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Abstract

Spreadsheets are among the most commonly used applications for data
management and analysis. Perhaps they are even among the most widely
used computer applications of all kinds. They combine in a natural and
intuitive way data processing with very diverse supplementary features:
statistical functions, visualization tools, pivot tables, pivot charts, linear
programming solvers, Web queries periodically downloading data from
external sources, etc. However, the spreadsheet paradigm of computation
still lacks sufficient analysis.

In this article we demonstrate that a spreadsheet can implement all
data transformations definable in SQL, without any use of macros or built-
in programming languages, merely by utilizing spreadsheet formulas. We
provide a query compiler, which translates any given SQL query into a
worksheet of the same semantics, including NULL values.

Thereby database operations become available to the users who do
not want to migrate to a database. They can define their queries using a
high-level language and then get their execution plans in a plain vanilla
spreadsheet. No sophisticated database system, no spreadsheet plugins or
macros are needed.

The functions available in spreadsheets impose severe limitations on
the algorithms one can implement. In this paper we offer O(n log2 n)
sorting spreadsheet, but using a non-constant number of rows, improving
on the previously known O(n2) ones.

It is therefore surprising, that a spreadsheet can implement, as we
demonstrate, Depth-First-Search and Breadth-First-Search on graphs, thereby
reaching beyond queries definable in SQL-92.
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1 Introduction

Spreadsheets are the desktop counterpart of databases and OLAP in enterprise-
scale computing. They serve basically the same purpose — data management
and analysis, but at the opposite extreme of the data quantity scale.
Spreadsheets are very popular, and are often described as the very first “killer
app” for personal computers. Today they are used to manage home budgets,
but also to create, manage and examine extremely sophisticated models and
data arising in business and research.
In his keynote talk [1] during SIGMOD 1998 Bill Gates spoke about the role
and challenges for spreadsheets:

A lot of users today find the true databases complex enough that
they simply go into either the word processor, with the table-type
capabilities, or into the spreadsheet, which I’d say is a little more
typical, and use that as their way of structuring data.

And, of course, you get a huge discontinuity because, as you want to
do database-type operations, the spreadsheet isn’t set up for that.

And so then you have to learn a lot of new commands and move
your data into another location.

What we’d like to see is that even if you start out in the spreadsheet,
there’s a very simple way then to bring in software that uses that
data in a richer fashion, and so you don’t see a discontinuity when
you want to move up and do new things.

But that’s very easy to say that. It’s going to require some break-
through ideas to really make that possible.

Despite that encouragement, relatively little research has been devoted to spread-
sheets and consequently they are still poorly understood. In particular, 16 years
later Excel users show up at community forums asking for help in performing
database operations on their spreadsheet data [2, 3, 4, 5, 6].
Probably the same group of users is the target of Google. Their spreadsheets
have a very useful QUERY function. It is used to run Google Visualization API
Query Language queries across data [7]. The on-line help provides the following
example formula:
=QUERY(’Example Data’!$A$2:$H$7, "select B, MAX(D) group by B").
However, this function does not permit joining relations, and is incompatible
with other spreadsheet systems.
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The second notable fact is that spreadsheet language of formulas of Excel has
become a de facto standard. It is implemented in a large number of spread-
sheet systems, available for all major operating systems and hardware plat-
forms, starting from handholds and ending in the cloud, from proprietary to
open source.
Computer applications in the form of formula-only spreadsheets are therefore
highly portable, probably to the extent comparable with Java bytecode. From
this perspective, spreadsheet systems can be regarded as virtual machines, of-
fered by various vendors, on which spreadsheet applications can be run.
It is therefore extremely surprising that those machines are predominantly pro-
grammed manually, with no compilers producing spreadsheet code from higher-
level languages.
The main topic of this article is to offer a fully automated method to construct
spreadsheet implementations for a wide class of relational data transformations.
We have implemented all operators of relational algebra, including grouping and
aggregations. On top of that, we also offer a tool to specify the transformations
in a quite rich fragment of SQL. This is our answer to the challenge posed by Bill
Gates: the discontinuity between spreadsheets and databases is reduced by the
fact that the former have the ability to express relational queries, and the users
of spreadsheets can perform relational data transformations in the spreadsheet
itself.
In the same way we address also our second point: our tool is a compiler from
a high-level language into the language of spreadsheet formulas. The full au-
tomation of the translation process reduces the number of human-introduced
errors in the spreadsheet application, in which the spreadsheet formulas pro-
duced in the translation are used. As a result users can still work in the vanilla
spreadsheet environment, benefit from high portability and other features like
data analysis and visualisation, while the complex parts are generated by a tool
that allows to express them in a better suited high level database vocabulary
and avoids errors in complex computations.

2 The contribution

The present paper offers a twofold contribution.
It is an extended version of an earlier paper [8], which demonstrated as a “proof
of concept”, that Excel (and other spreadsheets) are capable of storing and
querying relational data, and can thereby serve as database engines. In that
paper relational algebra was implemented in the spreadsheets.
Now we extend this claim by demonstrating an automated translator, capable
of producing formulas-only spreadsheet implementations of queries written in
SQL. And indeed, we treat a spreadsheet very much as a virtual machine, which
provides a set of system functions, which we use to implement relational queries.
The resulting worksheets are usually complex and their creation by hand could
be cumbersome and prone to errors. Our compiler creates them without any
human intervention. When compared to the earlier paper, we add a complete
implementation of NULL values, according to the three-valued logic of SQL.
The functionalities of spreadsheets we utilize make our implementations work
without using any plug-ins or macros.
The reader should bear in mind, however, that our claim of translating SQL
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queries into spreadsheets does not mean, that we can translate the algorithms
typical RDBMS systems employ to implement SQL. In particular, most of the
algorithms we use are of quadratic time complexity, and hence inefficient if used
on large data sets. Moreover, our translation tool in its present form does not
perform optimization.
Our investigation can also be understood as an inquiry into the computational
power of spreadsheets. In this sense, we prove that they subsume the power
of relational queries, although sometimes, as explained, above, by algorithms
inferior than those usually employed in RDBMS. With this perspective in mind,
we provide three additional, isolated elements, absent in the earlier paper [8].
One of them is an efficient sorting algorithm, implemented by spreadsheet formu-
las. The original sorting demonstrated in [8] was of quadratic time complexity.
The present algorithm is O(n log2 n). Its drawback is that it requires 4 logn
columns to sort n items. Therefore we did not decide to use it in our automated
SQL to spreadsheet translator, although 80 columns would already suffice to
sort the largest number of columns of data, which can be stored in Excel 2013
— the newest one at the time of this writing. The other two algorithms we
implement go beyond standard SQL. We present a recursive implementation
of Breadth-First-Search for directed acyclic graphs, and an iterative implemen-
tation of Depth-First-Search for arbitrary graphs. This sheds some light on
the real computational capabilities of spreadsheets, and their ability to express
recursive queries.
As the model of spreadsheet syntax and semantics we take the Microsoft Ex-
celTM [9].

Figure 1: The idea of a database implementation in a spreadsheet. A Java pro-
gram translates an SQL query into an equivalent spreadsheet. Table definitions
visible above are not translated, but determine numbers of columns of the input
tables.
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2.1 Application scenarios

We envisage the main group of potential users of our work to be characterized
by the following:

• They are experienced and relatively proficient users of spreadsheets, mainly
Microsoft Excel.

• They are approaching the limits of spreadsheet abilities.

