it ta’s.

19



Algorithm 6 PPtNN(D’, q) — ¢,

Require: C; hasD’ andr; Cy hassk; Bob hagyy
1: Bob:

(a). Computel,(g;),forl <j<m
(b). SendE,i(q) = (Epk(q1), - - - Epr(gm)) to Cy
2: C1 andCsy:

(a). C receivesE,(q) from Bob
(b). for i = 1ton do:

o [di] < SBD(E,x(di))

3: for s=1tok do:

(8). ¢y andCy:

o ([dmin], Epi(1), Ep(¢')) < SMIN,, (61, ..

Epi(c}) = Epr(c)

(). C,:

A — Epk(I)N_l
e for i = 1tondo:

- T <—Epk(i) * A
— 7/ < 7", wherer; er Zn

o 5« 7(7'); sends to Cs

(c). Cs:

Receives from C
Bi+ Dgp(Bi), forl <i<n
Computel/’, for1 < i < n:

— if g, =0thenU] = E (1)
— elseU! = Ep(0)

SendU’ to C;

(d). Ci:

- 0n), wheret); = ([di], Epi(1t,), Epk (tim+1))

e Receivell’ from Cy and computd” < 71 (U")

(e). CyandCy, forl1 <i<nandl <~ <I:
o Ep(diy) < SBORV, Epr(di )

4 SCMG(Epo(c)), . .., Epi(c)))




Upon receivings, C, decrypts it component-wise to géf = D, (8;), for 1 < i < n. After this, he/she computes
an encrypted vecta’’ of lengthn such thatl; = E,(1) if 8, = 0, andE,(0) otherwise. Since exactly one of
entries inr’ is an encryption of 0, this further implies that exactly ofi¢he entries i/’ is an encryption of 1 and the
rest of them are encryptions of 0’s. It is important to nott ih3, = 0, thent—*(k) is the index of the data record
that corresponds td,,;,,. Then,Cs sends’ to C;. After receivingU’, C; performs inverse permutation on it to get
V = 7=}(U’). Note that exactly one of the entry Inis E, (1) and the remaining are encryptions of 0’s. In addition,
if V; = E,;(1), thent; is the most nearest tuple go However,C; andC, do not know which entry i’ corresponds
to Epk (1)

Finally, C; updates the distance vectdds| due to the following reason:

e Itis important to note that the first nearest tuple hould be obliviously excluded from further computations.
However, since”; does not know the record correspondingdg, (¢} ), we need to obliviously eliminate the
possibility of choosing this record again in next iteraofror this,C; obliviously updates the distance corre-
sponding taE, (¢} ) to the maximum value, i.e2! — 1. More specifically(; updates the distance vectors with
the help ofCs using the SBOR protocol as below, forK i < nandl <~ <|.

Epk (dm) = SBOR(Viv Epk (dm))

Note that wheri; = E,;(1), the corresponding distance vecthiis set to the maximum value. That is, under
this case[d;] = (Epx(1),..., Ep(1)). On the other hand, whélj = E,;(0), the OR operation has no effect
on the corresponding encrypted distance vector.

The above process is repeated uhtiferations, and in each iteratidd;] corresponding to the current chosen label is
set to the maximum value. Howevér; andC, do not know whichid;] is updated. In iteratior, E,x(c,) is returned
only to C;. At the end of Stage 1, has{E,;(c}), ..., Ep(c})) - the list of encrypted class labels bfnearest
neighbors to the input query

5.2 Stage 2 : Secure Computation of Majority Class (SCM¢)

Without loss of generality, suppose Alice’s dataBetonsists ofw unique class labels denoted by= (c1, ..., cy).
We assume that Alice outsources her list of encrypted cdae€@, . That is, Alice outsourced, (1), . . ., Epk(cw))
to C; along with her encrypted databaB¥ during the data outsourcing step. Note that, for securigoeas, Alice
may add dummy categories into the list to protect the numbelass labels, i.ex from C; andCs. However, for
simplicity, we assume that Alice does not add any dummy caiteg toc.

