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Unsupervised Ranking of Multi-Attribute Objects
Based on Principal Curves
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Abstract —Unsupervised ranking faces one critical challenge in evaluation applications, that is, no ground truth is available. When
PageRank and its variants show a good solution in related subjects, they are applicable only for ranking from link-structure data.
In this work, we focus on unsupervised ranking from multi-attribute data which is also common in evaluation tasks. To overcome
the challenge, we propose five essential meta-rules for the design and assessment of unsupervised ranking approaches: scale and
translation invariance, strict monotonicity, linear/nonlinear capacities, smoothness, and explicitness of parameter size. These meta-
rules are regarded as high level knowledge for unsupervised ranking tasks. Inspired by the works in [8] and [14], we propose a ranking
principal curve (RPC) model, which learns a one-dimensional manifold function to perform unsupervised ranking tasks on multi-attribute
observations. Furthermore, the RPC is modeled to be a cubic Bézier curve with control points restricted in the interior of a hypercube,
thereby complying with all the five meta-rules to infer a reasonable ranking list. With control points as the model parameters, one is
able to understand the learned manifold and to interpret the ranking list semantically. Numerical experiments of the presented RPC
model are conducted on two open datasets of different ranking applications. In comparison with the state-of-the-art approaches, the
new model is able to show more reasonable ranking lists.

Index Terms —Unsupervised ranking, multi-attribute, strict monotonicity, smoothness, data skeleton, principal curves, Bézier curves.

✦

1 INTRODUCTION

F ROM the viewpoint of machine learning, ranking
can be performed in an either supervised or unsu-

pervised way as shown in the hierarchical structure in
Fig. 1. When supervised ranking [1] is able to evaluate
the ranking performance from the given ground truth,
unsupervised ranking seems more challenging because
no ground truth label is available. Modelers or users will
encounter a more difficult issue below:

“How can we insure that the ranking list from the unsu-
pervised ranking is reasonable or proper?”

From the viewpoint of given data types, ranking ap-
proaches can be further divided into two categories:
ranking based on link structure and ranking based on
multi-attribute data. PageRank [2] is one of the repre-
sentative unsupervised approaches to rank items which
have a linking network (e.g. websites). But PageRank
and its variants do not work for ranking candidates
which have no links. In this paper, we focus on unsuper-
vised ranking approaches on a set of objects with multi-
attribute numerical observations.

To rank from multi-attribute objects, weighted sum-
mation of attributes is widely used to provide a scalar
score for each object. But different weight assignments
give different ranking lists such that ranking results are
not convincing enough. The first principal component
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analysis (PCA) provides a weight learning approach [5],
by which the score for each object is determined by its
principal component on the skeleton of the data distri-
bution. However, it encounters problems when the data
distribution is nonlinearly shaped. Although kernel PCA
[5] is proposed to attack this problem, the mapping to the
kernel space is not order-preserving, which is the basic
requirement for a ranking function. Neither dimension
reduction methods [6] nor vector quantization [9] can
assign scores for multi-attribute observations.

As the nonlinear extension of the first PCA, principal
curves can be used to perform a ranking task [8], [10].
A principal curve provides an ordering of data points
by the ordering of threading through their projected
points on the curve (illustrated by Fig. 2) which can
be regarded as the “ranking skeleton”. However, not
all of principal curve models are capable of performing
a ranking task. Polyline approximation of a principal
curve [11] fails to provide a consistent ranking rule due
to non-smoothness at connecting points. Besides, it fails
to guarantee order-preserving. Order-preserving can not
be guaranteed either by a general principal curve model
(e.g. [19]) which is not modeled specially for ranking
tasks. The problem can be tackled by the constraint of
strict monotonicity which is one of the constraints we
present for ranking functions in this paper. Example 1
shows that strict monotonicity is a necessary condition
for a ranking function but was neglected by all other
investigations.

Example 1. Suppose we want to evaluate life qualities of
countries with a principal curve based on two attributes:
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Fig. 1. Hierarchical diagram of ranking approaches. RPC is an unsupervised ranking approach based on multi-attribute
observations for objects.

(a) Polyline Approximation
(non-strict monotonicity)

(b) A General Principal
Curve (non-monotonicity)

Fig. 2. Examples on a monotonicity property for ranking
with principal curves.

LEB1 and GDP2. Each country is a data point in the
two-dimensional plane of LEB and GDP. If the principal
curve is approximated by a polyline as in Fig. 2(a), the
piece of the horizontal line is not strictly monotone.
It makes the same ranking solution for x1 = (58, 1.4)
and x2 = (58, 16.2) but x2 should be ranked higher
than x1. For a general principal curve like the curve
in Fig. 2(b) which is not monotone, two pairs of points
are ordered unreasonably. The pair, x3 = (74, 40.2) and
x4 = (82, 40.2), are put in the same place of the ranking
list since they are projected to the same point which has
the vertical tangent line to the curve. But x4 should be
ranked higher for its higher LEB than x3. Another pair,
x5 = (75, 62.5) and x6 = (81, 64.8), are also put in the
same place but apparently x6 should be ranked higher
than x5. With strict monotonicity, these points would be
in the order that they are.

Following the principle of “let the data speak for them-
selves” [12], this work tries to attack problems for unsu-
pervised ranking of multi-attribute objects with principal
curves . First, ranking performance is taken into account
for the design of ranking functions. It is known that
knowledge of a given task can always improve learning
performance [13]. The reason why PageRank produces
a commonly acceptable search result for a query, lies

1. Life Expectancy at Birth, years
2. Gross Domestic Product per capita by Purchasing Power Parities,

K$/person

Fig. 3. Motivation of RPC model for unsupervised rank-
ing.

on that PageRank algorithm is designed by integrating
the knowledge about backlinks [2]. For multi-attribute
objects with no linking networks, knowledge about rank-
ing functions can be taken into account to make ranking
functions produce reasonable ranking lists. In this work,
we present five essential meta-rules for ranking rules
(Fig. 3). These meta-rules can be capable of assessing the
reasonability of ranking lists for unsupervised ranking.

Second, principal curves should be modeled to be able
to serve as ranking functions. As referred in [8], ranking
with a principal curve is performed on the learned
skeleton of data distribution. But not all principal curve
models are capable of producing reasonable ranked lists
when no ranking knowledge is embedded into principal
curve models. Motivated by [14], the principal curve can
be parametrically designed with a cubic Bézier curve. We
will show in Section 4 that the parameterized principal
curve has all the five meta-rules with constraints on
control points and that its existence and convergency of
learning algorithm are proved theoretically. Therefore,
the parameterized principal curve is capable of making
a reasonable ranking list.

The following points highlight the main contributions
of this paper:

• We propose five meta-rules for unsupervised rank-
ing, which serve as high-level guidance in the de-
sign and assessment of unsupervised ranking ap-
proaches for multi-attribute objects. We justify that
the five meta-rules are essential in applications, but
unfortunately some or all of them were overlooked
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by most of ranking approaches.
• A ranking principal curve (RPC) model is presented

for unsupervised ranking from multi-attribute nu-
merical observations of objects, different from
PageRank which ranks from link structure [2]. The
presented model can satisfy all of five meta-rules
for ranking tasks, while other existing approaches
[8] overlooked them.

