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Abstract
Online selection of dynamic features has attracted intensive interest in recent years. However, existing
online feature selection methods evaluate features individually and ignore the underlying structure of feature
stream. For instance, in image analysis, features are generated in groups which represent color, texture and
other visual information. Simply breaking the group structure in feature selection may degrade performance.
Motivated by this fact, we formulate the problem as an online group feature selection. The problem assumes
that features are generated individually but there are group structure in the feature stream. To the best of
our knowledge, this is the first time that the correlation among feature stream has been considered in the
online feature selection process. To solve this problem, we develop a novel online group feature selection
method named OGFS. Our proposed approach consists of two stages: online intra-group selection and online
inter-group selection. In the intra-group selection, we design a criterion based on spectral analysis to select
discriminative features in each group. In the inter-group selection, we utilize a linear regression model
to select an optimal subset. This two-stage procedure continues until there are no more features arriving or
some predefined stopping conditions are met. Finally, we apply our method to multiple tasks including image
classification and face verification. Extensive empirical studies performed on real-world and benchmark data
sets demonstrate that our method outperforms other state-of-the-art online feature selection methods.

Keywords: Online feature selection, Streaming feature, Group structure, Classification, Face Verification.

1 Introduction

High dimensional data pose a lot of challenges for data mining and pattern recognition [1]. Usually, fea-
ture selection is utilized in order to reduce dimensionality by eliminating irrelevant and redundant features
[2]. In most contexts, feature selection models are oriented to offline situation. That is, the global feature
space has to be obtained in advance [3][4]. However, in real-world applications, the features are actually
generated dynamically. For example, in image analysis [5], multiple descriptors are exacted to capture var-
ious visual information of images, such as Histogram of Oriented Gradients (HOG), Color histogram and
Scale-Invariant Feature Transform (SIFT) as shown in Figure 1. It is very time-consuming to wait for the
calculation of all the features. Thus, it is necessary to perform feature selection by their arrival, which is
referred to as online feature selection. The main advantage of online feature selection is its time efficiency
and suitable for online applications, therefore, it has emerged as an important topic.

Online feature selection assumes that features flow into the model one by one dynamically. The feature
selection is performed by the arrival of features. It is different from classical online learning, in which the
feature space remains consistent while samples flow in sequentially [6][7][8][9]. There are some papers that
focus on this direction [10] [11][12][13]. Perkins et al. proposed gradient descent model, Grafting [10]. It
selects features by minimizing the predefined binomial negative log-likelihood loss function. Zhou et al.
introduced a streamwise regression model to evaluates the dynamic feature [11]. Wu et al. performed online
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(a) An Image (b) HOG (c) Color Histogram (d) SIFT

Figure 1: (a) An image example from VOC 2007. It can be described with different kinds of descriptors,
such as: (b) HOG (c) Color histogram and (d) SIFT.

selection by relevance analysis [13]. These approaches can evaluate features dynamically with the arrival of
each new feature, but they suffer from a common limitation: they overlook the relationship between features
which is very important in some real-world applications [14][15][16][17].

In image processing, each kind of cues of the image describes certain information and consists of high
dimensional feature spaces. In bioinformatics, DNA microarray data consist of groups of gene sets in
terms of biological meanings. The group information can be considered as a type of prior knowledge on
the connection of the features, and it is difficult to be discovered from merely data and labels. Therefore,
performing selection on feature groups can perform better than perform selection on features individually.
Hence, there are some works which focus on feature selection with group structure information, such as
group Lasso and sparse group Lasso [18] [19] [20] [21] [22]. However, these methods are performed in a
batch manner. Although Yang et al. [23] proposed an online group lasso method, it is designed for instance
stream. A global feature space of the data sets is still desired in advance for feature selection.

Therefore, we first formulate the problem as online group feature selection. There are two challenges
for this problem: 1) the features are generated dynamically; 2) they are with group structure. To the best
of our knowledge, none of existing feature selection methods can well handle these two issues. Therefore,
in this paper, we propose a novel feature selection method for this problem, namely Online Group Feature
Selection (OGFS) [24]. More specifically, on time step t, a group of feature gt is generated. We develop
a novel criterion based on spectral analysis which aims to select discriminative features in gt. The process
is called an online intra-group selection. Each feature in gt is evaluated individually in this stage. Then
after the intra-group selection on gt is finished, we reevaluate all the selected features so far to remove the
redundancy. The process can be accomplished with a sparse linear regression model, Lasso. We refer this
stage as an online inter-group selection. Our major contributions are summarized as follows:

• To the best of our knowledge, this is the first effort that considers the group structure in an online
fashion. Although online feature selection methods are proposed, we here utilize the group structure
information in the feature stream.

• Based on the observation that spectral analysis is widely used for discriminative variable analysis,
we propose a novel criterion based on spectral analysis. The criterion is proven to be efficient in the
online intra-group feature selection.

• To get benefit from the correlation among features from groups, we use a sparse regression model
Lasso for the online inter-group feature selection. It is the first time that the sparse model Lasso is
employed in the dynamic feature selection.

• We demonstrate the superiority of our method over the state-of-the-art online feature selection meth-
ods. The experimental results on real-world applications show the effectiveness of our method for
tasks with large scale data, such as image classification and face analysis.
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The online group feature selection was first introduced in our previous work [24]. In comparison with the
preliminary version [24], we have improvements in the following aspects: (1) we performed a more compre-
hensive survey of existing related works; (2) to solve regression sparse model in inter-group selection, we
adopted a more efficient solution; (3) we conducted more empirical evaluations; and (4) more discussions
and analysis are provided. The rest of the paper is organized as follows. After review of related work in
Section 2, we introduce our framework and give our algorithm in Section 3. Then we report the empirical
study on real-world and benchmark data sets in Section 4. Section 5 concludes this paper and discusses
possible future work.

2 Related Work

In this section, we first give a brief review of traditional offline feature selection, including filter, wrapper and
embedded models. Specifically, we review existing literature that focus on utilizing the underlying group
structure of feature space, such as group Lasso and their extensions. Then, we introduce the state-of-the-art
online feature selection methods.

2.1 Offline Feature Selection

Traditional feature selection is oriented to the off-line situation. The problem statement is defined below.
Given a data set X = [x1, x2, · · · , xn] ∈ Rn×d consisting of n samples (columns) over d-dimensional
feature space F = [f1, f2, · · · , fd] ∈ Rd, pre-process of the features such that each row is centered around
zero and is of unit L2 norm ||fi|| = 1. The object of feature selection is to choose a subset of features
S ∈ Rl from the global feature space F , and l is the desired number of features, and in general l < d.