• Either they are not yet ready to migrate to a database, or they do not
want to migrate at all.

One of us (J.Ty.) was active at the MrExcel.com forum where users of Excel
can exchange tips and solutions, performing a kind of participant observation.
It has turned out that requests to help in joining datasets are not uncommon.
One type of requests for help comes from users who are aware of database
operations and clearly state what they need, as in the threads [2, 6].
The other type of requests comes from users, who describe the operation they
need in plain words, clearly demonstrating, that they do not know databases.
The first discussion [3] concerns social research. Its initiator needs to self-join
a table on employment in companies, to detect pairs who work together in
the same company. This task can be very concisely formulated as a query in
SQL or the relational algebra. The ability to compile such a query into Excel
formulas will significantly reduce the amount of necessary user work. In the
second discussion [5] a user needs to join two tables of sensor data: humidity
and temperature, both keyed by date. This meteorological application amounts
to a textbook outer join. Matching humidity and temperature records are to be
identified and non-matched records are to be retained. Again, the formulation of
this query in a high level language is short and precise. Once it gets compiled to
Excel formulas, it solves the user problem. The topic of the third discussion [4] is
the problem of assembling services from components. The requesting user needs
to join an association table of components with the service table that relates
services with components. This time the problem reduces to an interesting inner
join that leads to a non-4NF result. However, it can be solved with an inner
equijoin. Its formulation in SQL and compilation to spreadsheet formulas solves
the problem very quickly. To summarize, real users do need to join Excel data
tables in various ways (self-, outer-, inner-, non-NF). A compiler of queries can
be a valuable ally in their efforts.
It is instructive to have a look at the thread [6]. The user wants help in per-
forming a join, and wants to do that in MsQuery. However, the Excel-only
solution turns out to require just two formulas per data sheet and few clicks. If
implemented with only formulas (instead of removing duplicates by a built-in
Excel menu), it would become more complex, but still perfectly doable while
the formulas would automatically recalculate without additional clicking, if the
input data would change.

2.1.1 Spreadsheet to database migration?

We should explain why we think it makes sense to extend capabilities of spread-
sheets by database functionalities, what we do here, instead of advising the users
to migrate to a fully fledged database.
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The reason is that spreadsheets combine in a natural and intuitive way many
very diverse features. Just to name a few, they offer pivot tables, pivot charts,
statistical functions, linear programming solvers, Web queries periodically down-
loading data from external sources, visualization tools, etc., suitable for datasets
of moderate size. Re-creating them after migration to a database would require
installing several external applications, configuring them to achieve integration,
resulting in a complex system, whose overall usability would most likely be worse
than that of the initial spreadsheet.
Finally, spreadsheets are very portable, much more than any database system.
Their unique way of combining the application code (in the form of spreadsheet
formulas) and the data in one file, and the access to both from the common
interface gives the user the ability to open, analyse and edit them almost every-
where.

2.1.2 Spreadsheet error rate reduction

The second possible use of our solutions is the automated creation of data trans-
formation formulas for Excel spreadsheets. They can be inserted into existing
spreadsheet applications, performing complex data manipulations.
Today many users create such formulas manually, which results in high error
rates and incomprehensible spreadsheets. We believe, that a typical relational
query, written in SQL or relational algebra, is significantly easier to create
and understand than its spreadsheet implementation. From this point of view,
translating queries into the language of spreadsheet formulas is translating a
higher-level language into a lower-level one.
Relational transformations can also be used to asses and improve the quality of
data in spreadsheets. Many well-known integrity constraints can be enforced by
SQL queries. The same goal can be therefore achieved by spreadsheet transla-
tions of relational queries. If they are inserted to an existing spreadsheet, they
can indicate violations of integrity constraints.

2.2 Related work

To the best of our knowledge, the problem of expressing relational algebra and
SQL in spreadsheets has not been considered in the setting we adopt here prior
to [8].
The following results are the most similar to our work. The article [10] pro-
poses an extension of the set of spreadsheet functions by a carefully designed
database function, whereby the user can specify and later execute SQL queries
in a spreadsheet-like style, one step at a time. These additional operators are
executed by a classical database engine running in the background. Our con-
tribution means that exactly the same functionality can be achieved by the
spreadsheet itself. Two papers [11, 12] describe a project, later named Query
by Excel to extend SQL by spreadsheet-inspired functionality, allowing the user
to treat database tables as if they were located in a spreadsheet and define cal-
culations over rows and columns by formulas resembling those found in spread-
sheets. In the final paper [13] a spreadsheet interface is offered for specifying
these calculations, which had to be specified in an SQL-like code in the earlier
papers. Finally, [14] describes a method to allow RDBMs to query data stored
in spreadsheets.
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There is also a number of papers which discuss various methods to support high-
level design of spreadsheets, in particular [15, 16, 17, 18, 19, 20, 21, 22, 23]. Some
of them consider spreadsheets from the functional programming perspective.

2.3 Technicalities

We assume the reader to be basically familiar with spreadsheets. The present
article is written to make the solutions compatible with Microsoft Excel, from
version 2007 onward. This version introduced a number of new functions, absent
in the earlier versions of Excel. They allowed us to simplify implementations
of several operators, when compared to the conference paper [8], which offers
solutions compatible with older versions of Excel.

3 Application example

Almost every present day bank offers its customers internet access to their
accounts. One of the standard possibilities is the download of a list of all
transactions on the account in a given period. Most typically it is an Excel file.
So let us assume a bank account owner who wants to do a serious analysis of
their financial activities in the past year. First of all, probably they do not
make on average more than 10 bank operations per day, which makes the data
to consist of at most 4000 rows. Data of this size can be reasonably processed
in a spreadsheet.
Details of the data organization will differ from country to country and from
bank to bank, but certainly the following fields will be provided in the file with
Transactions:

• Date of the transaction,

• Trans type,

• Amount,

• Balance after transaction,

• Card number (NULL in case of non-card operations),

• Address where the transaction took place.

Now the user has many options, how to process the data:

1. The query

SELECT Address, count(Amount)

FROM Transactions

WHERE Trans_type=’ATM withdrawal’

GROUP BY Address

returns the list of addresses of ATM’s used together with the frequency of
their use.
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2. SELECT Card_number, sum(Amount)

FROM Transactions

WHERE Trans_type=’Card payment’

GROUP BY Card_number

returns the sums paid using each of the cards operating on the account.

3. If parents and children have accounts in the same bank, they can match
allowances transferred by parents with their receipt by children,

SELECT Card_number, sum(Amount)

FROM Parent_Transactions t1 JOIN

Child_Transactions t2

ON t1.Amount=-t2.Amount AND

t1.Date=t2.Date

4. Self-join can be used to match a transaction creating account overdraft
(and therefore a loan from the bank) and its repayments. It is however
difficult to provide an SQL query here, since it very much depends on the
details how loan identifier is included in the descriptions of its repayments.

While the first two queries can be, in principle, expressed in Excel’s Pivot Table,
the third and fourth query cannot be.