During Stage 2(; with private inputsA = (Epk(c1), ..., Epk(cy)) andA’ = (Epi(c)), .. ., Epi(c})), andCsy
with sk securely comput&,.(c,). Herec, denotes the majority class label amatig. . . , ¢;.. At the end of stage 2,
only Bob knows the class labej.

The overall steps involved in Stage 2 are shown in Algorithnr@ start with,C; and Cs jointly compute the
encrypted frequencies of each class label usingithearest set as input. That is, they comp#itg(f(c;)) using
(A, A") asCy’s input to the secure frequency (SF) protocol, ot ¢ < w. The outpu{ E,, (f(c1)), .- Epe(f(cw)))
is known only toC;. Then,Cy with E,;.(f(¢;)) andCs with sk involve in the secure bit-decomposition (SBD) protocol
to compute[f(c;)], that is, vector of encryptions of the individual bits pfc;), for 1 < i < w. After this, C; and
C5 jointly involve in the SMAX,, protocol. Briefly, SMAX, utilizes the sub-routine SMAX to eventually compute
([fmax), Epk(cq)) in an iterative fashion. Herffmax] = [max(f(c1),..., f(cw))] andc, denotes the majority class
out of A’. At the end, the outpu{ fimax], Epk(cq)) is known only toC;. After this,Cy computesy, = Epi(cq + 7¢),
wherer, is a random number il ;- known only toC. Then,C; sendsy, to C; andr, to Bob. Upon receiving,,

C» decrypts it to get the randomized majority class lafje Dsx(v,) and sends it to Bob. Finally, upon receiving
rq from C; and;, from Cs, Bob computes the output class label correspondimgec, = v, — r, mod N.

5.3 Security Analysis of PR:NN under the Semi-honest Model

Here we provide a formal security proof for the propose@WR protocol under the semi-honest model. First of all,
we stress that due to the encryptiomadnd by semantic security of the Paillier cryptosystem, Batput query is
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Algorithm 7 SCMG, (Epk (<)), - - -, Epr(cl)) = ¢4
Require: (Epi(c1),. .., Epk(cw)), (Epr(ch), ..., Epp(c),)) are known only ta”y; sk is known only toCy
1: C1 andCs:

(@). (Epp(f(c1))s- - Epu(f(cw))) < SHA,A), whereA = (Epi(ci),. .., Ep(cw)), A = (Epr(cy), - .-,
Epr(cy))
(b). for i = 1tow do:

e [f(ei)] <= SBD(Epk(f(ci)))
(©). ([fmax], Epk(cq)) = SMAX, (¥1, . .., ¥w), Wherey; = ([f(ci)], Epk(ci)), forl <i <w
2: Cq:

(@). vq < Epi(cq) * Epi(rq), Wherer, €r Zn
(b). Sendy, to C> andr, to Bob

3: Oy

(a). Receivey, from C;
(b). v < Dsi(vq); sendy, to Bob

4: Bob:

(a). Receiver, from Cy and~, from Cy
(b). cq 7y — 74 mod N

protected from Alice(”; andC, in our PRENN protocol. Apart from guaranteeing query privacy, rementhat the
goal of PRNN is to protect data confidentiality and hide data acceds et

In this paper, to prove a protocol’s security under the skeamest model, we adopted the well-known security
definitions from the literature of secure multiparty congdign (SMC). More specifically, as mentioned in Section
[2.3, we adopt the security proofs based on the standard aiowlparadigm([26]. For presentation purpose, we
provide formal security proofs (under the semi-honest mdde Stages 1 and 2 of RN separately. Note that the
outputs returned by each sub-protocol are in encrypted &rdnknown only ta’;.

