
REMOVING DUST USING MULTIPLE

ALIGNMENT OF SEQUENCES





KAIO WAGNER LIMA RODRIGUES

REMOVING DUST USING MULTIPLE

ALIGNMENT OF SEQUENCES

Tese apresentada ao Programa de Pós-
-Graduação em Informática do Instituto
de Computação da Universidade Federal
do Amazonas como requisito parcial para
a obtenção do grau de Doutor em Infor-
mática.

Orientador: Marco Antônio Pinheiro de Cristo

Manaus

Setembro de 2016





KAIO WAGNER LIMA RODRIGUES

REMOVING DUST USING MULTIPLE

ALIGNMENT OF SEQUENCES

Thesis presented to the Graduate Program
in Computer Science of the Universidade
Federal do Amazonas in partial fulfillment
of the requirements for the degree of Doctor
in Computer Science.

Advisor: Marco Antônio Pinheiro de Cristo

Manaus

September 2016



c© 2016, Kaio Wagner Lima Rodrigues.
Todos os direitos reservados.

Rodrigues, Kaio Wagner Lima

R696r Removing DUST using multiple alignment of
sequences / Kaio Wagner Lima Rodrigues. — Manaus,
2016

xxv, 91 f. : il. ; 29cm

Tese (Doutorado em Informática) — Universidade
Federal do Amazonas

Orientador: Marco Antônio Pinheiro de Cristo

1. Motores de busca. 2. Coleta. 3. Eliminação de
Duplicatas. 4. Normalização de URLs. 5. Regras de
Reescrita. I. Cristo, Marco Antônio Pinheiro de II.
Universidade Federal do Amazonas III. Título.







Aos meus pais por toda dedicação, carinho e renúncias.

ix





Acknowledgments

Em primeiro lugar, agradeço aos meus pais, Jonas e Luzdete, pelo amor, apoio e
pelos sacrifícios realizados para que eu pudesse chegar até aqui. Agradeço por serem
compreensivos e por terem me apoiado na escolha da minha carreira.

Agradeço à Elane Ferreira, meu amor, que esteve sempre ao meu lado com muita
compreensão, ajudando a adoçar os momentos mais difíceis com suas palavras de con-
forto e incetivo.

Agradeço ao meu orientador, Marco Cristo, por ter me aceitado como seu aluno,
pela preocupação, paciência, disponibilidade e conhecimento transmitido. Muito obri-
gado pelos direcionamentos e pelas horas de dedicação.

Meus agradecimentos também se estendem aos professores Altigran Soares e
Edleno Silva de Moura, pelo grande auxílio e contribuições dados quando este tra-
balho ainda estava em seu estágio inicial.

Agradeço aos amigos Bruno Campos, André Carvalho, Marcio Palheta, Caio
Daoud, Thiago Salles e todas as outras pessoas que participaram de forma direta ou
indireta na conclusão desta tese.

Ao pessoal da secretaria do departamento, pela simpatia e disposição em ajudar.
Em especial à Elienai Nogueira, pela amizade e ajuda desde que eu era calouro do
curso de Ciência da Computação.

Agradeço também ao Governo do Estado do Amazonas por meio da Fundação
de Amparo à Pesquisa (FAPEAM), pelo auxílio financeiro destinado a realização desta
pesquisa.

Acima de tudo, agradeço a Deus por ter me concedido saúde, sabedoria, força e
proteção neste momento tão importante da minha vida.

xi





“Porque muitos são chamados,
mas poucos escolhidos.”

(Mateus 22:14)

xiii





Resumo

Um grande número de URLs obtidas por coletores corresponde a páginas com conteúdo
duplicado ou quase duplicado, conhecidas em Inglês pelo acrônimo DUST, que pode ser
traduzido como Diferentes URLs com Texto Similar. DUST são prejudiciais para sis-
temas de busca porque ao serem coletadas, armazenadas e utilizadas, contribuem para
o desperdício de recursos, a criação de rankings de baixa qualidade e, consequente-
mente, uma experiência pior para o usuário. Para lidar com este problema, muita
pesquisa tem sido realizada com intuito de detectar e remover DUST antes mesmo de
coletar as URLs. Para isso, esses métodos se baseiam no aprendizado de regras de nor-
malização que transformam todas as URLs com conteúdo duplicado para uma mesma
forma canônica. Tais regras podem ser então usadas por coletores com o intuito de
reconhecer e ignorar DUST. Para isto, é necessário derivar, de forma eficiente, um con-
junto mínimo de regras que alcance uma grande taxa de redução com baixa incidência
de falsos-positivos. Como a maioria dos métodos propostos na literatura é baseada na
análise de pares, a qualidade das regras é afetada pelo critério usado para selecionar
os exemplos de pares e a disponibilidade de exemplos representativos no treino. Para
evitar processar um número muito alto de exemplos, em geral, são aplicadas técnicas de
amostragem ou a busca por DUST é limitada apenas a sites, o que impede a geração de
regras que envolvam diferentes nomes de DNS. Como consequência, métodos atuais são
muito sucetíveis a ruído e, em muitos casos, derivam regras muito específicas. Nesta
tese, é proposta uma nova técnica para derivar regras, baseada em uma estratégia de
alinhamento múltiplo de sequências. Em particular, mostramos que um alinhamento
prévio das URLs com conteúdo duplicado contribui para uma melhor generalização,
o que resulta na geração de regras mais efetivas. Através de experimentos em duas
diferentes coleções extraídas da Web, observa-se que a técnica proposta, além de ser
mais rápida, filtra um número maior de URLs duplicadas. Uma versão distribuída do
método, baseada na arquitetura MapReduce, proporciona a possibilidade de escalabil-
idade para coleções com dimensões compatíveis com a Web.
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Palavras-chave: Motores de busca, Coleta, Eliminação de Duplicatas, Normalização
de URLs, Regras de re-escrita.
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Abstract

A large number of URLs collected by web crawlers correspond to pages with duplicate
or near-duplicate contents. These duplicate URLs, generically known as DUST (Differ-
ent URLs with Similar Text), adversely impact search engines since crawling, storing
and using such data imply waste of resources, the building of low quality rankings and
poor user experiences. To deal with this problem, several studies have been proposed
to detect and remove duplicate documents without fetching their contents. To accom-
plish this, the proposed methods learn normalization rules to transform all duplicate
URLs into the same canonical form. This information can be used by crawlers to avoid
fetching DUST. A challenging aspect of this strategy is to efficiently derive the mini-
mum set of rules that achieve larger reductions with the smallest false positive rate. As
most methods are based on pairwise analysis, the quality of the rules is affected by the
criterion used to select the examples and the availability of representative examples in
the training sets. To avoid processing large numbers of URLs, they employ techniques
such as random sampling or by looking for DUST only within sites, preventing the
generation of rules involving multiple DNS names. As a consequence of these issues,
current methods are very susceptible to noise and, in many cases, derive rules that
are very specific. In this thesis, we present a new approach to derive quality rules
that take advantage of a multi-sequence alignment strategy. We demonstrate that a
full multi-sequence alignment of URLs with duplicated content, before the generation
of the rules, can lead to the deployment of very effective rules. Experimental results
demonstrate that our approach achieved larger reductions in the number of duplicate
URLs than our best baseline in two different web collections, in spite of being much
faster. We also present a distributed version of our method, using the MapReduce
framework, and demonstrate its scalability by evaluating it using a set of 7.37 million
URLs.

Keywords: Search engines, Crawling, De-duplication, URL Normalization, Rewrite
rules.
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Chapter 1

Introduction

1.1 Context

Search engines are often faced with a number of challenging aspects to be tackled in
order to maintain an efficient resource usage and guarantee their scalability. One such
challenge is the presence of a large amount of URLs on the web that points to duplicate
(or near-duplicate) content. Such syntactically different URLs linking to identical or
closely similar content are called duplicate URLs or DUST (Different URLs with Similar
Text [Bar-Yossef et al., 2006]). In fact, such URLs are quite common on the Web. As
an example, in [Fetterly et al., 2003], the authors stated that, in a corpus of 20 billion
fetched documents, around one-quarter are duplicates.

Duplicate URLs bring serious issues to the whole pipeline of a search engine,
from crawling to result serving. Considering the crawling module of a web search
engine, bandwidth and time are wasted to download (near-)duplicate content. Fur-
thermore, politeness rules may be compromised, incurring in potentially aggressive
requests. When indexing, memory is wasted when storing redundant information and
the index itself becomes bloated and inefficient. Moreover, link analysis used, for ex-
ample, to provide better download schedules, may be considerably affected, hampering
the web search efficiency. Finally, the user experience may be considerably prejudiced
due to the presentation of polluted results. Clearly, as such kind of URLs do not add
any new information to the final search engine user, it just serves to negatively affect
the search engine and should be avoided.

A standard way to eliminate duplicate pages from search engines consists to fetch
the content of the URLs and then apply fingerprint methods to discard the similar
ones [Broder, 1997; Broder et al., 1997; Charikar, 2002]. Although this approach can
be accurately used to limit and diversify the set of search results, it requires the pages

1



2 Chapter 1. Introduction

to have been crawled. In other words, it still needs to download duplicate content and
the precious bandwidth and storage cannot be saved. Thus, a better solution to this
problem involves detecting (near-) duplicate content as early as possible in the web
search pipeline (e.g., before fetching duplicate content).

In recent years, several authors have proposed strategies for detecting DUST
that inspect only the URLs without fetching the corresponding page [Bar-Yossef et al.,
2006; Dasgupta et al., 2008; Agarwal et al., 2009; Koppula et al., 2010; Lei et al.,
2010]. The idea of these methods, known as URL-based de-duping, is mine crawl logs
and use clusters of URLs referring to (near) duplicate content1 to learn normalization
rules. These rules (also known as DUST rules [Bar-Yossef et al., 2006] or rewrite
rules [Dasgupta et al., 2008]) are able to transform duplicate URLs to a same canonical
form. This information can be used by a web crawler to avoid fetching DUST, including
ones that are found for the first time during the crawling.

1.2 Problem

The more general problem related to this thesis is to determine if two URLs, ui and
uj, could be transformed one into another by means of only syntactical modifications
between equivalent structural components of the URLs. For instance, in URLs ui
= http://www.google.com/index.html2 and u2 = http://www.google.com/index,
substrings index.htm and index are equivalent structural components which indicate
the site entry page. Thus, u1 could be transformed into u2 and vice versa, which
indicates they point to the same content. Given URLs ui and uj, this problem is also
equivalent to find a canonical representation f(u), such that f(ui) = f(uj) if ui can be
transformed into uj and vice versa. Note that f(u) does not need to be a valid URL.

In this work, we address the problem of determining the canonical representation
f(u). To determine which operations should be used to transform a URL into another,
recent literature has focused on mining transformation rules from examples of duplicate
URLs. For instance, from our previous example, we could extract rule index.html →
index. Thus, the problem we address in this thesis can be described as follows. Let U
be a set of URLs partitioned into n disjoint clusters D1, D2, ..., Dn. Each cluster Di,
from now on referred to as dup-cluster, groups URLs which point to the same content.
Thus, from URLs ui,1, ui,2, ..., ui,m, belonging to dup-cluster Di, only one should be
fetched as they are duplicates. Given these dup-clusters, we need to determine an

1Webmasters explicitly assist search engines with the creation of these clusters when they indicate
which URLs are DUST by using the HTML element called canonical tag [Lei et al., 2010].

2Along this work, we use typographical font to indicate a literal or a sequence of literal characters.

http://www.google.com/index.html
http://www.google.com/index
index.htm
index
index.html
index


1.3. Research Hypotheses and Questions 3

effective set of transformation rules that, when applied to two URLs ui and uj, allow
us to say whether the URLs can be transformed into each other, i.e., f(ui) = f(uj).
By an effective set of rules, we understand (i) as small as possible; (ii) precise, specially
to avoid false positives and, consequently, consider new content as duplicate; and (iii)
generic enough to remove the maximum of DUST.

1.3 Research Hypotheses and Questions

The main challenge for DUST detection methods is to derive general rules with a
reasonable cost from the available training sets. As observed in [Lei et al., 2010], many
methods derive rules from pairs of duplicate URLs. They take advantage of the general
syntactical structure of a URL to find URL substrings (tokens) that could induce string
substitution rules. Such rules can be complex, dealing with patterns such as tokens
transpositions (e.g., the cases of jogos and uol.com.br/ in URLs http://jogos.

uol.com.br/ and http://uol.com.br/jogos) and the recognition of parameters (e.g.,
although similar, URLs http://uol.com.br/?id=5 and http://uol.com.br/?id=7,
are likely different since the last token is a parameter which assumes different values).

As most methods are based on pairwise analysis, the quality of the rules is af-
fected by the criterion used to select the pairs of examples and the availability of specific
examples in the training sets. To avoid processing large numbers of URLs, they em-
ploy techniques such as random sampling or by looking for DUST only within sites,
preventing the generation of rules involving multiple DNS names. As a consequence of
these issues, current methods are very susceptible to noise and, in many cases, derive
rules that are very specific.

Although prohibitive, the methods should learn general rules from more than two
training examples, taking maximum advantage of them and without sacrificing the de-
tection of DUST across different sites. To cope with this issue, we first observe that the
general problem of finding rules to transform URL ui into uj is similar to the problem
of sequence alignment, that is, finding an optimum set of edit operations able to trans-
form a sequence of symbols into another. For instance, the rules to transform URL
ui = http://google.com/index.html into uj = http://www.google.com/index can
be derived from the best alignment between ui and uj, illustrated as follows:

jogos
uol.com.br/
http://jogos.uol.com.br/
http://jogos.uol.com.br/
http://uol.com.br/jogos
http://uol.com.br/?id=5
http://uol.com.br/?id=7
http://google.com/index.html
http://www.google.com/index
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http:// google.com/index.html

|||||||++++||||||||||||||||–––––

http://www.google.com/index

Inspecting such alignment, ui can be transformed into uj by inserting characters w, w, w,
and . after the second slash (/) and by removing ., h, t, m, and l at the end of ui. If we
consider, as Brill and Moore [2000], that the symbols to be aligned could be substrings
instead of characters3, this alignment suggests that ui can be transformed into uj by
applying transformation rules for inserting substring www. after / and deleting substring
.html at the end of an URL.

Similarly, the problem of finding a general set of rules to transform any URL
within a dup-cluster to a canonical form can be viewed as similar to the problem of
multiple alignment of sequences. The optimum alignment of several sequences finds
similar and dissimilar tokens among all the strings according to cost functions that
take into consideration specific properties of the domain of the problem. We illustrate
this kind of alignment below:

http:// google.com/index.html

||||||| |||||||||||

http:// www.google.com/index

||||||| |||||||||||

http://mirror.google.com/index

where we included a new duplicated URL, from a different site4, in the previous exam-
ple. The alignment clearly indicates the special situations soon after the second slash
and at the end of the URLs. We can now infer that the optional nature of .html is
likely a general convention and not a site specific pattern.

3Brill and Moore studied the problem of finding the best alignment of two strings in the domain
of spelling correction. They observed that, in many cases, typos can be better modeled as syllable
transformations instead of character transformations. For instance, given two strings, unfisical and
unphysical, the typo is more likely due to the fact that the user mistakes syllables phy and fi by
each other than to the fact that she uses to mistype f by ph after n. They then proposed that a string
should be viewed as a set of syllables such that the entire syllables should be taken as single tokens
in the alignment.

4In this work, we use the hostname as a site identifier (cf. Section 2.3.2).

w
w
w
.
/
.
h
t
m
l
www.
/
.html
.html
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The problem of multiple sequence alignment has been largely studied, specially in
the domain of molecular biology. In fact, the importance of such technique in biology
has motivated many efforts concerning the proposition of optimized algorithms [Katoh
et al., 2002; Blackshields et al., 2010]. In general, specific characteristics of the domain
are explored to improve computational performance such that more sequences can be
evaluated in less time.

Surprisingly, despite the similarity between the problems and the need of learning
general rules from more than two URLs, no previous work in literature has proposed
techniques based on multiple sequence alignment. As these methods find patterns in-
volving all the available strings, it would be possible to find more general rules avoiding
problems related to pairwise rule generation, and the problem related to finding rules
across sites. And since that very efficient multiple sequence alignment algorithms have
been proposed, this technique could be used as a feasible general approach to identify
similarities and differences among all URLs. Based on these ideas, we formulate the
first hypothesis in this thesis:

Hypothesis 1: The identification of similarities and differences among all
URLs can be explored to determine fixed and mutable substrings in URLs.
Such similarities and differences can be effectively identified by a multiple
sequence alignment approach. Since the substrings are considered fixed or
mutable based on the analysis of multiple URLs, more general normalization
rules can be derived.

We also observe that, in spite of a rule can be better generalized by the inspection
of patterns among different sets of duplicate URLs, they are extracted from individual
and independent dup-clusters. For instance, by inspecting URLs within a dup-cluster,
it would be possible to observe that .html is optional after index. The reliability
of such rule is higher if it is also observed in other dup-clusters. Anyway, the initial
learning of the rules is clearly based on independent data sources. We could take
advantage of this fact to mitigate the overall cost of performing full multiple sequence
alignments. The intuition is that, as the training is based on a large number of such
data sources, a highly parallelizable induction algorithm can be devised, where rules are
learned in parallel on a per-dup-cluster basis and then confirmed in other dup-clusters.
This leads us to the second hypothesis in this thesis:

Hypothesis 2: A fast rule induction algorithm can be devised by taking
advantage of the organization of the duplicate URLs, used for training, in

.html
index
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independent dup-clusters. Such algorithm should learn rules in parallel on
a per-dup-cluster basis.

Given the previously presented hypotheses, some questions arise:

• How effective is a DUST detection approach based on a multiple sequence align-
ment when compared to traditional approaches? More specifically, how effective
is it regarding rule precision, the number of rules generated, and DUST removal?

• Is it possible to take advantage of specific characteristics of the DUST detection
problem to improve the computational performance of the alignement algorithm,
as observed in other domains such as computational biology?

• How efficient is the approach when the rules are learned in parallel on a per-dup-
cluster basis?

In this work, we intend to provide answers to such questions. The pursuit for these
answers defined our objectives, described in next section.

1.4 Objectives

The general objective of the research described in this work is to propose a method for
web-scale DUST detection to obtain a small and general set of normalization rules when
compared with state-of-the-art methods. This objective translates into the following
specific objectives:

• Development of a DUST detection method based on multiple sequence alignment.
The set of rules delivered by the method is expected to be small enough to be
used by robots which operate using no much memory. When compared to other
state-of-the-art approaches, it is also expected to be at least as precise in avoiding
false positives and more generic, such that more duplicate URLs are detected.

• Development of a multiple sequence alignment algorithm which takes advantage
of specific characteristics of the DUST detection problem to induce rules faster
than (i) a method based on traditional multiple sequence alignment and (ii) other
state-of-the-art DUST detection approaches.

• Development of a parallel version of the training algorithm which takes advan-
tage of the cluster of computers normally used in the environments where large
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scale crawlings are performed. Such method should operate in web scale scenar-
ios, inducing rules faster than any sequential method previously proposed with
performance gains proportional to the number of available computing nodes.

1.5 Contributions

We show in this thesis that a full multi-sequence alignment of duplicate URLs, per-
formed before rules are generated, can make the learning process more robust and less
susceptible to noise when compared to previous work in the literature. Furthermore,
our method is able to generate rules involving multiple DNS names and its parallel
version is very efficient even when applied in large scale scenarios. The complexity of
our sequential and parallel algorithms is proportional to the number of URLs to be
aligned, unlike other methods where the complexity is proportional to the number of
specific rules generated from all clusters, which can be unfeasible in practice.

The contributions made during this research are summarized as follows:

1. A DUST detection method based on a traditional multi-sequence alignment tech-
nique able to deliver general normalization rules involving multiple DNS names;

2. A comprehensive evaluation of the proposed method and its variations including
comparison with state-of-the-art baselines;

3. Description of the entire crawling architecture the method will be part of;

4. A dataset composed of 3.86 million Brazilian web pages with duplicates annotated
according to the canonical tag.

5. A sequential DUST detection method with a linear multi-sequence alignment
approach;

6. A scalable and efficient parallel DUST detection method able to operate at large
web scale scenarios;

The first two items above were firstly reported in the paper by [Rodrigues et al., 2013]
entitled “Learning URL Normalization Rules Using Multiple Alignment of Sequences”
and presented in the 20th International Symposium on String Processing and Informa-
tion Retrieval (SPIRE 2013). Contributions 3 and 4 were included in a following work
by [Rodrigues et al., 2015], published on the IEEE Transactions on Knowledge Data
Engineering and entitled “Removing DUST Using Multiple Alignment of Sequences.”
The consolidated results of this thesis were submitted to the ACM Transactions on
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Web (ACM ToW), entitled “A Highly-Scalable Algorithm For Generating URL Nor-
malization Rules.” This work, currently under review, mainly focuses on contributions
5 and 6.