• We develop the RPC learning algorithm, and the-
oretically prove the existence of a RPC and con-
vergency of learning algorithm for given multi-
attribute objects for ranking. With RPC learning
algorithm, reasonable ranking lists for openly ac-
cessible data illustrate the good performance of the
proposed unsupervised ranking approaches.

1.1 Related Works

Domain knowledge can be integrated into leaning mod-
els to improve learning performance. By coupling do-
main knowledge as prior information with network con-
structions, Hu et al. [13] and Daniels et al. [15] improve
the prediction accuracy of neural networks. Recently,
monotonicity is taken into consideration as constraints
by Kotłowski et al. [16] to improved the ordinal clas-
sification performance. For unsupervised ranking, the
domain knowledge of monotonicity can also be taken
into account and is capable of assessing the ranking
performance, other than evaluation of side-effects [17].

Ranking on manifolds has provided a new ranking
framework [3], [4], [8], [18], which is different from
general ranking functions such as ranking aggregation
[7]. As one-dimensional manifolds, principal curves are
able to perform unsupervised ranking tasks from multi-
attribute numerical observations of objects [8]. But not all
principal curve models can serve as ranking functions.
For example, Elmap can well portray the contour of a
molecular surface [19] but would bring about a biased
ranking list due to no guarantee of order-preserving [8].
What’s more, Elmap is hardly interpretable since the
parameter size of principal curves is unknown explicitly.

A Bézier curve is a parametrical one-dimensional
curve which is widely used in fitting [20]. Hu et al.
[14] proved that in two-dimensional space a cubic Bézier
curve is strictly monotone with end points in the opposite
corner and control points in the interior of the square box
as shown in Fig. 4. To avoid confusion, end points refer
to the points on both ends of the control polyline (also
the end points of the curve) and control points refer to
the other vertices of the control polyline in this paper.

1.2 Paper Organization

The rest of this paper is organized as follows. Back-
grounds of this paper are formalized in the next section.
In Section 3, five meta-rules are elaborated for ranking
functions. In Section 4, a ranking model, namely ranking
principal curve (RPC) model, is defined and formulated
with a cubic Bèzier curve which is proved to follow all
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Fig. 4. For an increasing monotone function, there are
four basic nonlinear shapes [14] of cubic Bézier curves (in
blue) which mimic shapes of the control polylines (in red).
Curve shapes are determined by the locations of control
points.

the five meta-rules for ranking functions. RPC learning
algorithm is designed to learn the control points of the
cubic Bèzier curve in Section 5. To illustrate the effective
performance of the proposed RPC model, applications
on real world datasets are carried out in Section 6, prior
to summary of this paper in Section 7.

2 BACKGROUNDS

Consider ranking a set of n objects A = {a1, a2, · · · , an}
according to d real-valued attributes (or indicators, fea-
tures) V = {v1, v2, · · · , vd}. Numerical observations of
one object a ∈ A on all the attributes comprise an
item which is denoted as a vector x in d-dimensional
space Rd. Ranking objects in A is equivalent to ranking
data points X = {x1,x2, · · · ,xn}. That is, to give the
ordering of ai1 � ai2 � · · · � ain can be achieved
by discovering the ordering of xi1 � xi2 � · · · � xin

where {i1, i2, · · · , in} is a permutation of {1, 2, · · · , n}
and xi � xj means that xi precedes xj . As there is no
label to help with ranking, it is an unsupervised ranking
problem from multi-attribute data.

Mathematically, ranking task is to provide a list of
totally ordered points. A total order is a special partial
order which requires comparability in addition to the re-
quirements of reflexivity, antisymmetry and transitivity
for the partial order [21]. Let x and y are one pair of
points in X. For ranking, if x and y are different, they
have the ordinal relation of either x � y or y � x. If
x � y and y � x, then y = x which infers that x and y

are the same thing.
Remembering that a partial order is associated with a

proper cone and that Rd
+ is a self-dual proper cone [21]
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Rd
+ = {ρ : ρTx ≥ 0, ∀x ∈ Rd

+}, the order for ranking
tasks on Rd is defined in this paper to be

x � y ⇐⇒











δ1(y1 − x1)
δ2(y2 − x2)

...
δd(yd − xd)











∈ Rd
+ (1)

where x = (x1, x2, · · · , xd)
T , y = (y1, y2, · · · , yd)

T , and

δj =

{

1, j ∈ E

−1, j ∈ F
. (2)

It is easy to verify that the order defined by Eq.(1) is a
total order with properties of comparability, reflexivity,
antisymmetry and transitivity. In Eq.(2), E and F are two
subsets of {1, 2, · · · , d} such that E

⋃

F = {1, 2, · · · , d}
and E

⋂

F = ∅. If let

α = (δ1, δ2, · · · , δd)
T . (3)

α is unique for one given ranking task and varies from
task to task. For a given ranking task with defined α, x
precedes y for xj < yj(j ∈ E) and xj > yj(j ∈ F).

As R is totally ordered, we prefer to grade each
point with a real value to help with ranking. Assume
ϕ : Rd 7→ R is the ranking function to assign x a score
which provides the ordering of x. ϕ is required to be
order-preserving so that ϕ(x) has the same ordering in R

as x in Rd. In order theory, an order-preserving function
is also called isotone or monotone [22].

Definition 1 ([22]). A function ϕ : Rd 7→ R is called
monotone (or, alternatively, order-preserving) if

x � y =⇒ ϕ(x) ≤ ϕ(y) (4)

and strictly monotone if

x � y,x 6= y =⇒ ϕ(x) < ϕ(y) (5)

Order-preserving is the basic requirement for a rank-
ing function. For a partially ordered set, ϕ should assign
a score to x no more than the score to y if x � y.
Moreover, if x 6= y also holds, the score assigned to x

must be smaller than the score to y. As A is totally
ordered and different points should be assigned with
different scores, the ranking function is required to be
strictly monotone as stated by Eq.(5). Otherwise, the
ranking rule would be meaningless due to breaking the
ordering in original data space Rd.

Example 2. In addition to the two indicators in Ex-
ample 1, another two indicators are taken to evaluate
life qualities of countries: IMR3 and Tuberculosis4. It
is easily known that the life quality of one country
would be higher if it has a higher LEB and GDP while
a lower IMR and Tuberculosis. Let numerical observa-
tions on four countries to be xI = (2.1, 62.7, 75, 59),
xM = (11.3, 75.5, 12, 30), xG = (32.1, 79.2, 6, 4), and xN =

3. Infant Mortality Rate per 1000 born
4. new cases of infectious Tuberculosis per 100,000 of population

(47.6, 80.1, 3, 3) respectively. By Eq.(1), they have the
ordering xI � xM � xG � xN with α = (1, 1,−1,−1)T .
In this case, E = {1, 2} and F = {3, 4}. Let ϕ(xI) = 0.407,
ϕ(xM ) = 0.593, ϕ(xG) = 0.785 and ϕ(xN ) = 0.891.
Then ϕ is a strictly monotone mapping which strictly
preserves the ordering in R4.