4 Translation of SQL to spreadsheet

4.1 Architecture of a database implemented in a spread-

sheet

In this article, we disregard a number of minor issues arising in a practical
implementation of the database operations in a spreadsheet. First of all, there
is the obvious limitation on the number and sizes of relations, views and their
intermediate results, imposed by the maximal available number of worksheets,
columns and rows in the spreadsheet system at hand. Next, the size of the
data values (integers, strings, etc.) is also limited. The variety of data types in
spreadsheets is also restricted when compared to database systems.
The overall architecture of a relational database implemented in a spreadsheet
is as follows. Given a specification of a query in SQL, its implementation is
created by our query compiler, in the form of an .xlsx file. The resulting
spreadsheet implementation of the query is a single worksheet, consisting of the
necessary number of columns for the data tables and, next to them, the columns
performing the computations. Initially there are always two rows of formulas,
and the user is supposed to mark the second row of the formulas and fill with its
content as many rows as necessary, taking into account the size of the relations
to be processed and the expected size of the output. The first row should be
left untouched, because sometimes it contains formulas which differ from those
which fill the remaining rows.
The columns performing computations, and producing thereby intermediate
results, are not supposed to be edited by the user.
When the user manually enters data into the tables, the automatic recomputa-
tion of the spreadsheet causes the output of queries to be computed and appear
in the columns with the result.
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We assume the semantics over fixed domains of integers, Booleans, texts, so
that a relation is a set or multiset of tuples over these domains, in the form
implemented in the spreadsheet software.
The representation of a relation r of arity n is a group of n consecutive columns
in a worksheet, whose rows contain the tuples in the relation. It is a crucial
assumption, that the user data does not contain spreadsheet error codes. We
use those codes in our implementation for representing special information, and
they would have been misinterpreted, if present in the initial data.
The representation of an SQL query Q of arity m is a group of m+ l consecutive
columns in a worksheet. Initial rows of those columns are filled with formulas.
In the last m columns those formulas should return either (a component of) a
tuple in the result of Q, or #N/A! — the NO-DATA-NULL (see discussion in sec-
tion 5.1 below). In the remaining l columns the formulas calculate intermediate
(auxiliary) results. A worksheet of this kind can be created by entering the
formulas in the first and second row, and then filling the second row downward
to span as many rows as necessary. This uniformity assumption means in par-
ticular, that the formulas are completely independent of the data they will work
on.
In the following we will consider both set and bag (multiset) semantics of the
relational algebra. In the first case, duplicate rows are not permitted in the
relations and queries; in the latter they are permitted. However, even in the
set semantics a spreadsheet representation of a relation may contain many null
rows, i.e., ones filled with NO-DATA-NULL values.
Furthermore, the representation may be loose if null rows are interspersed with
the tuples, or standard if all the tuples come first, followed by the null rows.
Consequently, we have loose-set, loose-bag, standard-set and standard-bag se-
mantics. No matter which of the above semantics we have in mind, the result
of the query appears exactly as if it were a table, and can be used as such. Now
the only thing necessary to compose queries is to locate their implementations
side by side in a single worksheet and change input column numbers in the
formulas computing the outermost query, to agree with the column numbers of
the outputs of the argument queries. Then the output columns of the argument
queries become the intermediate results columns of the composition.
Therefore, queries represented in this way are compositional. We utilize this,
implementing the usual operators of relational algebra from [24] in Excel, and
then composing query plans of SQL queries from them. The list of implemented
operators consists of the following:

• Sorting,

• Duplicate removal δr,

• Selection σθr,

• Projection πi,j,...r,

• Union r ∪ s,

• Difference r \ s,

• Cartesian product r × s,

10



• Grouping with aggregation γL,cr, where L is any set composed from op-
erators SUM, COUNT, AVG, MAX and MIN applied to the columns of r, and c

is a subset of the columns of r, over which we perform grouping,

• Two operations specific to spreadsheets, absent in [24]: error trapping and
standardization (see Section 4.1).

Additionally, we have implemented two important operators, which can theo-
retically be defined using those listed above, but deserve independent imple-
mentations of much better performance.

• Semijoin r⋉θ s, where θ is an equality of two columns.

• Join r ⊲⊳θ s, where θ is an equality of two columns.

The present implementations of the operators make full use of COUNTIFS and
SUMIFS functions, and would not work in the versions of the Microsoft spread-
sheet older than 2007.
We consider the query compiler accompanying the present paper, and accessible
from the Web page of the present paper (see Section 9), as the source of infor-
mation about how the operators are implemented. An additional functionality
present in the compiler is the mechanism for adapting the spreadsheet formulas
to the number of columns in the input relations.
In the earlier paper [8] the operators were implemented using array formulas,
to keep them compatible with Excel versions prior to 2007. The formulas were
explained there in detail, and the present ones have not changed much.
Therefore we have decided to omit most of the descriptions of the basic operators
in this paper. A few of them, which are of more interest, are described below
in section 6.9.

4.2 Query compiler

Worksheets necessary to process queries composed of a single relational operator
are rather complex. In case of queries composed from multiple operators and
especially multi-way joins, resulting Excel formulas are almost intractable for
humans. Therefore, an application of the described technology by typical clerks
is hardly possible. In order to cater for their needs we have developed a compiler
of queries. The compiler is implemented in Java. The user can define his/her
query in SQL. The input consists of the query itself and of the CREATE TABLE

statements for the used tables. Their purpose is to determine the number of
columns of the input.
For each query, the compiler produces an empty worksheet that implements the
given query.
The compilation is performed in two steps.

1. SQL is translated into a relational algebra expression, according to the
algorithm described in [25].

2. This relational algebra expression is translated into a spreadsheet, us-
ing Excel implementations of all operators of the relational algebra, i.e.
the projection, the selection, the equijoin, the Cartesian product, group-
ing, basic aggregates (sum, min, max, average, count), duplicate removal,
sorting and set operations (union, difference and intersection).
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Both steps are valid for the set semantics of SQL. This means that the result
of an SQL query and its spreadsheet implementation resulting from the com-
pilation, given identical tables as inputs, will produce exactly the same sets of
tuples.
However, the first step in the translation is not valid for the bag semantics,
if the query contains nested related subqueries. For such queries the sets of
tuples in the bag semantics and in the spreadsheet will be the same, but their
multiplicities may differ.
The first step is valid for the bag semantics, when applied to simple queries,
which do not contain nested subqueries. This is discussed e.g. in [26] where a
multi-set relational algebra has been defined. Furthermore, the authors have
shown that a number of rewrite rules that work for the classic set algebra hold
also in the bag algebra. They have also given examples of “set” rules that do
not migrate to the bag setting. The article [26] proves that a translation of SQL
queries to algebra expressions is feasible, however it does not present a ready-
to-implement algorithm to do so. Since the article [25] offers such an algorithm
(but only for the set semantics), we have decided to use it. This paper is in fact
devoted to the translation of SQL statements to Excel worksheets. Therefore,
we have assumed that the peculiarities of bag and set semantics are a minor
issue.
We illustrate the operation of our compiler using an example query. Assume a
database table connections on railway connections. Each of its rows describes
a directed connection from the station departure to the station arrival of the
given length. We distinguish columns in algebra expressions by their indexes.
Therefore we reference departure as 1, arrival as 2 and length as 3.
Let us identify pairs of stations that are not connected directly, but the travel
between them requires one change. In SQL we can formulate this as the self
join presented in Fig. 2.

Figure 2: SQL to spreadsheet compiler interface.

The first result is translation of this query into the relational algebra, which can
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be on demand shown to the user in the following form:

DiffSet(

Project(

EqJoin(

Reference(connections),

Reference(connections),

2,1

),

[2, 4]

),

Project(

Reference(connections),

[1, 2]

)

)

The user can also request a translation of the query into an Excel workbook,
yielding the result shown in Figures 3 and 4. The latter spreadsheet results from
filling the former one for the desired number of rows and inserting the data. The
user should fill sufficiently many rows to accomodate the largest intermediate
results created in the computation process. The possibility to view the algebra
expression corresponding to the SQL query can be helpful in estimating that
number.
Cells in the first row contain comments, indicated by small red triangles. The
spreadsheet cell comments provide a very basic explanation what the formulas
compute – indeed they identify the relational algebra operator they implement
and the columns which are inputs to that operator.