Generally, the feature selection methods fall into three classes based on how the label information is
used. Most existing methods are supervised which evaluate the correlation among features and the label
variable. Due to the difficulty in obtaining labeled data, unsupervised feature selection has attracted in-
creasing attention in recent years [25]. Unsupervised feature selection methods usually select features that
preserve the data similarity or manifold structure [26]. Semi-supervised feature selection, so called “small-
labeled sample problem”, makes use of label information and manifold structure corresponding to labeled
data and unlabeled data [27].

The existing feature selection methods can be categorized as embedded, filter and wrapper approaches
based on the methodologies [28][29][30][12][31]. The filter methods evaluate the features by certain cri-
terion and select features by ranking their evaluation values. The correlation criteria proposed for feature
selection include mutual information, maximum margin [32], kernel alignment [33], and the Hilbert Schmidt
independence criterion [34]. The development of filtering methods involves taking consideration of multi-
ple criteria to overcome redundancy. The most representative algorithm is mRMR [35] in the principle of
max-dependency, max-relevance and min-redundancy. It aims to find a subset in which the features are with
large dependency on the target class and with low redundancy among each other.

The wrapper methods employ a specific classifier to evaluate a subset directly. For example, Weston
et al. [36] used SVM as a wrapper with the purpose of optimizing the SVM accuracy on each subset of
features. The wrapper methods usually have better performance than the filter methods. However, they are
typically computationally expensive, as the time complexity is exponential with respect to the number of
features. Meanwhile, the performance of the selected subset relies on the specific training classifier.

The embedded methods usually seek the subset by jointly minimizing empirical error and penalty. They
tend to be more efficient than the wrapper model and have a relatively small size of the ultimate subset.
LARS is a successful example that falls into this category [37]. Its objective function is to minimize the
reconstruction error with sparsity constraint on the coefficients of the features. The sparsity constraint can
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Table 1: General group Lasso model with various parameters

Parameters Group Algorithm
λ1 > 0, λ2 = 0 Unique Lasso [40]
λ1 = 0, λ2 > 0 Disjoint group Lasso [18]
λ1 > 0, λ2 > 0 Disjoint sparse group Lasso [19]

Overlapping overlapping group Lasso [39]

lead to a small number of nonzero estimates. There are also some generalized methods, such as adaptive
Lasso [38] and group Lasso [39].

We take group Lasso as an example. It considers the correlation structure in the feature space. The
underlying structure in feature space is important in feature selection. Take the application of bioinformatics
as an example, certain factors which contribute to predicting the cancer consist of a group of variables. Then,
the problem amounts to the selection of groups of variables. Group Lasso and its extended works mainly
solve the following optimization problem:

min
w

L(w) + λ1||w||1 + λ2

G∑
i=1

βi||wGi ||2, (2.1)

where L(·) is a smooth convex loss function such as the least squares loss. The feature space is partitioned
into G groups xGi , β > 0 is the parameter corresponding to each group, and λ1 ≥ 0 and λ2 ≥ 0 are reg-
ularization parameters which modulate the sparsity of the selected features and groups respectively. When
parameters λ1 and λ2 are set to different values, the model (2.1) falls into the different models as seen in
Table 1.

Yang et al. [23] proposed an online algorithm for the group Lasso. The weight vector w is updated by
the arrival of a new sample. Important features corresponding to large values in w are selected in a group
manner. Thus, the algorithm is suitable for sequential samples, especially for the applications with large
scale data.

The aforementioned feature selection methods are offline or designed for the classical online scenario,
in which instances arrive dynamically instead of features. There are some works focus in this aspect. A
brief review is summarized in the next subsection.

2.2 Online Feature Selection

Online feature selection assumes that features arrive in by streams. It is different from classical online
learning which lets samples flow in dynamically. Thus, at time step i, there is only one feature descriptor
fi of all samples available. The goal of online feature selection is to justify whether the feature fi should
be accepted by their arrival. To this end, some related works have been proposed, including Grafting [10],
Alpha-investing [11] and OSFS (Online Streaming Feature Selection) [13].

2.2.1 Grafting

Grafting integrates the feature selection in learning a predictor within a regularized framework. Grafting is
oriented to binomial classification, its objective function is a binomial negative log-likelihood loss (BNLL)
function, defined as:

min
W

1

n

n∑
i=1

ln(1 + e−yif(xi)) + λ

k∑
j=1

|wj |1, (2.2)
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where n is the number of samples and k is the number of selected features so far, the predictor W is
constrained with theL1 regularization. Note that if a feature fj is included, λ‖wj‖ is penalized. To guarantee
the decrease of objective function, the reduction in the mean loss of L should outweigh the regularizer
penalty to λ‖wj‖. Therefore, to justify whether the inclusion of the feature can improve the existing model,
Grafting uses a gradient-based heuristic. The feature fj can be selected if the following condition is satisfied:

| ∂L
∂wj

|> λ, (2.3)

where λ is a regularization coefficient. Otherwise the weight is dropped and the feature is rejected. Each
time a new feature is selected, the model goes back and reapplies the gradient test to features selected
so far. The framework is adaptive for both linear and non-linear models. Grafting has been successfully
employed in some applications, such as edge detection [41]. But there are some limitations below. First,
though Grafting can obtain a global optimum with respect to features included in the model, it is not optimal
as some features are dropped during online selection. Besides, the gradient retesting over all the selected
features greatly increases the total time cost. Last, tuning a good value for the important regularization
parameter λ requires the information of the global feature space.

2.2.2 Alpha-investing

Alpha-investing [11] belongs to the penalized likelihood ratio methods [42] which do not require the global
model. More specifically, for feature fi arriving at time step i, Alpha-investing evaluates it by the p-statistic
which leads to p-value. The p-value is the probability that the feature could be accepted while it should
be actually discarded. Then comparing the p-value of fi with the threshold αi, the feature fi is added to
the model if its p-value is greater than αi. The threshold αi corresponds to the probability of including a
spurious feature at time step i. Each time a feature is added, the wealth wi will increase as shown in Eq. 2.4,
where wi represents the current acceptable number of future false positives.

wi+1 = wi + α∆− αj . (2.4)

Otherwise, the feature fi is discarded and wi will decrease as shown in Eq. 2.5.

wi+1 = wi − αi, (2.5)

where α∆ is the parameter controlling the false discovery rate, and αi is set to be wi/(2 × i) at time step
i. In summary, Alpha-investing adaptively adjusts the threshold for feature selection. It can also handle
an infinite feature stream. However, Alpha-investing does not reevaluate the included features which will
greatly influence the following selection.