Recall that a differentiable function f : R 7→ R is
nondecreasing if and only if f ′(x) ≥ 0 for all x ∈ domf ,
and increasing if f ′(x) > 0 for all x ∈ domf (but the
converse is not true) [23]. They are readily extended to
the case of monotonicity in Definition 1 with respect to
the order defined by Eq.(1).

Theorem 1 ([21]). Let ϕ : Rd 7→ R be differentiable. ϕ is
monotone if and only if

∇ϕ(x) � 0 (6)

where 0 is the zero vector. ϕ is strictly monotone if

∇ϕ(x) ≻ 0 (7)

Theorem 1 provides first-order conditions for mono-
tonicity. Note that ‘≻’ denotes a strict partial order [21].
Let

∇ϕ(x) =

(

∂ϕ

∂x1
,
∂ϕ

∂x2
, · · · ,

∂ϕ

∂xd

)T

. (8)

∇ϕ(x) ≻ 0 infers ∂ϕ
∂xj

> 0 for j ∈ E and ∂ϕ
∂xj

< 0 for

j ∈ F. ∇ϕ(x) ≻ 0 infers that each component of ∇ϕ(x)
does not equal to zero. By the case of strict monotonicity
in Theorem 1, ∇ϕ(x) ≻ 0 infers not only that ϕ is strictly
monotone from Rd to R, but also that the value s = ϕ(x)
is increasing with respect to xj(j ∈ E) and decreasing
with respect to xj(j ∈ F). Vice versa, if ∂ϕ

∂xj
is bigger

than zero for j ∈ E and smaller than zero for j ∈ F,
∇ϕ(x) ≻ 0 holds and infers ϕ is a strictly monotone
mapping. Lemma 1 can be concluded immediately.

Lemma 1. s = ϕ(x) is strictly monotone if and only if s is
strictly monotone along xi with fixed the others xj(j 6= i).

Further more, a strictly monotone mapping infers a
one-to-one mapping that for a value s ∈ rangϕ there is
exactly one point x ∈ domϕ such that ϕ(x) = s. If the
point x is denoted by x = f(s), f : R 7→ Rd is called the
inverse mapping of ϕ and inherits the property of strict
monotonicity of its origin ϕ.

Theorem 2. Assume ∇ϕ(x) ≻ 0. There exists an inverse
mapping denoted by f : rangϕ 7→ domϕ such that ∇f(s) ≻
0 holds for all s ∈ rangϕ, that is for ∀s1, s2 ∈ rangϕ

s1 < s2 =⇒ f(s1) � f(s2), f(s1) 6= f(s2). (9)

Proof of Theorem 2 can be found in Appendix B.
The theorem also holds in the other direction. Assuming
f : R 7→ Rd, if ∇f(s) ≻ 0, there exists an inverse
mapping ϕ : rangf 7→ domf and ∇ϕ(x) ≻ 0 holds for
all x ∈ rangf . Because of the one-to-one correspondence,
f and ϕ share the same geometric properties such as
scale and translation invariance, smoothness and strict
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monotonicity [23].

3 META-RULES

As a ranking function for ϕ : Rd 7→ R, ϕ(x) outputs
a real value s = ϕ(x) as the ranking score for a given
point x. The ranking list of objects would be provided
by sorting their ranking scores in ascending/descending
order. Since unsupervised ranking has no label infor-
mation to verify the ranking list, we restrict ranking
functions with five essential features to guarantee that
a reasonable ranking list is provided. These features are
capable of serving as high-level guidance of modeling
ranking functions. They are also capable of serving as
high-level assessments for unsupervised ranking perfor-
mance, different from assessments for supervised rank-
ing performance which take qualities of ranking labels.
Any functions from Rd to R with all the five features
can serve as ranking functions and be able to provide
a reasonable ranking list. These features are rules for
ranking rules, namely meta-rules.

3.1 Scale and Translation Invariance
Definition 2 ([24]). A ranking rule is invariant to scale and
translation if for x � y

ϕ(x) ≤ ϕ(y) ⇐⇒ ϕ(L(x)) ≤ ϕ(L(y)). (10)

where L(·) performs scale and translation.

Numerical observations on different indicators are
taken on different dimensions of quantity. In Example
1, GDP is measured in thousands of dollars while LEB
ranges from 40 to 90 years. They are not in the same
dimensions of quantity. As a general data preprocessing
technique, scale and translation can take them into the
same dimensions (e.g. [0, 1]) while preserving their orig-
inal ordering. If let L be a linear transformation on Rd,
we have x � y ⇐⇒ L(x) � L(y) for x,y ∈ Rd [24].
Therefore, a ranking function ϕ(x) should produce the
same ranking list before and after scaling and translat-
ing.

3.2 Strict Monotonicity
Definition 3 ([22]). ϕ(x) is strictly monotone if ϕ(xi) <

ϕ(xj) for xi � xj and xi 6= xj(i 6= j) .

Strict monotonicity in Definition 1 is specified here as
one of meta-rules for ranking. For ordinal classification
problem, monotonicity is a general constraint since two
different objects would be classified into the same class
[16]. But for the ranking problem discussed in this paper,
it requires the strict monotonicity since different objects
should have different scores for ranking. ϕ(xi) = ϕ(xj)
holds if and only if xi = xj(i 6= j). In Example 1, x1 � x2

and xi 6= xj indicate that a higher score should be
assigned to x2 than x1. And so do x3 and x4. Therefore,
the ranking function ϕ(x) is required to be a strictly
monotone mapping. Otherwise, the ranking list would
be not convincing. ϕ in Example 2 is to the point referred
here.

3.3 Linear/Nonlinear Capacities

Definition 4. ϕ(x) has the capacities of linearity and nonlin-
earity if ϕ(x) is able to depict the relationship of both linearity
and nonlinearity.

Taking the ranking task in Example 1 for illustration,
one has no knowledge about the relationship between
LEB and the score. The score might be a either linear
or nonlinear function of LEB. It is the similar case for
the relationship between GDP and the score. Therefore,
t = ϕ(x) should embody both of the linear and nonlinear
relationships between t and xj . For the ranking task in
Example 1, the ranking function ϕ should be a linear
function of LEB for fixed GDP if LEB is linear with t.
Meanwhile, ϕ should also be a nonlinear function of
GDP for fixed LEB if GDP is nonlinear with t.

3.4 Smoothness

Definition 5 ( [23]). ϕ(x) is smooth if ϕ(x) is C h(h ≥ 1).

In mathematical analysis, a function is called smooth if
it has derivatives of all orders [23]. Yet a ranking function
ϕ(x) is required to be of class C h where h ≥ 1. That
is, ϕ(x) is continuous and has the first-order derivative
∇ϕ(x). The first-order derivative ∇ϕ(x) guarantees that
ϕ(x) will exert a consistent ranking rule for all objects
and the ranking rule would be not abruptly changed for
some object. Taking the polyline in Fig. 2 for illustration,
it is of class C

0 but not of class C
1 because it is continu-

ous but not differentiable at the connecting vertex of the
two lines. This would lead to an unreasonable ranking
for those points projected to the vertex.

3.5 Explicitness of Parameter Size

Definition 6. ϕ(x) has the property of explicitness if ϕ(x)
has known parameter size for a fair comparison among ranking
models.