Figure 3: Spreadsheet implementation of the SQL query from Fig. 2. Hovering
over a cell with a small red triangle displays description of the column it belongs
to. Columns between C and BB hold intermediate results and are hidden by
default.
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Figure 4: Spreadsheet implementation of the SQL query from Fig. 2 filled to 15
rows, with sample data and output consisting of 3 tuples.

5 Practical Level

This part is devoted to the discussion of the implementation issues of our trans-
lator.

5.1 NULL values

NULL values are unavoidable in practical implementations of relational databases.
They lead to a three-valued logic that also has to be implemented. Analogously
to many programming environments, spreadsheets do not have any feature that
can be easily adopted as the database NULL. Therefore we offer an implementa-
tion of NULL. We will call it NO-VALUE-NULL.
However, we must start with NO-DATA-NULL, which does not exist in standard
databases, and should not be confused with NO-VALUE-NULL. Indeed, the specific
feature of our implementation of database queries in Excel is that they always
process a fixed number of rows of the input tables. It does not matter how many
of them are actually occupied by data. Hence, we must distinguish between
NO-DATA-NULL that means “there is no row of data here” and the quite different
NO-VALUE-NULL meaning “there is a row of data here, but this attribute has no
value”.
Our choice is to represent NO-DATA-NULL by the error #N/A! which is generated
by the function NA(). It has a corresponding test function ISNA() that returns
TRUE if the argument is or evaluates to #N/A! and FALSE otherwise. The ad-
vantage of this representation is that in many particular Excel formulas we use,
#N/A! is the natural outcome meaning that there should be no data row at this
location.
For NO-VALUE-NULL we use #VALUE! generated with =INDEX(0,-1). It has the
test ISERR(), i.e. a function which returns TRUE if the argument is any error
except #N/A! and FALSE otherwise. Unfortunately, this NULL does not behave
exactly according to Kleene rules when logical connectives are applied to it.
Therefore, it requires coding of logical connectives in the queries. However, the
test =#VALUE!=#VALUE! returns #VALUE!, as desired.
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Hence, our two NULL representations behave as desired. Both of them have
functions that create them and tests that distinguish them. Those two NULLs
are supported in the query compiler, which we describe next.

6 Algebra Implementation

6.1 R1C1 notation

In the following we use the row-column R1C1-style addressing of cells and ranges,
supported by Excel. This notation is easier to handle in a formal description,
although in everyday practice the equivalent A1 notation is dominating and
probably easier to understand. Therefore our translator produces worksheets
in the A1 notation. A user who wants to see them in the R1C1 notation must
change the appropriate setting in the Excel options. The key advantage of the
R1C1 notation becomes evident when we enter a formula into a cell, click a
small handle in the lower right corner of it and extend its boundaries either
horizontally or vertically. This operation results in copying the content of the
initial cell to the new, larger area of the worksheet. In the R1C1 notation the
formulas resulting from filling are identical to the initial one, which makes our
explanations in the paper much simpler.
In the R1C1 notation, both rows and columns of worksheets are numbered by
integers starting from 1. For arbitrary nonzero integers i and j and nonzero
natural numbers m,n the following expressions are cell references in the R1C1

notation: RmCn, R[i]Cm, RmC[j], R[i]C[j], RCm, RC[i], RmC, R[i]C. The num-
ber after ‘R’ refers to the row number and the number after ‘C’ to the column
number. If that number is missing, it means “same row (column)” as the cell
in which this expression is used. A number written in square brackets is a rela-
tive reference and the cell to which this expression points should be determined
by adding that number to the row (column) number of the cell in which the
reference is used. A number without brackets is an absolute reference to a cell
whose row (column) number is equal to that number. For example, R[-1]C7
denotes a cell which is in the row directly above the present one in column 7,
while RC[3] denotes a cell in the same row as the present one and 3 columns to
the right. If R or C is itself omitted, the expression denotes the whole column
or row (respectively), e.g., C7 is column number 7.
Below we discuss the most important elements of Excel we use, but this presen-
tation is not exhaustive: we sometimes use functions not presented below.

6.2 IF function

IF is a conditional function in spreadsheets. The syntax is
IF(condition,true branch,false branch).
Its evaluation is lazy, i.e., after the condition is evaluated and yields either
TRUE or FALSE, only one of the branches is evaluated. It can be therefore used
to protect functions from being applied to arguments of wrong types, trap errors,
and, last but not least, to speed up execution of queries by avoiding computation
of certain branches.
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Figure 5: In the context of this worksheet the formula
=COUNTIFS(RC1:R5C1,"<"&RC3,RC2:R5C2,R2C3) returns 2.

6.3 MATCH and INDEX functions

We mostly use MATCH using the syntax MATCH(cell,range,0). It returns the
relative position of the first value in range which is equal to the value in cell,
and an #N/A! error if such a value does not appear there.
A call MATCH(range,cell,1) is correct only if range is sorted in ascending
order. Then, such a call to MATCH returns the relative position of the largest
value in range that is less than or equal to the value in cell.
INDEX is used in the syntax INDEX(range,cell). This function call returns the
value from range whose relative position is given by the value from cell.

6.4 COUNTIFS

In Excel 2007 two new highly expressive functions COUNTIFS and SUMIFS ap-
peared for the first time. The function COUNTIFS counts rows (columns, resp.)
satisfying multiple criteria, which can refer to several columns (rows, resp.).
The general syntax is
COUNTIFS(rng1,cr1,...,[rngk,crk]),
where each of the ranges rng has the same dimension.
If the input ranges are columns, the function returns the number of rows r such
that the rth value in columni satisfies criterion cri for i = 1, . . . , k. In the dual
form, the calculation proceeds in the same way, except that rows take over the
role of columns and vice versa.
For example, in the context of the worksheet depicted in Fig. 5, the formula
=COUNTIFS(RC1:R5C1,"<"&RC3,RC2:R5C2,R2C3)

returns 2, since there are two rows in the data, in which a number smaller than
3 is accompanied by the string "a". Note the way of creating criteria, which can
be expressed by a string produced by concatenating (operator &) the inequality
sign with the reference to the numerical argument, or by a value or reference,
in which case the condition is, by default, equality.

6.5 SUMIFS

This time the syntax is
SUMIFS(sum rng,rng1,cr1,...,[rngk,crk]).
The operation of SUMIFS is quite similar to that of COUNTIFS, except that the
rows are not counted, but the values in column sum rng are summed over the
rows satisfying the criteria.
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6.6 ROW and COLUMN

The function call ROW() returns the row number in which the call is located.
Similarly, COLUMN() returns the column number in which the call is located.

6.7 OFFSET

OFFSET is a function which differs significantly from all other functions men-
tioned in this paper. It allows the user to specify an arbitrary range of cells,
whose location is determined by the numerical arguments of OFFSET. The syntax
is
OFFSET(reference, rows, cols, [height], [width])

The call to this function yields a range, which is determined as follows: its top
left corner is located rows down and cols to the right of reference. If no
optional argument is provided, the range is a single cell, if they are present,
they specify the dimensions of the range. The specific feature of OFFSET calls
is that their arguments are calculated at runtime and only then it becomes
known, what cell each OFFSET call refers to. In particular, when this function is
used, it is impossible to determine, before executing the spreadsheet, if circular
references are created or not.