2.2.3 OSFS

In OSFS, features are characterized as strongly relevant, weakly relevant, or irrelevant[43] with the label
attribute. With the incoming of new feature fi at time step i, OSFS first analyzes its correlation with the
label y. If the feature is weakly or strongly relevant to the label, it will be selected. If the feature fi is added,
OSFS performs redundancy analysis. That is, in the condition of selecting a new feature, some previously
selected features become irrelevant and will also be removed. More specifically, a feature fi is redundant to
the class feature y if it is weakly relevant to y. Let MB(fi) denote a Markov blanket of y, which is a subset
of MB(y) containing all the weakly or strongly relevant but non-redundant features. Thus, redundancy
analysis is a key component for an optimal feature selection process. OSFS does not need parameter tuning
and shows outstanding performance in many applications, such as impact crater detection.
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Figure 2: Schematic illustration of the online group feature selection approach.

All the above methods are state-of-the-art online feature selection methods. Although existing methods
greatly relieve the burden of processing high dimensional data sets, they do not consider the correlation
among features. Hence, we address the online group feature selection problem in this work. To make use
of the prior knowledge of group information, we propose an efficient online feature selection framework
including the intra-group feature selection and inter-group feature selection. Based on this framework, we
develop a novel algorithm called Online Group Feature Selection (OGFS).

3 Online Group Feature Selection

We first formalize our problem for online group feature selection. Assume a data matrixX = [x1, · · · , xn] ∈
Rd×n, where d is the number of features arrived so far and n is the number of data points, and a class label
vector Y = [y1, · · · , yn]T ∈ Rn, yi ∈ {1, · · · , c}, where c is the number of classes. The feature space
is a dynamic stream vector F consisting of groups of features, F = [G1, · · · , Gj , · · · ]T ∈ R

∑
dj , where

dj is the number of features in group Gj . Gj = [fj1, fj2, · · · , fjdj ]T ∈ Rdj where fjk is an individual
feature. In terms of feature stream F and class label vector Y , we aim to select an optimal feature subset
U = [g1, · · · , gj , · · · , gk]T ∈ R

∑
kj when the algorithm terminates, where gj ∈ Rkj is the selected feature

space from Gj , that is, gj ⊆ Gj . kj is feature dimension of gj , 0 ≤ kj ≤ dj .
To solve this problem, we propose a framework for online group feature selection which consists of

two components: intra-group selection and inter-group selection. The intra-group selection is to process
each feature dynamically at its arrival. That is, when a group of features Gj is generated, we process the
feature individually and select a subsetG′j . In terms of the features obtained by the intra-group selectionG′j ,
we further consider the correlation among the groups and get an optimal subset gj , namely the inter-group
selection. The overview of the procedure is illustrated in Figure 2. Based on this framework, we propose
a novel Online Group Feature Selection (OGFS). In the following subsections, we will give details of our
algorithm.

3.1 Online Intra-Group Selection

Spectral based feature selection methods have demonstrated their effectiveness [44]. Given a data matrix
X ∈ Rd×n, we construct two weighted undirected graphs Gw and Gb on given data. Graph Gw reflects the
within-class or local affinity relationship, and Gb reflects the between-class or global affinity relationship.
The Graphs Gw and Gb are characterized by the weight matrices Sw and Sb, respectively. The weight
matrices Sw and Sb can be constructed to represent the relationships among instances, such as RBF kernel
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function. In this work, we only consider supervised online feature selection. The between-class adjacency
matrix Sb and the within-class adjacency matrix Sb are calculated as follows [45]:

(Sb)ij =

{
1
n −

1
nl
, yi = yj = l,

1
n , yi 6= yj .

(3.1)

(Sw)ij =

{
1
nl
, yi = yj = l,

0, yi 6= yj .
(3.2)

where nl denotes the number of data points from class l ∈ 1, · · · , c. Given the adjacency matrix Sw and
Sb, we introduce the definitions of degree matrix and Laplacian matrix which are frequently used in spectral
graph theory.

Definition 1. (Degree matrix) Given the adjacency matrix Sw of the graph Gw, the degree matrix Dw is
defined by: Dw = diag(Sw1) if i = j, and 0 otherwise. Similarly, given the adjacency matrix Sb of the
graph Gb, the degree matrix Db is defined by: Db = diag(Sb1) if i = j, and 0 otherwise. 1 is an identity
vector.

According to the definition, the degree matrix is a diagonal matrix. Dw(ii) can be interpreted as an
estimation of the density around the node xi in graph Gw, same as Db(ii).

Definition 2. (Laplacian matrix) Given the adjacency matrix Sw and the degree matrix Dw of the graph
Gw, the Laplacian matrix of graph Gw is defined as Lw = Dw − Sw. Similarly, the Laplacian matrix of
graph Gb is defined as Lb = Db − Sb.

The degree matrix and the Laplacian matrix satisfy the following property [46]: ∀x ∈ Rd, xTLwx =∑
ij |||xi − xj ||2(Sw)ij , similarly xTLbx =

∑
ij |||xi − xj ||2(Sb)ij .

Applying the spectral graph theory to feature selection, it is about finding a smooth feature selector
matrix which is consistent with the graph structure. Let W = [wi, · · · , wm]T ∈ Rd×m denote the feature
selector matrix, where d is the number of features selected and m is the dimension of global feature space.
Here wi = [wi1, · · · , wid]T ∈ Rd has only one entry wii equal to “1”. With the procedure of feature
selection, the data matrix X is transformed to Z ∈ Rm×n by the feature space projection, Z = W TX .

In the feature space indicated by a smooth selection matrix W , the instances of the same class are close
to each other on Gw. In the same time, the instances of different classes are distant from each other on Gb.
Sw reflects the the within-class or local affinity relationship. Specifically, if data xi and xj belong to the
same class or are close to each other, Sw(ij) is a relatively larger value. Otherwise Sw(ij) is a relatively
smaller value. Therefore, we should select the feature subset that makes

∑
ij ||zi − zj ||2Sw(ij) as small

as possible. Similarly, Sb reflects the between-class or global affinity relationship. If instances xi and xj
belong to the different classes, Sb(ij) is a relatively larger value. Therefore, we should select the feature
subset which ensures that

∑
ij ||zi− zj ||2Sb(ij) is as large as possible. To sum up, the best selection matrix

can be achieved by maximizing the following objective function:

F (WU ) =

∑
ij ||zi − zj ||2Sb(ij)∑
ij ||zi − zj ||2Sw(ij)

. (3.3)

With the property of Laplacian matrix, we obtain the following equivalent program:∑
ij

||zi − zj ||2Sb(ij) = ZLbZ
T

= W T
UXLbXWU .