1.6 Thesis Organization

This work is organized as follows. In Chapter 2 we provide basic concepts necessary
to understand our work. In Chapter 3 we present a compilation of the works on the
literature that are related to ours. In Chapter 4 we presentDUSTER, a DUST detection
method based on a traditional multi-sequence alignment technique. In Chapter 5 we
present DustLin, a sequential DUST detection method with a linear multi-sequence
alignment approach. We then present DustLin-MR, a scalable and efficient parallel
DUST detection method. The experiments and the results are presented in Chapter 6.
Finally, Chapter 7 concludes this thesis and presents future work.



Chapter 2

Background

This chapter introduces some basic concepts required for a better understanding of
the method proposed in this thesis. We describe sequence alignment in Section 2.1.
In Section 2.2, we describe search engines, their main components and how they are
affected by the presence of DUST. In Section 2.3, we define Web concepts such as
URL, web sites and canonical tags. In Section 2.4, we introduce notation and concepts
related to regular expressions. Finally, in Section 2.5, we present the main problem
addressed in this work, the detection of DUST.

2.1 Sequence Alignment

Sequence alignment is a fundamental procedure used in molecular biology where two
or more biological sequences (DNA, RNA, or protein) are arranged such that similar
regions are identified. These regions, common to most of the sequences in the group,
reveal similarities which are consequence of structural, functional or evolutionary rela-
tionships between the sequences. Beside finding similar substrings, this information can
be used to calculate the distance between sequences. In our context, we are interested
in finding fixed and mutable structural parts of URLs.

2.1.1 Pairwise Sequence Alignment

The alignment of two sequences, called pairwise sequence alignment, is the basic step for
aligning an arbitrary number of sequences. This problem can typically be solved using
dynamic programming to calculate all the subproblems involved in the process [Needle-
man and Wunsch, 1970]. We formally define this concept as given in Definition 1.

9
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S =



X G A A T T C A G T T A

Y 0 0 0 0 0 0 0 0 0 0 0 0
G 0 ↖ 1 ← 1 ← 1 ← 1 ← 1 ← 1 ← 1 ↖ 1 ← 1 ← 1 ← 1
G 0 ↑ 1 ← 1 ← 1 ← 1 ← 1 ← 1 ← 1 ↖ 2 ← 2 ← 2 ← 2
A 0 ↑ 1 ↖ 2 ↖ 2 ← 2 ← 2 ← 2 ↖ 2 ← 2 ← 2 ← 2 ↖ 3
T 0 ↑ 1 ↑ 2 ← 2 ↖ 3 ↖ 3 ← 3 ← 3 ← 3 ↖ 3 ↖ 3 ← 3
C 0 ↑ 1 ↑ 2 ← 2 ↑ 3 ← 3 ↖ 4 ← 4 ← 4 ← 4 ← 4 ← 4
G 0 ↖ 1 ↑ 2 ← 2 ↑ 3 ← 3 ↑ 4 ← 4 ↖ 5 ← 5 ← 5 ← 5
A 0 ↑ 1 ↖ 2 ↖ 3 ← 3 ← 3 ↑ 4 ↖ 5 ← 5 ← 5 ← 5 ↖ 6


Figure 2.1: Example of alignment of two sequences, X =GAATTCAGTTA and Y =
GGATCGA. We assume a simple scoring function, where sf(Xi, Yj) = 1 if Xi = Yj.
The aligner first creates a matrix S with M + 1 columns and N + 1 rows (M and N
correspond to the size of X and Y , respectively) initializing it with zeros. Then, the
value of cells Si,j, i 6= 0 and j 6= 0, is filled according to Equation 2.1, starting with
S1,1. For example, the value of the cell at (1, 1) is given by S1,1 = MAX [S0,0 + 1,
S1,0, S0,1] = MAX [1, 0, 0] = 1.

Definition 1 (Pairwise Sequence Alignment) Let X and Y be two sequences of char-
acters, and |X| and |Y | represent their respective lengths. The pairwise sequence align-
ment between them is a mapping of X and Y to other two sequences X ′ and Y ′ with
the same characters and in the same order, with possible inserted spaces (also known
as gaps) such that |X ′| = |Y ′| and X ′i (Y ′i ) is gap only if Y ′i (X ′i) is not.

Given the sequencesX and Y withm and n characters respectively, the alignment
process can be described by using a matrix S of size (m+1)×(n+1) where the sequence
X is placed along the top of the matrix and sequence Y is placed along the left side,
so that S cells are filled as follows:

Si,j =



0 if i=0 or j=0

max

Si−1,j−1 + sf(Xi, Yj),

Si−1,j ,

Si,j−1

 otherwise


(2.1)

where sf(Xi, Yj) is a scoring function that defines a similarity between the pairs of
symbols (Xi, Yj). This function gives points for matching tokens and penalties for any
gap.

Once the alignment matrix shown in Equation 2.1 has been computed, the best
alignment can be deduced from it by using a process called traceback. By establishing
pointers during the solution of the subproblems, it is possible to reconstruct the optimal
solution calculated by dynamic programming. This process works as follows. When the
value of cell Si,j is computed, a pointer from Si,j is set to cell (a) Si,j−1 if Si,j = Si,j−1;
(b) Si−1,j if Si,j = Si−1,j; or (c) Si−1,j−1 if Si,j = Si−1,j−1 + sf(Xi, Yj). The traceback
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step determines the alignment that result in the maximum score. As illustrated in
Figure 2.1, the traceback process always begins at the bottom right cell. Each leftward
arrow in the path indicates that a gap has to be inserted into X while an upward
arrow indicates a gap to be inserted into Y . A diagonal arrow indicates the symbols
from the two sequences are aligned and no gap should be inserted. The traceback is
completed when the first top-left cell of the matrix is reached. The score in the last cell
(bottom right) represents the alignment score for the best alignment. For the example
illustrated in Figure 2.1, the maximum alignment score for the two test sequences is 6
and the best alignment is:

X’ = G_AATTCAGTTA

| | || | |

Y’ = GG_A_TC_G__A

2.1.2 Multiple sequence alignment

Given k > 2 sequences S = {S1, S2, ..., Sk}, a Multiple Sequence Alignment (MSA) of
S can be considered a natural generalization of the pairwise alignment problem. Spaces
are inserted at arbitrary positions in any of the k sequences to be aligned, so that the
resulting sequences have the same size `. The sequences can be arranged in k lines and
` columns, such that each element or gap of each sequence is in a single column.

Definition 2 (Multiple Sequence Alignment) Let {S1, S2, S3, ..., Sk} be sequences of
characters, and let |Si| represent the size of Si. The Multiple Sequence Alignment
among S1 to Sk is a mapping of {S1, S2, ..., Sk} to other sequences {S ′1, S ′2, ..., S ′k} such
that S ′i has the same characters of Si in the same order with possibly the addition of
spaces (also known as gaps) and |S ′1| = |S ′2| = ... = |S ′k|.

As the multiple sequence alignment problem is known to be NP-hard, several
heuristics have been proposed in literature. Although recent progress have focused in
iterative and consistency based strategies1, benchmarking on an alignment reference
dataset indicates that methods which use progressive alignment perform reasonably

1Iterative algorithms are based on the idea that the solution to a given problem can be computed
by already existing sub-optimal solution and each modification step is an iteration. Consistency-
based algorithms take advantage of conservation across many sequences to provide a stronger signal
for pairwise comparisons. For a comprehensive review of the available MSA methods we refer the
reader to the surveys by [Notredame, 2002] and by [Wang et al., 2015]
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well on a wide range of situations [Notredame, 2002]. It also shows that iterative
and consistency based methods are more appropriate for sequences with long inser-
tion/deletions. As we do not expect such long insertions/deletion in the URLs within
the dup-clusters, we adopted the most popular heuristic known as Progressive Align-
ment ([Feng and Doolittle, 1987]) to align clusters of duplicate URLs.

In general lines, the method first performs the alignment between two previously
selected sequences. Then a new sequence is chosen and aligned with the first alignment
obtained or another pair of sequences is selected and aligned. This process is repeated
until all sequences have been aligned, giving rise to the final multiple alignment. Thus,
as most multiple alignment approaches, progressive alignment is comprised by selected
pairwise alignments of the input sequences. In particular, it requires a quadratic num-
ber of sequences alignments, being unfeasible for a large number of sequences. However,
this cost is affordable in our scenario because very large dup-clusters are rare and heuris-
tics can be used to limit their size, such as done by [Koppula et al., 2010]. Therefore,
this approach will be the base for DUSTER, our method described in Chapter 4.

The progressive alignment method uses a greedy policy in which once a space
is inserted, it can not be removed for any subsequent alignment. Thus, all spaces
are preserved until the final solution. The error rate introduced by the progressive
alignment at each step tends to decrease if the most similar sequences are chosen,
and increase if the most divergent sequences are chosen. Thus, determining the best
order for the alignments is crucial. Ideally, the most similar sequences are aligned first,
leaving to the end the most divergent ones, in order to reduce the error introduced by
this heuristic solution.

Unlike biological sequences, URLs within dup-clusters are not so dissimilar to
each other. In fact, it is very common that many of them are almost the same. This
characteristic makes it possible to devise a more efficient multiple alignment algorithm
which requires only a linear number of pairwise alignments, as we will show in Chap-
ter 5.

2.2 Web Search Engines

Millions of users access the internet to freely read and publish content on the Web. As
consequence, the Web is an environment hosting a vast volume of information. This
amount of content makes it difficult locating information if we decide to start searching
by using only navigation links of known pages. To cope with this problem, search
engines were created and represent one of the key technologies to retrieve information
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in web pages.
A search engine is a web application that returns the information required by

the users on their queries. It needs to (i) fetch useful web documents, parsing them
efficiently, (ii) build optimized data structures for various types of queries, (iii) process
them almost instantaneously to (iv) present them in a clear and attractive way to the
users. To accomplish these tasks, they count on a series of components that work
together: (1) A crawler that is responsible to automatically find, download and store
web pages; (2) an indexer that builds the inverted index, which is the main data
structure used by the search engine and represents the crawled pages; (3) and a query
handler that answers user queries using the index. In the next sections, we present
each of these components.

2.2.1 Web Crawler

A Web Crawler is responsible to automatically find web pages, download them, and
store them in a local repository. Since there are much more web pages in the web
than available resources to store them in the data centers of any search company, this
component is very important as it will define which pages should be collected. Thus,
it determines the general quality, and usefulness, of the page collection to be built.

Figure 2.2 shows the flow of a basic sequential crawling process. The crawler
maintains a list of unvisited URLs called the frontier. The process starts by initializing
the frontier using a set of seed URLs that may be provided by a user or any other source.
The URL frontier updates the URL repository with URLs that have been crawled. Each
crawling loop involves picking up the next URL to crawl from the frontier, fetching
and parsing the retrieved page to extract the outgoing URLs. Finally, the unvisited
URLs are added to the frontier for future crawling and the downloaded page is stored
in the local repository. This process is repeated until the stopping criteria of the web
crawler is met, such as a certain number of downloaded pages.

Web crawlers should be secure and robust enough to deal with the problems
encountered on the Web because they are the gateway to everything that comes from it.
One of these problems is the existence of duplicate information on the Web. Duplicate
content does not contribute new information to search results and causes a series of
problems to crawlers, such as waste of precious time, bandwidth and disk storage.
Therefore, a system for detecting DUST should work next to this component, because
beyond avoiding redundant access to the same content via multiple URLs, the saved
time could be spent fetching new pages and, consequently, increasing the effectiveness
of the crawling.
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Figure 2.2: Crawling process in a typical web crawler. The crawling starts by initial-
izing the frontier using a set of seed URLs. The URLs are de-queued from frontier for
the downloading web pages. HTML parsing is performed on the downloaded page to
extract new URLs. Finally, the downloaded web pages are stored in local repository.

2.2.2 Indexer

After crawling the pages, it is necessary to capture the information within them and
arrange it in a format that allows very efficient retrieval. To accomplish this, search
engines build an inverted index (which we refer to as index ), which is the main data
structure used by them to represent the crawled web pages. This task is accomplished
by the indexer, which performs a HTML parsing on the pages, extracts their terms
and adds on the data structures used during the query processing.

In large collections as Web, the large number of terms can increase the time
necessary to process each query submitted to the search engine. One of the factors
that contribute to the building an inefficient index is the presence of duplicate pages
on the search engine local repository. Many resources, as machines and hard disks, are
wasted during the indexing if search engines do not have knowledge about DUST. The
elimination of this redundant information not only reduces costs, but also improves the
quality and credibility of the service provided by the search engine.
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2.2.3 Query Handler

When users need some information from the Web, they submit a query to search
engines. This query is answered by using a component named as query handler that
takes account of the constructed index to retrieve the most relevant pages according to
the query. Documents retrieved are sorted by using algorithms that attempt to predict
their relevance [Brin and Page, 1998; Bharat and Henzinger, 1998; Chakrabarti et al.,
1998; Kleinberg, 1999].

The presence of DUST also affects the quality of answers displayed to users, since
artificial information connectivity modifies the reputation of pages. Beyond directly
affecting how well ranking algorithms work, duplicate pages do not contribute new
information to search results and thus annoy users.

2.3 Web Concepts

In this section, we present some concepts related to the web, widely used through this
thesis.

2.3.1 URL

A Uniform Resource Locator (URL) is a string that locates a unique resource on the
Web. The existing architecture of WWW uses URL to address web pages. As we
can see in Figure 2.3, we can identify 5 components in an URL: scheme, hostname,
path, query, and fragment. Each component is separated by delimiters as slash (“/”),
question mark (“?”) and the number sign (“#”).

Figure 2.3: Example of the five URL components.

The scheme component contains a protocol that is used for communicating be-
tween a client and a web server. The hostname component contains the location of a
web server. The hostname starts after the scheme component and finishes in first slash
delimiter (“/”) in the URL, if the path is not empty. The path component contains
directories including a web page and a file name of the page. Each document is identi-
fied by its own path that reflects the directory structure of a web server. A directory
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and a file are separated by the slash symbol (“/”). The query component contains
parameter names and values. The query string starts with the question symbol (“?”).
A parameter name and a parameter value are separated by the equal symbol (“=”).
A pair of parameter name and value is separated from each other by the ampersand
symbol (“&”). The fragment component is used for indicating a particular part of a
document. The fragment string starts with the sharp symbol (“#”).

2.3.2 Web Site

The concept of web site is not clearly defined in the literature [da Costa Carvalho et al.,
2007]. An approach adopted by works about site replica detection is using the hostname
as an identifier for the site (e.g., http://esporte.uol.com.br and http://economia.

uol.com.br belong to different sites). Despite this definition is not perfect, it has been
adopted because it is simple to use and is a good balance between sets of pages of
high granularity and low granularity. A page set of high granularity could be obtained
assuming that each domain name is a different site (e.g., http://esporte.uol.com.br
and http://economia.uol.com.br belong to same sites). In this thesis, we adopt the
first approach, defined as follows:

Definition 3 (WebSite) A web site is a set of pages that share the same hostname.

2.3.3 Canonical Tags

In order to mitigate the problem of duplicate content, Google, Microsoft and Yahoo!
proposed the introduction of a new HTML element which would allow webmasters
to specify the “canonical” or “preferred” version of a web page. Such search engine
optimization was formally described in RFC 6596, in April 2012, as Canonical Tag
(or Canonical link) [Lei et al., 2010]. As an example, consider the following duplicate
URLs that return the site entry page of a website:

• http://site.com

• http://site.com/

• http://www.site.com

• http://www.site.com/

• http://site.com/index.html

• http://www.site.com/index.html

http://esporte.uol.com.br
http://economia.uol.com.br
http://economia.uol.com.br
http://esporte.uol.com.br
http://economia.uol.com.br
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To make it clear to search engines that the first URL is the preferred one, web-
master should add the canonical tag into the < head > section of the others web page
as follows:

<html>

<head>

<link rel="canonical" href="http://site.com" />

</head>

<body>

...

Note that webmasters explicitly assist search engines with the creation of dup-
clusters when they indicate which URLs are DUST by using the canonical tags. We
used this tag to create an annotated dataset composed of 3.86 million Brazilian web
pages. This dataset, as well as the other dataset used in our work, is described in
Section 6.1.

2.4 Regular Expressions

A regular expression (regex, for short) is a string that describes a pattern of characters,
normally used to perform pattern-matching and search-and-replace functions on text.
In this thesis, we use regular expressions, along with rules, to indicate how a URL could
be transformed into a canonical representation. Regular expressions are also used to
compose the canonical representation.

The most basic regular expression is a single literal character, that will match the
first occurrence of that character on text. However, we usually need to do more than
simply search for literal string pieces. In this work, in particular, we are interested in
the following tasks: (a) match any character; (b) match any one of a series of patterns;
(c) to treat a pattern as optional; (d) to treat a set of characters as a single symbol;
(e) to indicate matches at the start and at the end of a URL; (f) to perform a match
0, 1, or more times.

The dot is one of the most commonly used metacharacters. The dot matches a
single character, without caring what that character is. The vertical bar ‘|’ character
is used to match any one of a series of patterns, where the ‘|’ character separates
each pattern. The question mark makes the preceding token in the regular expression
optional. Note that you can make several tokens optional by grouping them together
using round brackets, and placing the question mark after the closing bracket.
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Capturing groups is a way to treat multiple characters as a single unit. They
are created by placing the characters to be grouped inside parentheses. The portion
which matched the group will be saved in memory for later recall via backreferences.
A backreference is specified as a backslash ‘\’ followed by a digit indicating the number
of the group to be recalled. As in the Perl language, you can use variables $1, $2, etc.
to access the part of the string matched by the backreference.

Anchors are used to specify which part of the text should be matched. A match
at the beginning of the pattern is indicated by an anchor caret (‘ˆ’) while a ‘$’ indicates
a match at the end. Quantifiers specify how many instances of a character, group, or
character class must be present in the input for a match to be found. The ‘*’ quantifier
matches the preceding element zero or more times. The ‘+’ quantifier matches the
preceding element one or more times. The ‘?’ quantifier matches the preceding element
zero or one time. Table 2.1 illustrates the meaning of various metacharacters by listing
regexes and examples of strings that should be matched by them.

Regex Matches
.at Any three-character with “at”, including “hat”, “cat”, and “bat”.

[hc]at “hat” and “cat”.
^[hc]at “hat” and “cat”, but only at the beginning of the string.
[hc]at$ “hat” and “cat”, but only at the end of the string.
cat|dog “cat” or “dog”.
[hc]?at “hat”, “cat”, and “at”.
[hc]*at “hat”, “cat”, “hhat”, “chat", “hcat”, “cchchat”, “at”, and so on.
[hc]+at “hat”, “cat", “hhat”, “chat”, “hcat", “cchchat”, and so on, but not “at”.

([a-c])x$1x$1 “axaxa”, “bxbxb” and “cxcxc”.

Table 2.1: Meaning of various strings regexes.

2.5 DUST Problem

Syntactically different URLs locating similar content is a quite common phenomenon
on the Web. Earlier works estimate that at least 30% of all content available on
the Web is replicated content [Broder, 1997; Fetterly et al., 2003; Henzinger, 2006].
These duplicate URLs, generically known as DUST, occur due to many reasons beyond
plagiarism. For instance, web servers often use aliases, symbolic links and redirections
to make a website more user-friendly. In order to help their users’ navigation, many web
sites often have multiple DNS names that returns the same content (server aliasing) or
multiple URLs to the same document on a server (URL aliasing). Moreover, some web
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sites have a exact replica of their content (mirroring) in another web servers in order
to either serve as backup or allow load balancing.

To make a web site more search engine friendly, webmasters use to place many
different static and dynamic links to the same content. Moreover, they usually insert
additional parameters (e.g., session-ids and cookie information) when they are design-
ing the URL scheme of a web site to provide a personalized service. These parameters
are used to track the user or session but they have no impact on the content of the
page. Others parameters are irrelevant or superfluous in URLs, impacting only the
way pages are displayed.

Others common reasons for the occurrence of duplicate content are: (i) web
servers working on the Windows operating system are case insensitive and can be
accessed with capitalized URL names as well as lower case names; (ii) dynamic pa-
rameters can appear in distinct positions at the URLs; (iii) different conventions are
adopted (and recognized) for file extensions (e.g. htm or html); (iv) some URL ele-
ments are treated as optional, such as the trailing slash “/” and “www” in the hostname
or webserver directory index.