6.8 Notation

We use the following convention for presenting our implementations:
COLUMNS

=FORMULA

means that =FORMULA is entered into each cell of the COLUMNS, which may be
specified either to be a single column (e.g. C5 ) or a range of a few columns
(e.g. C5:C7), or a single cell (e.g. R1C5), and in each case belongs to the
columns with intermediate values. In few cases we first fill a complete column
with formulas, and then override the formula in the first row. This is used to
create columns in which the first formula differs from those in the subsequent
rows.
The notation
*COLUMNS

=FORMULA

indicates that formulas located in COLUMNS calculate the output of the query.

6.9 Relational algebra

In the examples presented here the arguments of the algebra operators are bi-
nary or ternary relations. Our query compiler uses parameterized forms of the
implementations below, which work for any numbers of column in the input.
Except sorting, in all other cases we assume the input to be in the standard
form, i.e., null rows are at the bottom.
We describe the following implementations, from the full list of [24]:

• Sorting;
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• Grouping with aggregation γL,cr, where L is any combination of operators
SUM, COUNT, AVG, MAX and MIN applied to the columns of r and c is a subset
of the columns of r;

• Semijoin r⋉θ s, where θ is an equality of two columns;

• Join r ⊲⊳θ s, where θ is an equality of two columns.

6.10 Sorting

Now we describe an implementation of sorting, used in our translator. It is of
quadratic complexity. We describe a significantly faster sorting algorithm in
section 7.1 below. However, it uses a non-constant number of columns, hence
was not incorporated into the translator.
We assume that columns C1:C3 contain the source data and we sort in ascending
order by the values in C1.
R1C4

=COUNTA(C1)-COUNTIFS(C1,NA())

C5

=IF(ISNA(RC1),R1C4+1,IF(ISERR(RC1),

1+R1C4-COUNTIFS(C1,RC1),

COUNTIFS(C1,"<"&RC1)+

COUNTIFS(R1C1:RC1,RC1)))

C6

=MATCH(ROW(),C5,0)

*C7:C9

=INDEX(C[-6],RC6)

For descending sort the only change is
C5

=IF(ISNA(RC1),R1C4+1,IF(ISERR(RC1),

1+R1C4-COUNTIFS(C1,RC1),

COUNTIFS(C1,">"&RC1)+

COUNTIFS(R1C1:RC1,RC1)))

In either case, the formulas compute in RC5 the number of entries in column C1

which are smaller than or equal to RC1 plus the number of entries equal to RC1

in R1C1:RC1. This is the number of the row into which RC1 should be relocated
during sort.
Now RC6 contains the number of the row in which the number of the present
row appears in C5.
Finally, the formulas in RC7, RC8, RC9 fetch the values from columns C1, C2,

C3 from the row calculated in RC6.
An important property of this operation is that this form of sorting is stable.

6.11 Grouping with aggregation

Grouping is an operator, whose implementation in the translator differs signif-
icantly from the one given in [8]. The reason is that the present one computes
simultaneously many aggregates for one grouping, unlike the former one.
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In the following, we assume that the relation to be processed is located in
C1:C10. We wish to express the grouping, which in SQL can be declared as
follows:

SELECT C1,C2,MIN(C3), MAX(C4), SUM(C5),

COUNT(C6,C7), AVG(C8),

COUNT(DISTINCT C9,C10)

FROM C1:C10

GROUP BY C1,C2

We have the following problems:

• For each separate grouping performed we leave one row from each group:

– for MIN(C3) and MAX(C4)we leave the row where the actual minimum
or maximum is attained;

– for the remaining operators we leave the very first row of each group
together with the computed aggregate.

• Now we may have between 1 and 3 entries for each group, with differ-
ent aggregations, which must be unified to produce a single row with all
aggregates.

C11

=COUNTIFS(R1C1:RC1,RC1,R1C2:RC2,RC2)

This counts which occurrence of the values in C1:C2 we have in the present row.
C12

=IF(ISNA(RC1),NA(),IF(ISERR(RC3),

COUNTIFS(C1,RC1,C2,RC2)-

COUNTIFS(C1,RC1,C2,RC2,C3,RC3),

COUNTIFS(C1,RC1,C2,RC2,C3,"<"&RC3)))

This is a help formula for minimum. It counts how many tuples in C1:C3 have
the same values in C1:C2 as in the present row, and a smaller value in C3. There
is a special treatment if there is NO-VALUE-NULL in C3.
C13

=IF(ISNA(RC1),NA(),IF(ISERR(RC4),

COUNTIFS(C1,RC1,C2,RC2)-

COUNTIFS(C1,RC1,C2,RC2,C4,RC4),

COUNTIFS(C1,RC1,C2,RC2,C4,">"&RC4)))

This is an analogous formula for maximum.
C14

=IFERROR(RC[-9],"")

C15

=IFERROR(RC[-7],"")

These two formulas replace NULLs of both kinds by empty texts for SUM and
AVG aggregations. The reason is that Excel ’s SUMIFS function produces an error
when one of its arguments is an error, but fortunately ignores text arguments.
C16

=IF(AND(ISERROR(RC[-7]),
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ISERROR(RC[-6])),INDEX(0,-1),

COUNTIFS(R1C1:RC1,RC1,R1C2:RC2,RC2,

R1C9:RC9,RC9,R1C10:RC10,RC10))

This help formula for COUNT DISTINCT counts which occurrence of the values in
C1:C2,C9:C10we have in the present row. Note that it produces NO-VALUE-NULL
in case there are NULLs in columns C9:C10 of the present row.
*C17:C18

=IF(RC11=1,RC[-16],NA())

This formula turns non-first occurrences of pairs from C1:C2 into NO-DATA-NULL.
All subsequent formulas test if this value in NO-DATA-NULL and if so, become
NO-DATA-NULL, too.
*C19:C20

=IF(ISNA(RC17),NA(),

SUMIFS(C[-16],C1,RC1,C2,RC2,C[-7],0))

This formula relocates the minimum and maximum values (recognized by 0 in
columns C12 and C13, resp.) into the present row.
*C21

=IF(ISNA(RC17),NA(),

SUMIFS(C[-7],C1,RC1,C2,RC2))

This formula computes the SUM aggregation.
*C22

=IF(ISNA(RC17),NA(),

COUNTIFS(C1,RC1,C2,RC2)-

COUNTIFS(C1,RC1,C2,RC2,

C[-16],INDEX(0,-1),

C[-15],INDEX(0,-1)))

This formula computes the COUNT aggregation, where double NO-VALUE-NULL

values are not taken into account.
*C23

=IF(ISNA(RC17),NA(),

SUMIFS(C[-8],C1,RC1,C2,RC2)/

COUNTIFS(C1,RC1,C2,RC2))

This formula computes the SUM aggregation.
*C24

=IF(ISNA(RC[-7]),NA(),

COUNTIFS(C1,RC1,C2,RC2,C[-8],1))

This final formula computes the COUNT DISTINCT aggregate. The first occur-
rences are indicated by 1 in column C16.