(3.4)
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Similarly, we can get
∑

ij ||zi − zj ||2Sw(ij) = W T
UXLwXWU . The objective function of 3.3 can be

transformed as:

F (U) =
tr(W T

U (XLbX
T )WU )

tr(W T
U (XLwXT )WU )

, (3.5)

The feature-level spectral feature selection approach evaluates feature fi by a score defined below:

s(fi) =
wTi (XLbX

T )wi

wTi (XLwXT )wi
. (3.6)

After obtaining all feature scores, the feature-level approach will select the leading features correspond-
ing to the top ranking scores. As traditional spectral feature selection approaches rely on the global infor-
mation, they are not efficient for online fashion.

Hence, to get benefit from spectral analysis, we evaluate the new arrival feature by the criterion defined
by Eq. (3.5). In the Eq. (3.5) of streaming feature scenario, W d×m denotes the online feature selector
matrix, where d denotes the arrived features so far and m denotes the selected features. Given the selected
feature space U , the new arrival feature fi will be selected if its inclusion improves the discriminative ability
of the feature space, that is:

F (U ∪ fi)− F (U) > ε, (3.7)

where ε > 0 is a small positive parameter. However, the performance is easily influenced by the sequence of
arriving features. Specifically, if the previous arrived features are with high level of discriminative capacity,
it is difficult for the following features to satisfy (3.7). Thus, we allow the discriminative ability of the
feature disturb within the range of ε. Then, the criterion based on spectral analysis for streaming feature
scenario is defined as follows.

Definition 3. Given U ∈ Rb as the previously selected subset, fi the newly arrived feature, we assume
that with the inclusion of a “good” feature, the between-class distances will be larger, while the within-class
distance will be smaller. That is, feature fi will be selected if the following criterion is satisfied:

|F (U ∪ fi)− F (U)| > ε (3.8)

where we use ε = 0.001 in our experiments.
After intra-group selection, we will obtain a subset G′j ∈ Rm′

from the original feature space Gj ,
G′j ⊂ Gj . However, the criterion 1 will include discriminative features but may also cause redundancy.
Meanwhile, the intra-group selection evaluates the streaming features individually and does not consider the
group information. Thus, we further apply inter-group selection. Our inter-group selection is based on the
classical sparse model Lasso which could reduce the redundancy among selected features efficiently.

3.2 Online Inter-Group Selection

In this section, we introduce the online inter-group selection which aims to obtain an optimal subset based
on global group information. We propose to solve the problem with a linear regression model, Lasso. Given
the subset selected at the first phase G′j = [fj1, fj2, · · · , fjm′ ]T ∈ Rm′

, the previously selected subset of
features UT ∈ Rb, the combined feature space with dimension of m′′ (m′ + d = m′′), a data set matrix
X ∈ Rm′′×n, and a class label vector y ∈ Rn, β̂ = [β̂1, · · · , β̂m′′ ] ∈ Rm′′

is the projection vector which
constructs the predictive variable ŷ:

ŷ = XT β̂. (3.9)

8



the sparse regression model Lasso chooses an optimal β̂ by minimizing the objective function defined as
follows:

min
β̂
||y − ŷ||2,

s.t. ||β||1 ≤ λ, ŷ = XT β̂,
(3.10)

where || · ||2 stands for l2 norm, and || · ||1 stands for l1 norm of a vector, λ is a parameter that controls the
amount of regularization applied to estimators, and λ ≥ 0. In general, a smaller λ will lead to a sparser
model. To solve the problem defined in Eq. (3.10), we reformulate the function as:

min
β̂
||y −XT β̂||2 + λ||β̂||1, (3.11)

which can be solved efficiently by many optimization methods such as feature-sign search [47]. In the
optimization methods, the value of λ is usually determined by cross validation. The sparse regression model
selects features by setting several component in βi to zero, then the corresponding feature fi is deemed
to be irrelevant to the class label and should be discarded. Finally, the features corresponding to non-zero
coefficients will be selected.

After inter-group selection, we get the subset Uj . With the combination of the online intra-group and
the inter-group selection, the algorithm of Online Group Feature Selection (OGFS for short) can be formed.

3.3 OGFS: Online Group Feature Selection Algorithm

Algorithm 1 shows the pseudo-code of our online group feature selection (OGFS) algorithm. OGFS is
divided into two parts: intra-group selection (Step 4-15) and inter-group selection (Step 16). Details are as
follows.

In the intra-group selection, for each feature fi in groupGj , we evaluate features by the criterion defined
in Section 3.1. Steps (9-11) evaluate the significance of features based on Criterion 1. With the inclusion of
the new feature fi, if the within-class distance is minimized and the between-class distance is maximized,
feature fi is considered to be a “good” feature and will be added to G′j . If the inclusion of the new feature
fi causes the discriminative ability of the feature space disturb in a arrange ε, it may be helpful and also
selected.After intra-group selection, we get a subset of features G′j . To implement the global information
of groups, we build a sparse regression model based on the selected subset U and the newly selected subset
G′j . An optimal subset gj will be returned by the objective function defined in formula 3.10.

In our algorithm, the selected features will be re-evaluated in the intra-group selection in each iteration.
The time complexity of intra-group selection is O(m), and the time complexity of inter-group selection is
O(q). Therefore, the time complexity of OGFS is linear with respect to the number of features and the
number of groups.

The above iterations will continue until the performance of ψ(U) reaches a predefined threshold below.

• |U | ≥ k, k is the number of features we need to select;

• accu(U) ≥ max, the prediction accuracy of the model based on U reaches the predefined accuracy
max;

• There are no more yet-to-be-coming features.

9



Algorithm 1 OGFS (Online Group Feature Selection)

Input: feature stream F ∈ Rm×q, label vector Y ∈ Rn.
Output: selected subset U .

1: U =[], i = 1, j = 1;
2: while ψ(U) not satisfied do
3: for j = 1 to q do
4: Gj ← generate a new group of features;
5: for i = 1 to m do
6: G′j = [];
7: fi ← new feature;
8: /***evaluate feature fi by criterion 1, 2***/
9: if F (fi

⋃
G′j)− F (G′j) > ε then

10: G′j = G′j
⋃
fi;

11: end if
12: end for
13: gj ← find the global optimal subset G′j by the feature-sign search algorithm;
14: U = U

⋃
gj

15: end for
16: end while

4 Experiments

In this section, we empirically show the superiority of our method. In experimental settings, we present the
comparative methods, evaluation metrics and the simulation of online situation. Then encouraging results
on real-world applications such as image classification and face verification are reported. We will verify the
influence of group orders in our OGFS method. We also conduct experiments on UCI benchmark data sets
to further verify the effectiveness of our method.