5.3.1 Proof of Security for Stage 1

As mentioned earlier, the computations involved in Stagé RRENN are given as steps 1 to 3 in Algorittith 6. For
ease of presentation, we consider the messages excharigegh€; andCs in a single iteration (however, similar
analysis can be deduced for other iterations).

According to Algorithni®, the execution image 6% is given by

e, (PRONN) = {(8;, 41) | for 1 < i < n}

wheref; is an encrypted value which is randomZn;=. Also, 5; is derived upon decrypting; by C>. Remember
that, exactly one of the entries j#f is 0 and the rest are random number&in. Without loss of generality, let the
simulated image of’s be denoted bYIg2 (PPENN) and is given as

112, (PPENN) = {(a} ;,a3;) [ for 1 <i < n}

herea ; is randomly generated froffiy- and the vectous is randomly generated in such a way that exactly one of
the entries is 0 and the rest are random numbeZin SinceE,;; is a semantically secure encryption scheme with
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resulting ciphertext size less thdi:, we claim thats; is computationally indistinguishable froaj ;. In addition,
since the random permutation functienis known only toC1, 3’ is a random vector of exactly one 0 and random
numbers inZy. Thus, " is computationally indistinguishable froni,. By combining the above results, we can
conclude thafle, (PPkNN) is computationally indistinguishable frohii, (PP:NN). This implies that”; does not
learn anything during the execution of Stage 1 irkRR.

On the other hand, suppose the execution imagé dfe denoted b¥I., (PPcNN), and is given by

Ic, (PPRNN) = {0}

whereU’ is an encrypted value sent 6y (at step 3(c) of Algorithril6). Let the simulated image(afin Stage 1 be
denoted bylTg, (PPLNN), which is given as

IS, (PPRNN) = {d'}

The value ofi’ is randomly generated frofay . SinceE,, is a semantically secure encryption scheme with resulting
ciphertexts irZ -, we claim thatU’ is computationally indistinguishable from. This implies thafl, (PPNN) is
computationally indistinguishable froﬁﬁg] (PPENN). Hence(; cannot learn anything during the execution of Stage
1 in PR:NN. Combining all these results together, it is clear thapstl of PRNN is secure under the semi-honest
model.

In each iteration, it is worth pointing out that; and C> do not know which data record belongs to current
global minimum. Thus, data access patterns are proteatediothC;, andCs. Informally speaking, at step 3(c) of
Algorithm[@, a component-wise decryption @freveals the tuple that satisfy the current global minimustatice to
C>. However, due to the random permutation®@y, C> cannot trace back to the corresponding data record. Also,
note that decryption operations on vectbby C> will result in exactly one 0 and the rest of the results arelcan
numbers irZ . Similarly, sincel/’ is an encrypted vectof;; cannot know which tuple corresponds to current global
minimum distance.

5.3.2 Security Proof for Stage 2

In a similar fashion, we can formally prove that Stage 2 okRN is secure under the semi-honest model. Briefly,
since the sub-protocols SF, SBD, and SMA¥re secure, no information is revealedlg. On the other hand, the
operations performed by; are entirely on encrypted data; therefore, no informatimevealed ta’;.

Furthermore, the output data of Stage 1 which are passeghastimStage 2 are in encrypted format. Therefore,
the sequential composition of the two stages lead to oéiNRPprotocol and we claim it to be secure under the semi-
honest model according to the Composition Theofern [26]altigular, based on the above discussions, it is clear that
the proposed PENN protocol protects the confidentiality of the data, userfsut query, and also hides data access
patterns from Alice(;, andC5. Note that Alice does not participate in any computationBBNN.