6.12 Semijoin

Assume that we are given two relations located in C1:C2 and C3:C4, respectively,
and we wish to compute the equisemijoin C1 : C2⋉C1=C3 C2 : C3.
This is achieved in the following way. The two formulas below copy the rows
from C1:C2, replacing those which do not belong to the semijoin by NO DATA NULLs.
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C1:C2 C3:C4

C5:C9 

  sort

C10:C14 

     sort

C15-C16

 semijoin

C17:C18 

 semijoin

    C19:C21

group-by-count

     C22:C24 

group-by-count

  C25:C28 

standardize

  C29:C32

standardize

C33:C42 joining

Figure 6: The structure of equijoin of two relations stored in C1:C2 and C3:C4

The resulting relation is loose and should be normalized.
C5

=IF(ISERROR(MATCH(RC1,C4,0)),NA(),RC1)

C6

=IF(ISNA(RC5),NA(),RC2)

6.13 Join

Let two relations be located in C1:C2 and C3:C4, respectively, and the equijoin
C1 : C2 ⊲⊳C1=C3 C3 : C4 should be computed.
It is computed according to the decomposition

C1 : C2 ⊲⊳C1=C3 C3 : C4 =

(C1 : C2⋉C1=C3 C3 : C4) ⊲⊳C1=C3(C3 : C4⋉C3=C1 C1 : C2)

Let us note that we have

πC1(C1 : C2⋉C1=C3 C3 : C4) = πC3(C3 : C4⋉C3=C1 C1 : C2).

Then, denoting this the set of elements in this common projection by X, we can
further decompose the join into the sum

⋃

x∈X

{x} × πC2(σC1=x(C1 : C2))× πC4(σC3=x(C3 : C4)).

We will call the expressions {x}×πC2(σC1=x(C1 : C2))×πC4(σC3=x(C3 : C4)) blocks
of the join.
The Excel implementation of the above idea is as follows.
The initial phase of computing the join consists of application of several other
operators, according to Fig. 6.
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After this initial phase, columns C27:C28 contain
⋃

x∈X

{〈x, card(σC1=x(C1 : C2))〉}

and columns C31:C32 contain
⋃

x∈X

{〈x, card(σC3=x(C3 : C4))〉}.

The real join creation takes place in columns C33:C42 and is executed as follows.
C33

=MATCH(RC[-6],C[-25],0)

C34

=MATCH(RC[-3],C[-21],0)

These two columns contain pointers to the first rows of the sorted input tables
with consecutive elements of X.

C35

=IFERROR(RC[-7]*RC[-3],"")

The values in C35 are the sizes of the blocks of the join.
C36

=IFERROR(R[-1]C[-1]+R[-1]C,"")

R1C36

=0

C36 contains the numbers of rows at which the consecutive blocks of the join
should begin minus 1.
R1C37

=SUM(C[-2])

This number is the total cardinality of the join to be produced.
C38

=IF(ROW()>R1C37,NA(),

MATCH(ROW()-1,C36,1))

In this line function MATCH is used with the last parameter 1 to do inexact
search for the number of the block from which the present tuple in join should
originate.
C39

=IF(ISNA(RC[-1]),NA(),

IF(RC[-1]<>R[-1]C[-1],1,1+R[-1]C))

R1C39

=IF(ISNA(RC[-1]),NA(),1)

These two lines compute, within each block, the number of the present row of
the join within its block.
*C40

=INDEX(C[-13],RC[-2])

*C41

=INDEX(C[-32],INDEX(C[-8],RC[-3])+
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MOD(RC[-2]-1,INDEX(C28,RC[-3])))

*C42

=INDEX(C14,INDEX(C34,RC[-4])+

QUOTIENT((RC[-3]-1),INDEX(C28,RC[-4])))

In the last three columns we fetch the right x ∈ X, then the relevant element of
σC1=x(C1 : C2) and the relevant element of σC3=x(C3 : C4), creating that tuple of
the join.

7 Special algorithms

The algorithms whose implementations we describe in this section are not used
by the query compiler. They arose from our attempts to either find better
algorithms for SQL-92, or to express computations which go beyond SQL-92.

7.1 Fast sorting

The solution to the problem of sorting presented in Section 6.10 is clearly a
quadratic algorithm.
In this section we describe an efficient linearithmic implementation. We adopt
the well-known bottom-up merge-sort algorithm and simulate a sorting network
over the data range.
A spreadsheet with an implementation of our algorithm is available at the
Web page of the paper (see Section 9). It includes two worksheets one with
a condensed version with fewer columns per step and one with many auxil-
iary columns for easy human understandability. Below we refer to the latter
spreadsheet.
In the first step, pairs of neighbouring cells are sorted. The next step leaves
sorted quadruples, and so on, until the whole data range is sorted. Obviously,
if n items are to be sorted, logn steps are needed. In the spreadsheet model of
computation we cannot reiterate values in a cell. Thus our fast sorting does not
work in place, but rather uses a logarithmic number of columns, i.e. successive
columns are needed for successive steps. Such an organization can be compared
to a sorting network.

Figure 7: Spreadsheet implementation of the bottom-up merge sort algorithm
in Excel. The area shown merges two already sorted 4-element blocks on the
left to yield a sorted 8-element block on the right.
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The fast sorting algorithm presented below is composed of 12 columns per one
level of merging. In practical situation one may condense this to just 4 columns,
replacing references to cells by formulas which are in those cells (this process
we call inlining).
Now we describe one such block. Let us assume that the already sorted blocks
of certain length are located in column C25. We want to produce sorted blocks
of doubled size in column C37.
In order to sort n items it is necessary to use log n such groups of columns. The
already sorted blocks of the initial data are of size 1, and each group of columns
merges pairs of already existing blocks to produce sorted blocks of duplicate
size.
Now we start the description of such a group of 12 columns.
C26

=QUOTIENT(COLUMN(),12)

This column determines which level of merging is performed now.
C27

=POWER(2,RC[-1])

This column determines the sizes of blocks to be merged.
C28

=QUOTIENT(ROW()-2,RC[-1]*2)*2*RC[-1]+1

Now we determine where the top of the two blocks to be merged starts. . .
C29

=RC[-1]+RC[-2]-1

. . . and where it ends. . .
C30

=RC[-2]+RC[-3]

. . . and where the bottom block starts. . .
C31

=RC[-2]+RC[-4]

. . . and where it ends.
The following 5 columns do the merging, and now the pattern of references
becomes more complicated. Formulas do not refer only to cells to the left, but
also to values above them, in those 5 columns.
C32

=IF(MOD(ROW()-2,RC[-5]*2)=0,

RC[-4],IF(R[-1]C[4],R[-1]C+1,R[-1]C))

This column computes the position of the first not-yet-merged element from
the top block. It either repeats the value R[-1]C directly above in the same
column, or increments it by 1, depending on the value R[-1]C[4] one row
above and 4 columns to the right, which determined if the value in (then)
subsequent step should be taken from the top or bottom block. The initial test
IF(MOD(ROW()-2,RC[-5]*2)=0... checks if this row starts a new merging of
two new blocks; if it is so then the formula returns the top element of the new
top block to be merged RC[-4].
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C33

=IF(MOD(ROW()-2,RC[-6]*2)=0,

RC[-3],IF(R[-1]C[3],R[-1]C,R[-1]C+1))

Now we do the same for the bottom block.
The following two columns retrieve the data elements from the just determined
positions.
C34

=INDEX(C[-9],RC[-2]+1)

C35

=INDEX(C[-10],RC[-2]+1)

C36

=IF(RC[-4]>RC[-7],FALSE,

IF(RC[-3]>RC[-5],TRUE,RC[-2]<=RC[-1]))

In this column the comparison RC[-2]<=RC[-1] determines which of the found
values is smaller and should go now to the output, and the result is represented
as a Boolean value, to be used in the following row of columns C32 and C33. The
initial two tests verify if all values from one of the merged blocks have already
been used and we should take a value from the other block, irrespectively of
anything else.
C37

=IF(RC[-1],RC[-3],RC[-2])

And here the chosen element, smaller of the two, is appended to the result.
Concerning the complexity of this implementation, for sorting n items it consists
of n rows of formulas, and logarithmic number of columns, O(n log n) formulas
in total. The formulas in turn either access a constant number of neighbouring
cells and, in some of the columns, call INDEX function to return a particular
element from the input column of unsorted items. Theoretically, the complexity
of this operation is O(log n), resulting in O(n log2 n) total complexity. However,
tests we have performed indicate that the time necessary to execute INDEX in
Excel does not depend on the number of data elements in the input range, so in
practice our sorting works in O(n log n) time, for n not exceeding the number
of rows available in Excel.