4.1 Experimental Settings

We conduct comparative experiments with both online and offline feature selection methods. The state-of-
the-art online feature selection methods include Alpha-investing, OSFS and Grafting. We choose three rep-
resentative offline feature selection from the filter, embedded and wrapper models, specifically MI (Mutual
Information) [48], LARS (Least Angle Regression) [37] and GBFS (Gradient Boosted Feature Selection)
[49]. The employed evaluation metrics are accuracy and compactness. Compactness is the number of se-
lected features. Accuracy denotes the classification or verification accuracy based on selected feature space.
We also report the results based on global feature space as “Baseline”. According to authors of [13], the
maximum number of selected features is set to be 50. The parameters in Alpha-investing are set according
to [11]. We tune the parameters in Grafting by cross validation. The inter-group selection of our method is
implemented by the efficient sparse coding method 1 with the parameter λ ∈ [0.1, 0.8].

To simulate online group feature selection, we allow the features to flow in by groups. The features
in a group are processed individually. For the data sets with natural feature groups, the pre-existing group
structure is used. For the data sets with no natural feature groups, we divide the feature space randomly.
Specifically, F = [G1, · · · , Gi, · · · ] denotes the global feature stream, we split it into several groups ran-
domly. Each feature group Gi = [f(i−1)∗k+1, f(i−1)∗k+2, · · · , fi∗k] with dimension k. In the case that m is
less than 100, dimension less than 100,k is set to be half of the global dimension. Otherwise, k is chosen

1http://ai.stanford.edu/∼hllee/softwares/nips06-sparsecoding.htm

10



horse dog airplane cougar dolphin 

mandolin sunflower water lily car ship 
(a) Cifar-10

horse dog airplane cougar dolphin 

mandolin sunflower water lily car ship 
(b) Caltech-101

Figure 3: Example images from the (a) Cifar-10 and (b) Caltech-101 data sets.

from {m/10,m/100,m/200}. This experiment can help to test the robustness of OGFS when there is no
natural group information.

4.2 Image classification

We use Cifar-10 [50] and Caltech-101 [51] for image classification. We first introduce the data sets in our
experiments and then present the experimental results. The Cifar-10 dataset consists of 60,000 images in
10 classes with 6,000 images per class. We randomly select 1,000 images from each class for training and
the rest are used for testing. The Caltech-101 dataset contains 9,144 images from 102 categories (including
a background), including animals, vehicles, flowers, etc. There are 31 to 800 images in each category. We
take 5, 10, · · · , 30 images per class for training and take 50 images per class for testing. In Caltech-101, we
extract the SIFT feature of three-layer pyramid. Then, each image is represented by an `2 normalized 21 ×
1024-dimensional sparse-coding feature vector. Thus, the feature stream consists of F = [G1, · · · , G21]

T ∈
R21×1024, where Gi ∈ R1024 denotes the SIFT descriptor for the whole image if i = 1, and Gi ∈ R1024(i >
1) denotes the SIFT descriptor for a local region of the image. As the Cifar-10 dataset contains tiny images
with the size of 32×32, we extract the the SIFT feature of two-layer pyramid. Then the feature stream
consists of F = [G1, · · · , G5]

T ∈ R5×1024. We adopt a linear SVM to test the classification performance
of the selected feature space. The involved parameter in SVM model is tuned by 5-fold cross-validation.
Details of experimental results are as follows.

4.2.1 Cifar-10

We first explore the individual performance of the two process in OGFS, denoted as OGFS-Intra and OGFS-
Inter respectively. Table 2 reports the compactness, accuracy and the time cost for each algorithm on this
dataset.

Considering classification accuracy, OGFS-Intra obtains the best overall accuracy with 51.22% as shown
in Table 2. Grafting performs only after OGFS-Intra with 51.00%. OGFS-Inter and OGFS reach compar-
ative accuracy with 49.54% and 49.58%, respectively. Alpha-investing is about 7% inferior to OGFS-Inter
and OGFS, but it still performs better than OSFS. This is possibly because of the constraint on the maximal
number of selected features in OSFS. It is demonstrated that OGFS-Intra can select discriminative features,
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Table 2: Image classification results on the Cifar-10 dataset.

Method #dim. accu. time(s)
Alpha-investing 979 43.31 3228.82
OSFS 50 24.07 45625.17
Grafting 4945 51.00 4562.88
OGFS-Intra 5111 51.22 3.53
OGFS-Inter 1991 49.54 142.98
OGFS 1990 49.58 142.09
MI 2723 49.43 8.62
LARS 2723 47.24 121.18
GBFS 1694 48.54 281.17
Baseline 5120 54.40 -

but leads to redundancy. OGFS-Inter can reduce the redundancy. Thus, OGFS achieves better accuracy
than OGFS-Inter and is a little inferior to OGFS-Intra. The three offline feature selection methods obtain
comparative accuracy around 48.00%. The accuracy of Baseline is the best with 54.40%. We can observe
that the accuracy gap between our method and Baseline is the least.

In terms of compactness, as shown in Table 2, OSFS selects only 50 features. OGFS-Intra selects the
largest number of features (5,111), is similar with Grafting (4,945). This is because OGFS-Inter uses a sparse
model which leads to a relatively small size of feature space. GBFS obtains the least number of features
among offline feature selection methods with 1,694, but our OGFS is comparative with 1,990 features. To
guarantee the classification performance of MI, MI selects the same size of features as LARS (2,723).

In terms of time complexity, OGFS-Intra obtains the highest efficiency with only 3.53 seconds, while
others require hundreds or thousands of seconds. This is because OGFS-Intra is linear with the number of
features as we discuss in Section 3.3. The inter-group selection needs less than 150 seconds, which is much
faster than Alpha-investing, Grafting and OSFS. This is because the time cost of OSFS is exponential with
the number of desired features. In order to simulate the online situation, all the online feature selection
methods tend to spend more time in feature transformation. The time complexity of the filter method MI is
8.62 seconds, much faster than other offline methods, LARS (121.18) and GBFS (281.17). However, our
OGFS-Intra is even more efficient with only 3.53 seconds. This is the benefits of our criterion defined in
intra-group selection.