In the following sections we define the problem of DUST, as addressed in this
thesis.

2.5.1 Problem Definition

The problem addressed in this work is related to de-duplication of web pages. More
specifically, it is related to the existence of syntactically different URLs linking to sim-
ilar content. These URLs, generically known as DUST, usually have specific patterns
that can be learned and used by URL-based de-duping methods. Along with this and
next sections, we use the URLs in Table 2.2 as a running example.

The input to this problem consists of a set of URLs U (i.e. a training set)
partitioned into groups of similar pages (referred to as dup-cluster) from one or more
sites2. The strategy of the URL-based de-duplication methods is to learn, by mining
these dup-clusters, rules that transform duplicate URLs to the same canonical form.
In Table 2.2, U = {u0, u1, u2, u3, u4, u5} is partitioned in dup-clusters C1 and C2. A
possible canonical form of the URLs in C1 and C2 are given by n1 and n2, respectively.
Note that the URLs of a same dup-cluster point to the same or similar content where
URLs from different dup-clusters likely correspond to different content.

2A site (for instance, “britney.com.br”) is an identification string that defines a realm of adminis-
trative autonomy, authority, or control on the Internet.
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dup-cluster URL
C1 u0 = http://britney.com.br/?id=5

u1 = http://britney.com.br/index.php?id=5
u2 = http://Britney.com.br/?id=5
u3 = http://www.britney.com.br/?id=5
n1 = http://www.britney.com.br/index.php?id=5

C2 u4 = http://britney.com.br/?id=7
u5 = http://Britney.com.br/index.php?id=7
n2 = http://www.britney.com.br/index.php?id=7

Table 2.2: Example of URLs to be de-duplicated and possible canonical forms. URLs
of a same dup-cluster point to the same or similar content. URLs from different dup-
clusters likely correspond to different content. Thus, in this example, whereas contents
of u0 and u1 are the same, contents of u0 and u4 are different.

This process, called as URL normalization, identifies, at crawling time, whether
two or more URLs are DUST without fetching their contents. As crawlers have re-
sources constraints, the best methods are those that achieve larger reductions with
smaller false positive rates using the minimum number of normalization rules. A nor-
malization rule is a description of the conditions and operations necessary to transform
a URL into a canonical form, as described in Definition 4.

Definition 4 (NORMALIZATION RULE). A normalization rule can be defined as a
tuple r = (c, t), where c and t are regular expressions (regexes)3 named context and
transformation, respectively. Context c is a regex that matches a set of URLs that we
refer to as the URLs affected by r. Transformation t describes which operations will be
applied to the URLs affected by r to transform them into a canonical form. Let S be
the set of sites of the URLs affected by r and Hostname(u) be the site of a new URL
u. We say that r is applicable to u if Hostname(u) ∈ S.

In Table 2.2, a rule to infer n1 from the URLs in C1 could be given by r1 = (c1, t1)

where regexes c1 and t1 are given as:

c1 = ^?://(www.)?(Britney|britney).?.?/(index.php)?\??=?$
t1 = $1://www.britney.$2.$3/index.php?$4=$5

In these regexes, any symbols other than ‘(’, ‘|’, ‘)’, ‘$i’, ‘?’ and ‘?’ are literals.
In order to use last question mark ‘?’ as a literal in c1, we escape it with a backslash

3In this work, regular expressions describe string patterns to be matched as well as inserted,
deleted or modified.

http://britney.com.br/?id=5
http://britney.com.br/index.php?id=5
http://Britney.com.br/?id=5
http://www.britney.com.br/?id=5
http://www.britney.com.br/index.php?id=5
http://britney.com.br/?id=7
http://Britney.com.br/index.php?id=7
http://www.britney.com.br/index.php?id=7
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‘\’. The substrings between round brackets (“www.” and “index.php”) with a question
mark after the closing bracket are optionals. The list of substrings between paren-
theses, separated by ‘|’, are alternative options. Symbol ‘?’ indicates any sequence of
characters. Symbol ‘$i’ in t1 is the i-th sequence matched by a ‘?’ symbol in c1.4

Thus, regex c1 will match URLs starting with any sequence of characters, followed
by “://” and, optionally, “www.”. The following sequence in the URL may be “Britney”
or “britney”, followed by two sequences of characters, both starting with dot. The
sequence continues with a slash, optionally followed by “index.php”. The last part of
the URL starts with ‘?’ and is followed by two sequences of characters separated by
‘=’. Regex t1 indicates that the canonical form of the URL matched by c1 must start
with the first matched substring, followed by “://www.britney.”, followed by the second
matched substring, and so on.

During normalization, when two URLs are converted to the same canonical form,
the pair is called an instance of the rule. The set of all instances is referred to as the
support of the rule. These and other key concepts are formally defined as follows5:

Definition 5 (INSTANCE). Given a set of URLs U , an instance of a rule r is a
unordered URL pair (x, y), x ∈ U , y ∈ U , which is transformed to the same canonical
form after applying r.

Definition 6 (SUPPORT). The support of rule r, given a set of URLs U , denoted
supp(r, U), is the set of all instances of r, given U .

The support of rule r1, previously described, considering all the URLs in C1 and
C2, is given by Sr1 = {(u0, u1), (u0, u2), (u0, u3), (u1, u2), (u1, u3), (u2, u3), (u4, u5)}.

Definition 7 (FALSE-POSITIVE RATE). Let FP (r, U) be the number of instances
(x, y) in supp(r, U) such that x and y are not DUST. The false-positive rate of r is
denoted by fpr(r, U) = FP (r, U)/|supp(r, U)|.

The primary goal of a URL-based de-duping method is, given a set of duplicate
clusters C, to find the set of rules that have high support and low false-positive rate,
when considering the URLs in C. The problem of detecting DUST can now be formally
stated as follows:

4We adopted this syntax in this section to avoid a cumbersome notation. However, note that the
symbol ‘?’ should be replaced by an appropriate regular expression such as [a−zA−Z]+ (alphabetic),
[0− 9]+ (numeric) etc.

5We adopt in this thesis the same definitions presented in [Bar-Yossef et al., 2006; Dasgupta et al.,
2008]
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Problem 1 Given thresholds minSup, fprmax ≥ 0, and a set of URLs U partitioned
in a set of dup-clusters C, generate the set of rules R such that ∀r ∈ R, |supp(r, U)| ≥
minSup and fpr(r, U) ≤ fprmax.

2.5.2 Evaluation Metrics

In this section we present the key metrics used to evaluate how effective is a set of rules
regarding DUST detection. We used these metrics for measuring our techniques and
compare them with the state-of-the-art approaches.

To estimate the percentage of URLs we can avoid fetching by using a set of
normalization rules, we adopt the Compression Rate metric proposed by [Lei et al.,
2010]. In particular, it measures the reduction ratio of the number of URLs after
applying a set of rules R. It is defined as:

Compression Rate =
Norig −Nnorm

Norig
(2.2)

where Norig and Nnorm are the number of URLs before and after the normalization,
respectively. This metric is also known as Reduction Ratio [Dasgupta et al., 2008]
or Discovered Redundancy [Bar-Yossef et al., 2006].

The amount of DUST in a dataset is defined as the difference between the number
of unique URLs and the number of dup-clusters. Thus, in order to compare the amount
of DUST achieved by an evaluated method with the total amount of DUST in a dataset,
we adapted the Coverage metric proposed by [Bar-Yossef et al., 2006]. It is defined as:

Coverage = 1− (Nnorm − Cnorm)

(Norig − Corig)
(2.3)

where Corig and Cnorm are the number of dup-clusters before and after the normaliza-
tion, respectively. This metric is also known as dup-reduction rate [Lei et al., 2010].

In normalization, it is possible that two non-duplicate URLs are incorrectly con-
verted to the same canonical form. When two duplicate URLs are correctly converted
to the same canonical form, such pair is called as correct instance. To estimate how ac-
curate is the normalization process by applying a set of rules R, we use Normalization
Precision metric proposed by [Koppula et al., 2010]. It is definied as:

Normalization Precision =
Ncorrect

Ntotal
(2.4)

where Ncorrect and Ntotal are the number of correct instances and total number of
instances in the normalization, respectively.
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The last measure we adopt in this work is the Average Reduction per Rule
(AR/R) [Koppula et al., 2010]. This metric assesses how general is a set of rules
(R). It is defined as:

AvgReductionPerRule =
Norig ∗ Compression Rate

|R|
(2.5)

where |R| is the size of the set of rules R.

2.6 Summary

In this chapter, we presented background information necessary to understand the
remaining of this thesis. This included a description of search engines and how they
are affected by DUST, sequence alignment, definitions for common web concepts such
as URLs, regular expressions and the DUST problem. We also introduced notation to
be used from now on. In next chapter, we will describe the works in literature most
related to ours.





Chapter 3

Related Work

In this chapter, we introduce previous work in literature which addressed the problem
of DUST detection. This problem was first approached as an issue regarding URL
normalization. As such, it was first addressed by Internet standardization bodies.
Along the time, with the proliferation of duplicate content, other approaches arised.
In this section, we summarize such research efforts.

3.1 URL Normalization

The fact that pages do not have unique identifiers creates problems in almost every
large scale software that deals with the web. Systems that deal with web content should
be aware of the existence of duplicate information. Duplicates occur when two or more
syntactically different URLs locate the same content. In order to obtain some level of
normalization, standard Internet bodies defined a set of steps (or universal rules [Bar-
Yossef et al., 2006]), known as Standard URL Normalization (SUN), to transform
duplicate URLs into a canonical form. This process is named as URL normalization.

SUN focus on URL structure syntax and was designed to minimize false negative
while strictly avoiding false positives. In other words, it never transforms non-DUST
into a syntactically identical string.

Some of the steps used in typical URL normalization procedures, as described
by [Berners-Lee et al., 1998], are presented in the following paragraphes.

Percent-Encoding Normalization. All unreserved characters can be encoded
into a three-digit string. Percent symbol (%) should be located at the first position,
and the last two digits are a hexadecimal number representing an ASCII code of the
character under consideration (e.g. %2D for hyphen and %5F for underscore). The idea
behind this normalization is perform URL encoding for theses commonly used charac-
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ters. This would prevent the crawler from treating http://example.com/~DUSTER as
a different URL from http://example.com/%7DUSTER. Hexadecimal digits within a
percent-encoding triplet are case-insensitive and should be normalized to use uppercase
letters for the digits A-F.

Case Normalization. Scheme and hostname components are case insensitive.
During the normalization, all the letters in these components are changed into lower-
case letters. This would prevent the crawler from treating HTTP://example.com as a
different URL from http://EXAMPLE.COM.

Path Segment Normalization. Path components such as ‘.’ ou ‘..’ should be
removed. For instance, www.site.com/dir/../index.html is reduced to www.site.

com/index.html.
Remove Default Port Number. An URL with a default port number (80 for

the HTTP protocol) and a URL without the port number represent the same page. For
instance, http://example.com:80/ and http://example.com/ represent the same page.
During Standard URL Normalization, the default port number is truncated from a
URL.

Truncate the Fragment of URL. Fragments are used to reference a part of
a page. However, the crawling of URLs that differ only on the anchors would result
in repeated downloads of the same page. For instance, http://example.com/page.
html#chap1 and http://example.com/page.html represent the same page. During
the normalization, the fragment in the URL should be truncated.

Add trailing “/” after the hostname. When path name is not present in the
URL, it must be given as “/” when used as a request for a resource. This normalization
rules prevents that URLs, such as www.example.com and www.example.com/, originate
duplicates. During the normalization, if a path string is null then the path string is
transformed into “/”.

Several works were proposed to extend SUN aiming to reduce false negatives
while allowing false positives at a limited level. [Lee et al., 2005] extended SUN by
adding three new heuristic steps: (i) change the path component into lower case; (ii) to
eliminate the last slash symbol component at the non-empty path component; and (iii)
eliminate default pages (e.g. default.html, default.htm, index.html and index.htm).
Beside theses three steps, they also proposed two evaluation metrics, redundancy rate
and coverage loss. Their results indicate that their proposed steps were able to reduce
duplicate URLs while allowing limited false positives. [Kim et al., 2006] did not propose
any new steps but they presented a set of metrics to evaluate SUN: URL consistency,
URL applying rate, URL reduction rate and true positive rate.

As observed by [Dasgupta et al., 2008], DUST is typically not random but rather

http://example.com/~DUSTER
http://example.com/%7DUSTER
HTTP://example.com
http://EXAMPLE.COM
www.site.com/dir/../index.html
www.site.com/index.html
www.site.com/index.html
http://example.com/page.html#chap1
http://example.com/page.html#chap1
http://example.com/page.html
www.example.com
www.example.com/
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stems from structured transformations on URLs string. As result, simple rules for URL
normalization do not cover most of the examples of DUST on the web and a proper
understanding of the observed URL transformations would be necessary to generate
more effective rules to detect DUST. Simple URL normalization is based on heuristics
which will fail in many situations. This way, the research problem moved from simple
URL normalization towards the more complex problem of DUST detection.

Currently, such research is classified in two main families of methods, according
if they take into consideration the page content: content-based and URL-based. These
approaches are described in the next sections.

3.2 Content-based DUST Detection

In content-based DUST detection, the similarity of two URLs is determined by compar-
ing their contents. Thus, to infer if two distinct URLs correspond to duplicates, or near
duplicates, it is necessary to fetch and inspect the whole content of their corresponding
pages.

For instance, Soon et al. proposed to enhance SUN by incorporating semantically
meaningful metadata of web pages (or URL signatures) [Soon and Lee, 2008a,b, 2010;
Soon et al., 2012]. The metadata used are the body texts and page size of the web
pages extracted during HTML parsing. They construct its URL signature by hashing
or fingerprinting the body text using Message-Digest algorithm 5 [Rivest, 1992]. URLs
which share identical signatures are considered duplicates in their scheme. Their ex-
perimental results show that their proposed method helps to further reduce redundant
Web information in comparison with SUN.

Many other methods have been proposed in literature that explore different con-
tent syntactic and semantic evidence, such as shingles, text signatures, pair-wise sim-
ilarities, sentence-wise similarities, and semantic graphs [Mao et al., 2011; Lei et al.,
2010; Alsulami et al., 2012]. As such methods imply in a waste of resources, several
URL-based methods have been proposed to determine duplicated URLs without exam-
ining the associated contents. This is the case of the methods we propose in this thesis.
Thus, we describe such general approach in the next section. Regarding content-based
methods, for a comprehensive review of the literature, we refer the reader to the surveys
by [Kumar and Govindarajulu, 2009] and by [Alsulami et al., 2012].
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3.3 URL-based DUST Detection

We now focus on URL-based methods including the ones that, as far as we know,
reported the best results in the literature.

The first URL-based method proposed was DustBuster [Bar-Yossef et al., 2006].
In their work, the authors addressed the DUST detection problem as a problem of
finding normalization rules able to transform a given URL to another likely to have
similar content. The rules consist of substring substitutions learned from crawl logs or
web logs. Rules are selected if (a) they have large support, (b) they do not come from
large groups and (c) URLs matched by them have similar sketches or compatible sizes
in the training log. Redundant rules are eliminated based on their support information.
By evaluating their method in four websites, the authors found that up to 90% of the
top ten rules were valid, 47% of the duplicate URLs were recognized and the crawl was
reduced by up to 26%.

Since substitution rules were not able to capture many common duplicate URL
transformations on the web, Dasgupta et. al. presented a new formalization of URL
rewrite rules [Dasgupta et al., 2008]. The new formulation was expressive enough to
capture all previous substitution rules as well as more general patterns, such as the
presence of irrelevant substrings, complex URL token transpositions and session-id
parameters. The authors use some heuristics to generalize the generated rules. In
particular, they attempt to infer the false-positive rate of the rules in order to select
the most precise ones. To accomplish this, they verify if the set of values that a certain
URL component assumes is greater than a threshold value N , a heuristic which they
call fanout-N . Their best results were obtained with N = 10. In this work, we refer to
this method as Rfanout-10. By applying the set of rules found by Rfanout-10 to a number
of large scale experiments on real data, the authors were able to reduce the number of
duplicate URLs by 60%, whereas only substitution rules achieved 22% reduction.

The authors in [Agarwal et al., 2009] extended the work in [Dasgupta et al., 2008]
to make their use feasible at web scale. They observed that the quadratic complexity
of the rule extraction performed in [Dasgupta et al., 2008] is prohibitive for very large
dup-clusters. Thus, they proposed a method for deriving rules from samples of URLs.
In addition, they used a decision tree algorithm to learn a small number of higher
precision rules to minimize the number of rules deployed to the crawler. The authors
evaluated their method in a set of about 8 million URLs, achieving a de-duplication
reduction rate of about 42% using the top 9% of precise rules (precision level above
80%).

In a subsequent paper, [Koppula et al., 2010] implemented their algorithm using
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a distributed framework and extended the URL and rule representations to include
two additional patterns: tokens inside path components and more complex irrelevant
components. The authors used a very simple alignment heuristic to deal with irrelevant
components. To show the scalability of their method, they evaluated it with 3 billion
URLs. By comparing their method with Rfanout-10, they achieved two times more
reduction using 56% of the rules. Unfortunately, the method proposed by [Koppula
et al., 2010] is not publicly available and was not described with enough detail to be
implemented.

The methods previously described use a bottom-up approach in which normal-
ization rules are learned by inducing local duplicate pairs to more general forms. The
main drawback of these strategies is the difficulty to induce general rules starting from
pairs of duplicate URLs. The method in [Dasgupta et al., 2008], in particular, also
adopts an additional requirement that the inputs should differ from each other at only
one single token (which the authors in [Dasgupta et al., 2008] refer to as Single Key
Requirement). Such issues usually break the rule-inducing algorithm somewhere avoid-
ing the derivation of more general rules, as we can see in Figure 3.1. In this example,
there are 8 URLs referring to duplicate content, where the values of tokens t3 and
t5 should be normalized (or generalized) to ‘*’. By analysing pairs of rules, we note
from pairs (u5, u6) and (u7, u8) that t5 could be generalized. Note, however, that if
some URLs are absent at the time of rule generation (eg: u6), the process could not
derive rule r3. In addition to this limitation, most bottom-up strategies discard a lot
of training examples that do not satisfy the Single Key Requirement. As we can see
in Figure 3.2, URLs u1, u2 and u7 are not leveraged in the learning process and, as a
result, the learned rule cannot obtain the maximum compression expected for this and
other clusters that follow the same pattern.

Due to these problems, authors in [Lei et al., 2010] argue that these previous
approaches are computationally inefficient and very sensitive to noise. Thus, they
propose a top-down approach in which statistics from the entire training data are
calculated to help in the generalization of the rules, and a URL pattern tree (UPT) is
built from clusters of duplicate URLs for a targeted website. According to the authors,
using the UPT contributes to (a) a robust and reliable rule extraction, (b) accelerated
learning since rules are directly summarized in UPT nodes and (c) the selection of
more general rules due to the removal of conflicts and redundancy. They evaluated
their approach in a collection with 70 million URLs and showed that their method was
able to outperform Rfanout-10 achieving about twice the reduction using 46% of the rules
and consuming half of the learning time. In this work, we refer to it as Rtree.

By aligning all URLs we can obtain a unique sequence representing the entire dup-
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Figure 3.1: Examples of rules induced by pairwise bottom-up strategies. Example
adapted from [Lei et al., 2010].

Figure 3.2: Example of rule induced by pairwise bottom-up strategy, in which URLs
u1, u2 and u7 are discarded from the learning process.

cluster, referred to as consensus sequence1. Thus, we can derive a general rule from the
consensus sequence, even if some URLs are absent. Take, for instance, the scenarios
described in Figure 3.1 and Figure 3.2. In Figure 3.1, if u6 is absent, the consensus
sequence obtained from the cluster is CS1 = 〈a, b, {u, v, w, x, y, z}, c, {r, s, t, o, p,m, n}〉. It
is easy to derive r3 from CS1 since it is clear that tokens t3 and t5 should be normal-
ized as ‘*’. In Figure 3.2, the consensus sequence obtained from the cluster is CS2 =

〈www, site, /, {u, t, e, g, i, j, λ}, {/, λ}, {m,x, z}, /, 1, ., html〉, where λ is a gap. As before,
the derivation of a rule involving all URLs from CS2 is straightforward since it is clear
that tokens t4 and t5 are irrelevant, and t4 should be normalized as ‘*’. Based on this
idea, we will propose in this thesis new algorithms for the DUST detection problem. To

1A formal definition of consensus sequence is provided in section 4.1.2.
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evaluate our proposed methods, we will compare it with methods Rfanout-10 and Rtree.
Rfanout-10 is a traditional method used as benchmark in most of the previous works in
literature whereas Rtree, as far as we know, is the one which reported the best results
in literature.