Hu et al. [13] considered that nonparametric ap-
proaches are a class of “black-box” approaches since
they can not be interpreted by our intuition. As a rank-
ing function, ϕ(x) should be semantically interpretable
so that ϕ(x) has systematical meanings. For example,
ϕ(x) = θTx gives explicitly the linear expression with
parameter size d which is the dimension of the parameter
θ. It can be interpreted that the score of x is linear
with x and the parameter θ is the allocation proportion
vector of indicators for ranking. Moreover, if there is
another ranking model with the same characteristics,
ϕ(x, θ) would be more applicable if it has a smaller size
of parameters.

These five meta-rules above is the guidance of de-
signing a reasonable and practical ranking function. To
perform a ranking task, a ranking function should satisfy
all the five meta-rules above to produce a convincing
ranking list. Any ranking function that breaks any of
them would produce a biased and unreasonable ranking
list. In this sense, they can be regarded as high-level
assessments for unsupervised ranking performance.
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Fig. 5. Schematic plots of ranking skeletons (heavy solid
lines or curves in red). Circle points: observations of
countries on two indicators: LEB and GDP.

4 RANKING PRINCIPAL CURVES

In this section, we propose a ranking principal curve
(RPC) model to perform an unsupervised ranking task
with a principal curve which has all the five meta-rules.
The RPC is parametrically designed to a cubic Bézier
curve with control points restricted in the interior of a
hypercube.

4.1 RPC Model

The simplest ranking rule is the first PCA which sum-
marizes the data in d-dimensional space with the largest
principal component line [25]. The first PCA seeks the
direction w that explains the maximal variance of the
data cloud. Then x is orthogonally projected by wTx

onto the line passing through the mean µ. The line
can be regarded as the ranking skeleton. Projected points
take an ordering along the ranking skeleton which is
just the ordering of their first principal components
computed by wTx. Let s = wTx and an ordering of
s gives the ordering of x. As a ranking function, the
first PCA is smooth, explicitly expressed, and invariant
to scale and translation. It works well for the skeleton of
slender ellipse distributing data. However, the first PCA
can hardly depict the skeleton of data distributions like
crescents (Fig. 5(a)) such that the produced ranking list
is not convincing. What’s more, the first PCA might be
non-strictly monotone when the direction w is parallel
to one coordinate axis such that it can not discriminate
those points like x1 and x2 in Example 1 since they will
be projected to the same points if the first PCA is on
the direction parallel to the horizontal line. The prob-
lems referred above hinder the first PCA from extensive
applications in comprehensive evaluation.

Recalling that principal curves are nonlinear exten-
sions of the first PCA [10], we try to summarize mul-
tiple indicators in the data space with a principal curve

(Appendix A gives a brief review of principal curves).
Assuming f(s, θ)(θ ∈ Θ) is the principal curve of a
given data cloud, it provides an ordering of projected
points on the principal curve, in a way similar to the first
PCA. Intuitively, the principal curve is a good choice to
perform ranking tasks. On the one hand, unsupervised
ranking could only rely on those numerical observa-
tions for ranking candidates on given attributes. For the
dataset with a linking network, PageRank can calculate
a score with backlinks for each point [2]. When there is
no link between points, a score can still be calculated
according to the ranking skeleton, instead of link struc-
ture. On the other hand, the principal curve reconstructs
x according to x = f(s, θ)+ ε, instead of x = µ+ sw+ ε

for the first PCA. To perform ranking tasks, a ranking
function assigns a score s to x by s = ϕ(x, θ). Actually,
noise is inevitable due to measuring errors and influence
from exclusive indicators from V. Thus the latent score
should be produce after removing noise from x, that is
s = ϕ(x − ε, θ). As a ranking function, ϕ is assumed to
be strictly monotone. Thus, data points and scores are
one-to-one correspondence and there exists an inverse
function f for ϕ such that

x = f(s, θ) + ε (11)

which is the very principal curve model [10]. The inverse
function can be taken as the generating function for
numerical observations from the score s which can be
regarded to be pre-existing.

As stated in Section 3, there are five meta-rules for a
function ϕ(x, θ) to serve as a ranking rule. As ϕ(x, θ)
is required to be strictly monotone, there exists an in-
verse function f(s, θ) which is also strictly monotone by
Theorem 2. Correspondingly, ϕ and its inverse f share
the other properties of scale and translation invariance,
smoothness, capacities of linearity and nonlinearity, and
explicitness of parameter size. A principal curve should
also follow all the five meta-rules to serve as a rank-
ing function. However, polyline approximations of the
principal curve might go against smoothness and strict
monotonicity (e.g. Fig. 5(b)). A smooth principal curve
would also go against strict monotonicity (e.g. Fig. 5(c)).
Both of them would make unreasonable ranking solu-
tions as illustrated in Example 1. Within the framework
of Fig. 3, all the five meta-rules can be modeled as
constraints to the ranking function. Since a principal
curve is defined to be smooth and invariant to scale
and translation [10], the constraint of strict monotonicity
would make it be capable of performing ranking tasks
(e.g. Fig. 5(d)). Naturally, the principal curve should
have a known parameter size for interpretability reason.
We present Definition 7 for unsupervised ranking with
a principal curve.

Definition 7. A curve f(x, θ) in d-dimensional space is
called a ranking principal curve (RPC) if f(x, θ) is a strictly
monotone principal curve of given data cloud and it is
explicitly expressed with known parameters θ of limited size.
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4.2 RPC Formulation with B ézier Curves

To perform a ranking task, a principal curve model
should follow all the five meta-rules (Section 3) which
can be also similarly defined for f . However, not all
of principal curve models can perform ranking tasks.
The models in [10], [26], [27], [29] lack of explicitness
and can not make a monotone mapping on Rd (Fig.
5(c)). Polyline approximation [11], [19], [28] misses the
requirements for smoothness and strictly monotonicity
(Fig. 5(b)). A new principal curve model is needed to
perform ranking while following all the five meta-rules.

In this paper, an RPC is parametrically modeled with
a Bézier curve

f(s) =

k
∑

r=0

Bk
r (s)pr, s ∈ [0, 1] (12)

which is formulated in terms of Bernstein polynomials
[31]

Bk
r (s) =

(

k

r

)

(1− s)k−rsr, (13)

(

k

r

)

=
k!

r!(k − r)!
. (14)

In Eq.(12), pr ∈ Rd are control and end points of the
Bézier curve which are in the place of the function
parameters θ in Eq.(11). Particularly, when k = 3, Eq.(12)
has the matrix form of

f(s) = PMz. (15)

where

P = (p0,p1,p2,p3)

M =









1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1









, z =









1
s

s2

s3









In case k > 3, the model would become more complex
and bring about overfitting problem. In case k < 3, the
model is too simple to represent all possible monotonic
curves. k = 3 is the most suitable degree to perform the
ranking task.