Since we studied the online feature stream with groups, we examine the performance of online feature
selection methods in response to increasing groups in Figure 4. Generally, with the arrival of more groups,
the compactness increases and the classification accuracy improves. But the improvement is not obvious for
Alpha-investing and OSFS. Grafting and our method obtains the best accuracy. But our method obtains a
better compactness. Actually, when the number of groups increases to 2, the compactness of our method
remains stable. This is because the complementary effects of the two stages of OGFS. The OGFS-Intra
selects the most discriminative features, and OGFS-Inter achieves the optimal subset.

To sum up, benefit from group information, OGFS favors a good trade-off between the accuracy and
compactness. The time complexity show that the combination of the two stages (OGFS-Intra and OGFS-
Inter) is reasonable and applicable for real-world applications. Thus, in the following experiments, we only
compare our OGFS algorithm with other comparative algorithms.
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Figure 4: The performance of online feature selection vs. feature groups on the Cifar-10 dataset.
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Figure 5: The performance of online feature selection vs. the number of feature groups on the Caltech-101 dataset.
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Table 3: Image classification results on the Caltech-101 dataset with online feature selection methods.

Train
Alpha-investing OSFS Grafting OGFS

#dim. accu. time(s) #dim. accu. time(s) #dim. accu. time(s) #dim. accu. time(s)
5 25 4.24 12.19 38 3.02 201.80 553 20.61 569.04 1,051 34.54 140.48
10 46 7.04 30.56 50 4.62 2312.6 1,258 29.98 1976.82 1,302 40.92 192.06
15 60 12.23 55.64 50 4.89 5971.8 1,196 36.23 754.92 1,842 44.55 173.70
20 79 15.20 113.33 50 5.76 1203.3 1,390 38.38 1008.79 1,495 48.98 237.12
25 118 20.14 250.81 50 6.39 1405.8 1,528 41.44 2024.70 1,856 52.67 220.39
30 109 20.58 266.49 50 5.48 2137.6 1,641 45.21 2470.00 1,782 52.05 327.54

Table 4: Image classification results on the Caltech-101 dataset with offline feature selection methods.

Train
MI LARS GBFS Baseline

#dim. accu. time(s) #dim. accu. time(s) #dim. accu. time(s) #dim. accu.
5 500 18.36 12.89 502 16.79 10.42 318 16.00 641.21 21,504 39.74
10 1,001 29.08 16.14 1,001 30.58 41.25 734 27.49 364.45 21,504 49.02
15 1,511 35.47 20.29 1,511 36.35 90.42 1,047 34.23 526.60 21,504 54.95
20 2,014 42.09 24.74 2,014 41.88 160.32 1,372 39.43 699.48 21,504 57.93
25 2,509 48.22 28.85 2,509 47.12 257.54 1,674 41.44 876.44 21,504 62.24
30 3,000 52.15 32.92 3,000 51.35 381.63 1,966 45.68 1065.29 21,504 64.51

4.2.2 Caltech-101

We report the average accuracy over 101 classes. Detailed results are shown in Table 3. It can be seen that
OGFS gives the leading classification accuracy in all the cases. Specifically, OGFS gains 30% over Alpha-
investing. The performance of Grafting improves by the increase of training samples, but is still inferior to
our method. The accuracy of OGFS is about 6∼13% higher than Grafting. For example, in the case of 30
training images, Grafting reaches the accuracy of 45.21% while our method is 52.05%. In the case of 25
training images, the accuracy of other methods are all below 45% while OGFS reaches 52.67%.

In terms of compactness, Alpha-investing achieves the best performance. In the case of 20 training im-
ages per class, Alpha-investing obtains the compactness with 79 features, much better than the comparative
methods, such as Grafting (1,390) and OGFS (1,495). However, Alpha-investing only achieves the accuracy
of 15.20%, much lower than Grafting (38.38%) and OGFS (48.98%). It implies that the reevaluation of the
features is necessary. This also confirms that the correlation among the features is important.

In terms of time complexity, the time complexity of all methods increases by the increase of training
samples. Alpha-investing is the most efficient in most cases. However, in the case of 25 training images,
OGFS is 30 seconds faster. OSFS and Grafting achieve similar computational efficiency which varies from
190.0 to 2500.0 seconds. Thus, in summary, OGFS could obtain the most discriminative feature space
within acceptable time cost.

Table 4 reports the offline feature selection methods and Baseline. Baseline obtains the best accuracy
but with huge feature space. In the case with less than 20 training samples, the offline feature selection
methods obtain comparative accuracy with less than 3.00% variation. With the increase of training samples,
MI enjoys a great improvement in accuracy. In the case of 30 training samples, MI obtains the best accuracy
with 52.15%, better than LARS (51.35%) and GBFS (45.68%). OGFS is comparative with 52.05%. The
results demonstrate that OGFS is superior than offline feature selection methods in the real-world image
classification task.

We investigate the influence of increasing feature groups. The classification results based on each group
is plot in Figure 5. We can also observe that with the increase of feature groups, OGFS enjoys an improve-
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Figure 6: Pair of samples from the LFW dataset. The first two rows are correctly matched pairs and the last
two rows are mismatched pairs.

Table 5: Face verification results on the LFW dataset

Fold
Alpha-investing OSFS Grafting OGFS

#dim. accu. #dim. accu. #dim. accu. #dim. accu.
1 1 52.67 50 66.17 3,963 77.00 1,132 79.50
2 1 52.67 50 67.50 3,965 77.50 1,619 82.33
3 2 54.67 50 66.83 3,867 77.33 1,915 81.17
4 1 52.67 50 62.67 3,961 77.17 1,602 81.17
5 1 52.67 50 65.50 4,004 76.50 1,590 81.00
6 1 52.67 50 64.50 3,825 77.33 1,695 81.33
7 1 52.67 50 66.17 3,674 77.33 1,536 80.83
8 1 52.67 50 69.50 3,825 77.50 1,411 80.67
9 1 52.67 50 65.50 3,831 77.17 1,716 80.00

10 2 54.67 50 66.67 3,844 76.83 1,338 81.17
average 1 53.07±0.84 50 65.70±1.36 3,876 77.17±0.31 1,555 80.92±0.77

ment in accuracy. For instance, as shown in Figure 5(b), OGFS obtains much better accuracy than Grafting
when there are 3 groups. But when the feature group reaches to 5, the performance of most methods keep
steady. The compactness of our method changes with the increase of groups while others remain stable. It
demonstrates the efficacy of online group feature selection. The features extraction is expensive and time
consuming. If the model based on existing feature space reaches predefined performance, the further feature
extraction is not necessary.

15



Table 6: Face verification results with feature selection on the LFW dataset

Method #dim. accu.
Alpha-investing 1 52.67
OSFS 50 62.67
Grafting 3,961 77.17
OGFS 1,602 81.17
MI 5,000 76.50
LARS 4,073 77.17
GBFS 68 67.50
Baseline 127,440 76.83
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Figure 7: The performance of online feature selection vs. feature groups on the LFW dataset.