5.4 Security under the Malicious model

The next step is to extend our PIRN protocol into a secure protocol under the malicious modeler the malicious
model, an adversary (i.e., eith€éf or Cs) can arbitrarily deviate from the protocol to gain some adage (e.qg.,
learning additional information about inputs) over theastbarty. The deviations include, as an example(fofacting
as a malicious adversary) to instantiate thé:RR protocol with modified inputs (saf,x(¢’) and E,.(t;)) and to
abort the protocol after gaining partial information. Hewe in PR:NN, it is worth pointing out that neith&r; norCs
knows the results of Stages 1 and 2. In addition, all thermméeliate results are either random or pseudo-random values.
Thus, even when an adversary modifies the intermediate datgms he/she cannot gain any additional information.
Nevertheless, as mentioned above, the adversary can ctherigéermediate data or perform computations incorrectly
before sending them to the honest party which may eventredlyit in the wrong output. Therefore, we need to ensure
that all the computations performed and messages sent hypaay are correct.

Remember that the main goal of SMC is to ensure the honedepaat get the correct result and to protect
their private input data from the malicious parties. Theref under the two-party SMC scenario, if both parties are
malicious, there is no point to develop or adopt an SMC ptat the first place. In the literature of SMC [14],
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it is the norm that at most one party can be malicious undetvibbeparty scenario. When only one of the party is
malicious, the standard way of preventing the maliciousyffaom misbehaving is to let the honest party validate the
other party’s work using zero-knowledge proafsi[11]. Hoeehecking the validity of computations at each step of
PPENN can significantly increase the overall cost.

An alternative approach, as proposed.inl [36], is to instéatiwo independent executions of thekRIN protocol
by swapping the roles of the two parties in each execution.thAtend of the individual executions, each party
receives the outputin encrypted form. This is followed byegnality test on their outputs. More specifically, suppose
Epr, (cq,1) and Ep, (cq.2) be the outputs received lgy, andC, respectively, whergk, andpk, are their respective
public keys. Note that the outputs in our case are in encdyfotenat and the corresponding ciphertexts (resulted from
the two executions) are under two different public key dameaTherefore, we stress that the equality test based on the
additive homomaorphic encryption properties which was usgB86] is not applicable to our problem. Nevertheless,
C1 andCs can perform the equality test based on the traditional gdrblrcuit technique [35].

5.5 Complexity Analysis

The computation complexity of Stage 1 in /NN is bounded byO(n) instantiations of SBD and SSED)(k) in-
stantiations of SMIN, andO(n x k = [) instantiations of SBOR. We emphasize that the computatiompexity of
the SBD protocol proposed in [60] is bounded®yl) encryptions and) (/) exponentiations (under the assumption
that encryption and decryption operations based on Radtigtosystem take similar amount of time). Also, the
computation complexity of SSED is bounded®ym) encryptions and (m) exponentiations. In addition, the com-
putation complexity of SMIN is bounded byO(l « n * log, n) encryptions an@(l * n * log, n) exponentiations.
Since SBOR utilizes SM as a sub-routine, the computation@oSBOR is bounded by (small) constant number of
encryptions and exponentiations. Based on the above éndlystotal computation complexity of Stage 1 is bounded
by O(n x (I +m + k = [ x log, n)) encryptions and exponentiations.

On the other hand, the computation complexity of Stage 2 ismtled byO(w) instantiations of SBD, and one
instantiation of both SF and SMAX Here the computation complexity of SF is bounded’)y: * w) encryptions
andO(k = w) exponentiations. Therefore, the total computation coriplef Stage 2 is bounded b (w = (I + k +
I xlog, w)) encryptions and exponentiations.

In generalw < n, therefore, the computation cost of Stage 1 should be signifiy higher than that of Stage 2.
This observation is further justified by our empirical resgfiven in the next section.

6 Empirical Results

In this section, we discuss some experiments demonstrdwingerformance of our RRIN protocol under different
parameter settings. We used the Paillier cryptosysteirgg#je underlying additive homomorphic encryption scheme
and implemented the proposedi#NN protocol in C. Various experiments were conducted on aiximachine with
an Inte[R) Xeon®) Six-Cord™ CPU 3.07 GHz processor and 12GB RAM running Ubuntu 12.04 LTS.