3.4 Summary

In this chapter, we introduced previous work in literature, starting with approaches
proposed to the problem of URL normalization. As observed, the research in this area
evolved to address the more complex problem of DUST detection. Although many
methods addressing such problem use content based techniques, several works have
focused only on the URL string, as an attempt to avoid wasting resources fetching
content. This is the case of the methods we propose in this thesis. Compared to other
URL-based methods, our approach is original as it is the first based on a multi-sequence
alignment. In the next chapters, we will describe three variants of our algorithm.





Chapter 4

DUSTER

DUST Detection with a Quadratic Multi-Sequence

Alignment Algorithm

In this chapter we describe our first algorithm to detect DUST, DUSTER. It takes ad-
vantage of a traditional multi-sequence alignment strategy, performed over dup-clusters
given as input. We start by describing how URLs are aligned. Then, each phase of the
algorithm is presented, that is, the generation of candidate rules, their validation, and
finally, the URL normalization. We also describe important intermediate steps as the
classification of URL tokens and the conversion of the aligner output into transforma-
tion rules.

4.1 URL Alignment

In order to obtain a smaller and more general set of normalization rules, our method
takes advantage of multiple sequence alignment. The strategy is to create the so called
consensus sequence for each dup-cluster in the training set and extract the rules from
them. We perform this task by aligning the URLs in each cluster and then generating
the consensus sequences as a result of this alignment. In the following subsections, we
show how to align two or more URLs and how to generate a consensus sequence for
these dup-clusters. Before presenting our URL alignment approach, we first show how
we represent URLs.

33
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Alignment Algorithm

4.1.1 URL Tokenization

Unlike previous works that treat URLs as strings generated according to W3C gram-
mar1, we adopt a simpler representation. We consider a URL as a sequence of three
types of tokens (URL tokens), as described by the EBNF-based2 grammar G described
below:

〈URL〉 ::= 〈token〉 { 〈token〉 }

〈token〉 ::= 〈alphabetic〉 | 〈number〉 | 〈punctuation〉

〈alphabetic〉 ::= 〈alpha〉 { 〈alpha〉 }

〈alpha〉 ::= ‘a’..‘z’ | ‘A’..‘Z’

〈number〉 ::= 〈digit〉 { 〈digit〉 }

〈digit〉 ::= ‘0’..‘9’

〈punctuation〉 = All remaining characters such as ‘/’, ‘:’, and ‘.’

Each URL to be aligned is initially parsed according to grammar G. This process,
referred to as tokenization, decomposes the URL into a sequence of URL tokens. To
facilitate URL alignment, each token extracted from a URL is represented as a singleton
set.

For example, URL u = http://ex.com/1.htm is represented by the following
sequence of 11 token sets:
S = 〈{http}, {:}, {/}, {/}, {ex}, {.}, {com}, {/}, {1}, {.}, {htm}〉

4.1.2 Pair-wise URL Alignment

The output of our alignment process is a sequence of sets, referred to as the consensus
sequence, which is a way of representing the result of the alignment. The consensus
sequence of n sequences is created by the union of the tokens in the corresponding
positions of the n aligned sequences.

To help readers better understand the complete pair-wise URL alignment process
and how we generate a consensus sequence, we illustrate it with an example.

1http://www.w3.org/Addressing/URL/5_BNF.html
2An EBNF (Extended Backus-Naur Form) specification is a set of derivation rules, written as

<symbol> ::= expression, where <symbol> is a nonterminal, and expression consists of one or more
sequences of symbols. Alternatives are separated by the symbol ‘|’ and 0 or more repetitions of an
expression are indicated by braces. Symbols that never appear on the left side are terminals. The
‘::=’ means that the symbol on the left must be replaced with the expression on the right. Finally,
the expression s1..s2 indicates a sequence of alternative symbols in the interval starting at symbol s1
and finishing at symbol s2.

http://ex.com/1.htm
http://www.w3.org/Addressing/URL/5_BNF.html
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To obtain a consensus sequence for two URLs ui = www.IRS.gov/foia/index.

html and uj = www.irs.ustreas.gov/foia, we first obtain the token set sequences
X and Y, associated with ui and uj respectively, with m and n tokens. X and Y are
given by:

X = 〈{www}, {.}, {IRS}, {.}, {gov}, {/}, {foia}, {/}, {index}, {.}, {html}〉.

Y = 〈{www}, {.}, {irs}, {.}, {ustreas}, {.}, {gov}, {/}, {foia}〉.

Tokenized sequences X and Y are then aligned by inserting gaps, either into
or at the ends of them. To determine where gaps should be inserted, matrix Si,j in
Equation 2.1 has to be calculated. To accomplish this, a score function sf should be
defined to measure the distance between the URL token sets. The scoring function
we adopt, given by Equation 4.1, is the Jaccard similarity coefficient [Theobald et al.,
2008] which is commonly used to measure the overlap between two sets. For two sets,
it is denoted as the cardinality of their intersection divided by the cardinality of their
union.

sf(Xi, Yj) =

{ |Xi∩Yj |
|Xi∪Yj | if ∃(xi, yj) ∈ Xi × Yj |τ(xi) = τ(yj)

−1 otherwise

}
(4.1)

where τ : T → {a, n, p} is a function which maps a token set to its token type, T is
the token space and {a, n, p} are the token types (a for alphabetic, n for numeric, and
p for punctuation).

The resulting scoring/traceback matrix is shown in Figure 4.1, where URLs www.
IRS.gov/foia/index.html and www.irs.ustreas.gov/foia are aligned.

Figure 4.1: Scoring/traceback matrix for the duplicate URLs ui = www.IRS.gov/foia/
index.html and uj = www.irs.ustreas.gov/foia. Each leftward arrow in the path
indicates that a gap has to be inserted into X while an upward arrow indicates a gap
to be inserted into Y . A diagonal arrow indicates the symbols from the two sequences
are aligned and no gap should be inserted. Larger scores indicate a better alignment.

www.IRS.gov/foia/index.html
www.IRS.gov/foia/index.html
www.irs.ustreas.gov/foia
www.IRS.gov/foia/index.html
www.IRS.gov/foia/index.html
www.irs.ustreas.gov/foia
www.IRS.gov/foia/index.html
www.IRS.gov/foia/index.html
www.irs.ustreas.gov/foia
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At the end of the alignment, X and Y are transformed into sequences X’ and Y’
as showed in in Table 4.1. Note that besides the four gaps (λ indicates a gap) that
were inserted at the end of the URL X, it was necessary to insert two gaps into the
URL Y to align the similar tokens. X’ and Y’ have the same length so that every token
is either a unique token or a gap in the other sequence.

X’ www . irs . ustreas . gov / foia λ λ λ λ
Y’ www . IRS λ λ . gov / foia / index . html

1 2 3 4 5 6 7 8 9 10 11 12 13

Table 4.1: An illustration of the alignment between the duplicates URLs X = www.
irs.ustreas.gov/foia and Y = www.IRS.gov/foia/index.html.

The final consensus sequence CS ij for URLs ui and uj from Figure 4.1 is given
by uniting the token sets of X’ and Y’ in Table 4.1.

CSij = 〈{www}, {.}, {irs, IRS}, {., λ}, {ustreas, λ}, {.}, {gov}, {/}, {foia}, {/, λ}, {index, λ}, {., λ}, {html, λ}〉

Note that no token set Ti of CS ij will be {λ} since gaps are not aligned with other
gaps by the pairwise algorithm. We formally define a consensus sequence as follows:

Definition 8 (Consensus Sequence) Let {X1, X2, ..., Xn} be a set of n tokenized and
aligned URLs, such that |X1| = |X2| = ... = |Xn| = k, where |Xi| is the number of
tokens in Xi. Let tXi be the token of URL X at position i. A consensus sequence is a
sequence of k token sets 〈T1, ..., Tk〉 such that Ti = ∪∀X{tXi}.

URL Alignment Complexity. When computing the value for a specific cell
(i, j), only cells (i−1, j−1), (i, j−1) and (i−1, j) are examined, along with the tokens
within the token sets Ti and Tj. To fill a cell (i, j) it is necessary to estimate the overlap
between token sets Ti and Tj, which takes O(min(|Ti|, |Tj|)), i.e., is linear in the number
of elements of the token set with smaller cardinality. Thus, the dynamic programing
table for computing the pair-wise URL alignment of two token set sequences X and Y
can be computed in O(|X||Y |J), where J is the cost to calculate the Jaccard similarity
coefficient for each |X| × |Y | iteration.

4.1.3 Multiple URL Alignment

In this section, we show how to align a dup-cluster larger than two URLs. To accom-
plish this, we use the progressive alignment strategy presented in Feng and Doolittle
[1987] which aligns the two most similar sequences at each iteration and infers a new

www.irs.ustreas.gov/foia
www.irs.ustreas.gov/foia
www.IRS.gov/foia/index.html
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token set sequence from them. This process is repeated until all sequences have been
aligned, resulting in the final multiple alignment (i.e. a consensus sequence).

Algorithm 1 MultipleURLAligment (C)
Input: A dup-cluster C = {u1, ..., un} with n duplicate URLs
Output: A tuple π = (consensus,S).
1: Let Q be a priority queue in which tuples σ = (X, Y, consensusXY , scoring) are

sorted in descending order according to the alignment scoring.
2: S = ∅; Sequences = ∅; Aligned = ∅;
3: for all pairs of distinct URLs u1, u2 in C do
4: S = S ∪ {hostname(u1)} ∪ {hostname(u2)}
5: X = tokenize(u1)
6: Y = tokenize(u2)
7: Sequences = Sequences ∪ {X} ∪ {Y }
8: σ = pairWiseURLAlignment(X, Y )
9: add σ to Q
10: end for
11: while Q is not empty do
12: Pop the first tuple σ from Q
13: if σ.X /∈ Aligned and σ.Y /∈ Aligned then
14: Aligned = Aligned ∪ {σ.X} ∪ {σ.Y }
15: Sequences = Sequences − Aligned

16: for all sequences s in Sequences do
17: ε = pairWiseURLAlignment(σ.consensus, s)
18: add ε to Q
19: end for
20: Sequences = Sequences ∪ {σ.consensus}
21: end if
22: end while
23: Let s be the unique sequence in Sequences

24: return π = (s,S)

As previously mentioned in Section 2.1.2, the order in which we select examples
to be aligned could influence the final result. The policy used to select the most similar
sequences is based in Feng and Doolittle [1987] and is described in Algorithm 1.

First, a priority queue Q is created from all pairs of URLs in C (Lines 3-10). Each
tuple in Q is composed of two sequences (X and Y ), a consensus sequence obtained
by aligning them, and an alignment score. Note that we extract the hostnames of all
URLs within C and we keep them in the set S. This set indicates the sites where the
rule generated from C can be applied. By using Q, it is possible to find the tuple σ
with the most similar pair of URLs (Line 12). These two sequences are removed from
the set of sequences to be aligned and added to the set of aligned sequences (Lines
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14-15). We then align the consensus sequence in σ with all the remaining sequences
to be aligned (Lines 16-19). At the end of this process, we have aligned all URLs in C
and reduced them to a single sequence of token sets.

Analysis of the Algorithm. In this analysis, we consider the number of align-
ments between two sequences as the relevant cost measure to determine the running
time. Thus, we count the number of times lines 8 and 17 are performed with n se-
quences provided as input. First, each pair of sequences has to be aligned (lines 3-10).
This process requires n(n−1)

2
alignments involving all pairs provided as input. Then,

progressive alignments of the sequences are carried out until the final multiple align-
ment is done (lines 11-22). This process takes (n− 1) iterations because is starts with
n sequences and the two most similar are aligned at each iteration i. In addition, the
algorithm requires further (m − i − 1) alignments between the new sequence and the
others. Thus, in total, (n2−3n+2)

2
alignments are performed. The overall cost function is

given by f(n) = n2− 2n+1. Therefore, the complexity of the algorithm is O(P × n2),
where P is the cost of the method Pair-wise URL alignment.

Note that, in practice, this cost is not prohibitive since very large dup-clusters
are rare and heuristics can be used to limit their size, such as done by Koppula et al.
[2010].

4.2 DUSTER Algorithm

In this section, we describe in detail our solution to avoid the presence of DUST in
search engines. Figure 4.2 depicts the framework of our algorithm, DUSTER.

As we can see in this figure, once a new set of URLs is crawled, it is merged
with the already known URLs to form a new set of known URLs. During crawling,
the crawler is also able to identify examples of DUST by following canonical tags. As
a result, a new set of known DUST is also available. This set can be still enriched
by processes such as those based on content signature, followed by manual inspection.
Given the final set of known DUST, DUSTER can use it to find and validate rules, by
split it in training and validate sets. The resulting rules are then used to normalize
the known URLs yielding a new (and reduced) set of URLs to be crawled. By using
this set and the set of DUST rules, the crawler can gather additional URLs, closing
the cycle.

The two main phases of DUSTER are the generation of candidate rules, where a
multi-sequence alignment algorithm generates candidate rules from dup-clusters, and
the rules validation, where DUSTER filters out candidates rules according to their
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Figure 4.2: DUSTER framework. The dotted box highlights the components of the
DUSTER algorithm.

performance in a validation set. These two phases are described in the next sections.

4.2.1 Candidate Rules Generation

This phase consists of two steps: (1) For each dup-cluster in the training set, we obtain
a rule. To accomplish this, we first align a set of K URLs randomly selected within
the cluster in order to obtain a consensus sequence to represent these URLs. A rule
is then extracted from this consensus sequence. Note that if the cluster has less than
K URLs, all of them are involved in the alignment process. We adopt this sampling
strategy because, in general, it is not necessary to inspect all the training examples (i.e
URLs) to get a general rule, as many patterns are observed with just a few number of
examples. In that way, we also avoid the alignment of large dup-clusters which could
be very expensive. Also note that, since the cluster size distribution is very skewed,
our sampling strategy affects only the larger dup-clusters, that is, the minority of the
dup-clusters. (2) From the generated rules, we discard the ones with frequency less
than minfreq. Thus, very specific rules, with few occurrences in the training set, are



40
Chapter 4. DUSTER: DUST Detection with a Quadratic Multi-Sequence

Alignment Algorithm

discarded.

Algorithm 2 GenerateCandidateRules (T S)
Input: T raining Set T S = {c1, ..., cn} with n dup-clusters
Output: Set of m candidate rules CR = {r1, ..., rm}
1: Create table RT (context, transformation, S)
2: Create table CRT (context, transformation, S)
3: for all dup-cluters ci ∈ T S do
4: A = selectRandomlyURLs(ci,K)
5: π = MultipleURLAligment(A)
6: r = generateRule (π.consensus)
7: add (r.context, r.transformation, π.S) to RT
8: end for
9: group tuples in RT into buckets by (context, transformation)
10: for all buckets B do
11: if (|B| >= minfreq) then
12: S = ∅;
13: for all tuples t ∈ B do
14: S = S ∪ t.S
15: end for
16: α = the first tuple in B
17: add (α.context, α.transformation, S) to CRT
18: end if
19: end for
20: return a set CR of rules created from CRT

Algorithm 5 presents GenerateCandidateRules which takes a set of dup-clusters
as input and generates a set of candidate rules as output. In lines 1 and 2, two
tables are created: RT (Rules Table) which stores the candidate rules generated for
each cluster, and CRT (Candidate Rules Table) which stores rules which exceed the
frequency threshold minfreq. In lines 4-5, K URLs are randomly selected from ci

and aligned by algorithm MultipleURLAligment (see Algorithm 1). In lines 6 to 7,
candidate rules are generated and added to table CRT . The conversion of a consensus
sequence to a normalization rule is described in details in Section 4.2.1.2. In Line 9, the
rules are grouped into buckets according to their context and transformation (we sort
table RT by the first and second attributes). In Lines 10-20, the algorithm enumerates
all distinct rules generated by the first step. Note that two rules are considered the
same if they have the same context and transformation. In Line 11, if the bucket size
exceeds minfreq, the rule is considered as a candidate. In Lines 13-15, the rules with
same context and transformation are unified by the union of the sets S of each tuple
within the bucket. This strategy helps to reduce the final number of candidate rules
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as the same rule can be applied to several sites. In Line 17, a candidate rule is added
to table CRT . In Line 20, a set of candidate rules is returned.

4.2.1.1 Token Set Classification

URL components play different roles when webmasters are designing the URL scheme
of a website, e.g., some of them impact only the way pages are displayed (fonts, sizes,
etc) and others are used only to identify a user connection without altering their con-
tent. Therefore, the goal of URL normalization is to distinguish URL components (or
tokens) that impact page content from the ones with none or no relevant impact. In
other words, it is necessary to determine the role each component plays and to infer
which ones should be held, removed or generalized. For instance, tokens which express
directories or document types should be held in the canonical form while tokens that
denote parameter values should be generalized. After investigating a number of dup-
clusters and their respective consensus sequences, we noted that the multiple alignment
of URLs helps to define the importance of each component in the normalization pro-
cess. In this way, given a consensus sequence CS = 〈T1, T2, ..., Tk〉, inferred from a set
of URLs C, the token set Ti is classified as follows:

• Irrelevant: Ti is irrelevant if λ ∈ Ti, that is, some token of Ti was aligned
with a gap during the multiple alignment process. These tokens are considered
irrelevant, i.e., the page content is the same independently of their presence in the
URL. For instance, tokens 11 to 13 ofX ′ (“index.html”) are irrelevant in example
presented in Table 4.1. Such tokens should be removed from the canonical form.

• Invariant: Ti is invariant if |Ti − {λ}| = 1 (inside C) and it is present in all
URLs of C. Such invariant tokens must be kept in the canonical form. This is
the case of token tX′,9 = “foia” in Table 4.1.

• Variant: Ti is variant if |Ti − {λ}| > 1. Unlike from irrelevant tokens, we
can not remove them from the URLs, it is necessary to choose one of them.
However, regardless of the choice, the content of the page does not change. As
examples of these tokens, we cite tokens denoting directories where files were
copied redundantly, multiple domain names from the same website or session
id lists used to identify users. This is the case of the tokens “irs” and “IRS” in
Table 4.1.

index.html
foia
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4.2.1.2 Conversion of Consensus Sequences to Rules

A consensus sequence CS can be directly converted to a normalization rule. To ac-
complish this, we first divide the k token sets from CS into subsequences according to
special URLs delimiters (e.g., ‘/’, ‘?’, ‘=’, ‘&’, ‘#’, ‘;’, ‘:’, ‘.’). Next, each subsequence
si is converted to regular expressions by using the token set classification (see more
details in section 4.2.1.1). This process is described in the following paragraphs.

If all token sets in a subsequence si are invariant, we generalize them by adding
a regular expression ?3 to the rule context, and a backreference $N is included in rule
transformation. Otherwise, each token set Ti in subsequence si is separately converted
to a regular expression:

• If Ti is invariant, all tokens are generalized according to the type of its tokens in
the rule context, and a backreference $N is included in rule transformation.

• If Ti is variant, all tokens from Ti are grouped inside parentheses separated by
‘|’ in the rule context, and a randomly selected token from Ti is included in the
rule transformation. An alternative is to include the group inside parentheses in
both rule context and transformation.

• If Ti is irrelevant, all tokens from Ti are grouped between parentheses, separated
by ‘|’, with a question mark ? placed after the closing bracket. The regular
expression is included only in the rule context. As alternative, we can include
the group in both rule context and transformation.

If a token set has more than a certain number of tokens (Cardset threshold), we
generalize this set converting it to a regular expression according to its token type:
(i) Alphabetic: The group is substituted by the regular expression ([a-zA-Z]+); (ii)
Numeric: The group is substituted by the regular expression ([0 − 9]+); and (iii)
Punctuation: no generalization is done.

Finally, anchors ‘^’ and ‘$’ are included at the start and the end of the context,
respectively. Thus, given a consensus sequence:

CSij = 〈{www}, {.}, {irs, IRS}, {., λ}, {ustreas, λ}, {.}, {gov}, {/}, {foia}, {/, λ}, {index, λ}, {., λ}, {html, λ}〉

the subsequences are: s1 = www, s2 = {irs, IRS}, s3 = {ustreas, λ}, s4 = gov,
s5 = foia, s6 = {λ, index} and s7 = {html, λ}.
The corresponding context and the transform pattern could be:

3Note that the symbol ‘?’ should be replaced by an appropriate regular expression.
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c = ^?.(irs|IRS).(ustreas.)??/?(/index.html)?$
t1 = $1.irs.$2/$3 or, alternatively, t2 = $1.(irs|IRS).ustreas.$2/$3/index.html

Note that the alternative transformation pattern t2 will generate a canonical form
with a regular expression ‘(irs|IRS)’ and with irrelevant tokens (/index.html). This is
an acceptable transformation as the canonical form does not need to be a valid URL.