7.2 Graph traversing

Graph traversing is a fundamental algorithmic operation. It appears as an
important step in numerous graph algorithms. Its two most important variants
are Breadth-First-Search (BFS) and Depth-First-Search (DFS).
We are going to demonstrate that both of them can be implemented in spread-
sheets, with the restriction that BFS works for acyclic directed graphs, while
DFS for arbitrary directed graphs. An implementation of BFS for cyclic graphs
can be done similarly to DFS. However, we have decided to show the BFS
version for acyclic graphs to simplify this algorithm and its presentation. Fur-
thermore, as we will show, this gives us an unusual way to test if a directed
graph is cyclic or not. This test is another evidence that the potential of the
spreadsheet systems has not been well recognized yet.
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Figure 8: Spreadsheet implementation of the BFS graph traversal.

Technically speaking, we will demonstrate, how to order vertices of a graph,
given as a list of edges, exactly in the order in which BFS and DFS visit them.
In both cases, we assume that the input (directed) graph G is specified by its set
E of directed edges, which are pairs of vertices. The vertex set V is determined
by the set of edges. We are also given a start vertex s ∈ V , from which the
traversal begins.

7.3 Breadth-First-Search

The idea of the algorithm is that we assign a level lv(v) to each vertex v ∈ V .

• lv(s) = 0 for the source vertex s.

• For every vertex v 6= s with no incoming edges lv(v) = ∞.

• For every other vertex v, we define lv(v) = 1 + min{lv(w) | 〈w, v〉 ∈ E}
(assuming that 1 +∞ = ∞).

Every linear ordering of those vertices of G, which have finite value of lv and
such that lv is non-decreasing, corresponds to some BFS traversal of the graph.
Sorting is doable in spreadsheets, as well as filtering, hence it is sufficient to
show how to compute lv.
We have one technical problem: ∞ is not present in spreadsheet arithmetic.
Instead we use 10300, which is more than the number of particles in the visible
part of the universe, and, by the definition of the level, the finite values of level
cannot achieve this quantity. So it is a fully functional substitute of ∞ for our
purpose.
Now we discuss the implementation of our idea. We start with producing an
expanded set of edges by adding to E edges 〈v, NULL〉 for all v ∈ V with no
outgoing edges. This modification does not alter the values of level resulting
from the algorithm, and simplifies our task, since now every vertex appears as
a first coordinate of some edge. This operation is expressible in SQL, hence it
can be implemented in a spreadsheet, and we omit the formulas which perform
it.
Next, we sort the expanded set of edges by the second coordinate. As a con-
sequence the edges incoming into a vertex v always form a contiguous block.
Again we omit the formulas which perform the sorting (see Section 6.10).
Let the sorted edges of the expanded E be provided row-wise in columns C1:C2
and the start node s be located in cell R1C3.
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Each row is therefore associated with an edge 〈v, w〉 located in columns C1:C2,
and we are going to compute lv(v) in column C6.
We start by computing for each row corresponding to edge 〈v, w〉, the (position
of the) beginning of the block of all edges incoming into v. If v has no incoming
edges, the result is #N/A!.
C4

=MATCH(RC1,C3,0)

Next, for each row corresponding to edge 〈v, w〉, compute the number of edges
of the expanded E incoming into v.
C5

=COUNTIF(C3,RC1)

The final column of formulas computes the levels of vertices. If the following
formula is located in a row corresponding to an edge 〈v, w〉, it computes the
level of v.
*C6

=IF(RC1=R1C3,0,IF(ISERROR(RC3),1E300,

1+MIN(OFFSET(R1C6,RC4-1,0,RC5))))

First, the start vertex s from R1C3 is assigned level 0. Next, if v is not s

and has no incoming edges, its level becomes 1E300. If v has incoming edges,
OFFSET function creates a range in the present column, encompassing exactly
all rows whose edges in columns C1:C2 have the form 〈w, v〉. The formula then
calculates MIN over this range and adds 1. This is the level of v and its value is
then recorded in columnC6. Since then it becomes available for computing levels
of further vertices, allowing recursion. Note, that the acyclicity of G implies that
we do not get cyclic references and the computation is well-founded.
One can observe that the pattern of the references within column C5 reproduces
exactly the expanded set of edges E whose traversal we perform.
What remains to be done is to sort column C1 according to the value in C5, re-
place all vertices of level ≥ 1E300 by #N/A! and finally eliminate the duplicates.
Again, this is doable using relational operators.
An interesting observation is that such a spreadsheet can also perform the test if
the input graph is acyclic, but in a quite specific way. A successful computation
of the above spreadsheet determines that the graph is indeed acyclic. If it is not,
the spreadsheet responds with a message that circular references are created.

7.4 Depth-first-search

In an analogous situation, our present task is to determine the ordering of the
vertices of G in which they are discovered by DFS algorithm run on G starting
from s. We assume that the edges of E are listed in some order. This order
determines the relative order of the vertices reachable from any given vertex v.

Now, we describe the iterative algorithm which performs DFS. We will mimic
its operation in a spreadsheet presented later, to determine the order in which
it visits the vertices.
At all times the algorithm keeps the following information:

• the current vertex cur node,
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cur_node:=s;

first_time:=true;

cur_parent:=NULL;

next_sibling:=NULL;

first_son:=the first son of cur_node;

visited:=<cur_node,first_time,cur_parent>;

repeat 2*|E| times

if first_time and first_son<>NULL

then {move to the first son}

cur_parent:=cur_node;

cur_node:=first_son;

first_son:=the first son of cur_node;

first_time:=[cur_node does not appear in visited];

visited:=append(visited,<cur_node,first_time,cur_parent>);

elseif next_sibling<>NULL and ((first_time and first_son=NULL) or not(first_time))

then {move to the next sibling}

cur_node:=next_sibling;

first_son:=the first son of cur_node;

first_time:=[cur_node does not appear in visited];

visited:=append(visited,<cur_node,first_time,cur_parent>);

else {backtrack}

cur_node:=cur_parent;

cur_parent:=the parent of cur_node when cur_node was new, from visited;

first_son:=the first son of cur_node;

first_time:=[cur_node does not appear in visited];

visited:=append(visited,<cur_node,first_time,cur_parent>);

Figure 9: The pseudo-code of the algorithm for DFS.

• Boolean first time which gives the information if the present visit to
cur node is the first one or not,

• the parent vertex cur parent from which we have reached cur node,

• the first son of cur node,

• the present next sibling of cur node, which is the next vertex after cur node
among those reachable from cur parent ,

• the list visited of all tuples (cur node, first time, cur parent) encountered
so far, in the order of appearance.