To the best of our knowledge, our work is the first effort toelep a secur&-NN classifier under the semi-honest
model. Thus, there is no existing work to compare with ourapph. Therefore, we evaluate the performance of our
PP:NN protocol under different parameter settings.

6.1 Dataset and Experimental Setup

For our experiments, we used the Car Evaluation dataset thenyClI KDD archive[[9]. The dataset consists of
1728 data records (i.en, = 1728) with 6 input attributes (i.esn = 6). Also, there is a separate class attribute and
the dataset is categorized into four different classes {i.e= 4). We encrypted this dataset attribute-wise, using the
Paillier encryption whose key size is varied in our experitsgand the encrypted data were stored on our machine.
Based on our PENN protocol, we then executed a random query over this etedyata. For the rest of this section,
we do not discuss about the performance of Alice since it inextame cost. Instead, we evaluate and analyze the
performances of the two stages in#NIN separately.
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Figure 2: Computation costs of BRN for varying number ok nearest neighbors and different encryption key sizes
in bits (K)

6.2 Performance of PRNN

We first evaluated the computation costs of Stage 1 itlNNPfor varying number ofk-nearest neighbors. Also, the
Paillier encryption key sizé’ is either 512 or 1024 bits. The results are shown in Figur Her K=512 bits, the
computation cost of Stage 1 varies from 9.98 to 46.16 minwtesn & is changed from 5 to 25, respectively. On
the other hand, whe/i'=1024 bits, the computation cost of Stage 1 varies from 6&%809.98 minutes wheh is
changed from 5 to 25, respectively. In either case, we obskiivat the cost of Stage 1 grows almost linearly with
k. In addition, for any giverk, we identified that the cost of Stage 1 increases by almosttarfaf 7 whenevek is
doubled. For example, whern=10, Stage 1 took 19.06 and 127.72 minutes to generate thgpted class labels of
the 10 nearest neighbors und€r512 and 1024 bits, respectively. Furthermore, wheb, we observe that around
66.29% of cost in Stage 1 is accounted due to Spithich is initiatedk times in PRNN (once in each iteration).
Also, the cost incurred due to SM|Nncreases from 66.29% to 71.66% whers increased from 5 to 25.

We now evaluate the computation costs of Stage 2 for varyiaigd K. As shown in Figurg 2(b), fokK =512 bits,
the computation time for Stage 2 to generate the final cldsd orresponding to the input query varies from 0.118
to 0.285 seconds whéhnis changed from 5 to 25. On the other hand, £6+1024 bits, Stage 2 took 0.789 and 1.89
seconds whei = 5 and 25, respectively. The low computation costs of Stager2 due to SMAX, which incurs
significantly less computations than SMJNh Stage 1. This further justifies our theoretical analysiSéction 5.5.
Note that, in our datasef;=4 andn=1728. Like in Stage 1, for any givén the computation time of Stage 2 increases
by almost a factor of 7 whenevé¥ is doubled. E.g., wheh=10, the computation time of Stage 2 varies from 0.175
to 1.158 seconds when the encryption key dizis changed from 512 to 1024 bits. As shown in Fidure]2(b), alaim
analysis can be observed for other values ahd K.

Based on the above results, it is clear that the computatishaf Stage 1 is significantly higher than that of Stage
2 in PR:NN. Specifically, we observed that the computation time afjBtl accounts for at least 99% of the total time
in PPENN. For example, whet = 10 and K=512 bits, the computation costs of Stage 1 and 2 are 19.06tesn
and 0.175 seconds, respectively. Under this scenariopf@ttge 1 is 99.98% of the total cost of BNIN. We also
observed that the total computation time ofi®IN grows almost linearly witm andk.