4.2.2 Validating Candidate Rules

The goal of this phase is to consider as valid or refute the candidate rules generated
in the previous phase. This filter selects the more effective rules by two pre-defined
thresholds: false-positive rate (fprmax) and minimum support (minsupp). If the false-
positive rate is larger than fprmax or the support of the rule is smaller than minsupp,
the rule is discarded. Otherwise, the rule is added to the set of valid rules. Note
that rules with small support values are not desirable anyway, because the reduction
gained by applying them can be insignificant. Thus, the support value is indicative
of the possible compression that a rule can achieve, whereas the false-positive rate
corresponds to the precision of the rule in the task of DUST detection.

A web crawler can use the canonical identification obtained by the normalization
rules to represent the content associated with a URL. However, a normalization rule
can misclassify a non-DUST URL as DUST and, consequently, prevent the crawler of
collecting new/useful content. Thus, the larger is fprmax, the larger is the loss of useful
content. On the other hand, a small value for fprmax implies on low coverage, with
more duplicate content being collected.

The solution for this trade-off depends on specific characteristics of the application
scenarios. In a typical web-search scenario, in which a crawler has a very large set of
URLs available to fetch, but it does not have enough resources (computer nodes and
bandwidth) to crawl them, a higher false-positive threshold is advisable. Thus, even
if the crawler does not fetch some unique URLs due to incorrect rules, the impact is
reduced as it has enough URLs to fetch. However, if a crawler has enough resources
to crawl the URLs, a lower false-positive threshold would prevent the loss of unique
content due to the application of incorrect rules.

Algorithm 3 presents ValidateRules which takes a set of candidate rules as input
and outputs a set of valid rules. It uses two thresholds to declare a rule as valid:
fprmax and minsupp. The algorithm calculates the support and false positive rate of
each candidate rule by applying them to a validation set, given as input (Lines 3-30).
It uses two tables during the validation phase: CT (Canonical Table) which stores the
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Algorithm 3 ValidateRules (VS, CR, fprmax, minsupp)
Input: VS: validation set, CR: Set of n candidate rules, fprmax: maximum false-

positive rate that can be tolerated, minsupp: minimum number of instances re-
quired.

Output: Set of n valid rules VR = {r1, ..., rn}
1: Create table CT (canonical, url)
2: Create table RT (context, transformation, S, support)
3: for all candidate rules r in CR do
4: Nsupp = 0; Support = ∅; Nfpp = 0;
5: Let U be a set of URLs from VS where r is applicable
6: for all URLs u in U do
7: canonical = normalizeURL (u, r)
8: add (canonical, u) to CT
9: end for
10: group tuples in CT into buckets by (canonical)
11: for all buckets B do
12: if (|B| > 1) then
13: for all pairs of distinct tuple t1,t2 ∈ B do
14: Nsupp = Nsupp+ 1
15: Support = Support ∪ {(t1.url, t2.url)}
16: if (t1.url and t2.url are not DUST) then
17: Nfpp = Nfpp+ 1
18: end if
19: end for
20: end if
21: end for
22: if (Nsupp >= minsupp) then
23: fpr = Nfpp/Nsupp
24: if (fpr <= fprmax) then
25: add (r.context, r.transformation, S, Support) to RT
26: end if
27: end if
28: Clear table CT
29: end for
30: return a set of all rules in RT

URL and its corresponding canonical form, and RT (Rule Table) which stores the
valid rules.

In the first step of this phase, the set of URLs possibly affected by the candidate
rule r (Line 5) is built. URLs from U are normalized and added with its canonical
form to table CT (Lines 6-9). URLs converted to the same canonical form are grouped
into buckets in order to calculate the fraction of DUST in the support of the rule r
(Lines 11-21). In Lines 13-19, the instances of r which are not DUST are counted to
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calculate the rate of false positives of this rule (Lines 22-27). If rule r passes through
pre-defined criteria, it is added to table RT (Line 25). Otherwise, it is discarded. In
Line 30, the set of valid rules from RT is returned.

4.2.3 URL Normalization

Since our objective is to identify DUST at crawling time, the learned rules are incor-
porated into the crawler in order to avoid fetching more than one URL from the same
canonical form. These rules remain valid for months and even years and are valid for
new pages as well as old ones. Normalization rules can be learned from an off-line
computation, and they can be deployed in conjunction with the crawler to de-duping
URLs and ensuring that duplicate URLs are not even crawled.

Unlike some approaches, which convert a given URL to another that likely has
the same content, in our work, we treat the output of the normalization rule r as a
signature to represent all URLs that have very similar page content. Whenever a set
of URLs is mapped by the rules to a specific canonical form, they are all subsequently
represented by just one of them and the others are discarded without checking their
content. Note that, in our method, the only situation in which a web crawler loses
unique URL is when two or more URLs, that are not DUST, are converted to the same
canonical form.

The normalization algorithm receives a URL u and a set of valid rules R. The
idea behind the algorithm is simple: It normalizes u with the first rule applicable in R.
In order to ensure the highest possible reduction, we sort the rules in R according to
their support size. Our study demonstrate that the reduction achieved by using this
algorithm is high.

4.3 Summary

In this chapter we presented DUSTER. This algorithm is an evolution of our first
method based on a traditional multi-sequence alignment approach to improve the gen-
eralization of transformation rules. In our first idea, many rules could be extracted
from a dup-cluster and much more processing among the dup-clusters was necessary.
The URL alignment was basically the same. That first idea was published in the
paper entitled “Learning URL Normalization Rules Using Multiple Alignment of Se-
quences” [Rodrigues et al., 2013] and presented in the 20th International Symposium
on String Processing and Information Retrieval (SPIRE 2013).
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The version of DUSTER presented in this chapter simplified the rule generation
of the SPIRE-2013 method, by allowing the extraction of a single pattern for each
dup-cluster, as described in the step of candidate rule generation. This new version
performed much better, being faster and more effective in removing DUST. Because
of this, we only reported it in this thesis. This algorithm was published on the IEEE
Transactions on Knowledge Data Engineering, in an article entitled “Removing DUST
Using Multiple Alignment of Sequences” [Rodrigues et al., 2015].

While very effective as a DUST detector, our method was based on straightfor-
ward quadratic alignment strategy which did not take advantage of particular charac-
teristics of the domain. Further, no analysis was carried out on the rules in order to
eliminate the redundant ones. To cope with these issues, we devised a new DUSTER
version, which we present in the next chapter.



Chapter 5

DustLin

DUST Detection with a Linear Multi-Sequence

Alignment Algorithm

In this chapter, we present DustLin and DustLin-MR, our algorithms for efficiently
generating URL normalization rules from dup-clusters provided as input. We proposed
a new heuristic to align a set of duplicate URLs by taking advantage of particular
characteristics of the domain. We also introduced a technique to discard redundant
rules, since they represent waste of resources.

5.1 Heuristic for Multiple URL Alignment

The alignment of sequences is a common procedure used to determine the similarity
of two or more sequences. For instance, it is commonly performed in comparisons
of biological sequences, whether DNA, RNA, or proteins. In contrast with pair-wise
alignment, in Biology, the multiple alignment of sequences can reveal similarities and
differences among groups of proteins, and find historical and evolutionary relationships
between species. As multiple alignment of sequences is computationally expensive both
with respect to time and memory, a large number of heuristics has been developed in
order to accelerate and increase the precision of this task [Daugelaite et al., 2013].

One of the most popular heuristics to align multiple sequences is the progressive
alignment Feng and Doolittle [1987], which uses a greedy strategy, where once a space
is inserted, it can not be removed for any subsequent alignment. Thus, all the spaces
are preserved until the final solution. The error rate introduced by the progressive

47
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alignment at each step tends to decrease if the most similar sequences are chosen, and
tends to increase if the most divergent sequences are chosen. Thus, determining the
best order for the alignments is crucial. Ideally, the most similar sequences are aligned
first, leaving the most divergent ones to the end. As a result, the error introduced by
this heuristic solution is reduced. The complexity of this algorithm is O(P ×n2), where
P is the cost of the pair-wise alignment and n is the number of sequences provided as
input.

Algorithms for Web mining should take advantage of the specific characteristics
of the data to be efficient. Unlike biological sequences, we observed that the URLs
within dup-clusters are not so dissimilar to each other. It is very common that many
URLs in a dup-cluster are almost the same. As a consequence, the order in which the
alignments are made could have little to no impact on the quality of the generated
rules. Thus, very simple alignment heuristics can be used at an expected low error,
while achieving significant gains in running times.

To illustrate that point, Table 5.1 compares the similarity of URLs selected by
using the progressive alignment heuristic and a simple approach which picks URL pairs
at random. To accomplish this, we sampled one third of the dup-clusters from GOV2
and WBR10 datasets and estimated the average alignment score using both heuristic
approaches. The results include the standard error considering a 95% confidence level.

Table 5.1: Average alignment score for GOV2 andWBR10 datasets by using progressive
alignment heuristic and a random heuristic.

GOV2 WBR10
Progressive Random Progressive Random
90.46±0.09 89.87±0.10 83.42±0.14 82.46±0.15

As we can see, although differences are statistically significant, the average align-
ment score obtained by a progressive alignment is very close to the one obtained by
selecting the URL pairs at random. In GOV2, the progressive alignment score was only
0.6% better than the one obtained by the linear heuristic. A similar result is observed
in WBR10 with a gain of about 1%. These results clearly suggest that a method which
selects URL pairs at random can obtain a set of rules as effective as the set obtained
by adopting a progressive alignment. Based on this idea, we present method DustLin
in next section.
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5.2 DustLin Algorithm

DustLin is composed of three phases. In phase 1, URLs in the training set are aligned
by using a linear heuristic in order to generate candidate rules. In phase 2, incorrect
candidate rules are filtered out according to their performance in a validation set. In
phase 3, redundant rules are removed from the deployable set of rules. Since phase 2
is the same phase of DUSTER, we only describe the phases 1 and 3 in the following
sections. But, firstly we present our algorithm for the multiple alignment of duplicate
URLs.

5.2.1 Linear Multiple URL Aligment Algorithm

In this section we present our linear algorithm that aligns duplicate URLs from dup-
clusters by selecting pair of URLs at random. This approach is described in details in
Algorithm 4.

Algorithm 4 LinearMultipleURLAligment (C, K)
Input: Let be C an dup-cluster with n duplicate URLs
Output: A tuple π = (consensus sequence s, S).
1: u1 ← randomly select an URL from C
2: s = tokenize(u1)
3: S = {hostname(u1)}
4: Selected = {u1}
5: for i = 2 to K do
6: ui ← randomly select an URL from C \ Selected
7: x = tokenize(ui)
8: s = PairwiseURLAlignment(x, s)
9: S = S ∪ {hostname(ui)}
10: Selected = Selected ∪ {ui}
11: end for
12: return π = (s,S)

Algorithm 4 presents LinearMultipleURLAligment which takes a dup-cluster C as
input and produces a tuple π = (s,S), where s is a consensus sequence associated with
C, and S is the set of sites within C. In lines 1-2, LinearMultipleURLAligment randomly
selects an URL u1 from C and obtains a sequence s after tokenizing it. In lines 3-4, it
initializes the set of sites S with the hostname of the first URL u1 and initializes the
set of selected URLs with u1. In lines 6-8, it picks the next URL ui, tokenizes it and
aligns ui with the current sequence s. In lines 9-10, it adds the hostname of ui to S
and adds ui to the set of selected URLs. This process is repeated until K URLs from
C have been aligned.
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Unlike MultipleURLAligment (Algorithm 1), which requires a quadratic number
of sequences alignments O(K2×P ), LinearMultipleURLAligment requires only a linear
number of pairwise alignments. Its complexity is O(K × P ), where P is the cost of
the method PairwiseURLAlignment. For this reason, we can devise a more efficient
algorithm to generate rules from the training set.

5.2.2 Candidate Rules Generation

Given a training set T S = {c1, ..., cn} with n duplicate clusters, our first task is to
quickly generate a candidate rule for each dup-cluster in T S. To accomplish this, we
first align the URLs within each dup-cluster to obtain a consensus sequence to represent
this alignment. Then, we extract a candidate rule from this consensus sequence, that
is able to normalize the entire dup-cluster. Preserving each discovered rule for de-
duplication is not efficient due to large number of such rules. Thus, the second step
in this phase is to discard the rules with frequency less than minfreq from the set of
candidate rules. This way, very specific rules with few occurrences in the training set
are discarded before the next phase.

Algorithm 5 GenerateCandidateRules (T S)
Input: T raining Set T S = {c1, ..., cn} with n duplicate clusters
Output: Set of m candidate rules CR = {r1, ..., rm}
1: Create table RT (context, transformation, S)
2: Create table CRT (context, transformation, S)
3: for all cluters ci ∈ T S do
4: π = LinearMultipleURLAligment(ci, K)
5: r = generateRule (π.s)
6: add (r.context, r.transformation, π.S) to RT
7: end for
8: group tuples in RT into buckets by (context, transformation)
9: for all buckets B do
10: if (|B| >= minfreq) then
11: S = ∅;
12: for all tuples t ∈ B do
13: S = S ∪ t.S
14: end for
15: α = the first tuple in B
16: add (α.context, α.transformation, S) to CRT
17: end if
18: end for
19: a set CR of rules created from CRT
20: return CR
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The generation of candidate rules is described in Algorithm 5. This algorithm
receives as input a training set (T S) with n dup-clusters and outputs a set with m

candidate rules, m <= n. In lines 1-2, it creates two tables: (1) RT (Rules Table)
which stores rules generated for every dup-cluster in T S; (2) CRT (Candidate Rules
Table) which stores rules that exceed the frequency threshold minfreq. In line 4, K
URLs from dup-cluster ci are aligned by the algorithm LinearMultipleURLAligment.
In lines 5-6, it generates rule r and adds it to RT . In line 8, all rules are grouped into
buckets according to their context and transformation. To accomplish this, table RT
is sorted by the first and second attributes. In lines 9-18, the algorithm enumerates all
distinct rules that exceed the frequency thresholdminfreq. In lines 11-15, the rules with
same context and transformation are unified. This strategy reduces the final number
of candidate rules. In line 16, a candidate rule is added to table CRT . Finally, in line
19, a set of candidate rules is returned.

5.2.3 Eliminating Redundant Rules

The output of the validation phase may include pairs of redundant rules. For exam-
ple, when running on GOV2, our algorithm found some redundant rules as shown in
Table 5.2. Note that, in the table, every instance in the support set of r2 (Sr1) also
appears in Sr2 . It means that all cases covered by rule r1 are also covered by r2. Thus,
we can say that the former rule is refined (is covered) by the latter. The notion of
refinement was presented for the first time in Bar-Yossef et al. [2006] and we define it
below:

Definition 9 (REFINEMENT). A rule r1 refines a rule r2, if support(r1) ⊆
support(r2).

That is, r1 refines r2, if every instance (ui, uj) of r1 is also an instance of r2.
In Algorithm 6, we explore this definition by adding a phase into DustLin in which
redundant rules can be eliminated resulting into a smaller set of rules.

Table 5.2: Example of redundant rules.

Redundant Rules Found on GOV2.
c1 = ^?://(www.)??.?/?/(OGWDW |ogwdw)(000)?/?/?.?$
t1 = $1://$2.$3/$4/ogwdw/$5/$6.$7
Sr1 = {(u0, u1), (u0, u2)}
c2 = ^?://(www.)??.?/?/(OGWDW |ogwdw|safewater)(000)?/?/?.?$
t2 = $1://$2.$3/$4/ogwdw/$5/$6.$7
Sr2 = {(u0, u1), (u0, u2), (u1, u2), (u3, u4}
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Algorithm 6 EliminateRedundantRules (VR)
Input: Set of m valid rules VR = {r1, ..., rm}
Output: Set of m rules with no redundancy: R = {r1, ..., rm}
1: E = ∅;
2: for all pairs of distinct rules Rx,Ry ∈ VR do
3: if Rx.support ⊆ Ry.support then
4: E = E ∪ {Rx}
5: end if
6: end for
7: R = ∅
8: for all rules r ∈ VR do
9: if r 6∈ E then
10: R = R∪ {r}
11: end if
12: end for
13: return a set of all rules in R

Algorithm 6 takes a set ofm valid rules and filters out the redundant ones. Firstly,
in Lines 2-6, the algorithm checks the support of all pairs of distinct rules (Rx,Ry) from
VR. If the support of Rx is a subset of Ry then Rx is added to the set of eliminated
rules E . In Lines 8-12, a new set of deployable rules R is created by discarding the
rules present in E from VR.

5.3 DustLin-MR - A Parallel version of DustLin

In this section we present Dustlin-MR, a distributed version of our algorithm for gener-
ating normalization rules at Web scale. To that end, we also briefly overview MapRe-
duce, a popular paradigm to deal with massive amounts of data.

5.3.1 MapReduce

The Web is the biggest and fastest growing data repository in the world. The estimated
size of the indexable Web was at least 11.5 billion pages as of the end of January
2005 [Gulli and Signorini, 2005]. In 2011, its size was estimated between 50 and 100
billion pages and roughly doubling every eight months [Baeza-Yates and Ribeiro-Neto,
2011].

When dealing with web-size datasets (e.g. sets of dup-clusters), the costs of a se-
quential algorithms are not acceptable. The size of the dataset and the structures that
support the solution will easily outgrow the storage capabilities of a single machine.
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Figure 5.1: MapReduce computation data flow.

There are a variety of programming models and techniques to process data on large
clusters [Jackson et al., 2015]. Among them, MapReduce is the most popular program-
ming paradigm designed for the processing of large amounts of data by distributing
work tasks over multiple machines in a shared-nothing cluster [Dean and Ghemawat,
2008]1. The input data, represented as pairs 〈key, value〉 is initially partitioned across
the nodes of the cluster and stored in a distributed file system (DFS).

The key concept behind MapReduce is inspired by the map and reduce primitives
present in many functional languages. Map or reduce tasks are specified by the user
and may run on different machines, allowing parallelism to be achieved. In MapReduce,
map functions are applied in parallel on different partitions of the input data to compute
a set of intermediate key/value pairs. The outputs from the map function are then
automatically grouped by their key (e.g., 〈keyi, list(valuei)〉) and passed to the reduce
function. Then reduce is applied to all values that shared the same key. The output
of each reduce function (〈keyi, valuei〉), is written to a distributed file in DFS. Figure
5.1 shows the data flow in a MapReduce computation.

MapReduce has gained popularity in commercial settings with many different
implementations by Google [Dean and Ghemawat, 2008], Yahoo! and Microsoft [Isard
et al., 2007]. In this work, we employ Hadoop2, which is the only freely available
MapReduce implementation and it was developed by Yahoo!.

5.3.2 DustLin-MR Algorithm

As previously observed, generating normalization rules at web scale is computation-
ally demanding. In order to handle hundreds of millions of dup-clusters in time, we
redesigned the first two phases of DustLin as a distributed algorithm based on the
MapReduce framework. We refer to this method as DustLin-MR. It consists of two

1A shared-nothing cluster is a large commodity cluster interconnected by a local network.
2http://hadoop.apache.org
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MapReduce jobs: Rules Generation and Rules Validation. The input of these jobs is
represented by pairs (DID, [u1, u2, ...]), where DID is a dup-cluster ID and [u1, u2, ...]

is a list of duplicate URLs.
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Figure 5.2: Example data flow of Stages 1 and 2.

5.3.2.1 Job 1: Rules Generation

The MapReduce job, called Rules Generation, receives as input a set of dup-clusters
and outputs a list of candidate rules with frequency greater than minfreq. As we can
see in Figure 5.2, this process is splitted into m map tasks, each of them operating on
its own subset of dup-clusters. For each dup-cluster, the map function generates a rule
and yields a pair (CiTi, 〈Si, 1〉), where CiTi represents the context and transformation
of rule ri. After being grouped and sorted, all the pairs belonging to each rule (i.e.,
which share the same key CiTi) are brought together. Subsequently, the reduce function
sums up the total counting for each rule, unifies the rules according to their sites, and
outputs (CiTi, 〈Si, count〉) pairs, where Si is the set of sites where ri can be applied,
and count is the total frequency for the rule i in the training set.