A cubic Bézier curve with constraints on control points
can be proved to have all the five meta-rules. First of
all, the formulation Eq.(12) is a nonlinear interpolation
of control points and end points in terms of Bern-
stein polynomials [31]. These points are the determinant
parameters of total size d × 4. Different locations of
these points would produce different shapes of nonlinear
curves besides straight lines [14]. Scale and translation
to Bézier curves are applied to these points without
changing the ranking score which is contained in z

Λf(s) + β = ΛPMz+ β = (ΛP+ β)Mz (16)

where Λ is a diagonal matrix with scaling factors to
dimensions and β is the translation vector. This property
allows us to put all data into [0, 1]d in order to facilitate

ranking. What’s more, the derivative of f(s) is a lower
order Bézier curve

df(s)

ds
= k

k−1
∑

j=0

Bk−1
j (s)(pj+1 − pj) (17)

which involves the calculation of end points and control
points. Its derivatives of all orders exist for all s ∈ [0, 1]
and thus Eq.(12) is smooth enough. Last but not the
least, it has been proved that a cubic Bézier curve can
perform the four basic types of strict monotonicity in
two-dimensional space [14]. Let end points after scale
and translation are denoted by p0 = 1

2 (1 − α) and
p3 = 1

2 (1 + α). Control points p2 and p3 are the
determinants for nonlinearity of the cubic Bézier curve
(Fig. 4). In two-dimensional space, f(s) is proved to be
increasing along each coordinate if control points are
restricted in the interior of the hypercube [0, 1]d [14].
Thus, a proposition can be deduced by Lemma 1.

Proposition 1. f(s) is strictly monotone for s ∈ [0, 1] with
p0 = 1

2 (1−α), p3 = 1
2 (1+α) and p1,p2 ∈ (0, 1)d.

What is the most important, there always exists an
RPC parameterized by a cubic Bézier curve which is
strictly monotone for a group of numerical observations.
The existence has failed to be proved in many principal
curve models [10], [19], [28].

Theorem 3. Assume that x is the numerical observation of
a ranking candidate and that E‖x‖2 < ∞. There exists P∗ ∈
[0, 1]d such that f∗(s) = P∗Mz is strictly monotone and

J(P∗) = inf
{

J(P) = E
(

inf
s
‖x−PMz‖2

)}

. (18)

Proof of Theorem 3 can be found in Appendix C.

5 RPC LEARNING ALGORITHM

To perform unsupervised ranking from the numerical
observations of ranking candidates X = (x1,x2, · · · ,xn),
we should first learn control points of the curve in
Eq.(12). The optimal points achieve the infimum of the
estimation of J(P) in Eq.(18). By the principal curve
definition proposed by Hastie et al. [10], the RPC is
the curve which minimizes the summed residual ε.
Therefore, the ranking task is formulated as a nonlinear
optimization problem

min J(P, s) =

n
∑

i=1

‖xi −PMzi‖
2 (19)

s.t.

(

∂PMz

∂s

)T

(xi −PMz)

∣

∣

∣

∣

∣

s=si

= 0, (20)

s = (s1, s2, · · · , sn), z = (1, s, s2, s3)T

P ∈ [0, 1]d×4, si ∈ [0, 1],

i = 1, 2, · · · , n

where Eq.(20) determines si to find the point on the
curve which has the minimum residual to reconstruct
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xi by f(si). Obviously, a local minimizer (P∗, s∗) can be
achieved in an alternating minimization way

P(t+1) = argmin

n
∑

i=1

‖xi −PMz
(t)
i ‖2 (21)

(

∂P(t+1)Mz

∂s

)T
(

xi −P(t+1)Mz
)

∣

∣

∣

∣

∣

s=s
(t+1)
i

= 0 (22)

where t means the tth iteration.
The optimal solution of Eq.(21) has an explicit expres-

sion. Associate X with Z

Z =









1 1 · · · 1
s1 s2 · · · sn
s21 s22 · · · s2n
s31 s32 · · · s3n









= (z1, z2, · · · , zn) (23)

and Eq.(19) can be rewritten in matrix form

J(P, s) = ‖X−PMZ‖F

= tr(XTX)− 2tr(PMZXT )

+tr(PMZZTMTPT ). (24)

Setting the derivative of J with respect to P to zero

∂J

∂P
= 2

(

P(MZ)(MZ)T −X(MZ)T
)

= 0 (25)

and remembering A+ = AT (AAT )+ [35], we get an
explicitly expression for the minimum point of Eq.(19)

P = X(MZ)T
(

(MZ)(MZ)T
)+

= X(MZ)+ (26)

where (· )+ takes pseudo-inverse computation. Based
on the tth iterative results Z(t), the optimal solution
can be given by substituting Z(t) into Eq.(26) which
is P(t+1) = X(MZ(t))+. However, (MZ(t))+ is compu-
tationally expensive in numerical experiments and X

is always ill-conditioned which has a high condition
number, resulting in that a very small change in Z(t)

would produce a tremendous change in P(t+1). Z(t) is
not the optimal solution of Eq.(19) but a intermediate
result of the iteration, and P(t+1) would thereby go
far away from the optimal solution. To settle out the
problem, we employ the Richardson iteration [37] with
a preconditioner D which is a diagonal matrix with the
L2 norm of columns of (MZ(t))(MZ(t))T as its diagonal
elements. Then P(t+1) is updated according to

P(t+1) = P(t) − γ(t)(P(t)(MZ(t))(MZ(t))T

−X(MZ(t))T )D−1 (27)

where γ(t) is a scalar parameter such that the sequence
P(t) converges. In practice, we set

γ(t) =
2

λ
(t)
min + λ

(t)
max

(28)

where λ
(t)
min and λ

(t)
max is the minimum and maximum

eigenvalues of (MZ(t))(MZ(t))T respectively [38].
After getting P(t+1), the score vector s(t+1) can be

calculated as the solution to Eq.(22). Eq.(22) is a quin-

Algorithm 1 Algorithm to learn an RPC.

Input:
X: data matrix;
ξ: a small positive value;

Output:
P∗: control points of the learned Bézier curve
s∗: the score vector of objects in the set.

1: Normalize X into [0, 1]d;
2: Initialize P(0);
3: while △ J > ξ do
4: Adopt GSS to find the approximate solution s(t);
5: Compute P(t+1) using a preconditioner;
6: if △ J < 0 then
7: break;
8: end if
9: end while

tic polynomial equation which rarely has explicitly ex-
pressed roots. In [20], si for xi was approximated by Gra-
dient and Gauss-Newton methods respectively. Jenkins-
Traub method [32] was also considered to find the
roots of the polynomial equation directly. As Eq.(20) is
designed to find the minimum distance of point xi from
the curve, we adopt Golden Section Search (GSS) [33] to
find the local approximate solution to Eq.(22).

Algorithm 1 summarizes the alternative optimization
procedure. Before performing the ranking task, numer-
ical observations of objects should be normalized into
[0, 1]d by

x̂ =
x− xmin

xmax − xmin

(29)

where x̂ is the normalized vector of x, xmin the min-
imum vector and xmax the maximum vector. Grading
scores would be unchanged as scaling and translating
are only performed on control points and end points
(Eq.(16)) without changing the interpolation values. In
Step 2, we initialize the end points as p0 = 1

2 (1−α) and
p3 = 1

2 (1 + α), and randomly select samples as control
points. During learning procedure, P(t) is automatically
learned making a Bézier curve to be an RPC in numerical
experiments. In Step 6, △ J < 0 occurs when J begins
to increase. In this case, the algorithm stops updating
(P(t), s(t)) and gets a local minimum J . Proposition 2
guarantees the convergency of the sequence found by
RPC learning algorithm (proof can be found in Appendix
D). Therefore, the RPC learning algorithm finds a con-
verging sequence of (P(t), s(t)) to achieve the infimum
in Eq.(18).