4.3 Face Verification

The LFW dataset is collected for unconstrained face recognition [52]. It contains 13,233 images from 5,749
identities. In this dataset, there are over 1,680 identities that have two or more images, and 4,069 identities
that have just one single image. The images are captured under daily conditions with variations in pose,
expression, age, lighting and so on. Figure 6 lists some samples in the dataset.

We extract image patches at 27 landmarks in 5 scales. The patch size is fixed to 40× 40 in all scales.
Each patch is divided into 4×4 non-overlapping cells. For each cell, we extract the 58-dimensional LBP
descriptor. Then each image is represented by a feature vector with dimension 27×5×4×4×58. We set the
feature space of each landmark as a group. Then, the feature stream consists of F = [G1, · · · , G27]

T ∈
R27×4640, where Gi ∈ R1024(i ∈ [1, 27]) denotes the LBP descriptor for a landmark. The dataset is divided
into ten folds. We test the performance on each selected feature space in a leave-one-out cross validation
scheme. In each experiment, nine folds are combined to form a training set, with the tenth subset used for
testing. We verify whether each pair belongs to the same subject by Euclidean distance. Table 5 lists the
details of the compactness and the verification accuracy on selected feature spaces of each fold.

As shown in Table 5, OGFS is over 20% higher than Alpha-investing in all cases. Alpha-investing
selects only 2 or 4 features. The indices of selected features are among {1, 2, 3, 4, 5, 396}. This is because
the previously selected features are never reevaluated. It confirms the importance of reevaluating collected
features. In general, OSFS achieves the accuracy about 66.00% with only 50 features, much higher than
Alpha-investing (about 53.00%), but still inferior than OGFS (80%). OGFS also outperforms Grafting in
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Figure 8: The face verification results on LFW dataset.

Table 7: Description of the UCI datasets

Data Set #classes #instances #dim.
Wdbc 2 569 31
Ionosphere 2 351 34
Spectf 2 267 44
Spambase 2 4,601 57
Colon 2 62 2,000
Prostate 2 102 6,033
Leukemia 2 72 7,129
Lungcancer 2 181 12,533

both accuracy and compactness. For instance, on the 3rd fold, Grafting achieves 77.33% accuracy with
3,857 features, while OGFS achieves 82.33% with 1,619 features.

In terms of time complexity, Alpha-investing still obtains the highest efficiency with 137.23 seconds
in average. This is because the time complexity of Alpha-investing is linear. OSFS is only inferior to
Alpha-investing with 2470.57 seconds. Grafting is the slowest with over 76,000 seconds, much slower than
our method 4752.93 seconds. This is because the time complexity of OSFS, Grafting and OGFS are all
related to the selected number of features, while Alpha-investing is only correlated to the procession of each
dimension of feature. The time complexity of our method is acceptable.

From Table 5, the variance of the 10 splits of data is small. Therefore, we use the 5th fold of data
to test the offline feature selection methods. Complementary results are shown in Table 6. From Table 6,
OGFS obtains the best accuracy with 81.17%, even better than Baseline with 76.83%. It demonstrates the
necessary of feature selection in face verification. MI and LARS reach similar accuracy with 76.50% and
77.17%. Grafting also obtains better accuracy than offline methods. The encouraging results show the
superiority performance of online feature selection methods.

Figure 8 represents the Receiver Operating Characteristic (ROC) curves of the four methods, from which
we can also clearly see the superiority of the proposed OGFS method.

Figure 7 illustrates the performance of online feature selection methods in response to increasing groups.
Alpha-investing remains stable in terms of both accuracy and compactness. As the number of groups in-
creases, OSFS and Grafting gain stable compactness. But sometimes the accuracy also decreases. This
implies that more features may include redundant or irrelevant information. The results demonstrate that the
framework of online feature selection is suitable for the large-scale real-world application.
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Table 8: Experimental results of online feature selection methods on benchmark data sets.

Data Set
Alpha-investing OSFS Grafting OGFS

#dim. accu. time(s) #dim. accu. time(s) #dim. accu. time(s) #dim. accu. tim(s)
Wdbc 19 96.84 0.010 11 94.39 0.182 19 95.79 7.305 19 95.26 0.461
Ionosphere 2 91.76 0.004 9 92.60 0.029 32 91.76 0.300 23 91.47 0.018
Spectf 2 79.50 0.002 4 79.06 0.034 44 80.56 0.510 33 81.27 0.019
Spambase 42 91.02 0.200 84 94.07 0.551 55 92.28 0.761 46 93.09 0.047
Colon 4 79.76 0.127 4 85.95 33.855 26 84.26 3.901 74 90.47 2.033
Prostate 8 97.09 0.633 5 91.09 2.903 17 93.53 9.330 102 98.00 13.724
Leukemia 6 98.75 0.731 5 94.46 3.913 13 94.53 5.895 91 100.0 9.132
Lungcancer 4 96.67 1.826 7 98.36 27.132 19 96.53 112.239 132 99.44 62.054

Table 9: Experimental results of offline feature selection methods on benchmark data sets.

Data Set
MI LARS GBFS Baseline

#dim. accu. time(s) #dim. accu. time(s) #dim. accu. time(s) #dim. accu.
Wdbc 20 95.96 0.02 21 95.61 0.96 23 94.74 1.09 30 95.26
Ionosphere 20 92.61 0.01 32 92.04 0.86 32 91.48 0.80 34 92.05
Spectf 20 80.20 0.01 44 80.56 0.86 31 80.19 0.81 44 80.56
Spambase 20 91.02 0.20 84 94.07 0.55 55 92.28 0.76 46 93.09
Colon 20 82.38 0.33 58 85.95 0.87 4 92.14 1.05 2000 84.05
Prostate 20 92.00 1.02 98 94.09 0.97 5 96.00 1.97 6033 90.00
Leukemia 20 94.64 1.16 70 100.00 0.94 3 94.46 1.88 7129 90.36
Lungcancer 20 99.44 2.34 166 100.00 1.55 3 97.22 4.16 12533 96.11

Table 10: Image classification results on the Cifar-10 data set with random feature groups.