Figure 5.2(a) shows the data flow for a sample dataset. Take, for instance, rule
CATA, produced by two different map functions. After being grouped and sorted, these
pairs are routed to the same reduction function to produce the output (CATA, 〈SA, 2〉).

Algorithm 7 provides a pseudo-code implementation of map and reduce func-
tions for this strategy. Input to this procedure map consists of pairs (DID, [u1, u2, ...]).
For each dup-cluster, in Line 1, a rule for the dup-cluster DID is generated by calling
GenerateRule. The procedure reduce takes the rule citi and emits it, along with its cor-
responding frequency and set of sites. In Lines 3-6, the algorithm counts the frequency
of the rule and unifies its sites. Finally, in Line 8, it emits the rule if the frequency is
greater than minfreq.
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Algorithm 7 Pseudo-code of Candidate Rules Generation in MapReduce
MAP (DID, [u1, u2, ...])
1: ri = GenerateRule([u1, u2, ...])
2: citi = ri.context+ ri.transform
3: EMIT(citi, 〈ri.Si, 1〉)
REDUCE (citi, {〈Si, 1〉})
1: S ← new SET
2: Freq = 0
3: for all v ∈ {〈Si, 1〉} do
4: S = Si ∪ v.first
5: Freq = Freq + v.second
6: end for
7: if Freq >= minfreq then
8: EMIT (citi,S, F req)
9: end if

5.3.2.2 Job 2: Rules Validation

The second MapReduce job, called Rules Validation, takes a set of dup-clusters as
input and calculates the support and false-positive rate of each rule generated in the
previous stage. It then outputs a list of rules with false-positive rate smaller than
fprmax and support greater than minsupp. Figure 5.2(b) shows the data flow for a
sample dataset. As illustrated by that figure, before the map functions start running,
an initialization function is called to load the set of candidate rules R produced in the
first stage. In particular, we broadcast and load the set of rules R at each map function
before the input data is consumed. The map functions then normalize the URLs from
each dup-cluster by using the rules within the set R and yield (CiTi, 〈Cfn, nou〉) pairs.
In these pairs, nou indicates the number of URLs transformed to canonical form Cfn

by the rule CiTi. After being grouped and sorted, these pairs are provided to the same
reduction function which produces the output (CiTi, 〈Nsuppi, fpri〉), where Nsuppi
and fpri are the support size and false-positive rate of rule ri, respectively.

Note in Figure 5.2(b) that the rule CATA normalizes URLs from the dup-clusters
62 and 91 to the same canonical form Cf1. The fpr of this rule is greater than zero as
its support contains incorrect instances such as (U100, U203) and (U100, U204). Thereby,
if the threshold of our algorithm is fprmax = 0, this rule would be discarded from the
deployable set of normalization rules.

Algorithm 8 provides a pseudo-code implementation of map and reduce functions
for this job. In Line 1, the set of candidate rules CR is loaded before the reading of the
input data. In Line 2, an associative array RC is created to store the number of URLs
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(nou) converted to the same canonical form by every rule in CR. Then, an auxiliary
set of tuples Tuples is created in Line 3 to control the pairs 〈CiTi, Cf〉 inserted into RC.
In Lines 4-12, the URLs u, from the dup-cluster DID, are processed: (a) all rules that
match u are added into the set Rmatched (Line 5); (b) u is then normalized by using
rules in Rmatched set. For each matched rule Ri, the pair 〈CiTi, Cfn〉 is stored into RC,
where Cfn is the canonical form generated by the rule Ri (Lines 6-11). Finally, the
algortihm emits a pair (CiTi, 〈Cf, nou〉) for each element stored in RC (lines 13-16).

Algorithm 8 Pseudo-code of Validation Rules in MapReduce
MAP (DID, [u1, u2, ...])
1: Load the set of candidate rules CR
2: RC ← new AssociativeArray
3: Tuples ← new SET
4: for all URLs u ∈ {u1, u2, ...} do
5: Let Rmatched be the set all rules from R that match u
6: for all rules Ri ∈ Rmatched do
7: Cfn = NormalizeURL (u, Ri)
8: CiTi = Ri.context+Ri.transform
9: Tuples = Tuples ∪ {〈CiTi, Cfn〉}
10: RC[〈CiTi, Cf〉]++
11: end for
12: end for
13: for all tuples t ∈ Tuples do
14: CiTi = t.first; Cfn = t.second
15: nou = RC[t]
16: EMIT(CiTi, 〈Cfn, nou〉)
17: end for
REDUCE (CiTi, {〈Cfn, nou〉})
1: CA← new AssociativeArray
2: C ← new SET with canonical forms
3: Nci = 0
4: for all v ∈ {〈Cfn, nou〉} do
5: Nci = Nci + nou2−nou

2
6: CA[Cfn] = CA[Cfn] + nou
7: C = C ∪ {Cfn}
8: end for
9: Nsupp = 0
10: for all c ∈ C do
11: count = CA[c]

12: Nsupp = Nsupp+ count2−count
2

13: end for
14: if (Nsupp >= minsupp) then
15: fpr = 1.0−Nci/Nsupp
16: if (fpr <= fprmax) then
17: EMIT(CiTi, 〈Nsupp, fpr〉)
18: end if
19: end if

In line 1 of the reduce function, an associative array CA is created to store the
number of URLs transformed into each canonical form Cfn. This array is used to
calculate the support of current rule Ri. In Lines 4-8, the pairs 〈Cfn, nou〉, obtained
by rule Ri in map phase, are processed. The number of correct instances Nci in the
support of the Ri is calculated (Line 5) and CA is updated (Line 6). The support of the
current rule Ri is then calculated by using the array CA and the set C (Lines 10-13).
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Finally, the algorithm emits the rule if the support Nsupp is greater than minsupp and
the fpr does not exceed fprmax (lines 14-18).

5.4 Final Considerations

In this chapter, we presented DustLin, our method which takes advantage of specific
characteristics of the DUST problem to generate normalization rules in a more efficient
fashion. This chapter first described the linear heuristic to align sets of duplicate URLs
and a technique to discard redundant rules, since they represent waste of resources.
Whereas DUSTER required a quadratic number of sequences alignment, DustLin re-
quires only a linear number of pairwise alignments. We then presented DustLin-MR,
a distributed version of our algorithm for generating normalization rules. In spite of
the efficiency of DustLin, at web scale, we have to handle hundred of millions of dup-
clusters in time which motivate the study of a distributed solution. It was implemented
as a 2-stage parallel algorithm using a MapReduce programming model, implemented
in a Hadoop environment.

DustLin and DustLin-MR were described in a paper submitted to the ACM
Transactions on the Web, entitled “A Highly-Scalable Algorithm For Generating URL
Normalization Rules.” This article is currently under review. In the next chapter,
we present the experiments involving the three algorithms proposed in this thesis:
DUSTER, DustLin and DustLin-MR.





Chapter 6

Experimental Evaluation

In this chapter, we report the experimental evaluation of the three algorithms proposed
in this thesis: DUSTER, DustLin, and DusLin-MR. We first present our test datasets
and then evaluate our methods, including by comparing them with state-of-the-art
baselines in the tasks of generating normalization rules and detecting DUST.

6.1 Datasets

We use two document collections in our experiments: GOV2 and WBR10. GOV2
dataset consists of a snapshot of the resources fetched from 25,205,179 individual doc-
uments from US government domains in 2004. According to the TREC track informa-
tionClarke et al. [2004], some duplicate documents have already been removed from
GOV2. The GOV2 TREC dataset contains about 3.88 million duplicate URLs divided
into about 1.43 million dup-clusters. These documents were grouped by creating a
small fingerprint of their content and hashing the URLs with identical fingerprints into
the same clusters.

WBR10 is a collection of over 150 million web pages crawled from the Brazil-
ian domain using an actual Brazilian crawling system. This crawling was performed
from September to October, 2010, with no restrictions regarding content duplication
or quality. To identify groups of duplicate URLs in WBR10, we adopted the same
approach used by the authors in Lei et al. [2010]. Thus, we scanned the collection to
find out the web sites which explicitly indicate the canonical URLs in their pages. By
doing this, we identified about 3.86 million duplicate documents in WBR10, for a total
of about 1.11 million dup-clusters. Although WBR10 is six times larger than GOV2, it
has almost the same amount of DUST identified. This was expected since webmasters
are not obliged to identify canonical URLs.

59
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Table 6.1: GOV2 and WBR10 characterization

DataSet #Dup-Clusters #URLs Tokens Per
URL

#Dup-Clusters
Size <= 10

#Dup-Clusters
Size >10

Dup-Clusters
Size (Avg.)

Dup-Cluster
Size (Max)

GOV2 1,432,034 3,876,604 27.20 1,424,491
(99.47%)

7,543
(0.53%) 2.71 53,132

WBR10 1,108,186 3,858,620 28.45 1,083,759
(97.80%)

24,427
(2.20%) 3.48 47,977

Table 6.2: Statistics of the sites within GOV2 and WBR10

DataSet #Sites #URLs in
a Site (Min)

#URLs in
a Site (Max)

#URLs in
a Site (Avg.)

#Sites in a
Dup-Cluster (Avg.)

GOV2 15,106 1 265,388 256.63 1.57
WBR10 39,094 1 57,472 98.70 1.62

Note that by using these two datasets, we are able to evaluate our method in the
scenario where most of the DUST was identified (GOV2) as well as in a more realistic
scenario, where only a small sample of DUST is known (WBR10). Information about
these two datasets is summarized in Tables 6.1 and 6.2.

6.2 DUSTER Evaluation

In this section, we present our evaluation of DUSTER. We start with a study on the
thresholds used by our method and then present the experiments we conducted to
evaluate DUSTER, followed by a discussion on the obtained results.

6.2.1 Thresholds Study

The performance of DUSTER is associated with the choice of values for five thresholds:
(1) the number of URLs to be aligned in each dup-cluster – K; (2) the maximum
acceptable false positive rate – fprmax; (3) the cardinality of a token set, necessary to
it be transformed into a regular expression – Cardset; (4) the minimum frequency a
rule should have to not be discarded – minfreq; and (5) the minimum support a rule
should have to be validated – minsupp.

To better understand the impact of such thresholds, we randomly sampling 50%
of the dup-clusters and divided them into three approximately equal-size sets. We
calculated the results as the average obtained for these three sub-sets according to a
3-fold-cross-validation strategy [Mitchell, 1997]. We used the training set to generate
the rules, the validation set to filter them, and the test set to evaluate them. The
results of such study are presented in the following sections
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6.2.1.1 Threshold K

As observed in Section 4.2.1, DUSTER randomly selects K URLs to be aligned in
each dup-cluster. This is necessary to mitigate the quadratic cost of a multi-sequence
alignment when applied to a very large dup-cluster. In this work we set K = 10 and
the reason for that is twofold. First, as observed in Table 6.1, this value covers almost
all dup-clusters. The number of dup-cluster with more than 10 URLs is about 2% in
WBR10 and less than 1% in GOV2. These cases have little impact on the performance
of the method regarding DUST detection. Second, as also observed by [Dasgupta
et al., 2008], rules derived from these rare large dup-clusters are usually related to
the generalization of session ids or the elimination of irrelevant path components (c.f.
Appendix A). We randomly select K URLs from these dup-clusters because we believe
it is not necessary inspect all the training examples to get general rules, as the pattern
can be observed with just a few number of examples.

6.2.1.2 Threshold fprmax

A web crawler can use the canonical identification obtained by the normalization rules
to represent the content associated with a URL. However, a normalization rule can
misclassify a non-DUST URL as DUST and, consequently, prevent the crawler of col-
lecting new/useful content. Thus, the larger is fprmax, the larger is the loss of useful
content. On the other hand, a small value for fprmax implies on low coverage, with
more duplicate content being collected.

The solution for this trade-off depends on specific characteristics of the application
scenarios. In a typical web-search scenario, in which a crawler has a very large set of
URLs available to fetch, but it does not have enough resources (nodes and bandwidth)
to crawl them, a higher false-positive threshold (e.g. fprmax ≤ 10%) can be used.
Thus, even if the crawler does not fetch some unique URLs due to incorrect rules, the
impact is reduced as it has enough URLs to fetch. However, if a crawler has enough
resources to crawl the URLs, a lower false-positive threshold (e.g. fprmax ≤ 5%) would
prevent the loss of unique content due to the applications of incorrect rules. In our
experiments, we consider fprmax = 0 level the most important one, as we are interested
in estimating how effective are the best rules generated by DUSTER and baselines.

6.2.1.3 Threshold Cardset

Threshold Cardset determines if token sets obtained from consensus sequences should
be transformed into regular expressions according to its token type (c.f. Sec-
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tion 4.2.1.2). The basic intuition is simple. Given a token set Ti and a Cardset threshold
value, we convert the token set Ti if |Ti| ≥ Cardset. Table 6.3 presents the results ob-
tained by using Cardset values varying from 2 to 10, in GOV2 and WBR10 datasets.
This range of values was chosen as it corresponds to the sizes that dup-clusters can
assume using K = 10.

Table 6.3: Cardset behavior for fprmax = 0 in GOV2 and WBR10 datasets. CR stands
for “Compression Rate”; NP stands for “Normalization Precision”; AR/R stands for
“Average Reduction Per Rules”.

Cardset

GOV2 WBR10
#Rules DUST Detection #Rules DUST Detection

Candidates Valid CR (%) NP (%) AR/R Candidates Valid CR (%) NP (%) AR/R
2 28,211 9,173 21.76 99.13 15.60 36,368 11,292 30.53 99.58 17.62
3 44,967 15,843 26.33 99.32 10.93 41,522 13,330 30.82 99.77 15.08
4 46,063 16,198 26.50 99.31 10.76 42,885 14,105 30.83 99.77 14.24
5 46,678 16,315 26.43 99.33 10.65 43,914 14,658 31.31 99.80 13.93
6 47,091 16,387 26.48 99.33 10.63 44,559 15,021 31.68 99.84 13.75
7 47,369 16,415 26.50 99.34 10.62 44,991 15,224 30.97 99.85 13.27
8 47,552 16,442 26.50 99.33 10.60 45,263 15,358 30.58 99.83 12.99
9 47,669 16,462 26.50 99.48 10.59 45,468 15,445 30.13 99.81 12.73
10 47,773 16,473 26.49 99.48 10.58 46,118 15,653 28.52 99.70 11.88

If we increase Cardset, we expect fewer token sets being generalized and, as a
consequence, a larger set of rules is generated since less rules are unified. This behavior
can be observed in Table 6.3, in which the larger is Cardset, the larger is the set of
candidate/valid rules.

If we obtain a larger set of rules, we expect to achieve a larger compression of
DUST. We can observe this in both collections when we increased Cardset from 2 to 3.
Note that Compression Rate (CR) increased from 21.76% to 26.33% and from 30.53%
to 30.82% in GOV2 and WBR10, respectively. However, in WBR10, CR decreases as
we increase Cardset from 6 to 10. It happens because, in spite of being larger, the set
of rules become less general as we increase Cardset. This behavior can be confirmed
by AR/R (Average reduction per rule) which decreases as we increase the Cardset
threshold for both datasets. In general, the impact of the variation of Cardset is lesser
in GOV2 than in WBR10 as the dup-cluster sizes in GOV2 are smaller than in WBR10.
For instance, note that, when we increased Cardset from 3 to 10, only 630 additional
valid rules were obtained in GOV2, whereas in WBR10, this number was 2,323.

Even if the normalization precision (NP) of the set of valid rules is greater than
99% for all values of Cardset in both datasets, we conclude that the worst normalization
precision was reached by the set of valid rules obtained with Cardset = 2. Therefore,
we suggest the use of intermediate values for Cardset because lower values lead to the
loss of unique URLs while higher values, to small compression rates.
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6.2.1.4 Threshold minfreq

This parameter determines when infrequent rules should be discarded from the set of
candidate rules generated in the first phase of DUSTER. minfreq helps to remove very
specific rules from the set of candidate rules. Given a rule r and its frequency Freqr,
DUSTER discards r if Freqr < minfreq. For instance, if we set minfreq = 1, DUSTER
does not discard any rule and all rules within the set of candidates are provided to the
second phase of the method. However, if we set minfreq = 10, only rules that were
generated from at least 10 different dup-clusters are retained as candidates. Therefore,
in order to analyze its behavior, we vary minfreq from 1 to 10 and the results are
summarized in Table 6.4.

Table 6.4: Parameter minfreq for fprmax = 0 and Cardset = 5 in GOV2 and WBR10
datasets. CR stands for “Compression Rate”; NP stands for “Normalization Precision”;
AR/R stands for “Average Reduction Per Rules”

minfreq

GOV2 WBR10
#Rules DUST Detection #Rules DUST Detection

Candidates Valid Rate CR (%) NP (%) AR/R Candidates Valid Rate CR (%) NP (%) AR/R
1 46,678 16,315 34.95 41.48 99.33 10.65 43,914 14,658 33.38 43.70 99.80 13.93
2 11,424 8,467 74.12 39.51 99.45 19.55 6,174 4,926 79.79 38.40 99.93 36.40
3 7,568 5,966 78.83 38.30 99.72 26.89 3,814 3,196 83.80 37.07 99.94 54.11
4 5,751 4,611 80.18 37.32 99.82 33.90 2,749 2,318 84.32 35.70 99.93 71.89
5 4,750 3,839 80.82 36.65 99.83 40.00 2,183 1,841 84.33 34.55 99.94 87.63
6 4,058 3,282 80.88 35.95 99.84 45.88 1,825 1,528 83.73 33.95 99.95 103.83
7 3,559 2,868 80.58 35.31 99.86 51.57 1,599 1,338 83.68 33.31 99.95 116.27
8 3,160 2,541 80.41 34.72 99.87 57.25 1,434 1,202 83.82 32.75 99.95 127.18
9 2,862 2,293 80.12 34.28 99.87 62.65 1,306 1,099 84.15 32.40 99.98 137.73
10 2,613 2,090 79.98 33.83 99.88 67.81 1,197 1,009 84.29 31.97 99.98 148.10

If we increase the minfreq threshold, most general and precise rules are kept in
the final set rules. Note in Table 6.4 that, for all datasets., the average reduction
per rule (AR/R) increases as we increase minfreq as well as the set of rules tend to
be more precise. On the other hand, the number of candidate/valid rules decreases
as we increase minfreq and, by extent, the compression achieved by DUSTER. This
behavior is observed in both datasets. Note that, in average, about 34% of the rules
are considered as valid when DUSTER does not discard any rules from the set of
candidates (minfreq = 1). This rate increased to 74.12% and 79.79% when we increased
the minfreq to 2 in GOV2 and WBR10 datasets, respectively.

6.2.1.5 Threshold minsupp

This parameter determines if rules are accepted or not in the DUSTER validation
phase. Given a rule r, its support, and a validation set V S, DUSTER discards r if
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supp(r, V S) < minsupp. To understand the behavior of minsupp, we vary its value from
1 to 10 and the results are summarized in Table 6.5.

Table 6.5: Parameter minsupp. CR stands for “Compression Rate”; NP stands for
“Normalization Precision”; AR/R stands for “Average Reduction Per Rules”

minsupp

GOV2 WBR10
#Rules DUST Detection #Rules DUST Detection

Candidates Valid CR (%) NP (%) AR/R Candidates Valid CR (%) NP (%) AR/R
1 46,678 16,315 41.48 99.33 10.65 43,914 14,658 43.70 99.80 13.93
2 46,678 13,251 41.10 99.44 12.99 43,914 12,616 43.60 99.81 16.14
3 46,678 11,658 40.77 99.45 14.65 43,914 11,363 43.50 99.81 17.90
4 46,678 10,263 40.47 99.48 16.52 43,914 10,409 43.39 99.82 19.50
5 46,678 9,387 40.15 99.48 17.92 43,914 9,770 43.29 99.83 20.72
6 46,678 8,759 39.97 99.48 19.12 43,914 9,299 43.19 99.83 21.73
7 46,678 8,052 39.65 99.48 20.63 43,914 8,787 43.05 99.85 22.92
8 46,678 7,588 39.39 99.49 21.75 43,914 8,472 42.98 99.85 23.74
9 46,678 7,221 39.22 99.49 22.75 43,914 8,223 42.92 99.85 24.43
10 46,678 6,855 38.98 99.49 23.82 43,914 7,970 42.84 99.85 25.16

Based on the results given in Table 6.5, we can conclude thatminsupp has a similar
behavior to minfreq. For instance, the resulting set of valid rules tend to be smaller,
more precise and more general as we increase minsupp. Further, the compression rate
(CR) also decreases as we increaseminsupp. Note that fprmax andminsupp are threshold
values used by DUSTER and the baselines (cf. Problem 1).