Proposition 2. If P(t) → P∗ as t → ∞, J(P(t), s(t)) is a
decaying sequence which converges to J(P∗, s∗) as t → ∞.

Algorithm 1 converges in limited steps. In each step,
P is updated in 4 × d size and scores for points are
calculated in n size. When iteration stops, ranking scores
are produced along with P. In summary, the computa-
tional complexity of RPC unsupervised ranking model
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Fig. 6. A, B and C are three objects to rank. s1, s2 and s3
are scores given by the RPC (in green) of S-type shape
in the figure. A different observation of A (denoted by A′)
would give a different RPC (in pink) and thus a different
ordering of objects.

is O(4d+ n). Compared to the ranking rule of weighted
summation, ranking with RPC model costs a little more.
However, weighted summation needs weight assign-
ments by a domain expert such that it is more subjective
because weights is diverse expert by expert. But RPC
model needs no expert to assign weight proportions to
indicators. The learning procedure of RPC model does
the whole work for ranking.

The RPC learning algorithm learns a ranking func-
tion in a completely different way from the traditional
methods. On the one hand, the ranking function is in
constraints of five meta-rules for ranking rules. Integrat-
ing meta-rules with ranking functions makes the ranking
rule be more in line with human knowledge about rank-
ing problems. As a high level knowledge, these meta-
rules are capable of evaluating ranking performance.
On the other hand, ranking is carried out following the
principle of unsupervised ranking, “let the data speak
for themselves”. For unsupervised ranking, there is no
information for ranking labels to guide the system to
learn a ranking function. As a matter of fact, the structure
of the dataset contains the ordinal information between
objects. If all the determining factors of ordinal relations
are included, the RPC can thread through all the objects
successively. In practice, the most influential indicators
are selected to estimate the order of objects, but the rest
factors still affect the numerical observation. In the case
we know nothing about the rest factors, we would better
to minimize the effect which we formulate to be error ε.
Therefore, minimizing errors is adopted as the learning
objection in case no ranking label can be available.

6 EXPERIMENTS

6.1 Comparisons with Ranking Aggregation

For ranking task, some researchers prefer to aggregate
many different ranking lists of the same set of objects
in order to get a “better” order. For example, median
rank aggregation [34] aggregates different orderings into

a median rank with

κ(i) =

∑m
j=1 τj(i)

m
, i = 1, 2, · · · , n (30)

where τj(i) is the location of object i in ranking list τj ,
τj is a permutation of {1, 2, · · · , n} and κ is the order-
ing of median rank aggregation. However, approaches
of ranking aggregation suffers the difficulties of strict
monotonicity and smoothness. Therefore, the ranking list
is not very convincing. What’s more, aggregation merely
combines the orderings and ignores the information
delivered by numerical observations.

In contrast, RPC is modeled following all the five
meta-rules which infers a reasonable ranking list. More-
over, RPC can detect the ordinal information embed-
ded in the numerical observations, illustrated in Fig.
6. Consider to rank three objects A, B and C in a
two-dimensional space in Fig. 6. Let their numerical
observations on x1 and x2 be values shown in Table 1(a).
Objects can be ordered along with x1 and x2 respectively.
Median rank aggregation [34] produces an ordering
which can not distinguish A and B since they are in
the paratactic place of the ranking list. In contrast, the
RPC model produce the order ABC where A and B are
in a distinguishable order since RPC ranks objects based
on their original observation data. If there is a different
observation for one of objects, a different RPCwould pro-
duce a different ranking list while RankAgg remains the
same. In Table 1(b), a different observation of object A is
obtained, denoted as A′. A different RPC is learned (the
pink curve in Fig. 6) and gives the order BA′C (the last
column of Table 1(b)) which is different from the order
in Table 1(a). In summary, RPC is able to capture the
ordinal information contained not only among ranking
candidates but also in the individual observation.

6.2 Applications

Unsupervised ranking of multi-attribute observations of
objects has a widely applications. The most significant
application is to rank countries, journals and universi-
ties. Taking the journal ranking task for illustration, there
have been many indices to rank journals, such as impact
factor (IF) [39] and Eigenfactor [40]. Different indices
reflect different aspects of journals and provide different
ranking lists for journals. Thus, how to evaluate journals
in a comprehensive way becomes a tough problem. RPC
model is proposed as a new framework to attack the
problem which provides an ordering along the “ranking
skeleton” of data distribution. In this paper, we perform
ranking tasks with RPCs to produce a comprehensive
evaluation on three open access datasets of countries
and journals with the open source software Scilab (5.4.1
version) on a Ubuntu 12.04 system with 4GB memory.
Due to space limitation, we just list parts of their ranking
lists (the full lists will be available when the paper is
published).
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TABLE 1
RPC model can detect ordinal information contained in numerical observations in Fig. 6.

(a) A group of bservations and ranking lists by different rules

Object
x1 x2 RankAgg

RPC
Value Order Value Order Score Order

A 0.3 2 0.25 1 1.5 0.2329 1
B 0.25 1 0.55 2 1.5 0.3304 2
C 0.7 3 0.7 3 3 0.7300 3

(b) Another group of bservations and ranking lists by different rules

Object
x1 x2 RankAgg

RPC
Value Order Value Order Score Order

A′ 0.35 2 0.4 1 1.5 0.3708 2
B 0.25 1 0.55 2 1.5 0.3431 1
C 0.7 3 0.7 3 3 0.7318 3

Note: Different observations of objects would produce different ranking lists of objects. In (a), objects A, B and C can be ordered by their values on x1 and x2

respectively. Ranking aggregation (RankAgg) then produce a comprehensive ordering by Eq.(30). But it fails to distinguish A and B which have distinguishable
observations while RPC can distinguish them. RPC can also detect the minor ordinal difference between objects. In (b), A has a different observation from (a),
which is denoted as A′. Ranking lists keeps the same for RankAgg while RPC provides a different ordering.

TABLE 2
Part of the ranking list for life qualities of countries.

Country GDP1 LEB2 IMR3 Tuberculosis4 Elmap [8] RPC

Score Order Score Order

Luxembourg 70014 79.56 6 4 0.892 1 1.0000 1

Norway 47551 80.29 3 3 0.647 2 0.8720 2

Kuwait 44947 77.258 11 10 0.608 3 0.8483 3

Singapore 41479 79.627 12 2 0.578 4 0.8305 4

United States 41674 77.93 2 7 0.575 5 0.8275 5

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Moldova 2362 67.923 63 17 0.002 97 0.5139 96

Vanuatu 3477 69.257 37 31 0.011 96 0.5135 97

Suriname 7234 68.425 53 30 0.011 95 0.5133 98

Morocco 3547 70.443 44 36 0.002 98 0.5106 99

Iraq 3200 68.495 25 37 -0.002 100 0.5032 100

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

South Africa 8477 51.803 349 55 -0.652 167 0.0786 167

Sierra Leone 790 46.365 219 160 -0.664 169 0.0541 168

Djibouti 1964 54.456 330 88 -0.655 168 0.0524 169

Zimbabwe 538 41.681 311 68 -0.680 170 0.0462 170

Swaziland 4384 44.99 422 110 -0.876 171 0 171

p0 44713 81.218 2 0 - - - -

p1 330 80.4 2 0 - - - -

p2 330 59.7 33 43 - - - -

p3 1581.824 41.68 290 151 - - - -
1 Gross Domestic Product per capita by Purchasing Power Parities, $per person;
2 Life Expectancy at Birth, years;
3 Infant Mortality Rate (per 1000 born);
4 Infectious Tuberculosis, new cases per 100,000 of population, estimated.
5 pj(j = 0, 1, 2, 3) are control and end points of the RPC.