Index Order #dim. accu. time(s)
1 1 5 3 4 2 1,969 48.49 137.96
2 2 1 3 4 5 1,973 49.27 141.18
3 2 5 3 1 4 1,992 48.57 136.62
4 4 5 2 1 3 1,988 48.44 135.03
5 3 1 4 5 2 1,955 48.64 137.20
6 2 4 3 5 1 1,948 48.11 137.07
7 5 3 4 1 2 1,995 48.48 135.55
8 1 5 4 3 2 1,978 48.54 137.28
9 3 5 4 2 1 1,977 47.92 138.32

10 1 3 4 2 5 1,981 49.28 142.85
average - - 48.58±0.43 -

4.4 On the Influence of Group Orders

In this part, we show the performance of our method regarding to the order of feature groups in Table 10. The
experiment is conducted on the Cifar-10 dataset. The original feature space is F = [G1, G2, G3, G4, G5].
We randomly generated the order of the groups of features 10 times, as shown in the second column of
Table 10. Our algorithm obtains an average accuracy of 48.58%. The standard variation of the accuracy is
0.43. To sum up, the order of the feature groups has some influence towards the method, but the variation is
within certain range. Thus, it demonstrates that our method is stable in real-world applications.
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4.5 Experimental Results on UCI Data Sets

Table 7 lists the eight benchmark data sets from UCI repository (Wdbc, Ionosphere, Spectf and Spambase)
or microarray domains2 (Colon, Prostate, Leukemia, and Lungcancer). Note that, for these eight data sets,
there is no natural group information, and the group structure is generated by randomly dividing the feature
space. This experiment can help us test the robustness of the OGFS approach.

After feature selection, we test the performance of the feature space based on the three classifiers, k-
NN, J48, and Randomforest in Spider Toolbox3. We adopt 10-fold cross-validation on the three classifiers
and choose the average accuracy as the final result. Table 8 shows the experimental results of classification
accuracy versus compactness on the 8 UCI data sets.

• OGFS vs. Grafting

Though the Grafting uses the information about the global feature space, our algorithm outperforms
Grafting on 6 out of the 8 data sets in terms of accuracy. On the 6 data sets, our method obtains
3∼5% gain in accuracy. More specifically, on the dataset Colon, the accuracy of Grafting is 84.26%,
while OGFS achieves 90.47%. On the datasets Leukemia and Lungcancer, our algorithm achieves
a fairly high accuracy (over 99.0%). On the other two data sets Wdbc and Ionosphere, OGFS also
obtains comparative accuracy, only 0.5% lower. On the Ionosphere dataset, OGFS achieves better
compactness. The results show that OGFS is able to obtain the features with discriminative capability.

• OGFS vs. Alpha-investing

Alpha-investing obtains better compactness than our OGFS algorithm on 7 data sets, but it performs
worse in terms of accuracy. Our method outperforms Alpha-investing on the other 6 data sets. More
specifically, on the dataset Colon, the accuracy of Alpha-investing is 79.76%, while OGFS reaches
up to 90.47%. On the Wdbc and Ionosphere data sets, the two methods achieve comparable accurac.
For instance, on the Ionosphere dataset, our algorithm achieves an accuracy of 91.47% while Alpha-
investing achieves an accuracy of 91.76%. This is because the previously selected subset will never
be reevaluated in Alpha-investing, which affects the selection of the later arrived features. However,
in our algorithm, selected features will be reevaluated in the inter-group selection in each iteration.
Thus, our algorithm is able to select sufficient features with discriminative power.

• OGFS vs. OSFS

OSFS obtains better compactness on most of the data sets, but our algorithm is better than OSFS in
accuracy on 6 out of the 8 data sets with a small compactness loss. More specifically, on the Iono-
sphere and Spambase data sets, the accuracy of our algorithm (91.47%, 93.09%) are slightly lower
than OSFS (92.60%, 94.07%). But on the other data sets, our algorithm significantly outperforms
OSFS. For example, on the dataset Colon, our algorithm achieves an accuracy of 90.47% while OSFS
reaches 85.95%. On the Prostate dataset, our method (98.00%) performs much better than OSFS
(91.09%). The reason is that OSFS only evaluates features individually rather than in groups. Mean-
while, different from OSFS, our algorithm facilitates the relationship of features within groups and
the correlation between groups, which will lead to a better feature subset.

In terms of time complexity, Alpha-investing is the fastest, except 0.15 seconds slower than our algo-
rithm on the dataset Spambase. On the first 4 data sets, Grafting costs over 7 seconds on the Wdbc
dataset, while the other algorithms accomplish the feature selection all in less than 1.0 second. When
the feature space reaches thousands (Colon, Prostate and Leukemia), OGFS, Alpha-investing and

2http://www.cs.binghamton.edu/ lyu/KDD08/data/
3http://www.kyb.mpg.de/bs/people/spider/main.html
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Grafting methods take less than 15 seconds. OSFS takes 33.8443 seconds on the Colon dataset. This
is because each time a relevant feature is added, redundancy analysis is triggered over all selected fea-
tures. On the Lungcancer dataset, Alpha-investing takes less than 2.0 seconds. OSFS is only inferior
to Alpha-investing with 27.13 seconds. OGFS costs about 1 minute, still faster than Grafting with
112.24 seconds. It demonstrates that simple consideration of each dimension of coming feature is ef-
ficient, like Alpha-investing. At the same time, the time complexity of other algorithms is correlated
with not only the global feature space but also the selected features in previous stage. Although the
reevaluation of selected features costs more time, they are more robust and achieve relatively better
classification performance.

• OGFS vs. Offline feature selection methods Table 9 reports the results of offline feature selection
methods and Baseline. LARS obtains the best accuracy. For instance, on the Leukemia dataset,
LARS reaches 100.00% accuracy, 5% better than MI and GBFS. In most cases, MI and GBFS are
comparative with LARS. The offline methods all obtain the compactness with less than 60 features.
We can observe that OGFS is comparative with the best result of offline feature selection methods.
The results demonstrate the efficacy of OGFS in general feature selection applications.

In summary, in term of classification accuracy, experimental results on UCI data sets show that our
algorithm is superior than comparative online feature selection methods. OGFS achieves comparative results
with the best offline performance. It implies that our method enjoys a significant improvement compared to
state-of-the-art online feature selection models.

5 Conclusion

In this paper, we investigate the online group feature selection problem and present an novel algorithm,
namely OGFS. In comparison with traditional online feature selection, our proposed approach considers the
situation that features arrive by groups in real-world applications. We divide online group feature selection
into two stages, i.e., online intra-group and inter-group selection. Then, we design a novel criterion based
on spectral analysis for intra-group selection, and introduce a sparse regression model to reduce the redun-
dancy in inter-group selection. Extensive experimental results on image classification and face verification
demonstrate that our method is suitable for real-world applications. We also validate the efficacy of our
method on several UCI and microarray benchmark data sets.
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