6.2.2 Comparison with Previous Work

In this section we present a comparison between the results obtained by DUSTER
with those obtained by two state-of-the-art methods. In particular, we compare the
methods according to the number of rules they detected, the number of valid rules
they selected, and their performance in DUST detection. We also study the results of
applying the rules to better understand the methods that derive them.

As previously described, we adopted two different baseline methods for compar-
ison: (1) The first is the work by Dasgupta et al Dasgupta et al. [2008], which we
implemented using the fanout heuristic. For this task, we use a threshold value equal
to 10, which is the same value adopted by the authors in their experiments. (2) Our
second baseline is the method proposed in Lei et al. [2010], which we refer to as Rtree.
Rtree builds the so called pattern tree for each target site. These two methods were
chosen due to their performance in previous experiments, which indicate they represent
the best options found in literature for de-duplicating URLs.
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6.2.2.1 Empirical Methodology

In all the experiments, we calculated the metrics presented in Section 2.5.2 as the av-
erage obtained for three sub-sets of URLs according to a 3-fold-cross-validation strat-
egy [Mitchell, 1997], as follows. We randomly divided the dup-clusters of each collection
into three approximately equal-size sets. From each of these three subsets, the first
one was retained as training set, the second one was retained as validation set, and the
remaining as test set. We then performed 3 runs, rounding the sets such that a same
URL was never used as test example in different runs.

The time complexity of our first baseline Rfanout-10 is at least O(cn2), where c is
the number of dup-clusters in the training set and n is the average number of URLs
in each dup-cluster. As we presented in Table 6.2, in practice, a dup-cluster can have
tens of thousands URLs, such that the processing of the entire clusters is unfeasible.
We thus decided firstly sample K URLs for each dup-cluster before providing them as
input. We adopted this strategy for our method and all the baselines.

Based on our previous studies on parameters, the following thresholds were used in
our experiments: K = 10 and minsupp = 10. Regarding DUSTER, we used minfreq =

10 and Cardset = 5.

6.2.2.2 Candidate Rules vs. Valid Rules

In this section we analyze the number of rules learned by the three methods after the
training (candidate rules) and the number of the rules ready to be used in the test
(valid rules). Note that a small number of valid rules is desirable since the crawler
should have a small footprint. For Rfanout-10 and DUSTER, the valid rules consist of
the rules that were not discarded in the validation. The rules considered invalid are
automatically removed from the rule pool. For Rtree, the valid rules are the ones picked
out in the selection phase.

Table 6.6: Number of candidates and valid rules generated by different methods in
GOV2 and WBR10 (fprmax = 0).

DataSet Method Candidates Valid Rate

GOV2
Rfanout-10 12,249 6,517 53.20%
Rtree 5,523 1,756 31.79%

DUSTER 4,411 3,072 69.64%

WBR10
Rfanout-10 10,501 6,793 64.68%
Rtree 13,542 3,103 22.91%

DUSTER 1,980 1,550 78.28%

In Table 6.6, we compare, for fprmax = 0, how many candidate rules are generated
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and, out of them, how many are valid. These results show that even though DUSTER
generates the smallest number of candidate rules, it has the highest rate of valid rules.

6.2.2.3 DUST Detection

In this section we present a comparison between DUSTER and the baseline methods
regarding the task of DUST detection for the GOV2 and WBR10 datasets. Table 6.7
shows, for each fprmax level and method, the number of applied/valid rules (A/V),
along with its respective compression rate (CR), the coverage of the rules, the normal-
ization precision (NP) and the average reduction per rule (AR/R).

The performance of DUSTER was far superior when compared to the baselines at
all fprmax levels experimented. As we are interested in estimate how effective are the
best rules generated by the methods, we consider fprmax = 0 level the most important
one, since it includes rules that did not fail in any of the test URLs in the validation set.
At this level, DUSTER was able to reduce the amount of URLs crawled in 24.07% in
GOV2, while the best baseline (Rfanout10) achieved only 16.04%. In WBR10, DUSTER
was able to reduce 27.59%, while the best baseline (Rfanout10) achieved only 16.94%.
These results show that DUSTER obtained a gain in the process of identifying duplicate
URLs of 50% in GOV2 and about 63% in WBR10, by applying almost two times less
rules than Rfanout10 in GOV2 and three times in WBR10. Thus, besides achieving a
higher compression rate, the rules generated by DUSTER are more effective than the
ones generated by Rfanout10.

The next measure we use to evaluate DUSTER against the baselines is Coverage,
i.e., the amount of DUST discovered by the applied rules compared to the total amount
of DUST in a dataset. As we can see in Table 6.7, the rules generated by DUSTER can
cover more DUST than those generated by Rfanout10 and Rtree at all false-positive levels
in both collections. For instance, for fprmax = 0% in GOV2, the coverage achieved
by DUSTER was about 42% while our best baseline, Rfanout10, achieved about 28%.
In WBR10 for fprmax ≤ 5%, DUSTER covered about 60% whereas Rfanout10 covered
about 29%. Note that there is almost no gain in coverage for fprmax ≥ 5% for all
methods. This happens because only a small number of additional rules are used as
fprmax increases.
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Table 6.7: Results obtained at each false-positive rate by Rfanout-10, Rtree and DUSTER for GOV2 and WBR10 datasets.
Column A/V stands for “number of rules Applied/Valid”; CR stands for “Compression Rate”; NP stands for “Normalization
Precision” and AR/R stands for “Average Reduction per Rule”.

fprmax
Rfanout-10 Rtree DUSTER

A/V CR (%) Coverage (%) NP (%) AR/R A/V CR (%) Coverage (%) NP (%) AR/R A/V CR (%) Coverage (%) NP (%) AR/R
GOV2

= 0% 4146/6517 16.04 27.82 99.69 27.80 506/1756 7.04 12.16 98.48 50.56 2206/3072 24.07 41.73 99.91 88.35
≤ 5% 5624/9280 20.09 34.87 99.39 24.40 498/1803 6.93 11.97 98.19 48.68 2186/3588 31.96 55.34 99.10 100.43
≤ 10% 5655/9421 20.41 35.38 98.95 24.43 513/1839 7.07 12.22 97.37 48.57 2214/3745 33.93 58.66 98.33 102.14
≤ 15% 5877/9752 20.99 36.36 98.72 24.26 518/1866 7.23 12.47 96.85 48.88 2228/3813 34.17 59.06 98.11 101.03
≤ 20% 5978/9891 21.01 36.41 98.56 23.95 530/1920 7.48 12.88 95.46 49.42 2233/3839 34.23 59.18 98.05 110.56

WBR10
= 0% 4220/6793 16.94 27.87 92.58 23.47 1747/3103 8.08 13.28 94.55 24.54 1386/1550 27.59 45.40 99.97 167.58
≤ 5% 4233/6872 17.53 28.84 93.13 24.01 1767/3158 8.42 13.84 94.45 25.12 1266/1694 36.14 59.46 99.80 200.79
≤ 10% 4254/6901 17.55 28.89 93.12 23.95 1794/3214 8.52 14.00 94.20 24.98 1277/1707 36.28 59.70 99.73 200.08
≤ 15% 4263/6912 17.58 28.93 93.09 23.94 1807/3247 8.60 14.12 93.75 24.95 1285/1717 36.37 59.84 99.71 199.46
≤ 20% 4274/6931 17.60 28.96 93.08 23.90 1831/3296 8.70 14.28 92.95 24.86 1296/1728 36.44 59.95 99.70 198.46
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We note that Rtree presented the worst performance among the methods we im-
plemented. Such a weak performance was due to the fact that it was designed to
conduct normalization within websites, being unable to generate rules involving mul-
tiple sites. As we presented in Table 6.2, for each dup-cluster in our collections, there
are duplicate URLs coming from more than one website. Therefore, the necessity of
splitting the URLs according to each target site can partially explain its weak perfor-
mance. Further, in their experiments, each site has in average 352,106 URLs. As we
also presented in Table 6.2, GOV2 has in average only 257 URLs and WBR10 has only
99 URLs per site. It needs more training examples than we were able to provide in
our collections. In sum, as observed by the authors, their algorithm was designed for
normalization within websites with enough training data.

In both collections, DUSTER generates a small number of rules which are more
generic. This generality is clearly associated with the URL alignment since the rules
are directly extracted from the aligned sequences. In general, DUSTER was quite
effective and is a viable alternative for solving the DUST detection problem. When
considering other false-positive levels experimented, again DUSTER was able to out-
perform the baselines. For instance, when considering a fprmax ≤ 20% on WBR10
dataset, DUSTER reduced the number of crawled URLs in 36.44% of the original set
of URLs, two times more than the best baseline, that reduced only 17.60%. In GOV2,
for fprmax ≤ 20%, DUSTER reduced 34.23% of URLs, while the best baseline Rfanout10

reduced only 21.01%.

6.2.2.4 Rules Evaluation

In order to better understand the performance of the methods, we analyze the per-
formance of the applied rules by each method in collections GOV2 and WBR10, re-
spectively. For this purpose, we consider only rules that were able to convert at least
one pair of URLs to the same canonical form. Table 6.7 shows, for each method, the
false-positive threshold rate used in the validation phase (fprmax), the average num-
ber of rules effectively applied among the ones that were considered as valid (A/V),
the normalization precision (column NP ) obtained in task of DUST detection and the
average of URLs reduced per applied rule (AR/R).

By comparing the fprmax used to select the deployed rules and the real precision
reached, we note that Rfanout10 and Rtree were better in the validation set than in
the test set. In particular in WBR10, for fprmax = 0%, Rfanout10 and Rtree presented
worse precision in the test than in the validation for fprmax = 0%. It implies that
these rules presented a satisfactory performance during validation, but they did not
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repeat this performance during test. The results presented in Table 6.7 suggest that
Rtree experienced moderate overfitting and Rfanout10 experienced strong overfitting. For
both collections, DUSTER presented the largest precision rates in the test (99.91% in
GOV2 and 99.97% in WBR10).

Table 6.7 also gives the average reduction per rule (AR/R) for different levels of
fprmax. As shown, the AR/R for our method is much higher than Rfanout10 and Rtree

at all false-positive levels. For instance, for fprmax = 0% in GOV2, DUSTER achieved
AR/R = 88.35 whereas Rfanout10 and Rtree achieved 27.80 and 50.56, respectively.
Although Rtree was worse than Rfanout10 regarding the compression rate in GOV2, its
AR/R was higher in all of the false-positive levels. Rtree seemed not be able to output
general rules for both collections. Its rules present high average reduction per rule in
GOV2 and low average reduction per rule in WBR10. Regarding Rfanout10, its bad
performance is clearly related to the specificity of its rules. Note that it has the largest
set of deployed (valid) rules among the methods. To make matters worse, its rules have
normalization precision lower than DUSTER rules.

Table 6.8 provides examples of valid rules generated by the methods, URLs1

in training and test sets, and canonical forms. URLs in the training sets are shown
organized into dup-clusters D1 to D4. Valid rules obtained by algorithms Rfanout-10,
Rtree and DUSTER are presented as pairs of context and transformation expressions.
Finally, test URLs are presented as pairs of duplicates (for instance, u13 and u14 are
duplicates) followed by their corresponding canonical forms obtained by Rfanout-10 (nrf )
and DUSTER (nd). We note in this table that DUSTER used only two rules, (c4, t4)
and (c5, t5), to canonize all the test URLs. Rfanout-10 and Rtree were not able to canonize
URL pairs (u13, u14) and (u15, u16) because they found very specific rules, (c0, t0) and
(c3, t3). As Rtree is not able to find rules for URLs from different domains, it failed to
find appropriate rules for the pairs (u17, u18) and (u19, u20). Like DUSTER, Rfanout-10

correctly canonized these pairs but it has to use two different rules, (c1, t1) and (c2,
t2), whereas DUSTER uses only one (c5, t5).

6.3 DustLin Evaluation

In this section we investigate how efficient is DustLin to generate a set of deployable
rules. We compare to DUSTER, which takes advantage of a traditional multiple se-
quence alignment algorithm, and Rfanout-10, a bottom-up pairwise strategy which is one

1Due to space constraints, URL strings were slightly changed. For instance, ‘a.l.g/m/r’ corresponds
to ‘altruistic.lbl.gov/mirrors/redhat’ in the real dataset.
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Training URLs
dup-cluster D1

u0 = http://a.l.g/m/r/6.2/ja/dochts/formats/pdf/smb-ht.pdf
u1 = http://a.l.g/m/r/6.2/en/dochts/formats/pdf/smb-ht.pdf
u2 = http://a.l.g/m/r/6.2/fr/dochts/formats/pdf/smb-ht.pdf

dup-cluster D2

u3 = http://a.l.g/m/r/6.2/ja/dochts/formats/pdf/Tips-ht.pdf
u4 = http://a.l.g/m/r/6.2/en/dochts/formats/pdf/Tips-ht.pdf
u5 = http://a.l.g/m/r/6.2/fr/dochts/formats/pdf/Tips-ht.pdf

dup-cluster D3

u6 = http://comprar.vlume.com.br/cpm-22/
u7 = http://www.vlume.com.br/cpm-22/
u8 = http://www.vlumi.com.br/cpm-22/

dup-cluster D4

u10 = http://comprar.vlume.com.br/d-black/
u11 = http://www.vlumi.com.br/d-black/
u12 = http://www.vlume.com.br/d-black/

Valid Rules (learned from training URLs)
Rfanout-10

c0 = http://a.l.g/m/r/6.2/?/dochts/formats/pdf/?
t0 = http://a.l.g/m/r/6.2/ja/dochts/formats/pdf/$2
c1 = http://www.vlumi.com.br/?/
t1 = http://comprar.vlume.com.br/$1/
c2 = http://www.vlume.com.br/?/
t2 = http://comprar.vlume.com.br/$1/

Rtree

c3 = http://a.l.g/m/r/6.2/?/dochts/formats/pdf/?
t3 = http://a.l.g/m/r/6.2/en/dochts/formats/pdf/$2

DUSTER
c4 = ^?://?.?.?/?/?.?/(en|fr|ja)/?/?/?/?/?.?$
t4 = $1://$2.$3.$4/$5/$6/$7.$8/en/$9/$10/$11/$12.$13
c5 = ^?://(comprar|www).(vlume|vlumi).?.?/?/$
t5 = $1://comprar.vlume.$2.$3/$4/

Test Set
u13 = http://a.l.g/m/r/6.2/en/dochts/loc/be/be-ht-1.html
u14 = http://a.l.g/m/r/6.2/fr/dochts/loc/be/be-ht-1.html
nd = http://a.l.g/m/r/6.2/en/dochts/loc/be/be-ht-1.html
u15 = http://a.l.g/m/r/7.2/fr/dochts/trans/es/isc.html
u16 = http://a.l.g/m/r/7.2/en/dochts/trans/es/isc.html
nd = http://a.l.g/m/r/7.2/en/dochts/trans/es/isc.html
u17 = http://www.vlume.com.br/banda-h8/
u18 = http://www.vlumi.com.br/banda-h8/
nd = http://comprar.vlume.com.br/banda-h8/
nrf = http://comprar.vlume.com.br/banda-h8/
u19 = http://comprar.vlume.com.br/jack7/
u20 = http://www.vlume.com.br/jack7/
nd = http://comprar.vlume.com.br/jack7/
nrf = http://comprar.vlume.com.br/jack7/

Table 6.8: Examples of URLs in training and test sets, rules derived from the training
set and canonical forms (in bold face) obtained by DUSTER (nd) and Rfanout-10 (nrf ).

http://a.l.g/m/r/6.2/ja/dochts/formats/pdf/smb-ht.pdf
http://a.l.g/m/r/6.2/en/dochts/formats/pdf/smb-ht.pdf
http://a.l.g/m/r/6.2/fr/dochts/formats/pdf/smb-ht.pdf
http://a.l.g/m/r/6.2/ja/dochts/formats/pdf/Tips-ht.pdf
http://a.l.g/m/r/6.2/en/dochts/formats/pdf/Tips-ht.pdf
http://a.l.g/m/r/6.2/fr/dochts/formats/pdf/Tips-ht.pdf
http://comprar.vlume.com.br/cpm-22/
http://www.vlume.com.br/cpm-22/
http://www.vlumi.com.br/cpm-22/
http://comprar.vlume.com.br/d-black/
http://www.vlumi.com.br/d-black/
http://www.vlume.com.br/d-black/
http://a.l.g/m/r/6.2/en/dochts/loc/be/be-ht-1.html
http://a.l.g/m/r/6.2/fr/dochts/loc/be/be-ht-1.html
http://a.l.g/m/r/6.2/en/dochts/loc/be/be-ht-1.html
http://a.l.g/m/r/7.2/fr/dochts/trans/es/isc.html
http://a.l.g/m/r/7.2/en/dochts/trans/es/isc.html
http://a.l.g/m/r/7.2/en/dochts/trans/es/isc.html
http://www.vlume.com.br/banda-h8/
http://www.vlumi.com.br/banda-h8/
http://comprar.vlume.com.br/banda-h8/
http://comprar.vlume.com.br/banda-h8/
http://comprar.vlume.com.br/jack7/
http://www.vlume.com.br/jack7/
http://comprar.vlume.com.br/jack7/
http://comprar.vlume.com.br/jack7/
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of the state-of-the-art DUST detection method. Due to the weak performance of Rtree

in our previous experiments, we decided to omit its results in this section.
All the experiments presented in this section were conducted on a single machine

(i7 intel 920 processor running on 2.5GHz) with a Linux operating system (standard
Ubuntu distribution 14.10). The time of execution is the sum of sys and user figures
provided by Linux command time. The speeds that are reported are calculated by
averaging the execution time of three runs.

6.3.1 Comparison with Previous Work

We start by evaluating the impact of using the linear heuristic presented in Section 5.1
to generate rules from a set of dup-clusters. For comparison, Table 6.9 presents the
running times and the number of rules learned by DUSTER and DustLin. The table
reports, for each method, rules learned after the training (candidate rules) and after
validation (valid rules). As we note, when considering running time, DustLin remark-
ably outperforms DUSTER. For instance, in GOV2, DustLin was 7.58 times faster
than DUSTER to generate rules. In WRB10, DustLin was 12.68 times faster than
DUSTER. Note that almost the same proportion of generated rules were also valid in
both datasets. This indicates that DustLin generates a quite close number of rules as
compared with DUSTER, but spending much less time.

Table 6.9: Number of candidates and valid rules generated by DUSTER and DustLin
in GOV2 and WBR10 datasets.

DataSet Method Candidates Valid Rate Running Time (s)

GOV2 DUSTER 4,411 3,072 69.64% 1,296
DustLin 4,421 3,087 69.83% 171

WBR10 DUSTER 1,980 1,550 78.28% 1,864
DustLin 1,953 1,557 79.72% 147

Table 6.10 presents the results of using a phase to eliminate redundant rules from
the set of rules generated by DustLin (cf. Section 5.2.3). In this table, we show the
number of valid rules, the number of rules after the filtering was applied, and the
time spent in this phase. As we can see, the removal of redundant rules resulted in a

Table 6.10: Rate of redundant rules filtered out after the execution of third phase of
our method in GOV2 and WBR10. Running time in seconds.

DataSet Valid No Redundancy Rate Running Time (s)
GOV2 3,087 2,461 -20.28% 7
WBR10 1,557 1,420 -8.80% 45
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elimination rate of about 20% of the total number of rules learned from GOV2. This
process took about 7 seconds to be carried out. In WBR10, a smaller reduction rate
was obtained (about 9%) in a filtering which took about 45 seconds. Anyway, such
result clearly shows the importance of filtering out redundant rules, thus avoiding the
generation of a large number of rules which would not be useful for the DUST detection.

Table 6.11: Compression and number of rules obtained by Rfanout-10, DUSTER and
DustLin for GOV2 and WBR10 datasets. Column CR stands for “Compression Rate”;
AR/R stands for “Average Reduction per Rule”; and NP stands for “Normalization
Precision”.