6.2.1 Results on Life Qualities of Countries

Gorban et al. [8] ranked 171 countries by life qualities
of people with data driven from GAPMINDER5 based
on four indicators as in Example 2. For comparison,
we also use the same four GAPMINDER indicators
in [8]. The RPC learned by Algorithm 1 is shown in
two-dimensional visualization in Fig. 7 and part of the
ranking list is illustrated in Table 2.

From Fig. 7, RPC portrays the data distributing trends
with different shapes, including linearity and nonlinear-

5. http://www.gapminder.org/

ity. For this task, α = [1, 1,−1,−1]T for this task just as
Example 2. α also discovers the relationship between
indicators for ranking. GDP is in the same direction
with LEB, but in the opposite direction with IMR and
Tuberculosis. In the beginning, a small amount of GDP
increasing brings about tremendous increasing of LEB
and tremendous decreasing of IMR and Tuberculosis.
When GDP exceeds $14300 (0.2 as normalized value in
Fig. 7) per person, increasing GDP does result in little
LEB increase, so does IMR and Tuberculosis decrease.
As a matter of fact, it is hard to improve further LEB,
IMR and Tuberculosis when they are close to the limit
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Fig. 7. Two-dimensional display of data points and RPC
for life qualities of countries. Green points are numerical
observations and red curves are 2-dimensional projection
of RPC.

of human evolution.

In Table 2, control points provided by RPC learning
algorithm (Algorithm 1) are listed in the bottom. pi in
the bottom is given in the original data space. Although
the number of control points are set to two in addition
to two end points, the number actually needed for each
indicators is adapted automatically by learning. From
Table 2, p0 and p1 for IMR and Tuberculosis overlaps
which means that three points are enough for a Bézier
curve to depicts the skeleton of IMR and Tuberculosis.
Two-dimensional visualizations in Fig. 7 tally with the
statement above.

Gorban et al. [8] provided centered scores for coun-
tries, which is similar to the first PCA. But the zero score
is assigned to no country such that no country is taken
as the ranking reference. In addition, rankers would get
into trouble to understand the ranking principle due to
unknown parameter size. Therefore, the ranking list is
hard to interpret for human understanding. Compared
with Elmap [8], the presented RPC model follows all the
five meta-rules. With these meta-rules as constraints, it
achieves a better fitting performance in term of Mean
Square Error (90% vs 86% of explained variance). It
produces scores in [0, 1] where 0 and 1 are the worst and
the best reference respectively. Luxembourg with the best
life quality provides a developing direction for countries
below. Additionally, the RPC model is interpretable and
easy to carry out in practice since there are just four
points to determine the ranking list.

6.2.2 Results on Journal Ranking

We also apply RPC model to rank journals with data
accessable from the Web of Knowledge6 which is affil-
iated to Thomson Reuters. Thomson Reuters publishes
annually Journal Citation Reports (JCR) which provide
information about academic journals in the sciences and
social sciences. JCR2012 reports citation information with
indicators of Impact Factor, 5-year Impact Factor, Im-
mediacy Index, Eigenfactor Score, and Article Influence
Score. After journals with data missing are removed
from the data table (58 out of 451), RPC model tries
to provide a comprehensive ranking list of journals in
the categories of computer science: artificial intelligence,
cybernetics, information systems, interdisciplinary appli-
cations, software engineering, theory and methods. Table
3 illustrates the ranking list of journals produced by RPC
model based on JCR2012. Two-dimensional visualization
of the RPC is shown in Fig. 8.

For this ranking task, a journal will rank higher with
a higher value for each indicator, that is α = [1, 1, 1, 1].
Among all the indicators here, 5-year Impact Factor
shows almost a linear relationship with the others. But
Eigenfactor presents no clear relationship which means
that it is calculated in a very different way from the other
indicator. Actually, Eigenfactor works like PageRank [2]
while the others take frequency count.

From Table 3, IEEE Transactions on Knowledge
and Data Engineering (TKDE) is ranked in a higher
place than IEEE Transactions on Systems, Man, and
Cybernetics-Part A (SMCA) although SMCA has a
higher IF (2.183) than TKDE (1.892). The lower influence
score (0.767) of SMCA brings it down the ranking list (vs.
1.129 for TKDE). Therefore, TKDE gets a higher compre-
hensive evaluating score and wins a higher ranking place
in the ranking list. This means that one indicator does
not tell the whole story of ranking lists. RPC produces a
ranking list for journals taking account several indicators
of different aspects.

7 CONCLUSIONS

Ranking and its tools have and will have an increasing
impact on the behavior of human, either positively or
negatively. However, those ranking activities are still
facing many challenges which have greatly restrained
to the rational design and utilization of ranking tools.
Generally, ranking in practice is an unsupervised task
which encounters a critical challenge that there is no
ground truth to evaluate the provided lists. PageRank [2]
is an effective unsupervised ranking model for ranking
candidates with a link-structure. However, it does not
work for numerical observations on multiple attributes
of objects.

It is well known that domain knowledge can always
improve the data mining performance. We try to attack
unsupervised ranking problems by domain knowledge

6. http://wokinfo.com/
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TABLE 3
Part of the ranking list for JCR2012 journals of computer sciences.

Title
Impact Factor (IF) 5-Year IF Immediacy Index Eigenfactor Influence Score RPC

Score Order Score Order Score Order Score Order Score Order Score Order

IEEE T PATTERN ANAL 4.795 7 6.144 5 0.625 26 0.05237 3 3.235 6 1.0000 1

ENTERP INF SYST UK 9.256 1 4.771 10 2.682 2 0.00173 230 0.907 86 0.9505 2

J STAT SOFTW 4.910 4 5.907 6 0.753 18 0.01744 20 3.314 4 0.9162 3

MIS QUART 4.659 8 7.474 2 0.705 21 0.01036 49 3.077 7 0.9105 4

ACM COMPUT SURV 3.543 21 7.854 1 0.421 56 0.00640 80 4.097 1 0.9092 5

.
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.