6.3 Performance Improvement of PRNN

We now discuss two different ways to boost the efficiency @figstl (as the performance of ZNIN depends pri-
marily on Stage 1) and empirically analyze their efficienayng. First, we observe that some of the computations in
Stage 1 can be pre-computed. For example, encryptions dbnamumbers, 0s and 1s can be pre-computed (by the
corresponding parties) in the offline phase. As a resultpthi@e computation cost of Stage 1 (denoted by:NER,)

is expected to be improved. To see the actual efficiency gdiegch a strategy, we computed the costs 0kSR,

and compared them with the costs of Stage 1 without an offlireese (simply denoted by $RN) and the results for

K = 1024 bits are shown in Figurie 2(c). Irrespective of the values,ofre observed that SRIN, is around 33%
faster than SRNN. E.g., wherk = 10, the computation costs of #RIN, and SRINN are 84.47 and 127.72 minutes,
respectively (boosting the online running time of Stage B8y86%).
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Stage Communication Size (in MBytes) | Network Delay (in seconds)
Stage 1 154.741 123.79
Stage 2 0.037 0.0296

Table 3: Communication sizes and network delays ikNR for £ = 10 and K = 1024 bits

Our second approach to improve the performance of Stage \ usihg parallelism. Since operations on data
records are independent of one another, we claim that mogte@tions in Stage 1 can be parallelized. To empirically
evaluate this claim, we implemented a parallel version ag8tl (denoted by SRIN,) using OpenMP programming
and compared its cost with the costs of &R (i.e., the serial version of Stage 1). The resultsKor= 1024 bits are
shown in Figuré 2(¢). The computation cost of i, varies from 12.02 to 55.5 minutes whirs changed from 5
to 25. We observe that SRIN; is almost 6 times more efficient than SRN. This is because our machine has 6 cores
and thus computations can be run in parallel on 6 separagadhr Based on the above discussions, it is clear that
efficiency of Stage 1 can indeed be improved significantipgigiarallelism. Moreover, we can also use the existing
map-reduce techniques to execute parallel operations tiipfaumnodes to drastically improve the performance furthe
Hence, the level of achievable performance irkRR actually depends on the implementation.

On the other hand, Bob’s computation cost ikRIN is mainly due to the encryption of his input query. In our
dataset, Bob’s computation cost is 4 and 17 millisecondswiiés 512 and 1024 bits, respectively. It is apparent that
PPENN is very efficient from Bob’s computational perspectiveigbhis especially beneficial when he issues queries
from a resource-constrained device (such as mobile phah®BA).

6.4 Communication Costs of PBNN

The communication costs of RRN for &k = 10 and K = 1024 bits are shown in Tablel 3. Specifically, the total
communication sizes of Stages 1 and 2 irkRR are 154.741 and 0.037 MB, respectively. By assuming alsi@h

10 Mbps LAN setting, the corresponding network delays betwe andC- are 123.79 and 0.0296 seconds, respec-
tively. Here it is evident that the total network delay (andi2 minutes) of PPNN is significantly less than its total
computation cost. Similar conclusions can be drawn formgpleameter settings.

7 Conclusion

Classification is an important task in many data mining aygidons such as detection of fraud by credit card compa-
nies and prediction of tumor cells levels in blood. To proteser privacy, various privacy-preserving classification
techniques have been proposed in the literature for thedeaside. Nevertheless, the existing techniques are not ap-
plicable in outsourced database environment where therdsitdes in encrypted form on a third-party server. Along
this direction, this paper proposed a novel privacy-praagrk-NN classification protocol over encrypted data in the
cloud. Our protocol protects the confidentiality of the datser’s input query, and hides the data access patterns. We
also evaluated the performance of our protocol under diffeparameter settings.

Since improving the efficiency of SMINis an important first step for improving the performance af BE:NN
protocol, we plan to investigate alternative and more efficsolutions to the SMIN problem in our future work.
Also, in this paper, we used the well-knowrNN classifier and developed a privacy-preserving protéaoit over
encrypted data. As a future work, we will investigate an@pgtour research to other classification algorithms.
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