DataSet Method Rules Applied % of Rules CR (%) Coverage (%) NP (%) AR/R Time (s)

GOV2
Rfanout-10 6,517 4,146 63.62% 16.04 27.82 99.69 27.80 418
DUSTER 3,072 2,206 71.81% 24.07 41.73 99.91 88.35 1,296
DustLin 2,461 2,219 90.17% 24.29 42.12 99.91 111.31 178

WBR10
Rfanout-10 6,793 4,220 62.12% 16.94 23.47 92.58 27.87 472
DUSTER 1,550 1,386 89.42% 27.59 45.40 99.97 167.58 1,864
DustLin 1,420 1,391 97.96% 27.73 45.63 99.98 183.88 192

Table 6.11 shows a comprehensive comparison between DustLin and the baseline
methods regarding DUST detection. From Table 6.11, it is clear that DustLin is more
efficient than Rfanout-10 and DUSTER. Note that the running time of DustLin is the sum
of time spent to generate the set of valid rules and time to eliminate redundant ones. In
GOV2 DustLin took roughly 178 seconds to finish, while Rfanout-10 and DUSTER spent
418 and 1,296 seconds, respectively. In WBR10, the total running time of DustLin was
about 192 seconds against 472 seconds for Rfanout-10 and 1,864 seconds for DUSTER.
This demonstrates that our linear heuristic for multiple URL alignment can improve
the computational efficiency of the process of generating rules.

In the other hand, we need to investigate the impact on quality of the rules
generated by DustLin. In particular, we need to estimate how effective is its set of
rules in comparison of Rfanout-10 and DUSTER. Table 6.11 shows the number of rules
and the compression rate of each method. We observe that DustLin has the smallest
and more useful set of deployable rules in both collections. For instance, DustLin
was able to reduce the amount of URLs in 24.29% from GOV2 whereas Rfanout-10 and
DUSTER reduced 16.04% and 24.07%, respectively. These results show that DustLin
is able to generate a set of rules as effective as the ones obtained by DUSTER, but
spending much less time. To achieve this reduction, DustLin applied 90.17% of its
rules, while Rfanout-10 and DUSTER applied 63.62% and 71.81%, respectively. This
demonstrate that the technique to remove the redundant rules was able to discard rules
that in fact were not applied in practice.
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Another interesting result showed in Table 6.11 is AvgReductionPerRule (AR/R)
that helps to estimate how general a set of rules is. As shown, the average reduc-
tion per rule for DustLin is higher than the Rfanout-10 and DUSTER in both datasets.
For instance, in GOV2, DustLin reduced 111.31 URLs per rule whereas Rfanout-10 and
DUSTER reduced 27.80 and 88.35 per rule, respectively. These results were expected,
as DustLin reduced the number of rules in relation to DUSTER and maintained almost
the same Compression Rate (CR).

In sum, DustLin achieved very close compression rate as DUSTER, without loss
in precision in both datasets. In contrast, DustLin was faster and generated less rules
than DUSTER. Thus, our proposed linear alignment heuristic was able to accelerate
the generation of candidate rules and the technique to remove the redundant rules was
able to discard rules that which would no be useful for the DUST detection.

6.3.2 DustLin: Sampling vs. Entire Cluster

In section 4.2.1, we argued that we should avoid the alignment of very large dup-
clusters as it could be very expensive. Thus, we adopted a sampling strategy in order
to mitigate the cost of a multi-sequence alignment when applied to these dup-clusters.
According to [Dasgupta et al., 2008], the rule types learned from dup-clusters of size
greater than 10 URLs involve at most session ids and irrelevant paths components.
Therefore, we chose to randomly select 10 URLs to be aligned in each dup-cluster for
two reasons. First, this value covers almost all dup-clusters. Second, we believe that
is not necessary to inspect all training examples to learn the general rule. Note that
this strategy affects only the minority of the dup-clusters and these cases could have a
negligible impact on the performance regarding DUST detection.

Although DUSTER has to been clearly superior to the baselines, we could not
compare its results by aligning a sample of URLs against the entire cluster due to its
quadratic complexity. However, as DustLin has linear complexity on the number of
URLS to be aligned, we decided to investigate the impact of aligning the entire cluster
instead of a sample of URLs.

Table 6.12: DustLin: Sampling vs. Entire Cluster in GOV2 and WBR10 datasets.

DataSet Method Rules CR (%) Coverage (%) NP (%) AR/R Time (s)

GOV2 Sampling 3,079 20.96 33.33 99.84 87.83 157
Entire 3,080 20.95 33.31 99.84 87.74 330

WBR10 Sampling 1,475 20.97 29.42 99.98 183.07 145
Entire 1,483 20.94 29.39 99.98 181.92 687
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Table 6.12 shows a comparison when DustLin aligns (a) a sample of 10 URLs from
the dup-clusters, and aligns (b) all URLs within them. As we expected, the sampling
strategy mitigated the costs of DustLin in both datasets. For instance, in WBR10 the
sampling strategy accelerated the process of generating rules in 4.74 times. In GOV2,
DustLin was about 2 times faster. From Table 6.12, it is clear that rules are as effective
as the ones generated by aligning the entire dup-clusters. Note that the reduction was
almost the same in both collections. These results confirm our initial idea, and URL
sampling is a viable solution to the problem of aligning very large dup-clusters.

6.4 DustLin-MR Evaluation

We now investigate how efficient is the MapReduce version of DustLin. We present
experiments using our MapReduce strategy to assess its scalability, in terms of hardware
and input data. To understand the performance of parallel algorithms we need to
measure absolute running time as well as relative speedup and scaleup [DeWitt and
Gray, 1992].

Testing System. To create a shared-nothing cluster, we make use of Amazon
Web Services (AWS) [AWS, 2006], a set of cloud computing services provided by Ama-
zon. Amazon Elastic MapReduce (Amazon EMR) is an Amazon Web Service which
offers a hosted Hadoop framework using Elastic Compute Cloud (EC2) for compu-
tation and Simple Storage Service (S3) for input and output data storage. We ran
experiments on a 16-nodes cluster. Each node was configurated with one Intel Xeon
processor E52670 with 8 cores, 30GB of RAM, and two 80GB hard disks. In total, the
cluster consisted of 128 cores and 32 disks. We used an extra node for running the
master daemons to manage the Hadoop jobs and the Hadoop distributed file system.
Each node was running Hadoop 0.20.1.

Datasets and Methodology. We evaluated DustLin-MR with the same
datasets GOV2 and WBR10. As we are only interested in studying how efficiently
our parallel algorithm can generate the normalization rules, we use 100% of the dup-
clusters of each dataset for training and randomly chose about 33% for validation. To
evaluate our algorithm in a larger dataset, we decided to combine GOV2 and WBR10 to
create a new dataset GOV2+WBR10. This new dataset contains 7.74 million duplicate
URLs divided into about 2.54 million dup-clusters.
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Figure 6.1: a) Running time for GOV2 and WBR10 on different cluster sizes; b)
speedup of GOV2 and WBR10 as more nodes are added; c) running time of each stage
in GOV2 + WBR10 dataset increased proportionally with the increase of the cluster
size.

6.4.1 Running Time

Figure 6.1(a) shows the running time in both GOV2 and WBR10 datasets, using clus-
ters with 1 to 16 nodes (8 to 128 cores). We plot the running time for DustLin-MR
as we increase cluster size. Note that, as expected, the running time decreases as
more machines are added. Table 6.13 shows the running time for each stage. The
running time of the Rules Generation (RG) stage is very similar in both the collections
since they have similar amount of dup-clusters. However, note that Validation Rules
(VR) stage spent 30 minutes in GOV2 against 10 minutes in WBR10. It happened
because the number of candidate rules generated from GOV2 is 9,870 against 4,920
from WBR10.

DataSet Stage # Nodes
1 2 4 8 16

GOV2 RG 9 min 5 min 3 min 2 min 1 min
VR 30 min 18 min 10 min 5 min 3 min

WBR10 RG 8 min 5 min 3 min 2 min 1 min
VR 10 min 6 min 4 min 2 min 1 min

Table 6.13: Running time of each stage for GOV2 and WBR10 collections on different
cluster sizes.

6.4.2 Speedup

Speedup Sm is defined as Sm = T1

Tm
, where m is the number of machines, T1 is the

running time of the algorithm on a single machine, and Tm is the running time in
parallel, using m machines. In order to evaluate the speedup of the algorithm, we keep
the dataset size constant and increase the number of nodes in the cluster. Thus, if
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the cluster has twice as many nodes and the data size does not change, the approach
should be about twice as fast. This is known as linear speedup (where Sm = m) and
is the ideal scenario for parallel processing. However, linear speedup is rare in practice
because of communication and synchronization overheads and the growing influence of
small sequential sections of code as the number of nodes increases (which is known as
Amdahl’s law [Amdahl, 1967]).

Figure 6.1(b) shows the speedup achieved in both datasets by DustLin-MR. The
ideal speedup is indicated by a thin dotted black line. As expected, we observe in this
figure that our method scales sublinearly as we increase the number of nodes allocated
to generate the normalization rules. However, at least up to 16 nodes, the performance
increases steadily as the number of nodes increases. This result shows that our method
can satisfactorily scale on large cluster of machines, which is essential for web-scale
collections.

6.4.3 Scaleup

Another important performance measure is scaleup, which captures the scalability of
a parallel algorithm to handle larger datasets when more computing nodes are made
available. In order to evaluate the scaleup of the proposed approach we increased the
dataset size and the cluster size together by the same factor. A perfect scaleup could
be achieved if the running time remained constant.

Figure 6.1(c) shows the running time for GOV2+WBR10 dataset, increased from
1 to 16 times (from about 160k dup-clusters to 2.54 million), on a cluster with 1 to 16
nodes, respectively. We can see that our method scales well as the size of the input
data and the cluster size are increased. Table 6.14 shows the running time (in seconds)
for each stage. Note that DustLin-MR shows only a small performance degradation
with the increase in the system scale (scaleup). This means that with p times more
computers, the algorithm can process a collection p times higher at almost the same
time. For instance, DustLin-MR spent about 6 minutes to generate normalization rules
from 160k dup-clusters whereas it spent 7.35 minutes to generate rules from 2.4 million
dup-clusters.

DataSet Stage # Nodes/ Dataset Size
1/x1 2/x2 4/x4 8/x8 16/x16

GOV2 +
WBR10

RG 130 s 136 s 140 s 142 s 154 s
VR 232 s 246 s 258 s 264 s 287 s

Table 6.14: Running time of each stage in GOV2 + WBR10 dataset increased propor-
tionally with the increase of the cluster size.
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6.5 Summary

In this chapter, we evaluated algorithms DUSTER, DustLin, and DusLin-MR. To
this, we presented the datasets used in such evaluation, provided studies on (1) the
thresholds; (2) size, precision, and generality of the rules generated by the methods;
(3) computational efficiency of the methods in sequential and parallel scenarios; and
(4) how well the methods perform compared to previous state-of-the-art methods in
literature. Based on these evaluations, we observed that the multi-sequence alignment
led to better sets of rules. We also demonstrated that the proposed sequential and
parallel methods are very efficient. In the next chapter, we present our concluding
remarks and perspectives for future research.





Chapter 7

Conclusions and Future Work

7.1 Conclusion Remarks

In this thesis, we presented DUSTER, a new method to address the DUST problem,
that is, the detection of distinct URLs that correspond to pages with duplicate or
near-duplicate content. DUSTER learns normalization rules that are very precise in
converting distinct URLs which refer the same content to a common canonical form,
making it easy to detect them.

To achieve this, DUSTER applies a strategy based on a traditional multi-sequence
alignment of training URLs with duplicate content. By taken advantage from the fact
that the URLs in a dup-cluster are very similar, we proposed DustLin, a linear version
of the multi-sequence alignment algorithm. The method performs much faster without
loss in precision in two datasets. It is also able to deliver a small set of rules since
redundant rules are removed.

We also proposed a parallel version of DustLin, the DustLin-MR. It was im-
plemented as a 2-stage parallel algorithm using a MapReduce programming model,
implemented in a Hadoop environment. In particular, we studied the computational
efficiency of the proposed approach and have shown the feasibility of distributing the
task of generating normalization rules across a cluster of machines. This implementa-
tion should support upcoming large-scale corpora.

This research was motivated by some questions for which we now provide answers
in the following paragraphs.

How effective is a DUST detection approach based on a multiple sequence alignment
when compared to traditional approaches? More specifically, how effective is it regarding
rule generalization, the number of rules generated, and DUST removal?

79
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As demonstrated in our experiments, accurate and general normalization rules
can be obtained by performing a traditional multi-sequence alignment of duplicate
URLs. Our algorithm is configurable for different false-positive rates to achieve high
compression rates. To summarize our results, we achieved compression rates of up to
28% using the best rules generated by our algorithm. If we restrict the rules to the ones
that have higher false-positive rates, it can still achieve compression of up to 36%. If
integrated into a web crawler, these rules can save considerable bandwidth and storage.

We evaluated how effective is DUSTER on two different datasets. We compared
the results with state-of-the-art approaches and we showed that our method can greatly
reduce the number of duplicates with few false-positives. We evaluated DUSTER in a
set of duplicate URLs extracted from the TREC GOV2 collection. DUSTER achieved
a compression gain of about 50% over our best baseline. For that, it used a set of rules
52.86% smaller. When evaluating using a Brazilian web dataset, we obtained a gain
in compression of up to 62.87% over the same baseline. This time, DUSTER used a
set of rules 77.18% smaller. We also showed that our algorithm achieves not only high
compression rates but also high average reduction per rule. For instance, our average
reduction per rule in GOV2 and WBR10 are 88.35 and 167.58, respectively, compared
to 27.80 and 23.47 from our best baseline.

Is it possible to take advantage of specific characteristics of the DUST detection problem
to improve the alignment computational performance?

As previously mentioned, we proposed an algorithm called Dustlin which adopts a
linear alignment strategy based on the fact that URLs in dup-cluster are very similar. In
comparison with DUSTER method, DustLin remarkably improved the computational
efficiency of the learning process. Further, DustLin delivers a set of rules about 20%
smaller since it removes the redundant rules. Experimental results demonstrated that
DustLin achieved similar reduction rates to DUSTER without loss in precision. In
comparison with a state-of-the-art method, DustLin significantly reduced the running
time of the learning process by a factor of about 57% and 59% in GOV2 and WBR10
datasets, respectively.

How efficient is the approach when the rules are learned in parallel on a per-dupcluster
basis?

To investigate the parallel learning of rules on a per-dupcluster basis, we proposed
Dustlin-MR. We studied the scalability of DustLin-MR by running experiments in a 16-
node cluster. As we expected, the running time decreases as more machines are added.
For instance, DustLin-MR spent 39 minutes in GOV2 for 1 node and 4 minutes using
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16 machines. In WBR10, DustLin-MR spent 18 minutes for 1 node and 2 minutes with
16 nodes. We observed that our method scales sublinearly as we increase the number
of nodes allocated to generate normalization rules.

We also increased the dataset size and the cluster size together by the same factor
in order to investigated the scalability of the method to handle larger datasets when
more computing nodes are made available. DustLin-MR spent about 6 minutes to
generate rules from 160k dup-clusters whereas it spent 7.35 minutes to generate rules
from 2.4 million of dup-clusters. These results show that our method can satisfactorily
scale on large cluster of machines and is viable to support upcoming large-scale corpora.

7.2 Limitations of this work

During this research, we have faced some difficulties and, as a consequence, our results
present some limitations. Among them, we cite:

• All available reference collections used in DUST literature have few annotated
documents. While some works have adopted web-scale datasets, these were con-
ducted by companies using proprietary data. Such resources were not made avail-
able. This issue impacted more on the experiments with the parallel algorithm,
since large datasets are necessary to a detailed study on scalability.

• Similarly to the described in the previous item, the only parallel algorithm for
DUST detection in literature [Koppula et al., 2010] was neither made available
for download nor described in enough details to allow us to implement it.

• The annotation used in GOV dataset presents the following issues. Duplicate
pages were not manually identified. For each page was assigned a hash value, ob-
tained using the MD-5 algorithm [Clarke et al., 2004]. If two pages presented the
same hash value, they were considered duplicates. This approach is problematic
since (i) many near duplicates or (ii) duplicates not synchronized on time will
not be labeled as DUST. As consequence, we expect a higher false negative rate.

• The annotation used in WBR10 dataset also presents issues. Duplicates were
selected using the canonical tag. In spite of there is no study about the coverage
of the canonical tags in any collection, we do not expect a large coverage as its use
is optional. As consequence, many pairs of duplicates were probably not included
in the dataset due to missing canonical tags.
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7.3 Future work

As observed, all available reference collections in literature are very small compared
to real datasets. As such, it is necessary to build larger datasets to be used as future
reference collections. A promising evanue towards this end is to gather the common
crawl datasets [Foundation, 2011] and identify its duplicate URLs using canonical tags.
Common crawl is the current largest available web collection, with billions of pages
crawled along the last seven years. Thus, as future work, we intend to evaluate our
methods using such data.

Another issue with reference collections is the reliability of the data. Methods
based on signature or canonical tags can lead to false positives in the training datasets.
As future work, we intend to study the impact of these false positives, since that the
current algorithms trust on such information. More specifically, we intend to carry
out a detailed error analysis to investigate possible strategies to minimize this problem
such as, for instance, the identification and removal of outliers.

We also intend to study the crawling overhead resulting from incorporating DUST
detection in a real search engine architecture. Aspects to be considered include, for
instance, impact of false positive rate in search results and which rule updating policy
should be adopted.

We finally intend to adopt noise models [Jurafsky and Martin, 2009] to the prob-
lem of DUST detection. Noise models have been successfully applied in domains such
as sequence alignment [Powell et al., 2004] and spelling correction [Brill and Moore,
2000]. For instance, in spelling correction, the incorrect input can be seen as a cor-
rupted version of the word that the user intended to type. The corruption is associated
with noise introduced in the process due to physical factors such as motor control of
fingers, phonetic similarities between words, lack of vocabulary familiarity, etc [Hanada
et al., 2016]. The likelihood of these factors can be estimated from examples of errors
observed in a general corpus. Likewise, we can see a duplicate URL u as a noised ver-
sion of another URL, u′. The transformation of u into u′ results from sets of sub-string
transformations due to unknown noise factors. These factors could be estimated from
the dup-clusters. We believe this would be a promising research direction because we
would derive the likelihood of each component transformation directly from real data.
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Appendix A

Supporting Examples

In this section we show a variety of DUST examples with their respective canonical
forms.

A.1 URLs Search Engine Friendly

In order to make URLs more search engine friendly, webmasters create statics URLs for
all dynamics URLs in their web sites. For example, the following two URLs, dynamic
and static, point to the same content:

https://pt.wikipedia.org/?title=Flamengo

https://pt.wikipedia.org/wiki/Flamengo

If we consider a canonical form as a regular expression, a possible canonical form
for the two URLs above could be:

https://pt.wikipedia.org/(\?)?(title|wiki)(=|/)Flamengo

A.2 Content-Neutral Parameters

Session-ids. Some parameters in dynamics URLs are considered as content-neutral,
i.e. if we put any value in these type of parameters, the returned content is the same.
Suppose the content-neutral parameter id in the following set of URLs:

https://example.com/index.php?id=5123

https://example.com/index.php?id=1253

https://example.com/index.php?id=2351
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https://example.com/index.php?id=5213

A canonical form for the all URLs above is presented as follows:

https://example.com/index.php?id=*

Note that the canonical form has a symbol ‘*’ at the end. In this case, the last ‘*’
could be a regular expression such as [0 − 9]+. Alternatively, we could put a random
value for the parameter id (e.g. 5123).

Irrelevant Path Components. Some components in the static part of the
URLs can be considered as content-neutral. In other words, we can say that they are
like session-ids that occur in the static part of the URLs. Considering the following set
of duplicate URLs:

http://www.amazon.com/LordRings/dp/B00003CWT6

http://www.amazon.com/LordOfRings/dp/B00003CWT6

http://www.amazon.com/LordOfTheRings/dp/B00003CWT6

http://www.amazon.com/AnyString/dp/B00003CWT6

The canonical form that represents all URLs above is presented as follows:

http://www.amazon.com/*/dp/B00003CWT6

A.3 Tokens Transpositions

A common type of DUST occurs when the parameters of dynamic URLs are placed in
distinct positions as, for example:

https://ex.com/show.php?prod=skirt&color=blue&size=p

https://ex.com/show.php?prod=skirt&size=p&color=blue

The canonical form that represents the URLs above is:

https://ex.com/show.php?prod=skirt&(color|size)=(blue|p)&(size|color)=(p|blue)
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A.4 Redirecting Subdomain Folder to Subdomain

URL

Another type of DUST occurs when webmasters redirect their subdomains’s folder to
their subdomain URL:

http://domain.com/subdomain/y

http://subdomain.domain.com/y

A possible regular expression that represents the canonical form to the URLs
above can be written as follow:

https://(subdomain.)?domain.com/(subdomain)?/y
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