Each of the above vertices can be NULL. In Fig. 9 we present the pseudo-
code of the algorithm for DFS. The body of its repeat statement is composed
of a three-way conditional statement. Note that in all the three branches the
last three statements are exactly the same. It is intentional, since this is not
a classic “if” statement but a construction composed of three spreadsheet cells
that implement the branches. Even if the factorisation of those three statements
out of the conditional was feasible in traditional programming languages, it
would complicate not simplify the resulting spreadsheet.
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Figure 10: Spreadsheet implementation of the Depth-First-Search graph traver-
sal.

Since the number of iterations of the main loop is fixed, it is important to note
what happens if the traversal is finished in fewer than 2∗|E| steps: the algorithm
then attempts to backtrack from the start vertex s and makes cur node NULL.
From that moment on, whatever is computed from NULL results in NULL, so the
rest of the output consists of NULLs.
This algorithm can be now translated into a spreadsheet. We do not need
expanded E for that purpose, since we do not touch unreachable vertices. The
first step is to order the edges of E by their first coordinate. This does not alter
the relative order of children of the vertices. We omit the formulas which do
the sorting (see Section 6.10).
The columns of the spreadsheet hold the values of variables of the above algo-
rithm, each row corresponding to one iteration, and there are a few columns with
auxiliary computations. Values of cur node are stored in column C4, first time
in C5, cur parent in C6, next sibling in C8, first son in C9. Columns C11 and
C12 calculate the logical values of tests in the if ...then and elseif ...then

statements of the algorithm, computed according to the values at the end of the
iteration. Finally, column C13 holds numbers of consecutive rows, which helps
in calculations.
First, cur node is determined in column C4 depending on the logical tests com-
puted at the end of the previous iteration.
*C4

=IF(R[-1]C11,R[-1]C10,

IF(R[-1]C12,R[-1]C9,R[-1]C7))

The special formula in row 1 of that column is the initialization of cur node.
*R1C4

=R1C3

The next column consists of formulas checking if the present value of cur node
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appears in the history of that variable. MATCH returns an error when it is not.
C5

=ISERROR(MATCH(RC4,R1C4:R[-1]C4,0))

The next column of formulas computes an auxiliary value: the row number of
the first time the present value of cur node was encountered. This first time
is always distinguished by TRUE accompanying it in column C5. Because the
present value of cur node was a new one at most once, the sum of row numbers
in column C13 yields the step number when it was new, or 0 if it was never new
in the past (because it is new now).
C6

=SUMIFS(R1C13:R[-1]C13,R1C4:R[-1]C4,RC4,

R1C5:R[-1]C5,TRUE)

We initialize this column by leaving the first cell empty.
R1C6

Now we compute the value of cur parent for the present cur node. In the case
we are doing backtrack, the parent of cur node is found in the history, by looking
up the moment when cur node was new. This position has been computed in
RC6, and we take the corresponding value from the history of cur parent in
column C7.
C7

=IF(R[-1]C11,R[-1]C4,IF(R[-1]C12,

R[-1]C7,INDEX(R1C7:R[-1]C7,RC6)))

For the start vertex in the first row we initialize cur parent as NULL.
R1C7

=NA()

Next we compute another auxiliary value: the number of the row of the input
relation E in which the edge 〈cur parent , cur node〉 appears. It appears there
exactly once, so again we sum the row numbers from column C13.
C8

=SUMIFS(C13,C1,RC7,C2,RC4)

However, at the beginning the pair 〈cur parent , cur node〉 is not an edge, so we
initialize leaving the first cell in this column empty.
R1C8

Referring to the auxiliary value computed in RC8, the following formula checks
if in the edge of E following 〈cur parent , cur node〉 in the listing, the vertex
cur parent is still the parent. If it is so, the second coordinate of that edge is
the present next sibling of cur node. Otherwise we set the next sibling to NULL.
C9

=IF(INDEX(C1,RC8+1)=RC7,INDEX(C2,RC8+1),

NA())

Of course, the start vertex has no next sibling, so we initialize this column with
NULL in the first row.
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R1C9

=NA()

In column C10 we find the first edge of E whose first coordinate is the present
cur node, and return the second coordinate as the first son first son of cur node.
If there is no such edge in E, first son becomes NULL. This column does not
require any specific initialization in the first row.
C10

=IFERROR(INDEX(C2,MATCH(RC4,C1,0)),NA())

The last three columns compute the test results for if ...then and elseif

...then, to be used in the next iteration, and the row number.
C11

=AND(RC5,NOT(ISNA(RC[-2])))

C12

=AND(NOT(ISNA(RC8)),OR(NOT(RC5),

AND(RC5,ISNA(RC9))))

C13

=ROW()

Now it is sufficient to remove duplicates from column C4 to get the order in
which the initial algorithm discovers new vertices of the input graph. We omit
the formulas for doing that.

7.4.1 Example application

The discussed graph traversal algorithms can be used to implement recursive
queries over hierarchies. Hierarchical data is ubiquitous. In shops we have prod-
uct categorization with some categories being subcategories of other. Companies
have numerous corporate hierarchies of employees (manager-subordinate), or-
ganizational units (unit-subunit) or projects (project-subproject) etc. Although
not covered in relational algebra, recursive queries to data representing hierar-
chies are often encountered in practice. In order to query such relations recursive
queries have been introduced. First, they emerged in Oracle database in the
form of the famous CONNECT BY clause, and then SQL:1999 adopted them as
recursive common table expressions.
A spreadsheet with an example implementation of the described graph algo-
rithms is available online as a supplementary material (see Section 9). The
spreadsheet also includes an example of how the described techniques can be
used to implement a typical query on the sample Oracle manager-subordinate
hierarchy:

SELECT ename, level

FROM emp

START WITH empno = 7839

CONNECT BY PRIOR empno = mgr;
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8 Conclusions, further research

We have demonstrated that SQL can be automatically translated into spread-
sheet code, including NULL values. Thus, we have shown the power of the
spreadsheet paradigm, which subsumes the paradigm of relational databases.
Apart from SQL, we have also implemented a few specific algorithms: a lin-
earithmic sorting procedure and two graph traversing algorithms: BFS and
DFS.
As the next steps:

• We plan to develop optimizations for SQL queries translated into spread-
sheet.

• We plan to investigate whether spreadsheets can naturally implement
other models of databases, like semi-structured or object-relational ones.

• Google spreadsheets provide the QUERY function, capable of expressing a
limited fragment of SQL, as well as SORT, FILTER and UNIQUE functions,
of similar roles. If a Google spreadsheet with those functions is down-
loaded as xlsx or ods file, these functions are not recognized by other
spreadsheet systems and produce errors. We plan to use our implementa-
tions of algebra operators and experience with SQL translator to construct
a translator capable of producing fully functional spreadsheet files from
those downloaded from Google docs.

9 Software availability

TheWeb page of the present paper is hhtp://www.mimuw.edu.pl/~jty/Translating/,
from which the software described in this paper can be accessed, including:

• the SQL to Excel translator, described in Section 4.2. This tool is indepen-
dently accessible from Sourceforge http://sourceforge.net/projects/
sqltoalgebra/?source=directory,

• Excel implementation of a sorting algorithm, working in time O(n log2 n),
described in Section 7.1, and

• Excel implementations of BFS and DFS.
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