DECIS SUPPORT SYST 2.201 51 3.037 43 0.196 169 0.00994 52 0.864 93 0.4701 65

COMPUT STAT DATA AN 1.304 156 1.449 180 0.415 61 0.02601 11 0.918 83 0.4665 66

IEEE T KNOWL DATA EN 1.892 82 2.426 72 0.217 152 0.01256 37 1.129 55 0.4616 67

MACH LEARN 1.467 133 2.143 96 0.373 70 0.00638 81 1.528 20 0.4490 68

IEEE T SYST MAN CY A 2.183 53 2.44 68 0.465 46 0.00728 69 0.767 111 0.4466 69
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Fig. 8. Two-dimensional display of data points and RPC
for JCR2012. Green points are numerical observations
and red curves are 2-dimensional projection of RPC.
(IF:Impact Factor, 5IF:5-Year IF, ImmInd:Immediacy In-
dex, IS: Influence Score)

about ranking. Motivated by [13], [16], five meta-rules
as ranking knowledge are presented and are regarded as
constraints to ranking models. They are scale and trans-
lation invariance, strict monotonicity, linear/nonlinear
capacities, smoothness and explicitness of parameter
size. They can also be capable of assessing the ranking
performance of different models. Enlightened by [8],
[14], we propose a ranking model with a principal curve
which is parametrically formulated with a cubic Bézier
curve by restricting control points in the interior of
the hypercube [0, 1]d. Control points are learned from
the data distribution without human interventions. Ap-
plications in life qualities of countries and journals of

computer sciences show that the proposed RPC model
can produce reasonable ranking lists.

From an application view points, there are many
indicators for ranking objects. RPC can also be used to do
feature selection which is one part of our future works.

APPENDIX A
PRINCIPAL CURVES

Given a dataset X = (x1,x2, · · · ,xn), xi ∈ Rd, a prin-
cipal curve summarizes the data with a smooth curve
instead of a straight line in the first PCA

x = f(s) + ε (A-1)

where f(s) = (f1(s), f2(s), · · · , fd(s)) ∈ Rd and s ∈ R.
The principal curve f was originally defined by Hastie
and Stuetzle [10] as a smooth (C∞) unit-speed (‖f ′′‖2 =
1) one-dimensional manifold in Rd satisfying the self-
consistence condition

f(s) = E (x| sf (x) = s)

where s = sf (x) ∈ R is the largest value so that f(s) has
the minimum distance from x. Mathematically, sf (x) is
formulated as [10]

sf (x) = sup
{

s : ‖x− f(s)‖ = inf
s
‖x− f(s)‖

}

. (A-2)

In other words, a curve f : R 7→ Rd is called a princi-
pal curve if it minimizes the expected squared distance
between x and f which is denoted by [11]

J(f) = E
(

inf
s
‖x− f(s)‖2

)

= E‖x− f(sf (x))‖
2. (A-3)

As an one-dimensional principal manifold, the prin-
cipal curve has a wide applications (e.g. [36]) due to
its simpleness. Following Hastie and Stuetzle [10], re-
searchers afterwards have proposed a variety of princi-
pal curve definitions and learning algorithms to perform
different tasks [11], [19], [26], [29]. But most of them
tried to first approximate the principal curve first with a
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polyline [11] and then smooth it to meet the requirement
for smoothness [10] of the principal curve. Therefore,
the expression of the principal curve is not explicit
and results in a ‘black-box’ which is hard to interpret.
The other definitions of principal curves [27], [30] em-
ployed Gaussian mixture model to generally formulate
the principal curve which brings model bias and makes
interpretation even harder. When the principal curve is
used to perform a ranking task, it should be modeled
to be a ‘white-box’ which can be well interpreted for its
provided ranking lists.

APPENDIX B
PROOF OF THEOREM 2
If ∇ϕ(x) ≻ 0, ϕ is strictly monotone by Theorem 1.
Regarding that the ranking candidates is totally ordered,
there is a one-to-one correspondence between ranking
items in Rd and rangϕ. Otherwise, s = ϕ(x0) and
s = ϕ(x0 +△x) both hold for some x0 ∈ domϕ. In this
case, ∇ϕ(x)|x=x0

= 0 which contradicts the assumption
∇ϕ(x) ≻ 0 holds for all x ∈ domϕ.

By Lemma 1 and the one-to-one correspondence, there
exists an inverse mapping f : rangϕ 7→ domϕ such that
x = f(s). By strict monotonicity (Eq.(1)) and the one-to-
one correspondence, we have

x1 � x2, x1 6= x2 ⇐⇒ s1 < s2 (B-1)

Thus, ∇f(s) ≻ 0 holds for s ∈ rangϕ. �

APPENDIX C
PROOF OF RPC EXISTENCE (THEOREM 3)
Proof. Assume U = [0, 1] and C(U) denotes the set of all
continuous function f : U 7→ [0, 1]d ⊆ Rd embracing all
possible observations of x. The uniform metric is defined
as

D(f ,g) = sup
0≤s≤1

‖f(s)− g(s)‖, ∀f ,g ∈ C(U). (C-1)

It is easy to see (C(U), D) is a complete metric space
[21].

Let Γ = {f(s) : f(s) = PMz,P ∈ Θ} ⊆ C(U), where
Θ ∈ [0, 1]4 is the convex hull of x. With the Frobenius
norm, Θ is a sequentially compact set so that for any
given sequence in Θ there exists a subsequence P(t)

converging uniformly to an P∗ ∈ [0, 1]d [21] with

‖P(t) −P∗‖F → 0 (C-2)

Let p0 = 1
2 (1 − α) and p3 = 1

2 (1 + α). Then we have a
sequence f (t)(s) converging uniformly to f∗(s):

D
(

f (t)(s), f∗(s)
)

= sup
0≤s≤1

‖f (t)(s)− f∗(s)‖ (C-3)

≤ sup
0≤s≤1

‖P(t) −P∗‖F ‖Mz‖ (C-4)

= ‖P(t) −P∗‖F → 0 (C-5)

where ‖Mz‖ = 1. By Proposition 1, f (t)(s) is a curve
sequence of strictly monotonicity and converges to f∗(s).

Assuming the converging sequence f (t)(s) makes
J(P(t)) ≥ J(P∗) for fixed x ∈ Rd,

J(P(t))− J(P∗)

= ‖x− f (t)(s)‖2 − ‖x− f∗(s)‖2 (C-6)

≤
(

‖x− f (t)(s)‖ + ‖x− f∗(s)‖
)

‖f (t)(s)− f∗(s)‖ (C-7)

→ 0 (C-8)

and therefore

E
(

J(P(t))− J(P∗)
)

→ 0. (C-9)

Finally, we complete the proof. �

APPENDIX D
PROOF OF CONVERGENCE (PROPOSITION 2)
Proof: First of all, P(t) generated by Richardson method
has been proved to converge [37]. Assume P(t) → P∗,
and s(t) and s∗ are the corresponding score vectors
calculated by Eq.(22). Note that the item P(t+1) − P(t)

is in the descending direction of J in Eq.(27). So we get
that

J(P(t), s(t)) ≥ J(P(t+1), s(t)). (D-1)

Then with the control points P(t+1), s(t+1) minimizes the
summed orthogonal distance

J(P(t+1), s(t)) ≥ J(P(t+1), s(t+1)). (D-2)

Thus we get

J(P(t), s(t)) ≥ J(P(t+1), s(t+1)). (D-3)

Finally, by Theorem 3 the sequence {J(P(t), s(t))} con-
verges to its infimum {J(P∗, s∗)} as s → ∞. �
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